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Stewart atoms are the unique nuclear-centered spherical functions whose sum best fits a molecular electron
density in a least-squares sense. It is difficult, however, to express Stewart atoms in closed form. We therefore
introduce new closed-form approximations, Stewart-Slater atoms, and show that these can be found efficiently
from molecular multipole moments. Using examples, we argue that the parameters of Stewart-Slater atoms
can yield insight into the nature of chemical bonding.

1. Introduction

Because the Schro¨dinger equation for a molecule makes no
reference to the constituent atoms, it is generally acknowledged1

that it is not possible to derive the atom-in-a-molecule concept
from the basic postulates of quantum mechanics. Notwithstand-
ing this, chemists have (and have always had) an overpowering
need to rationalize their chemistry in atomic terms. To quote
Parr and Yang,2 “Chemistry is the science of why particular
atoms behave in particular ways, and why also do particular
functional groups. Combination does not destroy atomic
identity; it only perturbs it slightly, or a little more. An atom
here is not the same as an atom there, but it is almost so.” The
same authors also point out that “For molecules, at first sight,
densities look like superposed atomic densities; on closer
inspection, modest (but still quite small in absolute terms)
buildups of density are seen in bonding regions.”
Accordingly, over the past few decades, chemists have

examined numerous schemes2-24 that partition a molecule into
its “atomic components”. Every scheme begins with the critical
recognition that a partition is possible only after the basic
postulates have been augmented by an additional assumption
and, although each invokes a different assumption, one must
concede in the final analysis that any partition is arbitrary and
that its merit can be assessed only in terms of its aesthetic purity,
its computational cost, and the usefulness of the resulting model.
According to density functional theory,2 all quantities of

interest may be deduced from the molecular charge density
F(r ). Of course, the density in a real molecule is a complicated
function and it would be helpful to be able to decompose it
into simple, atom-centered pieces. This is another significant
motivation for seeking a meaningful partition of the density.
Of the various competing definitions of atoms in molecules,

Bader’s partition15 based on the zero-flux surfaces ofF(r ) is
undoubtedly one of the most popular. Bader has shown that
his atoms possess a wide range of useful properties21 and his
group have made available a practical computer program,11

PROAIM, that implements their partitioning scheme. The cost
of computing Bader atoms, however, is relatively high16 and
the Bader approach has hitherto been restricted to moderate-
size molecules.
Analogous comments can be made about thechargeof an

atom in a molecule. For reasons which are closely related to
those of the foregoing paragraph, this too defies derivation from
quantummechanical first principles. Indeed, the difficulties here

are probably even greater because, even if it were assumed that
one could discern the “atoms” in a molecule, it is still not
necessarily clear how one would proceed thence to determine
the “atomic charges”. Although it could be argued that the
atomic charge should be the integral over all space of the
appropriate atom, this is meaningful only if the atom is
compactly localized about its nucleus. In an excellent review,13

Hall and Smith survey the progress that has been made but
conclude that “the goal of defining an atomic charge, within a
molecule, which can be calculated readily and used in discus-
sions of molecular bonding and reactivities, has not yet been
reached”.
In the present paper, we develop a partitioning scheme based

on a remarkable result due to Stewart.5,7,8,23 The scheme is
conceptually simple and yields chemically useful “atoms” at a
modest computational cost. Furthermore, it has interesting
connections to the novel Gaussian molecular shape model that
has been described recently in the work of Grant and Pickup.24

We have implemented the scheme within the Q-CHEM pro-
gram25 and all results reported in this paper are in atomic units.

