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ABSTRACT 

Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low headspace 
volume chamber, with vapor delivered at low flow rates, allowed for the extraction of chemical information that 
significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their 
concentrations.  Each sensor sorbed vapors from the gas stream to various degrees.  Similar to gas chromatography, 
species having high vapor pressures were separated from species having low vapor pressures.  Instead of producing 
typical sensor responses representative of thermodynamic equilibrium between each sensor and an unchanging vapor 
phase, sensor responses varied depending on the position of the sensor in the chamber and the time from the beginning 
of the analyte exposure.  This spatiotemporal (ST) array response provided information that was a function of time as 
well as of the position of the sensor in the chamber.  The responses to pure analytes and to multi-component analyte 
mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol, were recorded along each 
of the sensor arrays.  Use of a non-negative least squares (NNLS) method for analysis of the ST data enabled the correct 
identification and quantification of the composition of 2-, 3-, 4- and 5-component mixtures from arrays using only 4 
chemically different sorbent films and sensor training on pure vapors only.  In contrast, when traditional time- and 
position-independent sensor response information was used, significant errors in mixture identification were observed.  
The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST 
information significantly expands the capabilities of such broadly cross-reactive arrays of sensors. 

Keywords: electronic nose; sensor arrays; vapor detection; spatiotemporal response; carbon black composite sensors  

1. INTRODUCTION
Cross-reactive array-based vapor sensors have received significant attention in the recent literature.  Such sensors 
include coated surface acoustic wave devices,1, 2 tin oxide sensors,3, 4 conducting organic polymers,5, 6 polymer-coated 
micromachined cantilevers,7, 8 dye-impregnated polymers coated onto optical fibers or beads,9, 10 polymer/carbon black 
composite chemiresistors,11-16 and low volatility small molecule/carbon black composite chemiresistors.17  Sensor arrays 
made from a variety of composite materials encompass a broad range of collective vapor/sensor interactions, producing a 
diversity of response values upon exposure to a given analyte.  Arrays of such sensors, coupled with some form of 
pattern recognition, are able to discriminate between different vapors.12, 18, 19 Such arrangements have been termed 
“artificial” or “electronic” noses, due to their similarities to mammalian olfactory processes.20, 21

Typical sensor studies to date strive to obtain rapid time-independent responses across all sensors in the array to an 
unchanging vapor stream. They strive to obtain equilibrium responses between each sensor and the vapor stream being 
sampled.  Under this implementation, reports dealing with cross-reactive sensor arrays have investigated the response 
and discriminating ability of such arrays toward single analytes.4, 7, 12, 22  Alternatively, responses to complex mixtures 
have been used to “fingerprint” complex vapor mixtures rather than identify their constituents.  In this approach, 
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electronic noses have distinguished between the headspaces generated from different types of beers,23, 24 hops,25 wines,26,

27 vinegars,28, 29 coffees,30, 31 and teas.32, 33

Rapid time-independent responses used in the above analyses are achieved by using relatively large-volume sensor 
chambers and exposing the vapor at high flow rates. The large-volume sensor chamber ensures that the vapor being 
sampled, which partitions into the sensor to trigger a response, does not cause an appreciable decrease in the 
concentration of material in the sampling stream.  The high flow rate ensures that the first and last sensors along the 
array are exposed to the sampling stream at essentially the same time.  Modeling studies utilizing computational fluid 
dynamics have sought to determine sensor/chamber designs and operational conditions that provide this evenly 
distributed rapid response.34, 35

Exploitation of the spatiotemporal aspects of a non-uniform flow system may, however, yield additional information on 
the composition of analyte mixtures.  The flow dynamics of sniffing, for example, as well as differences in the binding 
affinities of different odor receptors, are important for odor perception in mammalian olfaction.  In humans, at any time, 
the vapor flow rate is different through the two nostrils of a given individual.  This is caused by blood flow-induced 
occlusions in the nostrils, which varies with time, thus causing an individuals’ high- and low-flow nostril to vary with 
time.  These varying flow patterns have been shown to affect odor perception.36  Consistently, a sensor chamber modeled 
after a canine nasal cavity, having sensors placed throughout the cavity, has been shown to provide enhanced 
discrimination in various classification tasks relative to a single sensor array placed solely at the inlet of the cavity.37

Recently, arrays of polymer/carbon black composite sensors have been placed in a chamber with a low headspace 
volume while analyte vapor was sampled at various flow rates.  Depending on the vapor flow rate, pure test vapors and 
test vapor mixtures showed a concentration profile along the array as a function of time.38  In this approach, the sensor 
material acted similarly to a stationary phase in a gas chromatography column, with vapors partitioning into the sensor 
material as dictated by their solid/gas partition coefficient, Keq.  The vapor species are not physically changed; the vapors 
are simply sorbed and retained by the sensor material.  The progress of each vapor front down the sensor array is 
dictated by the flow rate, chamber geometry, and mass uptake by the upstream sensor films.  

