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EXTRACTION OF UNIFORMLY ACCURATE PHASE FUNCTIONS
ACROSS SMOOTH SHADOW BOUNDARIES IN HIGH

FREQUENCY SCATTERING PROBLEMS∗

ANDREAS ASHEIM† AND DAAN HUYBRECHS‡

Abstract. Several recent numerical schemes for high frequency scattering simulations are based
on the extraction of known phase functions from an oscillatory solution. The remaining function
is typically no longer oscillatory, and as such it can be approximated numerically with a number
of degrees of freedom that does not depend on the frequency of the original problem. Knowledge
of the phase of a solution typically comes from asymptotic analysis, for example, from geometrical
optics. We consider integral equation formulations of time-harmonic scattering by a smooth and
convex obstacle and focus on the so-called shadow boundaries. They are the points where the
incoming waves are tangential to the boundary of the scatterer. We devise a numerical method
that incorporates advanced results from asymptotic analysis which describe the frequency-dependent
transitional behavior of the solution uniformly across these points. We describe and resolve an
apparent conflict between two theories that describe the asymptotic behavior of this problem. They
are the well-known geometric theory of diffraction and the rigorous asymptotic analysis by Melrose
and Taylor, based on microlocal analysis.
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1. Introduction. This work concentrates on the model problem of time-harmonic
scattering as described by the Helmholtz equation,

(1.1) Δu + k2u = 0,

where k is the wavenumber, which can be large. An incident wave is scattered by an
obstacle Ω, and we are interested in computing the scattered field. More specifically,
we consider the problem of computing the scattered field when the wavenumber k is
large or moderately large.

Large k asymptotic methods for wave scattering problems have a long history. The
simplest technique is arguably the geometrical optics (GO) approximation, where the
field is represented conceptually in terms of propagating rays. Although immensely
useful in many cases, the GO approximation has several limitations. First, it does
not account for the nonzero field in the shadow of a scatterer, as well as close to the
shadow boundary. Moreover, the approximation is not valid near caustics, i.e., points
where the field is determined by more than one ray. More specialized asymptotics
take into account the deflection of rays into the shadow, e.g., as in Keller’s geometric
theory of diffraction (GTD) [19]. Other examples include, among others, uniform
asymptotic expansions for transition regions [22] and uniform expansions valid across
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shadow boundaries [2, 27], near edges [21], and caustics [23]. Being asymptotic ap-
proximations, such methods are of limited use in low wavenumber problems.

Discretization methods for scattering problems have developed with relatively lit-
tle input from asymptotics. Finite element and finite difference methods (FEM/FD)
for scattering problems are based on discretizing partial differential equations (PDEs),
such as (1.1), and solving the resulting systems of equations. Because of sampling
requirements, such methods have a computational complexity that grows at least as
fast as O(kd), where d is the dimesion of the problem. Boundary element methods
(BEM) are based on solving integral equations on the boundary of Ω and can there-
fore do with O(kd−1) degrees of freedom, at the cost of having dense discretization
matrices. For large enough wavenumbers, such methods are clearly still unsuited.

Hybrid methods that combine properties of asymptotic techniques and discretiza-
tion methods have been proposed in order to efficiently treat moderate to high wave-
number problems. A common technique for such methods is phase extraction: the
unknown is written as the product of a known phase function, usually obtained from
the GO approximation, and an unknown amplitude function which is assumed to
be less oscillatory than the original unknown. The feasibility of this technique has
been demonstrated for smooth and convex two-dimensional scatterers [8, 4, 15], as
well as for smooth and convex three-dimensional scatterers [3, 11]. The less oscilla-
tory field implies that fewer degrees of freedom are needed for representing it. Such
methods result in dense discretization matrices whose entries are oscillatory integrals.
Efficient techniques for handling such integrals are available, and examples include
Filon-type methods [17, 9] and numerical steepest descent methods [14]. In [15] it is
shown that a sparse discretization can be obtained by approximating the oscillatory
integrals with a Filon-type method. This approximation renders the dense operator
representation sparse, with dense submatrices for the discretization of shadow- and
transitional regions only, thereby removing one of the drawbacks of BEM methods.
Several high-frequency techniques are comprehensively reviewed in [6].

These hybrid methods are based on using a priori knowledge about the solution,
i.e., its asymptotic behavior, in order to make numerical solvers more efficient. From
this perspective a natural question is how much such knowledge one can include and
to what extent the added complexity of the solver results in improved efficiency of
the computations.