2. Exact Stewart Atoms

Consider anN-atom molecule whosejth nucleus is atA j and
whose charge densityF(r ) is known. The internuclear distances
areRij ) |A i - A j|. Stewart’s assumption is that thejth “atom”
in the molecule is a spherically symmetric functionσj centered
on thejth nucleus. The functionsσj, for which we propose the
name “Stewart atoms”, are defined as those whose sum best
fits F(r ) in a least-squares sense.
The Stewart atomsσj for a givenF(r ) minimize the residual

functional

where r12 ) |r1 - r2|, r1j ) |r1 - A j| and the two-electron
operatorϑ(r12) determines the fit model. The most important
models in practice areϑ(r) ≡ δ(r), r-1 or -r+1 and these can
be shown to fitF(r ) itself, the electric field due toF(r ), or the
electric potential due toF(r ), respectively.26 We will call the
resultingσj density-derived, field-derived, and potential-derived
Stewart atoms. Stewart then uses the convolution theorem to
rewrite (2.1) in terms of Fourier transforms as

Using the calculus of variations to find theFj(x) that minimize
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Z(ϑ) ) ∫∫[F(r1) - ∑σj(r1j)]ϑ(r12) ×
[F(r2) - ∑σj(r2j)] dr1 dr2 (2.1)

Z(ϑ) ) ∫Fϑ(x)|FF(x) - ∑Fj(x)e
ix‚A j|2 dx (2.2)
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Z(ϑ) yields the linear system

where, after integrating overΩ (the angular part ofx), we have

After solving (2.3) for theFj(x), the Stewart atoms can be
obtained by the back-transformation

Details of the extraction of Stewart atoms from a diatomic
molecule are given below.
Curiously, the fitting operatorϑ disappears during the

variation process and, as a result, theσj are independent of it.
The density-derived, field-derived, and potential-derived Stewart
atoms from a given density are therefore all identical, a fact
that suggests to us that the Stewart decomposition of the
molecular electronic density is a very natural one indeed.
We note that Stewart atoms, unlike Bader atoms, have no

boundaries. This is important conceptually for it implies that
Stewart atoms overlap and may be regarded as radially perturbed
free atoms. Alternatively, Stewart atoms could be interpreted
as being “soft” modifications of the traditional “hard-sphere”
space-filling models of molecular structure. In either picture,
they represent an extension of the “soft Gaussian atoms” recently
introduced by Grant and Pickup.24

If desired, the “Stewart charge”σj
(0) can be found by

integrating the Stewart atom,i.e.

and Stewart himself has derived formulas23 for these in small
systems of various symmetries. However, it is important to
realize that, whereas theσj are optimal in a least-squares sense,
theσj

(0) are not. In particular, if aσj is poorly localized about
its nucleus, the associatedσj

(0) is of little physical significance.
However, the Stewart charges possess some attractive features.
It can be shown,23 for example, that the Stewart charges (placed
at their parent nuclei) exactly reproduce the multipole moments
of F(r ) up to a certain multipole order. This property is very
desirable. Indeed, in a recent review,22AÄ ngyán and Chipot cited
it as the most important to be satisfied by a charge distribution
model.
To illustrate the extraction of exact Stewart atoms, we

consider the case of a diatomic molecule with nucleus 1 at the
origin and nucleus 2 atR. For simplicity, we will assume that
F(r ) is a sum of normalized spherical Gaussians whose centers
lie along the bond axis,i.e.

It follows from (2.3)-(2.5) that the Fourier transforms of the
Stewart atoms are given by

whereRjk ) 1 - Rk. SubstitutingF1(x) into (2.6) then yields
the exact Stewart atom

By solving (2.10) in the limit of smallx, it can be shown
that the Stewart charges are

Although the Stewart charges successfully reproduce the charge
and dipole moment ofF(r ), the fact that they are completely
independent of the Gaussian exponentsúk is unsatisfactory and
supports the remark above that the Stewart charges are physi-
cally significant only if the Stewart atoms are well localized
about their respective nuclei.