In this work, arrays of low volatility organic molecule/carbon black composite vapor sensors have been exposed to 
various vapor mixtures in a low headspace volume chamber.  In this configuration, the sensor material acts to separate 
the analyte to produce a space- and time-dependent signal response from the sensors in the array.  A collection of such 
sensor arrays were first exposed to, and trained against, pure vapor species, each exposed at 5% of their saturated vapor 
pressure, P/Po = 0.050, where P is the partial pressure and Po is the saturated vapor pressure of the analyte of interest.  
The sensor arrays were then challenged by exposures to various mixtures of these test vapors.  A linear, statistically 
based chemometric method, non-negative least squares (NNLS), was used to evaluate the data.  In each case, no a priori
information was used regarding which vapors in the training set were present in the challenge mixtures.  The 
performance of the spatiotemporal (ST) array arrangement in the identification of mixtures was then compared to the 
performance of an array having an equal number of sensor response descriptors using a traditional sensing approach.  In 
the traditional approach all sensors were exposed to identical, time-independent streams of analyte vapor.   

2. EXPERIMENTAL 
2.1 Materials 

The insulating materials for fabrication of the sensor films consisted of tetracosane (99%), lauric acid (99.5%), and 
dioctyl phthalate (99%), purchased from Aldrich; as well as propyl gallate (98%) and quinacrine dihydrochloride 
dihydrate (97%), purchased from Acros Organics.  Reagent grade toluene, tetrahydrofuran (THF), and chloroform, 
received from Aldrich, were used as solvents in the sensor suspensions.  Hexane (95%), decane (99%), ethanol (95%), n-
butanol (99.9%), ethyl acetate (99.5%) and chlorobenzene (99%), purchased from Aldrich, were used to generate vapors 
for delivery to the sensor arrays.  Black Pearls 2000 (BP 2000), a furnace carbon black (CB) material donated by Cabot 
Co. (Billerica, MA), was used as the conductive phase in the sensor composites.  All materials were used as received.   
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2.2 Detectors 

Four suspensions, each comprised of a non-conductive sorption phase and a conductive carbon-black (CB) phase, were 
used to fabricate the sensors evaluated in this work, listed in Table 1.  First, the non-conductive (non CB) sensor 
material(s) were placed in 60 mL of solvent and the solution was sonicated for >10 min.  CB was added to the 
solution, and the resulting mixture was sonicated for >30 min to produce a well-dispersed suspension.   Dioctyl phthalate 
(DP) was used as a component of some of the sensor films, to serve as a plasticizer.  The plasticizer adds to the sensor  
array diversity, as well as increases the analyte permeability, generating the more rapid sensor responses needed for the 
ST response analysis.13, 16

Table 1. Suspensions used to make sensors.  Non-conductive materials were sonicated in 60 mL of solvent for >10 minutes.  
CB was then added and the solvent again sonicated for >30 minutes to generate well-dispersed suspensions. 

suspension sensor materials  solvent  
1. 35 mg tetracosane, 15 mg DP, 150 mg CB toluene 
2. 35 mg lauric acid, 15 mg DP, 150 mg CB tetrahydrofuran 
3. 50 mg propyl gallate, 150 mg CB tetrahydrofuran 
4. 50 mg quinacrine dihydrochloride, 150 mg CB chloroform 

Detector array substrates were fabricated by evaporating 30 nm of Cr and then 70 nm of Au onto standard 75 mm x 25 
mm glass microscope slides.   A custom-made mask was used to produce the electrode pattern shown in Figure 1.38 The 
slide was masked with Teflon tape and sprayed with a single sensor suspension using an airbrush (Iwata, Inc.).12, 17, 38

Several pairs of electrodes were monitored with an ohmmeter, and spraying was continued until the resistance across the 
0.4 mm sensor electrode gaps was 500 - 1500 .  This created an overall sensor film of 75 x 5 mm in length and width, 
having a film thickness of  1-3 m as measured with a Dektak 3030 profilometer (Sloan Technology Corp., Santa 
Barbara, CA).  Four such detector substrates were made using the suspensions listed in Table 1.   
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flow out
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Figure 1. Sensor substrate schematic.  Sensor solutions from Table 1 were sprayed with an airbrush to generate detector 
films. 15 pairs of gold electrodes deposited along the length of the substrate allowed for the monitoring of 15 sensors.

