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Abstract

This thesis investigates the detection and classification of small boats using a

passive sonar system. Noise radiated from a small boats consists of broadband

noise and harmonically related tones that correspond to parameters in the boats

engine and propeller. A novel signal processing method for detection and discrim-

ination of noise radiated from small boats has been developed. There are two

main components to the algorithm. The first component detects the presence of

small boats by the harmonic tonals radiated from the boat propeller and engine.

The second component was designed to extract the a signature from passive sonar

data.

The Harmonic Extraction and Analysis Tool (HEAT) was designed to esti-

mate the fundamental frequency of the harmonic tones, track the fundamental

frequency using a Kalman filter, and automatically extract the amplitudes of the

harmonic tonals to generate a harmonic signature for the boat. The algorithm is

shown to accurately extract theses signatures, and results show that the signa-

tures are unique enough that the same boat passing by the hydrophone multiple

times can be recognized.
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Chapter 1

Introduction

1.1 Executive Summary

The automated detection and classification of maritime traffic is a very challeng-

ing problem as well as one of great importance to many organizations. For marine

protected areas (MPAs), an automated boat detection system could alert author-

ities of vessel traffic in the area. However, in some MPA’s, like in Molokini off

the coast of Maui, commercial snorkeling and diving boats are authorized where

fishing vessels are not, so a classification or identification system is also needed

to discriminate from these different types of boats. The need for similar systems

arises in the monitoring of harbor traffic for national security. There are many

different methods of detecting boats including radar [1], electro-optic (EO) and

infrared (IR) cameras [2], and sonar - both active and passive. However, many

of these methods provide little additional information beyond detection. Radar

and optical methods are limited by line of sight for detection, and optical systems

can be obscured by rain, fog, or may require daylight. Active sonar can be used

for detection of quiet targets, but the high level of reverberation in shallow water

environments often results in many false detections, limiting its utility. As an

alternative, passive sonar has been proven to be an efficient tool for the detection
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and identification of self-emitting targets [3, 4].

There has been limited research on the detection and classification of small

boats using passive sonar. In [5], passive sonar was used to detect SCUBA divers

by the peaks in the frequency energy distribution due to the divers breaths. The

breathing rate and the spectrum intensity give information of the range of the

diver. In [6], the same research group uses passive sonar to record the spectrum

of small boats and investigated the effects of boat noise on the detection range

of divers. However, this work is mainly focused on the detection of targets using

passive sonar. There has yet to be any significant work on classification of small

boats in the literature.

This thesis is focused on the detection and classification of small boats using

passive sonar systems. Passive spectra of boats include broadband noise as well

as tonals due to the harmonics of the engine speed and shaft/propeller rotation

[7]. Using the above features, a novel method for detection and discrimination of

boat noise has been developed. The algorithm has two major components; the

first component detects the presence of small boats using the harmonic tonals

radiated from the boat propeller and engine. The second component extracts

the harmonic features and facilitates the exploration of the relationship between

these features and the identification of specific boats. These features consist of

harmonic amplitudes, SNRs, and the fundamental frequencies of the boat noise.
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A Harmonic Extraction and Analysis Tool (HEAT) has been designed to esti-

mate the fundamental frequency of the harmonic content generated by the engine

and propeller of small boats. A discrete Kalman filter is applied to refine the es-

timated fundamental frequency and create a track through time. Harmonics of

the fundamental frequency are extracted, and their amplitudes are used as signa-

tures of the boat noise. The algorithm is shown to accurately and automatically

extract these harmonic signatures for later use in classification.

The rest of the thesis is organized as follows. Chapter 1 provides a background

on passive sonar and reviews the classification of large ships from radiated noise.

Previous methods on estimating the fundamental frequency of a set of harmonics

are introduced. Also included is as an outline of the proposed method of detection

and estimation of small boat signatures. Chapter 2 introduces the acoustic model

of the sound radiated from small boats. It also illustrates the pre-processing step

which prepares the raw data for the detection algorithms. Chapter 3 details

the boat detection algorithm and its performance on a data set collected by

the Pacific Northwest National Laboratory (PNNL) in Sequim, WA. Chapter

4 introduces the HEAT algorithm for harmonic feature extraction. The data

analysis results are shown in Chapter 5. Chapter 6 summarizes this research and

suggests potential areas of future research.
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1.2 Passive Sonar

SONAR (SOund Navigation And Ranging) it is a technique that uses acoustic

signals for navigation, detection and communication. There are two main meth-

ods of sonar, active and passive. Typically in an active sonar system, a short

pulse signal is transmitted through a medium and the echo is received by a hy-

drophone to determine range of a target. In comparison, passive sonar uses a

hydrophone to record the sound generated by self-emitting sources.

In this work, passive sonar is used to record sound emitted from small boats

due to engine noise and propeller movement. The acoustic signatures are ex-

tracted from the received signals to identify the source type. Passive sonar has

been chosen for this research because we are recording the sound from moving

boats, which are self-emitting sources. Passive sonar recording devices can also

be relatively cheap to construct, very simple to deploy, and do not adversely

affect the surrounding environment.

A major challenge in the algorithm development is to discriminate boat noise

from interfering background noise sources including shipping, environmental and

biological noises. The signal processing methods developed in this research are

designed to be robust against constant noise sources as well as loud transient

events. The hydrophone used to collect data by the PNNL is located at the

mouth of a bay, with very strong currents during the changing tides. Objects
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would regularly hit the hydrophone, causing loud, impulsive noise. Also located

near the hydrophone was an underwater pump, which is a loud source of constant

noise. In Chapter 3, a couple different techniques are introduced to help mitigate

the effects of these noise sources.

1.3 Noise Radiation From Ships

Many researchers have studied radiated noise from large ships, both modeling and

measurement. In the 1970’s, Gray and Greely [8] developed a model to predict

source level and frequency of the acoustic energy generated by propeller cavita-

tions. In the 1990’s Arveson and Vendettis [9] conducted a series of measurements

of the noise radiated from the M/V Overseas Harriette and found agree-

ment with Gray and Greeley’s model. These references as well as many others

characterize the radiated noise from large ships quite well. However, much less

work has been done to characterize the radiated noise from small vessels.