3. Stewart Moments and Stewart-Slater Atoms

Unfortunately, although the foregoing derivation seems to
yield exact Stewart atoms, the back-transformation (2.6) yields
integrals that are difficult or impossible to handle analytically.
We have been unable to solve the integral (2.11), for example,
without resorting to quadrature and even our numerical tech-
niques are expensive and unreliable at larger. A less ambitious
approach is to seek the low-order radial moments of theσj. (We
note that Stewart himself has used the second moments to
estimate atomic sizes in several molecules.23) We propose that
the σj can then be approximately reconstructed from these as
described below.
The power series expansions of the elements ofJ, F, andP

involve the internuclear distancesRij, the radial moments of the
σj

and the radial moments ofF about the various nuclei

By substituting (3.1)-(3.3) into (2.3) and equating coefficients,

JF ) P (2.3)

Jij(x) ) j0(Rijx) ) sin(Rijx)/Rijx (2.4)

Pj(x) ) ∫FF(x) e
-ix‚A j dΩ ) ∫F(r ) j0(rjx) dr (2.5)

σj(r) ) 1

2π2∫0∞x2j0(rx) Fj(x) dx (2.6)

σj
(0) ) ∫σj(r) dr ) Fj(0) (2.7)

F(r ) ) ∑
k

Uk(úk

π)3/2 exp(-úk|r - RkR|2) (2.8)

FF(x) ) ∑
k

Uk exp(iRkx‚R - x2/(4úk)) (2.9)

[F1(x)F2(x) ] ) [1j0(Rx) j0(Rx)
1 ]-1

×

[∑Ukj0(RkRx) exp(-x
2/(4úk))

∑Ukj0(RjkRx) exp(-x
2/(4úk)) ] (2.10)

σ1(r) ) ∑
k

Uk

2π2
∫
0

∞ [j0(RkRx) - j0(Rx)j0(RjkRx)]

1- j0
2(Rx)

×

x2 j0(rx) exp(-x2

4úk) dx (2.11)

[σ1
(0)

σ2
(0)] ) [F1(0)F2(0)] ) [∑UkRjk

∑UkRk] (2.12)

Jij(x) ) 1-
Rij

2

3!
x2 +

Rij
4

5!
x4 - ... (3.1)

Fj(x) ) σj
(0) -

σj
(2)

3!
x2 +

σj
(4)

5!
x4 - ... (3.2)

Pj(x) ) Fj
(0) -

Fj
(2)

3!
x2 +

Fj
(4)

5!
x4 - ... (3.3)

σj
(n) ) ∫rnσj(r) dr (3.4)

Fj
(n) ) ∫|r - A j|nF(r ) dr (3.5)
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one obtainsN coupled matrix equations. If theFj
(n) are known

(these can be derived from the molecular Cartesian multipole
moments), one can use singular value decomposition to solve
for the σj

(n). Explicit formulas for the first two Stewart atom
moments of various small molecules are given in the Appendix.
Suppose that we have used this approach to find the radial

moments of a Stewart atom in a molecule. Ifall of its moments
were known, it would be possible to use these to reconstruct
the Stewart atom exactly. However, is a useful extrapolation
possible if only, say,σ(0) andσ(2) are known? This appears to
be a seriously underdetermined problem since clearly there are
an infinite number of different Stewart atoms possessing these
two moments.
We have already noted that Stewart’s notion of atoms-in-

molecules conceives of these as radially distorted free atoms.
Guided by this view, and the observation that free atom densities
are approximately piecewise exponential,27 we propose that a
Stewart atom may be modeled satisfactorily by a linear
combination of exponentials. Specifically, first-, second-, and
third-row Stewart atoms will be approximated by

where theci are standard Slater exponents28 and the amplitude
Q and valence exponentR are chosen to reproduceσ(0) andσ(2).
It is easy to show that the parameters in (3.6) are given by

while those in (3.7) are

and those in (3.8) are

We will refer to the functions (3.6)-(3.8) as Stewart-Slater
atoms. These “atoms” have a standard Slater core but an outer
region with, in general, a nonstandard valence exponentR and
a nonintegral numberQ of valence electrons.
We note in passing that, when higher Stewart moments are

available, one can construct “double-split-valence” Stewart-
Slater atoms. These are analogous to (3.6)-(3.8) but havetwo
valence amplitudes andtwo valence exponents chosen to

reproduceσ(0), σ(2), σ(4), andσ(6). We have not examined these
more accurate approximate Stewart atoms in the present paper.
The Stewart-Slater decomposition provides a convenient,

semiquantitative route to the electrostatic potential in and around
a molecule. This is of central importance for semiclassical
modeling in many different contexts. The potentials of Slater-
type density functions are given by the simple expressions

where z ) âr. We will report results using this approach
elsewhere.