The four arrays were then placed into the custom-made aluminum sensor chamber depicted in Figure 2.  The chamber 
was 110 mm long and 25 mm wide.  In this study, only one side of the glass slide was coated with sensor material, so a 
total of 60 sensors were available for monitoring.  A symmetric Teflon gasket was used to divide the incoming flow 
evenly among each of the eight vapor flow pathways.  Additionally, for each of the vapor flow pathways, the inside of 
the aluminum chamber was covered with a film of Teflon tape.  Two weeks passed between the spraying of the sensor 
films and the initiation of the train/test phase.
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Figure 2.  Sensor chamber schematic.  a) 3-dimensional view of the assembled chamber.  Three of the four inserted 
substrates are shown.  b) Sensor chamber, shown head-on with the end cap and Teflong gasket removed, with the four 
inserted substrates and eight vapor flow pathways.  c) Not-to-scale close-up of a single substrate from (b).   
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2.3 Vapor generation and delivery 

A previously described automated flow system, controlled by LabVIEW 5.0 software, was used to deliver pulses of 
diluted streams of solvent vapor to the detectors.12, 14, 17, 38  Pure analyte vapors were presented to the sensor arrays at 
P/Po = 0.010, 0.030, and 0.050 (1, 3, and 5 parts of foreground saturated vapor flow combined with 99, 97, and 95 parts 
of background air, respectively).  Eight exposures were performed at each analyte concentration, for a total of 24 
exposures per vapor.  These pure analyte exposures were randomly delivered over all analytes and concentrations.  Only 
exposures where P/Po = 0.050 were used as the “training” exposures.  Exposures for the training period occurred over a 
16-hour period. 

Analyte vapor mixtures were generated by mixing equal volumes of each component.  Background air bubbled through 
these mixtures was presented to the sensor arrays at Pmix/Po

mix = 0.050, where Pmix is the sum of the partial pressure of the 
analytes and Po

mix is the vapor pressure of the mixture.  Twenty exposures of each of the mixtures were presented to the 
sensor arrays.  These mixture exposures served as the “testing” exposures.  Three exposure periods occurred over 13 h 
each, randomly exposing 2- and 3-component mixtures, 3- and 4- component mixtures, and 4- and 5- component 
mixtures.  All training and testing data were collected during a five day period. 

A total flow rate of 150±5 mL min-1 (19 mL min-1 per chamber vapor flow pathway) was provided to the sensor chamber 
during the flow of either background or analyte vapor.  To achieve flows with minimal variance in the rates of both the 
background and foreground streams, the mixtures were first generated at higher flow rates of 400 mL min-1.  A small 
Teflon-lined sampling pump (Science Pump Corporation) was used to withdraw vapor from the 400 mL min-1 stream.  
Withdrawn flow was vented directly to the hood, and non-withdrawn flow was presented to the sensor chamber at 150±5 
mL min-1.  Flow meters (Gilmont) were used to monitor the flow rates of the background and undiluted vapor streams, 
as well as to monitor the flow rate immediately prior to the entrance to the sensor chamber. 

Gas chromatography-mass spectrometry (GC-MS) (Hewlett Packard 6890 GC system; Hewlett Packard 5973 Mass 
Selective Detector) was used to independently validate the compositions of the vapor mixtures.  For each of the pure test 
analytes, the vapor stream delivered at a setting of P/Po = 0.050 to the sensor chamber was sampled and manually 
injected into the GC.  The GC-MS spectral peaks were then integrated to provide a calibration for that analyte at the 
generated fractional vapor pressure of P/Po = 0.05. Streams of the various mixtures were then sampled and injected into 
the GC, and the GC-MS spectral peaks of each individually eluted analyte were integrated.  The fractional vapor 

pressure of each species i in the mixture was calculated as 050.0cal
i

i

i
o A

A
P
P , where Ai is the integrated area of 

species i in the mixture, and Ai
cal is the integrated area of species i in the calibration performed at P/Po = 0.050.  For all 

mixtures, a standard error propagation was performed.  For the calibration of pure analyte vapors, at least six 
measurements were taken, while for mixtures, at least three measurements were taken.  Mixtures consisting of 2, 3, 4, 
and 5 components were generated from the six test analyte vapors.