Giladi [12] presents experiments extracting the phase function obtained from GTD
in the shadow of the scatterer, thus further reducing the number of unknowns since
the field in the shadow is less oscillatory compared to extracting the GO phase. If one
wants to factor out more adverse wavenumber dependence, one has to properly treat
the transition between the illuminated and shadow region as well. This transition can
be described using uniform asymptotics. In this work we explore numerical methods
that factor out essentially all adverse wavenumber dependence in such cases, and we
aim to quantify the maximal gain to be had from such an approach. The ingredients
of our methods come from the classical works on uniform asymptotics. The field of
uniform asymptotics for scattering problems was a field of intense studies in the 1960s
and 1970s and has since been viewed as mature. Yet, these results have, to the best of
our knowledge, seen little use in computations, though they do appear in the analysis
of numerical schemes (see, e.g., [8]).

The exposition continues with a statement of the problem in section 2, followed
by a review of the different asymptotic regions of the surface of a smooth, convex
scatterer in section 3. This review leads to a discussion on the validity of GTD and
uniform asymptotics as described by Melrose and Taylor [27] in the shadow side of a
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scatterer. We observe a disagreement between these two approximations which turns
out to be rather relevant for numerical methods. Finally, several ways of exploiting this
knowledge in numerical methods are presented in section 4, and numerical experiments
demonstrating the efficiency of the methods in section 5.

2. Problem statement.

2.1. Integral equation formulation. Consider the scattering of time harmonic
waves by a two-dimensional bounded scatterer Ω ∈ R

2 with a smooth boundary
Γ = ∂Ω. The total field outside the obstacle can be written as the sum of an incident
wave ui and a scattered wave us, which solves the two-dimensional Helmholtz equation
in the exterior space:

Δus + k2us = 0, x ∈ R
2\Ω,

us(x) = −ui(x), x ∈ Γ.

The Dirichlet boundary condition implies that the total field ui + us vanishes on Γ,
corresponding to a perfectly reflecting object. The incoming wave ui, which solves
the Helmholtz equation as well, is assumed to be known. We further impose the
Sommerfeld radiation condition on us in order to ensure uniqueness of the solution
[7].

The unknown scattered wave can be expressed using the single-layer potential

(2.1) us(x) = (Sq)(x) =

∫
Γ

G(x, y)q(y) dsy .

Here, q is the single-layer potential density and

(2.2) G(x, y) =
i

4
H

(1)
0 (k|x− y|)

is the Green’s function of the two-dimensional Helmholtz equation. Through jump
relations it is shown that the density function can be found from the integral equation
of the first kind [29]

(2.3)

∫
Γ

G(x, y)q(y) dsy = −ui(x), x ∈ Γ.

It should be noted that other integral formulations are needed to guarantee solvability
of the integral equation for all values of the wavenumbers [7]. However, for the
purposes of this paper, (2.3) is sufficient.

In the following, the discussion is limited to incident plane waves,

(2.4) ui(x) = eikd·x,

and we shall only consider the integral equation formulation (2.3). Moreover, the scat-
terer Ω is assumed to be convex. Similar convexity conditions are assumed throughout
the literature [6]. In an asymptotic setting, it may be possible to relax the convexity
condition to a much weaker condition of local convexity [1], but that approach is not
pursued further within this paper.

2.2. Parametrization. We assume a natural (arc-length) parametrization γ of
the boundary of the scatterer Ω is given,

γ : [0, L] → ∂Ω.
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sb1 = γ(s1)

sb2 = γ(s2)

γ(0)
ui

Fig. 1. Natural parametrization of the boundary, with s1 and s2 defined relative to the orien-
tation of the parametrization.

Here, L is the circumference. Using the natural parametrization in our approach
serves merely to simplify the computation of the phase in the shadow region later on,
at the cost of having to compute this parametrization. Any other parametrization
can be used too, at the cost of having to do more computations for the phase later
on.

Rewriting integral equation (2.3) using this parametrization yields

(2.5)

∫ L

0

K(τ, t)q(τ)dτ = −eikd·γ(t), t ∈ [0, L],

where K(τ, t) = G(γ(τ), γ(t)) and q(t) denotes, in a slight abuse of notation, q(γ(t)).
Similarly, in the following, the notation u(t) is used to denote the field evaluated at
the scatterer at the point γ(t) ∈ ∂Ω.