4. Results and Discussion

We do not seek in this paper to present an exhaustive
numerical study of Stewart atoms. Rather, we have selected a
sample of mainly organic molecules and studied these carefully
in an attempt to learn something about the typical behavior of
Stewart and Stewart-Slater atoms. All of the data discussed
below are based on unrestricted Hartree-Fock (UHF) densities.
This level suffices for our present purposes for it is well-known
that the effects of correlation on molecular densities are
generally quite small. Moreover, the basis set that we have
employed, 6-311++G(d,p), is fairly large and well balanced
and yields results quite close to the HF limit. All calculations
were performed using the Q-CHEM program25 on an IBM 43P
workstation.
To begin, we calculated the first two radial moments of the

density of the first 18 atoms and their cations and anions. These
are listed in Table 1 with the Stewart exponentR of the
corresponding Stewart-Slater atoms. The exponents, which
turn out to be slightly smaller than the standard valence Slater
values,28 are a useful reference set against which to compare
the exponents of Stewart atoms in molecules.

σH-He(r) ≈ Q(R3

π )e-2Rr (3.6)

σLi-Ne(r) ≈ 2(c13π)e-2c1r + Q( R5

96π)r2e-Rr (3.7)

σNa-Ar(r) ≈ 2(c13π)e-2c1r + 8( c2
5

96π)r2e-c2r +

Q( 2R7

98415π)r4e-2Rr/3 (3.8)

Q) σ(0) (3.9)

R ) x3σ(0)

σ(2)
(3.10)

Q) σ(0) - 2 (3.11)

R ) x 30Q

σ(2) - 6c1
-2

(3.12)

Q) σ(0) - 10 (3.13)

R ) x 126Q

σ(2) - 6c1
-2 - 240c2

-2
(3.14)

TABLE 1: Second Radial Moments and Stewart Exponents
in Atoms and Their Ionsa

cation neutral anion

atom σ(2) R σ(2) R σ(2) R

H 0.00000 3.00631 1.00 16.6142 0.60
He 0.75340 2.00 2.37633 1.59 16.4265
Li 0.89167 18.6594 1.30 85.5732 0.84
Be 7.28480 2.09 17.3306 1.88 63.5252 1.19
B 9.22676 2.59 15.8156 2.41 36.1276 1.83
C 8.11862 3.37 13.8180 2.97 25.7429 2.42
N 7.81729 3.95 12.1329 3.54 23.0608 2.80
O 7.40477 4.53 11.2578 4.02 18.3238 3.39
F 7.16381 5.04 10.2806 4.54 15.5376 3.94
Ne 6.82876 5.57 9.39476 5.07 18.5979
Na 6.40361 27.2167 2.39 100.343 1.63
Mg 14.0205 3.54 29.6572 3.13 106.238 1.92
Al 17.2968 4.21 33.1742 3.55 66.8512 2.81
Si 20.0798 4.64 32.1561 4.12 53.6081 3.51
P 20.9607 5.16 30.5152 4.71 48.8470 4.02
S 20.8119 5.75 29.3139 5.24 42.9056 4.63
Cl 20.7686 6.26 27.7987 5.79 38.1730 5.24
Ar 20.2193 6.82 26.0643 6.38 48.7676

a From UHF/6-311++G(d,p) electron densities.

V[(â3

8π)e-âr] ) 1
r

- e-z

r (1+ z
2) (3.15)

V[( â5

96π)r2e-âr] ) 1
r

- e-z

r (1+ 3z
4

+ z2

4
+ z3

24) (3.16)

V[( â7

2880π)r4e-âr] )