2.4 Measurements and data pre-processing 

Sensor film resistances were measured using a Keithley 2002 multimeter and a Keithley 7001 multiplexer.  Each sensor 
substrate was connected to the multiplexer through shielded, twisted pair cables and a rotary ZIF connector (Tyco 
Electronics).  To increase the overall sampling frequency, two Keithley 2002/7001 combinations were used to record the 
sensor response data.  Each Keithley 2002/7001 combination recorded the responses from two of the four arrays, or 30 
of the 60 total sensors.  Sensor films were intentionally sprayed to produce film resistances within the resistance range, 
1000±500 , to increase multiplexing speed.  Each sensor was sampled approximately every 3 s.  Train and test 
exposures consisted of 70 s of pure background flow over the sensor arrays to establish a baseline resistance, followed 
by 150 s of analyte vapor flow at the desired fractional vapor pressure (P/Po = 0.010, 0.030, or 0.050), followed by a 
stream of pure background flow for 230 s to restore the sensors to their initial states.  Prior to data collection, the sensors
were subjected to 24 h of randomized exposures to all of the test vapors.  Pure vapors were first used to train the sensor 
arrays, followed by testing of the array with exposures to mixtures.  All sets of exposures were randomized.  
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The response of each vapor detector for each analyte exposure was expressed as S(t) = R(t)/Rb(t), where Rb(t) is the 
baseline-corrected resistance of the detector in the absence of analyte and R(t) is the time-varying, baseline-corrected, 
resistance change upon exposure to the analyte.14, 17  The baseline resistance, Rb(t), was obtained by fitting a straight line 
to the data obtained during the pre-exposure period.  If the range of possible line slopes included zero at a 95% 
confidence level, it was determined that any sensor drift was insignificant and responses were used as recorded.  If the 
range of line slopes did not include zero at the 95% confidence level, it was determined that the drift was significant, and 
the slope was used to extrapolate the resistance recorded immediately prior to exposure to the resistance at any time t.
Figure 3 gives an example of this baseline correction process for a propyl gallate/CB sensor (suspension 3, Table 1) 
exposed to hexane at P/Po = 0.05.  R(t) was calculated by subtracting Rb(t) from the measured sensor resistance at time 
t.  The actual times at which the sensor resistances were recorded varied with each exposure, and were different for each 
sensor in the array.  The responses at the times used in the data analysis were calculated by interpolating between the 
measured data points.   
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Figure 3.  Baseline drift correction for sensor 15 along a propyl gallate/CB sensor array (suspension 3, Table 1) responding 
to hexane at P/Po = 0.05. a) uncorrected; b) corrected.   

In a control study, only the first, middle, and last sensor in each array (i.e., detectors 1, 8 and 15 in Figure 1) were 
sampled.  This data set also captured ST sensor response information, albeit with fewer data points.  These data were 
then compared to “traditional” data obtained from the responses of the first three sensors in each array.  The traditional 
data were acquired when all sensors were in equilibrium with the initial vapor stream, near the end of the 150 s vapor 
exposure period.  To facilitate comparisons between the two methods, the same total number of S(t) values were 
extracted in both cases.  This procedure produced an equal number of total response descriptors from the three-sensor 
subarrays used to compare the ST and traditional sensing approaches.   

2.5 Vapor classification 

The responses of these chemiresistive composite vapor sensors have been shown to be linear with the concentration of 
analyte over the range of concentrations of interest in this work.14, 17  A statistical, linear-based pattern recognition 
technique was therefore used to determine the identity and relative amounts of each analyte present in the vapor 
mixtures.  Non-linear, neural network-based pattern recognition implementations may potentially provide enhanced 
performance in such tasks, but linear-based algorithms provide a more objective measure of performance.  Hence, non-
negative least squares (NNLS) was used to analyze the ST array responses of analyte mixtures.39

Training data collected at P/Po = 0.050 were used to generate a vapor response library.  Averaged baseline-corrected 
responses to the six vapors, S(t), extracted at four times (t = 5, 15, 55 and 75 s) for each of the fifteen sensors along each 
of the four arrays, were used to create a 240 x 6 library, A, of responses to the six pure analyte vapors.  NNLS minimizes 
||Ax-b||, where b is the 240 x 1 measured sensor response vector to the mixture, and x is a 6 x 1 vector of concentrations 
of the analytes that minimizes the objective function, subject to xi 0.39  All data analysis was performed in MATLAB. 

3. RESULTS
3.1 Sensor response 

Figure 4a-b shows the baseline-corrected response of one 15 element sensor array (lauric acid/CB; sensor 2, Table 1) to 
(a) pure butanol and (b) pure decane each presented at P/Po = 0.050, as a function of time.  Responses were time-shifted 
so that analyte was physically delivered to the sensors at t  0 s.  The experimental setup, consisting of several feet of 
1/16” Teflon tubing as well as a flow meter situated immediately prior to chamber entrance, produced a delay of  8 s 
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between the initiation of analyte delivery and the response of the first sensor in the array; thus, analyte delivery was 
initiated at t  -8 s, while analyte arrived at the sensor arrays at t  0 s.  For visualization, the responses have been 
normalized by the response of each of the sensors at t = 140 s.  Responses were observed on two times scales: an 
immediate rapid response, and a slower drifting response.  The latter can be attributed to vapor front broadening due to 
Taylor dispersion occurring in the Teflon tubing and flow meter prior to the chamber. 