Ross[3] and Urick[4] have given an excellent description of radiated noise of

large surface ships and submarines. It has been shown that the radiated noise

from a ship is a combination of broadband noise and sinusoidal tonal signals. The

broadband noise is generated by many sources including propeller cavitations, and

impulsive events in the engine such as the impact of a piston against the cylinder

wall. This broadband noise propagates through the water and when received on

a hydrophone, generates the classical bathtub pattern that is often associated
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Table 1.1: Fundamental frequencies from the engine and propeller.
Engine Rates Propeller Rates

Cylinder Firing Rate Shaft Rotation Rate
fCF = fCR/2 fSR = fCR/Λg

Λg = Gear Ratio
Crankshaft Rotation Rate Blade Rotation Rate

fCR = RPM/60 fBR = NbfSR
RPM = Engine Speed Nb = Number of Blades
Engine Firing Rate

fEF = NcfCF

Nc = Number of Cylinders

with passive acoustic signatures. This bathtub pattern is do to all the different

multi-path arrivals of the noise adding up in and out of phase. The sinusoidal

tonal signals can be related to details about the ships engine and propeller, and

are the fundamental components of a harmonic set. Table 1.1 shows the major

contributions to the tonals from the ships engine and propeller. The model of

radiated ship noise represented as a sum of broadband noise and tonal frequencies

will be used to describe the noise radiated from small boats.

1.4 Frequency Estimation Methods

Frequency estimation is a topic that spans many disciplines including speech

recognition, musical pitch estimation, and biomedical signal processing to name

a few. The thing in common with all of these different disciplines is the nature of
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the signals they are trying to estimate; multi-harmonic periodic, or even quasi-

periodic, signals. The fundamental frequency of these signals contains useful

information. Also important is the progression of that fundamental frequency

through time.

Frequency estimation and tracking is a complex problem as the frequency

of a signal is inherently a non-linear parameter. Tracking non-linear parameters

cannot be done with a conventional Kalman filter. In [10], a marginalized particle

filter is used to track the instantaneous frequency of two biomedical signals:

electrocardiogram and arterial blood pressure. A marginalized particle filter was

also used in [11] to track the fundamental frequency, and in this case, multiple

fundamental frequencies, of musical signals.

The method used in this thesis is a frequency domain method similar to the

maximum likelihood method described in [12]. In their research, a time domain

method for estimating the pitch period of voiced speech based on a maximum

likelihood formulation. The frequency domain analog to that method is briefly

described as matching a comb-like filter to the autocorrelation of the periodic

signal. This frequency domain method is also similar to [13] and [14] where the

goal is to minimize the difference between a comb filter and the signal itself. In

this thesis, the Fourier transform of a signal is correlated to a comb filter to get

an estimate of the fundamental frequency. This puts the frequency in a linear

space, so a Kalman filter can now be used to track the fundamental frequency

7



through time.

1.5 Overview of detection and estimation algorithm

The overall goals of this research are to develop a boat detection algorithm

that can be implemented real-time on passive acoustic systems, and to extract

harmonic-related signatures that can be used to discriminate the boat types.

Figure 1.1 shows the structure of the developed approach.

The signal is recorded on a hydrophone and sampled at rate fs. The sampled

signal is converted from time domain to a time-frequency domain (Module A)

and passed to the detection algorithm (Module B). Once a ship signal has been

identified, the data is passed to the HEAT algorithm which extracts a harmonic

signature. The HEAT algorithm estimates the fundamental frequency (Module

C) of all the harmonic tonals, then tracks the fundamental frequency f0 though

time using a Kalman filter (Module D). The harmonic signature is then extracted

from the data by projecting the track of f0 onto all the harmonics and estimating

the amplitude of all the harmonics (Module E). These harmonic signatures can

be used to build up a signal database for use in classification of small vessels.
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Figure 1.1: General overview of detection and estimation algorithm.
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Chapter 2

Signal Model and Pre-Processing

In this chapter the model used to represent the signal received on the hydrophone

is introduced. Also described is the pre-processing that was used to transform

the data into a format that can be used by both the detection and estimation

algorithms.

2.1 Signal Model

Consider a sum of many periodic sinusoidal signals whose frequencies are all

harmonically related, being integer multiples of a fundamental frequency. This

signal can be written as follows:

s(t) =
H

∑
h=1

Ah cos(2πhγt + φh),

where h is the harmonic number, Ah and φh are the amplitude and phase of the

hth harmonic component, and γ is the fundamental frequency. Assuming this

signal is of infinite length, performing a Fourier transform on s(t) will result in

a series of delta functions with even spacing of γ.

Now consider the noise radiated from a ship as a combination of broadband

noise as well as harmonically related sinusoidal tonal signals. This can similarly
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be written as:

r(t) = s(t) + n(t)

=
H

∑
h=1

Ah cos(2πhγt + φh) + n(t),
(2.1)

where once again, h is the harmonic number, Ah and φh are the amplitude and

phase of the hth harmonic component, and γ is the fundamental frequency, only

now assume that the fundamental frequency and harmonic amplitudes are un-

known. This fundamental frequency γ is related to the engine speed and other

parameters by Table 1.1. We can rewrite r(t) as r(t, θ), there he value θ repre-

sents a set of estimation parameters that consists of the fundamental frequency,

γ, as well as the amplitude of all the harmonics, Ah, or θ = {γ,Ah}.

The signal received on the hydrophone is different from the signal radiated

from the boat for a number of reasons including changes in engine speed, Doppler

shift, and other propagation effects. The signal can still be modeled as a sum of

sinusoidal signals as in (2.1), but now the fundamental frequency γ is no longer

constant. Instead, γ is written as γ(t) = fo +∆f(t) where fo is the fundamental

frequency, and ∆f(t) is the change in fundamental frequency over time, and

r(t, θ) can finally be written as:

r(t, θ) = s(t, θ) + n(t)

=
H

∑
h=1

Ah cos(2πhγ(t)t + φh) + n(t),
(2.2)
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Because the frequency content is constantly changing, a time-frequency represen-

tation is best to show the evolution of the frequency content.

2.2 Pre-Processing

Before processing the signal r(t, θ), it must be in a format that can properly

represent the constantly changing frequency content. The time-frequency repre-

sentation used here is the Short-time Fourier Transform (STFT). The STFT is

computed by moving a short window along the data (creating a “snapshot”) and

computing the Fourier transform of the data along that window. The window

length is assumed to be short enough that the change in fundamental frequency

within the window is negligible, i.e., ∆f(t) ∼ ∆f(tk) within the window. Now

γk = fo +∆f(tk), where tk is the center time for the kth snapshot.

The signal in frequency domain for each window is now the convolution of

the Fourier transformed data with the Fourier transform of the time-domain

window, S(f, θ) =F {s(t, θ)} ∗F {rectwin(t)}, which results in S(f, θ) being a

summation of weighted sinc (sinc x ≡ sinx
x
) functions:

S(f, θk) =
H

∑
h=1

Ah

2
sinc [π (f − hγk)] . (2.3)

Now consider r(t, θ) to be of finite length Tr. The signal is sampled at fre-

quency fs, sampling period ∆t = 1/fs, and can be written as r(j∆t, θ) where
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j = {0,1,⋯,Nr − 1} and Nr = Tr/∆t. Then the signal is partitioned into K over-

lapping segments, or snapshots, where each snapshot is of length T seconds, or

Ns samples where Ns = T /∆t. The number of samples to overlap each snapshot

is determined by the desired percent overlap, e.g, for 50% overlap, the number

of samples to overlap is 50/100 ∗ Ns = Ns/2. The notation rk(n∆t, θk) is used

to represent the nth sample of the kth snapshot, where n = {0,1,⋯,Ns − 1} and

k = {1,2,⋯,K}. The received data, r(n∆t, θ), is now of dimension [Ns ×K].