1
r

- e-z

r (1+ 5z
6

+ z2

3
+ z3

12
+ z4

72
+ z5

720) (3.17)
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The radial momentsF(n) of the first-row and second-row
hydrides are listed in Table 2. We have then used these, and
formulas A.8-A.13, to calculateσ(0) andσ(2) for each of the
Stewart atoms in these molecules. These moments, along with
Stewart charges and exponents from (3.9)-(3.14) and the
Mulliken charges, are given in Table 3. Using a singular value
decomposition to solve for theσ(n), we have also obtained the
Stewart moments, charges, and exponents and Mulliken charges
of a number of other molecules and these are listed in Table 4.
The Stewart charges in Table 3 yield simple but important

insights into the nature of the bonding in the molecules
considered. Moving along a row of the Periodic Table from
the alkali hydrides to the hydrogen halides, the H atom charge
changes from negative (-0.78 in LiH) to positive (+0.47 in
HF), as one would expect. Both the Stewart and Mulliken
charges on H are shown in Figure 1 and, while the two schemes
show similar gross trends, it is clear that they differ substantially
in detail. Apart from SiH4 and PH3, the Stewart charges are
consistently larger than the Mulliken counterparts. The hydride
with the least polar bonds is PH3 (Stewart) or H2S (Mulliken):
standard Pauling electronegativity values29 support the Stewart
choice.
Because the Stewart exponentR is related to the radial extent

of the Stewart atom, it may be used to deduce the effects of
bonding on the sizes of atoms. For example, the increase inR
from 1.00 in the free H atom to 1.20 in H2 illustrates the
contraction that accompanies bond formation, a phenomenon
that has been recognized since the early days of molecular
quantum mechanics30 and which has been cited31 as the driving
force for bonding in the H2+ molecule. We observe an
analogous effect in the isoelectronic species Li2 but, in contrast,
no contraction is observed in N2 and, indeed, a very slight
expansionis found in F2.
The heavy atom exponents in the metal hydrides are much

greater than in the free atoms suggesting compact quasi-cations.
Conversely, the H exponents in LiH and NaH are smaller than

unity and attest to the diffuseness of the quasi-anionic hydride
moiety. In general, the H exponents in the hydrides studied
can be rationalized by two propositions: (a) when the atom
becomes bonded, it tends to contract; (b) if the atom becomes
positively (negatively) charged by bonding, it tends to contract

TABLE 2: Radial Moments about Nuclei in Hydridesa

molecule F(0) F(2) F(4) F(6) F(8)

H2 H 2.00000 6.12247 40.7147 473.765 8 395.74
LiH Li 4.00000 26.9052 510.025 15763.8 1 127 890

H 4.00000 31.1758 378.068 7770.90 557 740
BeH2 Be 6.00000 31.6082 383.503 7088.32 191 800

H 6.00000 69.6748 1579.54 50563.9 2 032 730
BH3 B 8.00000 34.5908 330.535 4895.63 105 269

H 8.00000 75.1215 1183.36 25923.1 737 344
CH4 C 10.0000 35.7759 285.267 3712.88 78 381.9

H 10.0000 78.1777 970.711 16981.1 406 530
NH3 N 10.0000 26.9878 185.483 2330.11 52 842.1

H 10.0000 61.7379 613.345 9163.29 206 468
OH2 O 10.0000 19.7687 108.946 1114.69 20 275.5

H 10.0000 50.1919 393.869 4683.02 83 965.1
FH F 10.0000 13.9224 57.8241 454.895 6 265.01

H 10.0000 41.7578 255.447 2288.34 30 103.5
NaH Na 12.0000 40.3036 826.126 29411.8 2 235 450

H 12.0000 151.195 2283.85 42767.7 1 818 130
MgH2 Mg 14.0000 54.6537 896.200 22328.5 790 150

H 14.0000 202.817 5278.10 223720 12 716 600
AlH3 Al 16.0000 63.7955 887.964 18723.3 594 013

H 16.0000 208.062 4335.69 133852 5 561 330
SiH4 Si 18.0000 69.0237 824.608 14745.7 376 062

H 18.0000 210.367 3741.17 94638.7 3 169 720
PH3 P 18.0000 56.5346 603.288 10224.1 258 967

H 18.0000 174.048 2476.11 51872.2 1 551 750
SH2 S 18.0000 44.6225 403.613 6156.84 145 233

H 18.0000 149.756 1804.93 32402.0 853 419
ClH Cl 18.0000 34.4393 252.336 3245.95 68 254.7

H 18.0000 130.790 1334.45 20009.5 441 817

a From HF/6-311++G(d,p)//MP2/6-31G(d) electron densities.