On exposure to butanol (Po = 6 mm Hg),40 the vapor concentration became uniform over all sensors in the array within 
approximately a 10 s window.  In contrast, on exposure to decane (Po = 1 mm Hg),40 the response across the array varied 
significantly.  The first sensor exhibited a fairly rapid response.  However, subsequent sensors exhibited significantly 
time-delayed responses due to the high degree of mass uptake.  The sorption of decane vapor by the earlier sensors 
therefore altered, and delayed, the concentration of analyte in the vapor front to the subsequent sensors along the array.  
The sensor material acted as a GC stationary phase, taking up and establishing equilibrium with the components of the 
vapor-phase flow stream.  Partition coefficients are inversely proportional to vapor pressure, 41 which explains the 
different degrees of mass uptake for the two situations.  

Figure 4c shows the baseline-corrected response of the sensor array exposed to a mixture of butanol and decane 
delivered at Pmix/Po

mix = 0.050.  The first sensor in the array was exposed to a vapor stream that contained a mixture of 
butanol and decane at their original concentrations. This sensor exhibited a response that rapidly became nearly 
independent of time.  In contrast, latter sensors along the array exhibited a two-step response.  The first step captured the 
fairly rapid progression of butanol along the array, shown in Figure 4a.  The second step exhibited a time-dependent 
delayed response that captured the progression of decane along the array, as seen in Figure 4b.  The 1st rapid portion of 
the sensor response shown in Figure 4c is indicative of butanol progressing along the array.  The 2nd time-dependent 
portion of the response shown in Figure 4c is indicative of decane progressing along the array.   

3.2
Figure 4.  15-sensor array response of sensor 2 (Table 1) exposed to a) butanol delivered at P/Po = 0.05; b) decane delivered 

at P/Po = 0.05; and c) a mixture of butanol and decane delivered at Pmix/Po
mix = 0.050.  Individual sensors are 

normalized by their respective response at t=140 s to place all responses on the same scale.

3.3 Analysis of mixtures 

All mixtures were analyzed using GC-MS to obtain a baseline measurement for the quantity of each component present 
in each mixture, in terms of fractional vapor pressure.  Table 2 displays these concentrations for each of the 14 mixtures 
as 1000 P/Po.  Mixtures were also analyzed using the ST response data produced on the sensor array.  For all exposures, 
the observed S(t) values were interpolated to fixed times having 10 s intervals, to produce 15 array responses for each 
array element in the time interval of t = 5 to 145 s.  Subsets of these data, comprised of S(t) responses extracted at 
various times, ranging from single time-response descriptions to multiple time-response descriptions (including up to 7 
different times), were then subjected to analysis using NNLS.   

The sum of the squared residual variance, 2, was calculated between the mean mixture composition calculated by 
NNLS and the mixture composition indicated by GC-MS measurements, shown in Table 2.  The optimal time 
combination was chosen as the combination of times that provided the lowest 2 (best fit) between the deduced sensor 
array mixture composition and the mixture composition indicated by GC-MS.  The optimal time combination was four 
times, at t = 5, 15, 55 and 75 s.  The S(t) values extracted at t = 5 and 15 s (i.e., immediately after vapor delivery) 
provided information about the movement of higher-vapor pressure (lower-partitioning) analytes such as hexane, ethyl 
acetate and ethanol (Po = 130, 80 and 50 mm Hg, respectively)40 along each array.  The S(t) values at t = 55 and 75 s 
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provided information on the progress of lower-vapor pressure (higher-partitioning) analytes, such as chlorobenzene, 
butanol and decane (Po = 10, 6 and 1 mm Hg, respectively)40 along each array.  Although this combination of analysis 
times provided the lowest 2 between the sensor array and the GC-MS results, many combinations using 2-7 times 
(instead of 4), spanning approximately the same range of overall analysis times, provided comparable overall 
performance to that of the optimal 4-time data set. 

Table 2. Fractional vapor pressures ( 1000) of analyte vapors present in each of the mixtures, determined by GC-MS 
sampling immediately prior to chamber delivery. 

mixture hexane decane ethyl 
acetate 

chloro-
benzene ethanol butanol 

1 0 23±11 27±15 0 0 0 
2 0 0 13±2 24±1 0 0 
3 0 0 0 23±1 0 22±1 
4 0 20±1 0 0 0 31±2 
5 0 11±3 8±7 20±4 0 0 
6 23±2 0 0 0 29±8 44±16 
7 27±8 14±8 0 0 0 44±13 
8 0 0 4±1 12±1 23±6 0 
9 22±7 0 0 28±11 45±9 0 
10 18±4 12±4 0 0 27±4 11±3 
11 9±8 14±2 0 22±6 0 69±27 
12 13±8 11±4 8±2 0 31±6 20±5 
13 12±0 0 4±0 8±1 23±2 13±2 
14 8±0 5±0 4±0 8±0 27±2 0 

For exposure of the sensor arrays to 2-, 3-, 4-, and 5-component mixtures, Figures 5a-d, respectively, show the identified 
analytes and their estimated concentrations ( ) in the analyte mixtures, as obtained from analysis of the ST response 
data using NNLS and various sensor combinations.  These figures also display the concentrations of analytes as revealed 
by GC-MS analysis ( ).  Figures 5a-d.i display these analyses using responses from all 15 sensors in each array, with 
responses at t = 5, 15, 55 and 75 s, and NNLS to identify the vapor constituents and reveal their respective 
concentrations.   