Each snapshot is then transformed to the frequency domain by computing the

Ns-point DFT using an FFT algorithm:

Rko(m∆f, θk) = 2

Ns

Ns/2−1

∑
n=−Ns/2

rk(tk + n∆t, θk)e−jm2π∆fn∆t

m = −Ns/2,⋯,−1,0,1,⋯,Ns/2 − 1,
(2.4)

where tk is the center time for the kth snapshot and Rko(m∆f, θk) is the DFT

coefficient at the frequency bin m∆f . The frequency resolution, or width of

the bin ∆f , is determined by the length of the snapshot window by ∆f = 1/T .

For simplicity fm ≡ m∆f , where fm = ∆f {−Ns/2,⋯,−1,0,1,⋯,Ns/2 − 1}, so

Rko(m∆f, θk) = Rko(fm, θk), which is of dimension [Ns ×K].
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Chapter 3

Detection Algorithm

In this chapter the details on a detection algorithm are presented. The algorithm

was designed with the goal of eventually running on a real-time system to pick

out only sections of data where a boat is present to pass on to an estimation

algorithm. The performance of the detection algorithm will be measured by the

number of false alarms and missed detections over a period of time.

3.1 Detection Algorithm

A detection algorithm was developed to search through data recorded from a

single hydrophone and pull out sections of data with a ship signal present to

be analyzed. The time-series, r(t), is received on a single omni-directional hy-

drophone. H0 is the hypothesis that the received time-series is only noise, and

H1 is the hypothesis that the received time-series is signal and noise.

H0 ∶ r(t) = n(t), only noise

H1 ∶ r(t) = s(t) + n(t), signal and noise,

(3.1)

where s(t) are the tonals generated by the boats engine and propeller after they

propagate through the water, and n(t) is the broadband noise and any environ-

mental noise. An outline of the inputs to this algorithm are included in Appendix
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B. The detection algorithm consists of 4 steps.

Step 1. Normalize the signal

Once the STFT is computed, each snapshot is normalized along frequency.

The signal that is received is a combination of the tonals from the engine and

propeller, broadband noise, and any environmental noise in the area. Since this

noise is generally non-Gaussian, the received signal is normalized using a moving

window of length W along frequency.

Rk(fm, θk) = Rko(fm, θk) − µR,W

σR,W

, (3.2)

where µR,W and σR,W are the mean and standard deviation of Rko(fm, θk) in the

window W.

Step 2. Initialize frequency detection

Once the signal is normalized, a threshold, λf , is applied to each snapshot.

The threshold is a multiplier of the standard deviation, σ, and since the data is

zero mean and unit variance, λfσ = λf . This means any frequency bin fm that

has normalized amplitude Rk(fm, θk) greater than λf is considered a detection,

15



or

fm,det ∶ Rk(fm, θk) > λf .

Step 3. Cluster detected frequency bins

For each snapshot there are several detected frequency bins. Not all of these

frequency bins are associated with tonals. In this step the detection are clustered

in both time and frequency. This clustering is done to validate or invalidate any

detection.

First, the detected frequency bins are clustered in frequency. The frequency

clustering is done via a local max search along frequency for each snapshot. This

is done in case there are multiple detected frequency bins associated with a single

peak.

Then the frequency bins are clustered over time. This is done under the as-

sumption that the tonals are relatively stationary not only within each snapshot,

but also over N snapshots. It also assumes that the noise is not stationary over

N snapshots. If a frequency bin, fm, is detected for M out of N consecutive

snapshots (from time k −N to k) that detected frequency bin is considered valid

at time k. This does introduce an M snapshot delay in detection.

It is at this point in the detection algorithm that certain frequencies can be

excluded. If a frequency bin, fm, is detected that is associated with a known

16



noise source, that detected frequency bin is considered invalid and is ignored.

Step 4. Event detection

Up to this point in the detection algorithm the evidence to support either H0,

no ship is present, or H1, a ship is present has been built by validating detected

frequency bins for each snapshot. In this step the evidence, or detected frequency

bins in each snapshot, is added up and ran through a sequence of tests.

• The snapshots are clustered together in groups by searching for the first

snapshot where the number of detections goes above a threshold, Nd, and

the next snapshot in which the number of detections goes below that thresh-

old, Nd. This is continued until the end of the recorded data is reached.

• If the time in between two clusters of snapshots is less than Tg seconds, the

two clusters are grouped.

• If the total length of a group is greater than Tl seconds, the group is con-

sidered to satisfy H1.

This series of time gating test works well to mitigate the effects of transient noises

on the hydrophone.

Once a segment of data is identified as having a boat signature present, H1,

the data is run through an algorithm to extract the harmonic signature of the

boat. All of these steps could easily be implemented on a real-time system.
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Instead of calculating the STFT for the entire data set, the FFT of one snapshot

at a time could be computed and the four steps presented above could operate

at one snapshot at a time.

3.2 Performance of Detection Algorithm

To test the performance of the detection algorithm the algorithm was run on four

hours of 23 consecutive days. The hours chosen were from 12:00 AM to 2:00 AM

and from 8:00 AM to 10:00 AM. The early morning time was chosen because it

is less likely that boats will be running at that time of day, so any detections

during that time would likely be false alarms. The mid morning time was chosen

as a time that boats would likely be passing by to test how well the detection

algorithm picked them up. All the data used for this test was provided by PNNL

from their Sequim, WA campus. More information on this data is provided in

section 5.1.1.

The parameters used for the test of the algorithm are outlined in Table 3.1.

Not included in Table 3.1 is the list of frequencies the detection algorithm fil-

tered out as being sources on known noise; the list is too long for the table. The

location that this data was collected is directly next to a pump that constantly

refreshes salt water tanks located back on shore. There are a number of con-

stant frequency lines that are associated with that pump that have to be ignored.
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Table 3.1: Parameters used in application of the detection algorithm.

Variable Value

Sample Rate 8000 Hz
Snapshot Window 1 sec
Snapshot Overlap 50%
Frequency Limits 0 to 2000 Hz

Normalizing Window 25 bins
λf 2σ
NM 3 snapshots
Nd 5 detections
Tg 5 seconds
Tl 30 seconds

Figure 3.1 shows the background noise, with arrows indicating the specific fre-

quencies that are ignored by the detection algorithm. The algorithm also ignores

any detections below 40 Hz, as the band from 0-40Hz is predominantly flow noise

on the hydrophone.