TABLE 3: Stewart Moments, Stewart Parameters, and
Mulliken Charges in Hydridesa

Stewart
moments

Stewart
parameters

molecule σ(0) σ(2) charge R
Mulliken
charge

H2 H 1.000 00 2.090 95 0.000 1.20 0.000
LiH Li 2.222 43 2.218 05 +0.778 2.19 +0.420

H 1.777 57 7.623 03 -0.778 0.84 -0.420
BeH2 Be 3.334 85 7.890 79 +0.665 2.32 +0.333

H 1.332 58 3.404 26 -0.333 1.08 -0.167
BH3 B 4.299 68 6.765 54 +0.700 3.26 +0.211

H 1.233 44 3.026 06 -0.233 1.11 -0.070
CH4 C 6.578 28 14.321 5 -0.578 3.12 -0.469

H 0.855 43 1.736 44 +0.145 1.22 +0.117
NH3 N 7.984 86 15.557 0 -0.985 3.41 -0.675

H 0.671 71 1.330 30 +0.328 1.23 +0.225
OH2 O 8.788 53 13.647 0 -0.789 3.88 -0.512

H 0.605 73 1.031 57 +0.394 1.33 +0.256
FH F 9.468 65 11.476 3 -0.469 4.43 -0.308

H 0.531 35 0.791 21 +0.469 1.42 +0.308
NaH Na 10.223 2 8.509 73+0.777 2.90 +0.503

H 1.776 76 8.467 23 -0.777 0.79 -0.503
MgH2 Mg 11.034 0 14.030 1 +0.966 3.59 +0.603

H 1.483 01 4.617 03 -0.483 0.98 -0.301
AlH3 Al 11.765 3 12.855 2 +1.235 4.78 +0.863

H 1.411 55 4.252 59 -0.412 1.00 -0.288
SiH4 Si 13.421 9 21.887 3 +0.578 4.72 +0.799

H 1.1445 3 2.796 82 -0.145 1.11 -0.200
PH3 P 15.223 8 30.842 7 -0.224 4.78 +0.244

H 0.925 39 1.952 64 +0.075 1.19 -0.081
SH2 S 16.310 9 30.019 8 -0.311 5.30 -0.064

H 0.844 55 1.890 27 +0.155 1.16 +0.032
ClH Cl 17.234 2 28.270 3 -0.234 5.83 -0.133

H 0.765 80 1.688 59 +0.234 1.17 +0.133
a From HF/6-311++G(d,p)//MP2/6-31G(d) electron densities.
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(expand). The net effect of bonding on the atom’s size is the
sum of these two, possibly opposing, effects and we note in
passing that AlH3 appears to be a system in which almost perfect
cancellation occurs.

The LiF molecule exemplifies highly ionic bonding and is
commonly represented Li+F- but its Mulliken charges ((0.69)
imply much less polarity than do the Stewart values ((0.88).
The latter, it should be noted, reproduce the dipole moment of
the electron density exactly. The Li exponent is more than
double that of the free Li atom and, indeed, theσLi

(2) value in
Table 4 is not much greater than that of the Li+ cation.
Likewise, the F exponent is closer to that of the F- anion than
the free F atom.

The dipole moment of the CO molecule is small and its
direction (the O atom is positive) is predicted incorrectly by
Hartree-Fock theory but this is of no consequence for our
purposes. We find that the Mulliken charges are twice as large
as the Stewart ones but that both are very small. The C and O
Stewart atoms are both similar in size to free atoms. The
Stewart analysis of the CO2 molecule, however, is strikingly

different yielding highly charged atoms. Indeed, the charge and
exponent of the Stewart C atom are very close to those of a C+