Analyses were also performed using the responses produced by a limited number of sensors along each array.  In this 
approach, the responses from the first, middle and last sensor along each array (detector positions 1, 8 and 15 in Figure 
1) were sampled at t = 5, 15, 55 and 75 s, thus providing a data set that contained ST information from only three sensors 
per array.  The twelve sensors that were not sampled provided a GC stationary phase equivalent that acted to separate 
vapors as they progressed down the length of each array.  Figures 5a-d.ii display analyses for 2-5 component mixtures 
using the first, middle, and last sensor along each array and NNLS.  Generally, using all 15 sensors along each array, or 
using only the first middle and last sensor along each array, yielded identical mixture analysis. 

To compare the results obtained using the ST approach with results obtained using the traditional sensing approach, data 
were obtained using sensor responses produced by exposure to an unchanging analyte stream.  This was achieved by 
using the first three sensors in each array sampled at t = 135, 140, 145 and 150 s.  Of the vapors present in the sampled 
mixtures, decane possessed the lowest vapor pressure.  The degree of analyte partitioning, dictated by the partition 
coefficient, is inversely proportional to the vapor pressure of the analyte, thus decane progressed most slowly down each 
sensor array.  Figure 4b shows the response of a sensor array upon exposure to decane, indicating that the first three 
sensors showed a fairly rapid response, and by 135 s essentially came to an equilibrium response to the sampled vapor 
stream (note: figure only goes up to t = 120 s).  Responses were calculated at four separate times, to provide the ST and 
non-ST method with an equal number of total response descriptors. 

Figures 5a-d.iii display the results obtained using non-ST “traditional” detection with the first three sensors per array on 
exposure to 2-, 3-, 4-, and 5- component mixtures, respectively.  Comparing these results with those presented in Figures 
5a-d.ii indicates that the traditional sensing approach produced a marked decrease in the ability of the sensor arrays to 
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correctly identify and quantify the presence of vapors in the tested mixtures.  An equal number of response descriptors 
were used for this ST/traditional mixture analysis comparison.   
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Figure 5.  Comparison between GC-MS mixture analysis and sensor array mixture analysis using NNLS and various sensor 
configurations.  Columns: a) 2-component mixture; b) 3-component mixture; c) 4-component mixture; d) 5-component 
mixture.  Rows: i) ST analysis using sensors 1-15 along each array; ii) ST analysis using only sensors 1, 8, and 15 
along each array; iii) non-ST analysis using only sensors 1-3 along each array and S(t) calculated at t = 135, 140, 145 
and 150 s for each sensor (vs. t = 5, 15, 55 and 75 for ST analysis).   

Fig. 6.  Residual squared error ( 2) between mixture identification as calculated with GC-MS, and mixture identification as 
calculated using NNLS and various sensor arrangements: ST analysis using all 15 sensors along each array, ST 
analysis using the first middle and last sensor along each array, and non-ST analysis using only the first three sensors 
along each array.  

Figure 6 displays the sum of the residual squared error for each of the fourteen mixtures analyzed in this work.  The 
results are presented for data analyzed using NNLS with 1) ST detection with the full 15 sensors per array; 2) ST 
detection with only the first middle and last sensors (sensors 1, 8, and 15) along each array; and 3) the traditional non-ST 
approach with only the first three sensors along each array.  Vapor detection using ST response data, whether employed 
with the full 15 sensors per array or the limited 3 sensors per array, yielded approximately equal errors for each of the 
mixtures.  In contrast, the largest errors for each of the analyzed mixtures were obtained using the non-ST response 
information provided by the first three sensors in each array.  For every situation investigated, the use of the ST aspects 
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of the array response produced significantly better performance in the identification and quantification of the 
components of the vapor mixtures than the results obtained using the traditional detection approach. 