0 100 200 300 400 500 600
−100

−90

−80

−70

−60

−50

−40

−30

Frequency, Hz

d
B

V

Figure 3.1: Average background noise from PNNL water pump. Arrows indicate
the specific frequencies ignored by detection algorithm.

The total length of the time the detection algorithm evaluated was 92 hours
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over 23 days. Over those 92 hours, only 12 false alarms occurred, and 1 missed

detection, with 147 correct detections. Those detections that were false alarms

were due to transient events, which are most likely objects hitting the hydrophone

that were picked up with the current. The one missed detection was during a

similar time where there was very strong broadband transient events that covered

up the signature from the boat. During times of slack tide, when there was little

to no impulsive noise on the hydrophone, there were no missed detections or false

alarms. Figure 3.2 shows an example of a false alarm, along with a boat being

picked up despite the transient events, plotted in a spectrogram. The green lines

indicate the start time of the event, and the red lines indicate the end of the

event.
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Figure 3.2: Example of two detected events. The green line indicates the start of
an event and the red line indicates the end of an event. First event is a correct
detection. Second event is a false alarm.
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Chapter 4

Harmonic Extraction and Analysis Tool (HEAT)

The previous chapter discussed a detection algorithm used to pick out segments

of acoustic data where a ship signature is present. Once a boat signature has

been detected certain parameters about the boat need to be estimated in order

to give some kind of information that will help in identifying the type of boat.

An algorithm has been designed to extract important information from the data,

and in this chapter, the details of the Harmonic Extraction and Analysis Tool

(HEAT) are presented.

There are three main parts to the HEAT algorithm. First is the estimation of

the fundamental frequency for the harmonic content from a boat. This is done

by correlating the received signal with a hypothesized model with a known fun-

damental frequency at each snapshot. Second is refining the estimate by tracking

the fundamental frequency with a Kalman filter to take advantage of the slow

change in the fundamental frequency over time. Lastly is the extraction of the

harmonic signature, which is an acoustic fingerprint of a boat. The fundamental

frequency estimate from the Kalman filter is used as a basis for extracting the

amplitude of the harmonic tonals from the data. These harmonic amplitudes are

what make up the harmonic signature.
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4.1 Fundamental Frequency Estimation

The noise radiated from small boats is modeled as a periodic, multi-harmonic

signal, as was described in Section 2.1. In this section a method of estimating

the fundamental frequency of a harmonic set is described. The Pearson Product-

Moment Correlation Coefficient (PMCC) is used to estimate the correlation of

the unknown harmonic set to a hypothesized model with known fundamental

frequency.

4.1.1 Pearson Product-Moment Correlation Coefficient (PMCC)

The Pearson Product-Moment Correlation Coefficient (PMCC) is a measure of

linear association between two random variables[15]. Consider the ordered pair

of random variables X and Y with mean µx and µy, standard deviation σx and

σy, and covariance σxy. The correlation coefficient between X and Y is defined

as

ρxy =
σxy

σxσy

,

where ρ is bounded between -1 and 1. This can be estimated from a sample of

X and Y by

ρ̂xy =
∑i (xi − µx) (yi − µy)√
∑i (xi − µx)2

√
∑i (yi − µy)2

, (4.1)
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and is usually denoted as r, or Pearson’s r. The notation ρ̂ will be used as an

estimate of the correlation coefficient, since r is used to to denote the received

signal. The PMCC is used in this algorithm to measure the similarity of the

measured signal Rk(fm, θk) to a hypothesized model.

4.1.2 Hypothesized Model

In (2.3) the tonals recorded on the hydrophone were modeled as a sum of weighted,

harmonically related sinc functions, with fundamental frequency γk. This same

model is used as the hypothesized model, only here it is assumed that all the

harmonics have equal amplitude:

Ŝ(fm, γ̄) =
H

∑
h=1

sinc [π (fm − hγ̄)] , (4.2)

where γ̄ is now a vector of fundamental frequencies. The vector γ̄ is essentially a

search window of fundamental frequencies bounded by γmin and γmax, with step

size ∆γ. Now γ̄ can be written as γ̄ = γmin+p∆γ, where p = {0,1,⋯,Nγ − 1}, and

Nγ = (γmax − γmin) /∆γ + 1, which is of dimension [1 ×Nγ]. The model Ŝ(fm, γ̄)

is a matrix of size [Nγ ×Ns], where Ns is the dimension of the frequency vector

from the STFT.
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4.1.3 Fundamental Frequency Estimation using PMCC

To estimate the fundamental frequency of the received signal Rk(fm, θk), the

signal is compared against a hypothesized model (4.2) using the PMCC (4.1):

ρ̂k(γ̄) = ∑fm
(Ŝ(fm, γ̄) − µS)Rk(fm, θk)√

∑fm
(Ŝ(fm, γ̄) − µS)2∑fm

√
Rk(fm, θk)2

. (4.3)

Notice that the mean for Rk(fm, θk) does not appear in (4.3); it is already zero

mean by equation (3.2). The vector ρ̂k(γ̄) denotes the correlation coefficient for

the kth snapshot of Rk(fm, θk) for all values γ̄. This is done for each snapshot

which makes ρ̂(γ̄) dimension [Nγ ×K]. To distinguish this domain apart from

the time-frequency domain such as Rk(fm, θk), we will refer to ρ̂(γ̄) as being in

the time-fundamental frequency domain.

When the fundamental frequency in Ŝ(fm, γ̄) is equal the fundamental fre-

quency in Rk(fm, θk), i.e. γ̄p = γk, ρ̂k(γ̄) will result in a high correlation and a

peak at that frequency. Also, if the spacing in the hypothesized model is twice the

fundamental frequency of the received signal, there will be another peak in ρ̂k(γ̄)

at that frequency. In fact, there are many peaks that show up in ρ̂k(γ̄) as a result

of this correlation analysis having to do with partial matches with multiples of

the fundamental frequency. This is demonstrated in Figure 4.1, which shows the

result the PMCC analysis of Ŝ(fm, γ̄) to Ŝ(fm,20). The peak at 20 Hz shows the

perfect correlation of the hypothesized signal with fundamental frequency of 20
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Figure 4.1: Example of the fundamental frequency correlation for the hypothe-
sized signal with γ̄p = 20 Hz, Ŝ(fm,20).

Hz, Ŝ(fm,20), to itself. There are many other peaks that give high correlation

due to only a fraction of the peaks lining up with the model. It is for this reason,

as well as the desire to track the changing frequency content through time, that

a Kalman filter is applied to ρ̂k(γ̄).