cation.
Stewart has previously calculated23 the charges of the

fluoromethanes CHnF4-n and we have included results for CH3F,
CH2F2, and CHF3 in Table 4. The charge distribution in these
systems is of interest and we find that the Stewart and Mulliken
analyses afford rather different descriptions. While agreeing
that the F atoms bear significant negative charges that diminish
slightly as the degree of substitution increases, they disagree in
their allocation of the resulting positive charge. More specif-
ically, while the Stewart analysis allots almost no charge at all
to the H atoms and leaves the C atom to shoulder this burden
alone, the Mulliken analysis is more equitable and uses the H
atoms to reduce the C charge by roughly1/4. In CH3F, however,
the Mulliken scheme leads to the counterintuitive proposition
that the C atom isnegatiVely charged.
Table 4 concludes with systems containing a variety of C-C

bond types: single, double, triple, and aromatic. The charges
on the C atoms are surprisingly variable considering that these
molecules are all hydrocarbons. The Mulliken and Stewart
schemes concur that the alkene, alkyne, and benzene C atoms
bear negative charges but the Stewart charges are larger than
the Mulliken ones in C2H2 and C2H4 and smaller in C6H6. The
C atoms in all three compounds are found by Stewart analysis
to be similar in size to free C atoms whereas the H atoms, which
bear positive charges, are found to be much smaller than their
free counterparts. The simplest aromatic molecule is the
cyclopropenium cation C3H3

+ and it is intriguing to find that,
whereas Mulliken analysis puts almost all of the excess charge
on the H atoms, Stewart analysis places a third of it on the ring
and yields C atoms that are only as large as C+ cations.
The Stewart results for C2H6 contain a cautionary message.

Because the C atoms in this molecule are “buried” within a
shell of H atoms, they are relatively unimportant for modeling
the molecular density. Stewart analysis therefore allots rela-
tively little density to them and, as a consequence, they are
positively charged. Moreover, the resulting Stewart exponent
is anomalously large indicating, at first glance, an extremely
compact atom. The true explanation, however, for the surpris-
ingly small second moment of the C atom is thatσC(r) is not
strictly positive. This is confirmed by itsfourthmoment which
we find to be negative. We conjecture that it may not be
uncommon for the Stewart atoms of “buried” nuclei to contain
nodes.
The last stage in this preliminary investigation is to examine

the effect of basis set on Stewart atoms. It is well-known that
Mulliken analysis is very sensitive to the basis used and that,
in order to obtain meaningful charges, it is important that the
set used be “well balanced”. To study the sensitivity of the
Stewart charges and exponents, we arbitrarily selected the CH3F
molecule and performed a Stewart analysis on its Hartree-Fock
density determined with a range of basis sets from STO-3G to
6-311++G(3df,3pd). The results are summarized in Table 5
and it is clear from these that the charges are strongly basis set
dependent but that the exponents are much less so. The
instability of the Stewart charges is a direct reflection of the
instability of the molecular dipole moment with respect to basis
set improvements.

5. Concluding Remarks

We have shown that Stewart’s scheme for partitioning
molecular electron densities yields “atoms” that are intuitively
plausible and chemically useful. By augmenting his approach
with the additional approximation that the valence part of a

TABLE 4: Stewart Moments, Stewart Parameters, and
Mulliken Charges in Other Moleculesa

Stewart moments Stewart parameters

molecule σ(0) σ(2) charge R
Mulliken
charge

Li2 Li 3.000 00 13.3636 0.000 1.55 0.000
N2 N 7.000 00 12.0911 0.000 3.54 0.000
F2 F 9.000 00 10.4340 0.000 4.50 0.000
LiF Li 2.121 92 1.31726 +0.878 2.72 +0.689