4. DISCUSSION 
Sorption-based sensors such as those used herein have been shown to exhibit a linear response with respect to pure 
analyte vapors at relatively low concentrations (i.e., P/Po < 0.05), as well as a linear response with respect to multiple 
vapors.14, 17  The development of the ST approach described herein is predicated on this response linearity.  The sensor 
response is essentially a dual-step process.  First, chemical thermodynamics cause a given vapor to partition into the 
sensor film, which causes it to volumetrically expand.  This expansion causes a change in the conductive properties of 
the film, which is linear when operating beyond the percolation regime of the composite film and over small volumetric 
changes.15, 42  The simplest model for the sorption behavior is given by the Langmuir adsorption isotherm, which 
predicts linear sorption at low concentrations over all species adsorbed.43, 44  This model assumes no interaction between 
any sorbed species, and assumes that all sorption sites are energetically uniform.  At high concentrations, or in situations 
where interactions exist between adsorbed species, this linearity breaks down.43, 44  While Figure 5 displays an 
unprecedented ability to identify mixtures, deviations are evident between actual mixtures presented and sensor array 
perception.  These deviations are likely due to a change in adsorption energies when vapors are present at high 
concentrations, or in unfavorable combinations, in the sensor film.  These energy differences will vary to different 
degrees depending on the species adsorbed, causing the sensor to wrongly identify a given mixture.   

The use of ST response data for vapor detection allowed for the extraction of important sensor/vapor response 
information not available using the traditional sensing approach.  In this work, unnormalized baseline-corrected response 
data were used, to preserve information regarding the concentrations of the vapors in the test analytes.  However, often 

sensor data is normalized by ns

i

nt

t
i

i
i

tS

tStS

1 1
)(

)()( where Si(t)  is the response extracted from sensor i at time t, ns is the 

number of sensors used, and nt is the number of times used to extract a response Si(t).12, 17  This normalization procedure 
creates a unit vector response for each exposure, largely independent of concentration, that can be used as a fingerprint 
for an individual analyte.  Performing principal components analysis (PCA) on normalized response data often reveals 
that the vast majority of the array response variance is contained in only a few principal component (PC) vectors.17, 45

Performing PCA on normalized ST pure vapor training data of the 15 sensors per array indicated that PCs 1-5 contained 
35, 22, 15, 9 and 4% of the total array variance, respectively.  Performing the same PCA using the normalized 3 sensors 
per array ST vapor training data similarly revealed that PCs 1-5 contained 37, 21, 14, 8 and 6 % of the total array 
variance, respectively.  The similarities in the PC eigenvalues for the two cases suggest that no significant additional 
information was extracted by using the data from the full 15 sensors in the array.   

These findings are reflected in Figures 5a-d.i and 5a-d.ii, which show approximately equal performance for mixture 
identification for the two approaches.  When PCA was performed on pure vapor training exposures for the normalized 
traditional data set using the first three sensors in each array, the PCs 1-5 contained 65, 20, 9, 2 and 2% of the total array 
variance, respectively.  While 85% of the variance is contained in only the first 2 PCs, 5 PCs were required for the ST 
data.  For both approaches, the data sets used an equal number of response descriptors.  The differences in eigenvalue 
decomposition and in mixture analysis performance reflect the limited amount of information obtained using the 
traditional sensing approach relative to the ST approach, shown in Figure 5a-d.iii.  Spreading out the variance over more 
PCs translates into more unique information, and an increased ability to analyze vapor mixtures, in accord with the 
results and conclusions reported herein.  

A single flow rate was employed in this study.  The six pure analyte vapors chosen represented various chemistries and 
additionally spanned two orders of magnitude in vapor pressure.  Hence, the given sensor arrangement and 
implementation proved sufficient to identify and quantify mixtures of the chosen vapors.  However, as shown in Figure 
4b, for some analytes the latter sensors may never reach equilibrium with the concentration of the initially sampled vapor 
stream.  Thus, additional response information, including finer resolution of the progression of the analyte vapor down 
each array, could be extracted by using longer exposures, longer length arrays or through the use of multiple vapor flow 
rates.  One limit of implementation of this approach would involve the use of an infinitely slow flow rate slow, limited 
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by the rate of diffusion of vapors down the array.  Under these conditions, the desired mass depletion effects would be 
maximized.  However, vapor front broadening would become significant because diffusion would be the dominant mode 
of mass transport along each array.  This vapor front broadening would cause the sharp differences in sensor response 
observed in Figure 4b to diminish, with the relevant ST response information being overshadowed by sensor noise.  The 
other limit of ST implementation would be the use of an infinitely long sensor array, which would be the equivalent of a 
GC column with sensors located along its length.  An infinitely long sensor array would also cause significant vapor 
front broadening and a loss of ST information, due to significant Taylor dispersion that would occur along the long flow 
pathway.  Modeling work is currently underway to search for and define an optimal operational regime that maximizes 
the amount of ST information extractable from such sensor arrays.46  This optimal regime will be defined by the ratio of 
several chamber geometries and vapor delivery flowrates, and will take into account vapor front broadening as well as 
the ability of a given chamber geometry to allow for the desired mass depletion effects observed here. 