4.2 Kalman Filter

The fundamental frequency estimator in (4.3) results in a correlation of the mea-

sured signal Rk(fm) to a hypothesized model Ŝ(fm, γ̄) for all possible fundamen-

tal frequencies γ̄ and for every snapshot k. A simple way to estimate of the

fundamental frequency at time k, γk, would be to find the value of γ̄ where ρ̂k(γ̄)

is maximum γ̂k = argmaxγ̄ ρ̂k(γ̄). However, for this method it is not enough since
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there can be multiple signals of interest (boats) present with different fundamen-

tal frequencies. Also, if the gear ratio in the engine is not an integer number,

the fundamental frequency for the engine harmonics will be different from the

fundamental frequency of the shaft and propeller harmonics. For that reason,

a Kalman filter has been implemented in the correlation domain that will fol-

low a time evolving estimate of the fundamental frequency for each of the peaks

present.

4.2.1 Introduction of Kalman Filter

The Kalman filter is a widely used recursive algorithm used to estimate the mean

and error covariance of a state through time given a series of noisy observations

of the state [16]. The mathematical description of how the state propagates

through time is given by a process model. The relationship between the state

and the observations is given by a measurement model. The discrete Kalman filter

is limited to linear process and measurement models with additive white noise.

Modifications to the Kalman filter have been made to allow for non-linear models.

Some methods are the extended Kalman filter which uses a first order Taylor

series approximation, and the unscented Kalman filter which uses a deterministic

sampling technique to pick a set of sigma points which are used to estimate the

mean and error covariance of the state. Non-linear modifications may offer more

flexibility, but come at a cost of complexity, and also have poorer performance
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on linear models. This design fits into a linear model, so a conventional Kalman

filter was a natural choice.

All of these methods work on the same underlying principles. The mean Γ̂−k

and error covariance P −k of the state are projected forward, or predicted (4.4),

from time k − 1 to time k from initial estimates supplied to the filter, Γ̂k−1 and

Pk−1.

Predict

Γ̂−k = F Γ̂k−1

P −k = FPk−1F T +Q

(4.4)

The estimate of the mean Γ̂k and error covariance Pk are then corrected, or

updated (4.5), based on the measurement of the state zk at time k.

Update

Kk = P −k H
T (HP −k H

T +R)−1

Γ̂k = Γ̂−k +Kk (zk −HΓ̂−k)

Pk = (I −KkH)P −k

(4.5)

At the next time step the corrected estimates are fed back into the prediction

equations and the process repeats. This gives a filtered estimate of the mean

and error covariance of the state for all times. That filtered estimate over time
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is called a track.

4.2.2 Fundamental Frequency Tracking using Kalman Filter

A discrete Kalman filter has been implemented as a peak follower on ρ̂k(γ̄). This

stage of the algorithm follows many of the same steps as the detection algorithm

discussed in Chapter 3. Step 1 is skipped because there is no need to normalize

ρ̂k(γ̄). Step 2 in the detection algorithm was to threshold the normalized signal

to get an initial set of frequency detections. In the tracking algorithm, ρ̂k(γ̄) is

thresholded for each snapshot across fundamental frequency with threshold λγ.

Then in Step 3, the detections are clustered with a local max search. This now

gives for each snapshot of ρ̂k(γ̄), a set of detections Zk which are the inputs to

the Kalman filter.
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The tracker adapts a near constant velocity process model to tracking fre-

quency, given by

Γk = FΓk−1 +wk,

Γk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γk

γ̇k

ρk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

wk ∼ N (0,Q) ,

(4.6)

where Γk is the state vector for a single track, γk and γ̇k represent the frequency

and change in frequency (frequency velocity) from time k − 1 to k respectively,

ρk is the correlation value for frequency γk, F is the state transition matrix, and

wk is assumed to be a zero-mean white Gaussian process with variance Q. For

a Kalman filter tracking an object’ s position, the near constant velocity model

would assume that from time k − 1 to k, the change in velocity of the object

is negligible. The position can be predicted as the previous position plus some

change in position due to the object moving at some velocity over some time step.

The adaptation of this model to tracking frequency assumes that the change in

frequency from time k − 1 to time k is negligible, so the frequency at time k, γk,
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can be predicted as γk−1 + γ̇k. Actual changes to the frequency are accounted for

through the process noise term.

The measurement model directly relates the measurement zk to the state at

time k Γk as follows:

zk = HΓk + vk,

zk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

vk ∼ N (0,R) ,

(4.7)

where zk is the measurement with frequency γ and correlation value ρ, H relates

the state to the measurement, and vk is assumed to be a zero-mean white Gaussian

process with variance R.

The process noise covariance Q and the measurement noise covariance R are
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both matrices defined as follows:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qγ 0 0

0 Qγ̇ 0

0 0 Qρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rγ 0

0 Rρ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.8)

These parameters are the main tuning parameters of the Kalman filter. The

amount of noise injected into the process or measurement model indicates the

certainty with which the models are trusted to accurately estimate the state.

4.2.3 Tracker Logic

The Kalman filter requires an initial estimate of the state, so the tracking al-

gorithm includes logic-based track initiation and termination [17]. There are

several possible fundamental frequencies that fit the data, which are obtained

by applying a threshold, λγ, to the fundamental frequency estimate, γ̂k, for each

snapshot. These frequencies are presented to the tracker as a set of detections

or observations for time k in the set Zk. These detected frequencies are used

to initiate tracks, as well as observations for the Kalman filter. There are three

states which a track can be in:
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• Initiated: If a fundamental frequency is detected in M out of N consecutive

snapshots, a track is created.

• Flagged: If a track has no associated observations in the set Zk, the track

is flagged for termination.

• Terminated: If a track is flagged for NF consecutive snapshots, the track is

terminated.

At each time step, a set of observations need to be paired to the tracks. For

an observation to be associated with a track the observation must satisfy the

following threshold condition:

(zk −HΓ̂−k) (HP −k H
T +R)−1 (zk −HΓ̂−k)

T
< χ2. (4.9)

In the case where multiple observations satisfy this condition, the best match is

the one with the smallest χ2 value.

Before a track is initiated, the algorithm searches within a small window, Wγ ,

around the proposed frequency for any existing tracks. If a track already exists

within that window, the new track is immediately terminated, as it is assumed

to belong to the already existing track.
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4.2.4 Harmonic Content Parameter

The Kalman filter outputs multiple tracks, each track being a time-evolving esti-

mate of a fundamental frequency for the harmonic content in the signal Rk(fm).

To determine which track best fits the data, a parameter Ψ is calculated from

the estimate of the correlation, which is the third component of the state vector

in Eq. 4.6, as follows:

Ψ [κ] =
¿
ÁÁÀ 1

L

L

∑
k=1

∣ρ̂k [κ]∣2, (4.10)

where κ is the index of the track, ρ̂k [κ] is the estimate of the amplitude from

the Kalman filter for track κ, and L is the length of the track in snapshots. The

track with the highest Ψ value is chosen as the best fit to the data and is deemed

the best estimate of the fundamental frequency.