F 9.878 08 13.5989 -0.878 4.18 -0.689
CO C 5.957 32 13.7527 +0.043 2.96 +0.090

O 8.042 68 10.6812 -0.043 4.14 -0.090
CO2 C 5.104 44 8.68989 +0.896 3.31 +0.646

O 8.447 78 12.0374 -0.448 4.03 -0.323
CH3F C 5.874 24 11.6252 +0.126 3.19 -0.137

H 0.945 11 1.59983 +0.055 1.33 +0.124
F 9.285 03 11.2852 -0.285 4.42 -0.236

CH2F2 C 5.532 84 11.0608 +0.467 3.12 +0.160
H 0.959 02 1.33884 +0.041 1.47 +0.137
F 9.272 59 10.8984 -0.273 4.49 -0.217

CHF3 C 5.338 75 11.3414 +0.661 3.00 +0.422
H 0.938 66 0.99340 +0.061 1.68 +0.192
F 9.240 14 10.5379 -0.240 4.56 -0.205

C2H2 C 6.314 32 14.7159 -0.314 2.98 -0.215
H 0.685 68 0.84678 +0.314 1.56 +0.215

C2H4 C 6.397 44 15.7684 -0.397 2.91 -0.221
H 0.801 28 1.02269 +0.199 1.53 +0.110

C2H6 C 5.694 73 4.76645 +0.305 4.92 -0.341
H 1.101 76 3.41317 -0.102 0.98 +0.114

C3H3
+ C 5.88740 10.2853 +0.113 3.40 +0.033

H 0.779 27 1.41283 +0.221 1.29 +0.300
C6H6 C 6.154 05 14.3378 -0.154 2.97 -0.190

H 0.8459 5 0.94835 +0.154 1.64 +0.190
a From HF/6-311++G(d,p)//HF/6-31G(d) electron densities.

Figure 1. H atom charge in AHn (values from Table 3).
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Stewart atom is a Slater exponential, we have demonstrated that
the calculations can be automated and run as an inexpensive
population analysis tool in a quantum chemistry package. We
propose that a sum of Stewart-Slater atoms may constitute a
useful and computationally efficient approximate molecular
density for use in a variety of contexts. We will report further
on such applications in a subsequent paper.
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Appendix: Stewart Moments in Various Molecules

Applying the theory of section 3 to a diatomic AB yields the
coupled matrix equation

In the case of a homonuclear diatomic A2, symmetry reduces
(A.1) to

and the invertibility of the (1 + T) matrix quickly yields

In the case of a generalheteronuclear diatomic, (A.1) has
the formal solution

but this expression seems problematic because (1- T2) does
not possess a well-defined inverse. Analogous problems are
observed for any polyatomic and reflect the fact that the
elements ofF1 and F2 are not all independent. In particular,
we haveFA

(0) ) FB
(0). To avoid the singularity in (1 - T2),

however, one can employ a pseudoinverse such as

Substitution of (A.2) and (A.6) into (A.5) yields

In this way, we have obtained formulas for the following
stoichiometries and symmetries:
AB (point group) C∞V)

AB2 (point group) D∞h)

TABLE 5: Dipole Moment and Stewart Parameters in the
CH3F Moleculea

C parameters H parameters F parameters

basis set
dipole
moment charge R charge R charge R

STO-3G 1.1373 -0.028 3.14+0.054 1.39-0.131 5.01
3-21G 2.1948 +0.202 3.09+0.036 1.40-0.306 4.61
6-31G 2.4322 +0.295 3.17+0.021 1.37-0.354 4.48
6-311G 2.4400 +0.276 3.16+0.027 1.39-0.351 4.45
6-31G(d) 1.9894 +0.082 3.14+0.059 1.36-0.257 4.55
6-311G(d) 2.0912 +0.093 3.13+0.061 1.38-0.271 4.50
6-311G(d,p) 2.0737 +0.093 3.15+0.060 1.37-0.269 4.50
6-311+G(d,p) 2.1530 +0.121 3.17+0.056 1.34-0.284 4.42
6-311++G(d,p) 2.1537 +0.126 3.19+0.055 1.33-0.285 4.42
6-311++G(2d,2p) 2.0318 +0.045 3.16+0.071 1.33-0.254 4.44
6-311++G(3d,3p) 1.9831 +0.016 3.14+0.077 1.33-0.242 4.45
6-311++G(3df,3pd) 1.9800 +0.034 3.15+0.072 1.33-0.245 4.45

a From Hartree-Fock densities at the HF/6-31G(d) geometry.
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AB3 (point group) D3h)

AB4 (point group) Td)

AB2 (point group) C2V)

AB3 (point group) C3V)
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