An improved geometric implementation maximizing the information extracted per sensor employed would involve 
exponentially spaced sensors.  Such spacing would more efficiently capture the ST response differences for analyte 
vapors having a large range of partition coefficients with the sensor films.  Because approximately the same results were 
obtained when the ST responses were described by 3 or 15 sensors per array, only a limited number of sensor response 
descriptors were required for the vapors evaluated.  The limited case of 3 sensors using ST information sufficiently 
captured the necessary information to perform mixture analysis with the sensor arrays.  In this case, the chosen vapors 
possessed sufficient differences in chemistries and vapor pressures, and only a fraction of the total sensors were required.  
Alternatively, had the vapors been more similar chemically, greater detail may have been required for mixture 
identification, and differences between the analysis of the ST response set containing the full 15 sensors per array and 
the limited set containing only 3 sensors per array would be observed.  An exponential distribution of sensors along each 
array would maximize the information extracted per sensor, and decrease the cycling time required between the 
measurements of each sensor.  

In this work, the sensor material was a sorption-based composite comprised of small organic molecules and carbon 
black.  Such films not only performed the vapor sensing function, but also served as the stationary phase into which the 
vapors partitioned and separated.  The chemiresistive sensor films can be deposited and remain functional in most any 
form factor, making them especially attractive for use in the ST array response implementation.  Many sorption-based 
sensors, however, are restricted in terms of the forms in which they can be fabricated: coated quartz crystal 
microbalances, for instance, are restricted to the shape of the underlying quartz substrate.  In situations such as these, in 
which one can not assemble the sensors in the type of array used here, ST mixture analysis could be applied by 
maintaining a low vapor headspace volume, and coating the walls of the chamber with various sensing (e.g., carbon 
black composites) or non-sensing (e.g., traditional chromatographic) stationary phases.  For these cases, the only 
restriction would be that the sensors themselves must be linear with concentration and additive with respect to multiple 
vapor responses.  If these criteria are met, the ST approach could be used with a wide variety of sensor types.   

The ST data reported herein were obtained in a controlled laboratory setting.  The flowrate to the sensor chamber was set 
at 150 mL min-1, and ranged from 145 to 155 mL min-1with random fluctuations throughout the training and testing 
periods.  These fluctuations were accounted for during the training phase of the sensors.  Had higher flowrate precision 
been achieved, the sensors would exhibit less variance in their responses, providing enhanced ability to correctly identify 
mixtures.  Additionally, if the flowrate exhibited a systematic drift, the fingerprint response of each of the vapors could 
change significantly, causing degradation in the ability to correctly identify mixtures.  To better understand how well this 
ST approach would perform in the real world, further work should be done to investigate how sensitive and/or robust 
this approach is to changes in exposure flowrate, as well as fluctuations/changes in temperature, humidity, and sensor 
response drift.  Furthermore, previous work has shown the ST method can readily detect low concentrations (ppb) of low 
vapor pressure analytes in the presence of higher concentrations (ppm) of high vapor pressure analytes.38  Additional 
studies should be performed to better understand to what extent the ST method is able to identify a vapor present at low 
concentration in the presence of vapor(s) present at higher concentrations.    

5. CONCLUSIONS 
Use of ST data has been shown to provide enhanced performance in analysis of vapor mixtures relative to the traditional 
steady-state response of an array of broadly cross-reactive vapor sensors.  In a low-volume headspace chamber that 
allows each sensor to be exposed to a well-defined, time-varying vapor stream, the sensor material acts as a 
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chromatographic stationary phase, causing vapors to be retarded in progression along the array.   The retardation is 
proportional to the sensor/vapor partition coefficient.  The resulting sensor responses at long times and/or at positions 
close to the inlet captures the traditional sensor response differences to an unchanging vapor stream, but at shorter times 
and positions further from the inlet, also measures the progress of each vapor down the sensor array.  Under such 
conditions, significantly more information is obtained on analyte mixtures relative to the information obtained using 
traditional sensor responses alone.  Modeling of the ST approach to define an optimal operational regime that maximizes 
the amount of extracted ST information is currently underway.   

Previous reports using cross-reactive sensor arrays have addressed pure vapor identification, or the identification of 
complex mixtures as a whole, but the identification and analysis of mixtures containing more than three components has 
not been previously achieved.  The ability of an ST sensor array consisting of only four sensor types to correctly identify 
and quantify 2-, 3-, 4- and 5-component mixtures, using a library consisting of responses to six pure analyte vapors, 
demonstrates the importance of the use of ST information.  The implementation of the ST method thus clearly increases 
the possible application space of such sensor arrays for analysis of analyte mixtures, as well as for analysis of pure 
analytes.
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