The value ρ̂k is a measure of how well the data (3.2) fits the hypothesized

model (4.2). The value ρ̂k can also be described as a measure of how much

harmonic content is present in the signal. A value of Ψ equal to one would mean

that the data perfectly matches the model. Since the hypothesized model assumes

that all the harmonics are present and equal in amplitude, and also that there is

no noise present, this perfect match of measurement to model is not achievable.

But this parameter can give an intuition on what kind of signal is there. Since

the parameter Ψ [κ] is the average of ρ̂k over the length of the track, the higher
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Ψ [κ] is, the more harmonic content will be visible in the spectrogram over the

length of the track. The opposite case is also true in that the lower Ψ [κ] is, the

less harmonic content will be visible in the spectrogram.

4.3 Harmonic Signature Extraction

The harmonic signature is thought to be a kind of acoustic fingerprint of a boat.

We know from Table 1.1 that a motor will give rise to several different frequencies

based on the number of cylinders, gear ratio, number of blades, etc. Those

frequencies are fundamental frequencies of the tonals described in equation 2.2. In

the previous sections the fundamental frequency γ(t) was estimated and tracked

through time using a Kalman filter. This estimate of γ(t) is the first part of the

estimation parameter θ. The second part is the amplitude of all the harmonics,

Ah. These harmonic amplitudes are what make up the harmonic signature.

To obtain a harmonic signature, the fundamental frequency track of best fit is

projected onto the spectrogram for all harmonics of that track. This is shown in

figure 4.2, where 4.2(a) is the spectrogram (Rk(fm)) and 4.2(b) is the harmonics

of the fundamental frequency track projected onto the spectrogram. Once the

track is projected onto the data, the amplitude for each of the harmonics is found

by searching for a peak in a small window around the projected frequencies. The

local noise of each harmonic is also estimated by averaging the spectrogram in a

small window on each side of the peak.
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(a) Spectrogram of target.
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(b) Spectrogram of target fundamental frequency estimate projected out to all the harmonics.

Figure 4.2: Spectrogram with example of the fundamental frequency projected

onto all possible harmonics.

36



The amplitude and noise are then averaged over the length of the track to

give the final product of the HEAT algorithm, shown in Figure 4.3. This shows

the harmonic amplitudes (stem plot) and the local noise around each peak (solid

line). The amplitudes are in dB relative to the weakest harmonic. This is done

since depending on the distance of the boat from the hydrophone, or the speed

of the boat, the absolute amplitudes can widely vary, but the relative amplitudes

of all the harmonics should stay the same regardless. An alternative signature
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Figure 4.3: Harmonic Amplitude Signature (stem plot) extracted by HEAT al-
gorithm with background noise (solid line)

could be shown by dividing the amplitude by the noise and then convert to dB

to give the signal to noise ratio (SNR), but by putting the noise curve on the

amplitude signature plot, both are visible.
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4.4 HEAT Viewer GUI

The output of the HEAT algorithm is a structure, whose fields are described in

Appendix D. A graphical user interface (GUI) was created to aid in the manual

analysis of the HEAT algorithm, named HEAT Viewer (HEAT-V). Figure 4.4

shows the GUI with a target file loaded. This GUI loads a target file (A) and

displays the spectrogram and the fundamental frequency correlation. It gives the

user the option to over-plot the frequency tracks (B) on the correlation plot (C),

as well as over-plot all the harmonics of that frequency track the spectrogram

(D). Once the track that fits the data the best is selected, the user can generate

the Harmonic Signature (E) for that boat.
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Figure 4.4: Screen capture of the HEAT Viewer GUI
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Chapter 5

Results of Data Analysis

5.1 Data Description

Performance of the HEAT algorithm has been evaluated on boat noise collected

at three locations under different environmental conditions. These are (1) multi-

sensor data collected by PNNL in Sequim Bay, WA, (2) acoustic data collected

using a laptop system on the Willamette River in Portland, OR and (3) acoustic

data collected in Ahihi-Kinau Natural Area Reserve, HI.

5.1.1 Sequim Bay Data

The Sequim campus of PNNL is located at the mouth of Sequim Bay on the

north part of the Olympic Peninsula of Washington. The John Wayne Marina

located inside the bay allows for a very diverse population of boat traffic coming

in and out of the area. Thus it is an excellent location for collecting test data

from different types of small to mid scale boats. PNNL has been continuously

monitoring boat traffic at this site for almost two years, and provided a data set

including passes of 50 boats for testing the HEAT algorithm. Many of the 50

boats are duplicate passes by the same or a similar type of boat. This allows the

evaluation of HEAT algorithm on repeated harmonic signatures.
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The data set included both acoustic and non-acoustic information. The acous-

tic data was collected using a hydrophone mounted approximately 20 feet from

the dock on the ocean floor (approximately 30 ft deep). The hydrophone used to

record the boat noise was cabled back to the PNNL dock. At the dock the data

was pre-processed using an anti-aliasing filter with cut-off frequency of 2.5kHz.

The data was then sampled at 8kHz with 16-bit resolution.

Among the non-acoustic monitoring methods, there was a radar system pro-

viding an estimate of boat velocity, an electro-optic and infrared (EO/IR) camera

recording a video of each boat pass, and a number of environmental sensors giving

measurements of water temperature, current, etc. PNNL also provided records

of each boat such as the hull material, engine type (e.g. inboard or outboard),

and approximated length.

5.1.2 Willamette River Data

Data was also collected at the Riverplace Marina on the Willamette River in

Portland, OR. The system used to collect this data was a laptop based system

designed by the author. It is similar to the hydrophone system used in PNNL,

but the additional mobility allows easy data collection at various locations. The

data was recorded on a hydrophone pre-processed by a anti-aliasing filter with a

cut-off frequency of 2.5kHz. It was sampled at 8kHz with 12-bit resolution using

a Measurement Computing Corporation USB-1208FS data acquisition module.
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In later versions, the data acquisition was done through the line-in audio port on

the laptop which gives 16-bit resolution like the PNNL system.

5.1.3 Ahihi-Kinau Data

The last data set was collected in the Ahihi-Kinau Natural Area Reserve in Maui,

HI. This data was recorded using the NEAR-Lab’s SOREN system [18], which is a

completely autonomous passive recording device. The battery power of the latest

SOREN systems lasts approximately four weeks at a sampling rate of 44.1 kHz

with 16-bit resolution. Three SOREN’s were deployed in this area in March of

2010. They recorded more than 100 hours of environmental data including boat

noise, whale noise, and snapping shrimp noise. There was no other surveillance

systems available for this site, so there are no records of boat types or images.

5.2 Application of HEAT to data

Feature extraction results are shown for six boats including four boats from PNNL

data, one boat from Willamette data and one boat from Hawaii data. Table 5.1

gives a summary of these boats. This table shows the boat identification letter

(A-F), location where the data was collected, the hull material and engine type

(if known) and the harmonic content parameter Ψ from the HEAT algorithm.

The four boats chosen from the PNNL data were all 6 meter inboard boats.

The objective for selecting these four boats was to discriminate the harmonic
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signatures between inboard engine boats of approximately the same length with

different hull materials.

Table 5.1: Summary of all the boats used to test the HEAT algorithm.

Boat Location Approximate Engine Hull
ID Collected Length Type Material Ψ
A Sequim Bay, WA 6 m Inboard Fiberglass 0.468
B Sequim Bay, WA 6 m Inboard Fiberglass 0.400
C Sequim Bay, WA 6 m Inboard Unknown 0.195
D Sequim Bay, WA 6 m Inboard Aluminum 0.138
E Willamette River, OR 5 m Outboard Aluminum 0.280
F Ahihi-Kinau, HI Unknown Unknown Unknown 0.184

Table 5.2 gives the parameters used for the HEAT algorithm. The same

parameters were used to process all the data from the three different locations.

The data from Sequim and from the Willamette both had a low pass filter with

cutoff at 2.5kHz. For this reason the analysis was only performed for frequencies

up to 2kHz. This greatly reduces the dimension of the data to be analyzed which

allows for faster processing.

Pictures of boats A through E can be seen in Appendix A. There was no

photo record of boat F since it was recorded during an overnight deployment

without human monitoring. Figures 5.1 through 5.12 show the spectrogram of

each boat and their harmonic amplitude signatures extracted by HEAT. Boats

A, B and E (figures 5.1, 5.3 and 5.9) show the case where the harmonics are

clearly visible in the spectrogram throughout the entire frequency band. Boats C
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and D (figures 5.5 and 5.7) show the opposite case where there are limited visible

harmonics on the spectrogram within the frequency band. Boat F (figure 5.11)

has clearly visible harmonics up to about 700 Hz, with another strong harmonic

around 850Hz.

Table 5.2: Parameters used in application of the HEAT algorithm.

Variable Value

Snapshot Window 1 sec
Snapshot Overlap 50%
Frequency Limits 0 to 2000 Hz

Normalizing Window 25 bins
[γmin γmax] [4.5 65] Hz

∆γ 0.025 Hz
λγ 0.09
NM 3 snapshots
χ2 3
NF 3 snapshots
Wγ 0.5 Hz

Process Noise Covariances
Qγ (2∆γ)2
Qγ̇ (2∆γ)2/10
Qρ 0.02

Measurement Noise Covariances
Rγ (5∆γ)2
Rρ 0.03
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Figure 5.1: Spectrogram for boat A
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Figure 5.2: Harmonic Amplitude Signature (stem plot) with background noise

(solid line) for boat A
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Figure 5.3: Spectrogram for boat B
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Figure 5.4: Harmonic Amplitude Signature (stem plot) with background noise

(solid line) for boat B
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Figure 5.5: Spectrogram for boat C
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Figure 5.6: Harmonic Amplitude Signature (stem plot) with background noise

(solid line) for boat C
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Figure 5.7: Spectrogram for boat D
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Figure 5.8: Harmonic Amplitude Signature (stem plot) with background noise

(solid line) for boat D
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Figure 5.9: Spectrogram for boat E
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Figure 5.10: Harmonic Amplitude Signature (stem plot) with background noise

(solid line) for boat E
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Figure 5.11: Spectrogram for boat F
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Figure 5.12: Harmonic Amplitude Signature (stem plot) with background noise

(solid line) for boat F
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Comparing the spectrograms of all the boats to the harmonic amplitude sig-

natures, and specifically observing the intensity of the harmonic lines relative

to the background noise, there is relatively good qualitative agreement between

what can be seen in the spectrogram and what the HEAT algorithm extracted.

Recall that the Ψ parameter was defined in Section 4.2.4 as a measure of how

much harmonic content is visible in the spectrogram. In Table 5.1 boats A, B and

E have higher Ψ values than boats C, D and F. This shows that HEAT algorithm

is correctly extracting the harmonic amplitude signatures of the boats. These

results also suggest that the performance of HEAT is not location dependent.

The next step is to use the signatures for boat identification.

5.3 Harmonic Signature Correlation

As described in section 4.1.1, the product moment correlation coefficient (PMCC)

is a measure of linear association between two ordered sets of data. The PMCC is

used here to compare the harmonic amplitude signature from one boat to another.

This is done by taking two amplitude signatures, cropping them to the length of

the shortest signature, and calculating the correlation coefficient as in equation

4.1. Table 5.3 gives the results of this harmonic amplitude signature correlation

for each of the four boats recorded in Sequim Bay, WA.

Table 5.3 shows a strong correlation of 0.87 between the harmonic amplitude

signatures of boats A and B. Recall that in Table 5.1, boats A and B have
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Table 5.3: Harmonic amplitude signature correlation results for the four boats
from Sequim Bay, WA.

Boat A B C D
A 1.00 0.87 0.68 0.60
B 0.87 1.00 0.66 0.47
C 0.68 0.66 1.00 0.82
D 0.60 0.47 0.82 1.00

the same hull material and engine type. Boats A and B are in fact the same

boat passing by the hydrophone at two separate times on two different days.

High correlation between these two signatures shows that the extraction of the

signatures is repeatable with enough accuracy to recognize the same boat.

Table 5.3 also that the second highest correlation (0.82) is found between

boats C and D. According to the pictures of boats C and D in Appendix A, they

are not the same boat. Comparing the harmonic amplitude signatures in Figures

5.6 and 5.8, the amplitudes follow a similar trend, but the local noise for the

two boats is very different, especially at the lower frequencies. This observation

suggests that the harmonic signature correlation on the amplitude signatures is

not enough to distinguish between these two boats. Instead, the harmonic SNR

signatures, as shown in Figures 5.13(a) and 5.13(b), are used in the harmonic

signature correlation. Using the SNR measurement, boats C and D only have a

harmonic signature correlation of 0.32.

Table 5.4 shows the correlation results for the harmonic SNR signatures of all
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(b) Harmonic SNR Signature for boat D

Figure 5.13: The Harmonic SNR Signatures for boats C and D show a difference
in the harmonic structure of boats C and D.

six boats. This table show that by correlating the harmonic SNR signature, boats

A and B still have a high signature correlation, and now C and D have a low

correlation, as to be expected. However, now boats A, B correlated to boat C have

signature correlation values of 0.78. This does not give any conclusive evidence

of using the harmonic SNR signatures for the correlation analysis. During this
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Table 5.4: Harmonic SNR signature correlation results for the four boats from
Sequim Bay, WA.

Boat A B C D
A 1.00 0.89 0.78 0.53
B 0.89 1.00 0.78 0.29
C 0.78 0.78 1.00 0.32
D 0.53 0.29 0.32 1.00

analysis the Ψ parameter has not yet been considered.

Boats A and B have high Ψ values, whereas boat C has a low value. This

means that the majority of the harmonics extracted in the harmonic signatures

of A and B are the actual tonals and not an estimation of the noise, where the

opposite is true for boat C. By this measurement, the correlation of 0.78 between

A, B and C can be held with less weight.

The harmonic signature correlation analysis was then applied on all of the 50

boats provided by PNNL. Of those 50 boats, 12 pairs of boats had a harmonic

amplitude signature correlation of 0.7 or higher. Of those 12 pairs, only one

pair was not a duplicate pass from the same boat. This means, given a data set

collected at the same location with the same sound propagation paths, a harmonic

amplitude signature correlation of above 0.7 between two boats strongly suggests

that the two signatures are from duplicate passes of the same boat. This ability

to match a signature to a specific boat could be used in MPA’s like in Molokini

where regular commercial snorkeling and diving boats are authorized and fishing
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vessels are not.
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Chapter 6

Conclusions and Future Work

Detection and classification of small boats is a relatively unexplored research

area. There has been a large amount of work on classification of large ships in

the past, but for small boats there are very few efforts in the literature. The goal

of this thesis was to develop signal processing methods to detect and discriminate

different types of boat noise recorded using passive acoustic sensors. There are

many applications to this work including national security in littoral zones and

surveillance in marine protected areas.

Two new algorithms were developed during the course of this research. First,

a detection algorithm was designed to search through a large amount of hy-

drophone data for sections where a boat is passing. This algorithm searches for

frequency tonals which arise from moving parts in a boats engine and propeller.

The detection algorithm was tested on a data set recorded for a duration of 92

hours, in which there were 12 reported false alarms and 1 missed detection. Re-

sults of this analysis suggest that the detection performance is dependent on the

tides. During slack tide there were zero missed detection and zero false alarms.

The false alarms and missed detection occurred during the changing tides when

objects get picked up in the strong current and hit the hydrophone, causing loud

impulsive noises. A further advancement to this algorithm is to make it more
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robust against those impulsive noises.

Another signal processing strategy developed in this thesis is the HEAT algo-

rithm. This algorithm estimates the fundamental frequency of the harmonically

related tonals and extracts the amplitude of the harmonics. The relative ampli-

tudes of all the harmonics constitute a harmonic signature that can be used in

identification of the boats. It was shown that the signatures can be extracted

using the HEAT algorithm. Also, results show that the signatures are unique

enough that the same boat passing by the hydrophone multiple times can be

recognized.

The signatures extracted by the HEAT algorithm were used in a correlation

analysis. It was found that a correlation value greater than 0.7 strongly suggests

that the two signatures are from duplicate passes of the same boat. Further

advancements of using the harmonic correlation in conjunction with the harmonic

content parameter for boat identification could be made to ensure robustness of

correlation analysis.

Another field for future research is to include an estimate of the fundamental

frequency representing the engine and propeller harmonic sets at the same time.

This could be done by adding a second fundamental frequency in the hypothesized

model that is related by some non-integer gear ratio. The extracted fundamental

frequencies could also be related back to the engine parameters to estimate the

speed of the engine as well the number of cylinders in the engine and number of
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blades on the propeller.
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Appendix A

Boat Photos

(a) Boat A (b) Boat B

(c) Boat C (d) Boat D

(e) Boat E

Figure A.1: Camera images of five of the six boats under test. There is no photo

for Boat F.
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Appendix B

Detection Algorithm Input Parameters

The input parameters for the detection algorithm are put in fields of a data struc-
ture. The fields of the structure are as follows:

snapshot window
* T , length of the snapshot window in seconds

overlap
* percent for snapshots to overlap

frequency limits
* frequency limits of spectrogram, [fminfmax] in Hertz

normalizing window
* W , number of bins to normalize the STFT

peak det thr
* λf , normalized data detection threshold

NM
* number of snapshots required for a detection, NM − 1 out of NM

filter freqs
* frequencies associated with known noise sources

boat thr
* Nd, minimum number of detected frequency bins per snapshot

clust space
* Tg, maximum spacing for grouping detection clusters in seconds

clust length
* Tl, minimum total length of detection clusters in seconds
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Appendix C

HEAT Algorithm Input Parameters

The input parameters for the HEAT algorithm are put in fields of a data struc-
ture. The fields of the structure are as follows:

snapshot window
* T , length of the snapshot window in seconds

overlap
* percent for snapshots to overlap

frequency limits
* frequency limits of spectrogram, [fminfmax] in Hertz

normalizing window
* W , number of bins to normalize the STFT

NM
* number of snapshots required for a detection, NM − 1 out of NM

fomin, fomax
* γmin, γmax, limits for fundamental frequency search window in Hertz

delta fo
* ∆γ, spacing of fundamental frequency search window in Hertz

corr det thr
* λγ, detection threshold for fundamental frequency correlation

track window
* Wγ, frequency blanking window for track creation in Hertz

Chi thres
* χ2 threshold

R amplitude, R frequency
* Rρ, Rγ, ρ and γ measurement noise covariance

Q amplitude, Q frequency
* Qρ, Qγ, ρ and γ process noise covariance

stop track thr
* NF , threshold for track termination in number of snapshots

65



Appendix D

HEAT Algorithm Output File Format

The HEAT algorithm outputs a data structure and saves the file in a folder with
the following format: ../yyyymmdd/HHMMSS/TARGET HHMMSS.mat where yyyymmdd
is the date the detection occurred on and HHMMSS is the start time of the detec-
tion. The fields of the structure are as follows:

Event ID
* start date and time of the event, yyyymmdd HHMMSS

Event Duration
* length of the event, in seconds.

parameters
* structure containing all the input parameters of the HEAT algorithm.

stft
* short-time Fourier transform of the data, size size [Ns ×K].

time
* time vector for the target, size [1 ×K].

frequencies
* frequency vector, size [Ns × 1].

fos
* fundamental frequency vector, size [Nγ × 1].

fo correlation
* fundamental frequency correlation for the data, size [Nγ ×K].

tracks
* all the fundamental frequency tracks for the target, size [Nr ×K].

track fit
* harmonic content parameter for all the tracks, size [Nr × 1].

harmonic amplitude signature
* harmonic amplitude signature for all the tracks, size [Nr ×H].

harmonic noise background
* average noise around each harmonic for all the tracks, size [Nr ×H].

harmonic snr signature
* harmonic SNR signature for all the tracks, size [Nr ×H].

66


	Extraction of Small Boat Harmonic Signatures From Passive Sonar
	Let us know how access to this document benefits you.
	Recommended Citation

	D:/Ogdengl/Working Directory/Latex_Files/Ogden_Thesis.dvi