For each convex obstacle with an incident plane wave, there are two shadow
boundary points. They are denoted by sb1 = γ(s1) and sb2 = γ(s2) with s1, s2 ∈ [0, L]
the corresponding points in the parameter domain. Without loss of generality, we
assume that γ(0) corresponds to the midpoint of the shadow region, i.e., L− s2 = s1,
and that the parametrization is oriented such that s1 < s2, as illustrated in Figure 1.
Whenever we wish to refer to a shadow boundary without specifying which one, we
shall denote this by s. Finally, κ denotes the curvature of the obstacle, κ(t) = ||γ′′(t)||.

2.3. Phase extraction and high frequency formulations. As the wave-
number k increases, the single-layer potential density q becomes increasingly oscilla-
tory. A classical discretization of (2.1) would therefore require an increasing number
of discretization points. However, the nature of the oscillations is known from high
frequency asymptotics for the scattering problem. For example, the Kirchhoff approx-
imation [27], which is valid in illuminated regions of convex obstacles, predicts that

(2.6) q(t) ∼ −2ik(d · nγ(t))e
ikd·γ(t), k � 0,

where ny is the surface normal of Γ at the point y. The amplitude of this approxi-
mation is nonoscillatory, and one may reasonably assume that the exact solution has
the same form. Therefore, reformulating the scattering problem so that one solves for
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this amplitude means that a smaller number of degrees of freedom is needed, at least
in the illuminated region. More generally, if a function Φ(t) contains the oscillations
of q(t) on ∂Ω, such as Φ(t) = eikd·γ(t) above, we can define a “smooth” solution qs(t)
by

q(t) = qs(t)Φ(t),

such that a coarser discretization can be used for qs(t). Thus, we solve the integral
equation

(2.7)

∫ L

0

K(τ, t)qs(τ)Φ(τ)dτ = −eikd·γ(t), t ∈ [0, L],

for the unknown qs(τ). In the following, several functions Φ are constructed with the
property that they contain information about the solution, and they are referred to
as phase functions.

Note, however, that the entries of the discretization matrix now consist of oscil-
latory integrals. Typically, a collocation method results in entries of the form∫

Γ

K(ti, τ)Φ(τ)φj (τ)dτ,

where ti and φj are collocation points and basis functions, respectively. Quadrature
methods are not discussed in this paper, but it is implied that efficient schemes for
resulting oscillatory integrals can be devised. We refer the reader to [13] for a survey
of such schemes and to [15] for a specific implementation in the context of a high-
frequency scattering problem.

3. Asymptotics of scattering by a smooth and convex obstacle. In this
section a brief review of the asymptotics of the smooth, convex problem is presented.
We shall primarily discuss the behavior of the field on the surface of the scatterer,
which is exactly what is needed for phase extraction. On the surface of the obstacle
we distinguish three asymptotic regimes:

• the illuminated region,
• the shadow region, and
• two transitional regions (also known as the Fock regions).

They are illustrated in Figure 2. A review of the governing asymptotics in these
regions, as well as in several other regions in the field around the obstacle, is found
in [30]. This review is in turn based on classical works [19, 2].

An apparent contradiction is observed between GTD and the theory of Melrose
and Taylor, namely, a discrepancy in the phase of the solution in the shadow region.
A new phase function is constructed by combining both theories, and this is shown
to work well in practice. Numerical experiments are presented in this section that
demonstrate the behavior of the solution q(t) of the scattering problem after extraction
of various proposed phase functions.

3.1. Illuminated region: GO. The asymptotics for the illuminated side of
a convex problem is described by GO. The first term of the GO approximation is
obtained by using an ansatz for the solution of the Helmholtz equation of the form

us(x) ∼ a(x)eikφ(x), k → ∞.
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Fig. 2. Three asymptotic regions.

Solving the Helmholtz equation to lowest order yields the eikonal and transport equa-
tions for the phase and amplitude functions,

|∇φ| = 1, 2∇φ · ∇a+Δφa = 0.

The eikonal equation defines the rays. It can be solved, e.g., by the method of charac-
teristics with initial conditions given by the boundary condition [2]. In homogenous
media, these rays are straight lines and they do not penetrate into the shadowed
field, behind the obstacle. GO therefore does not account for the nonzero field in the
shadow of the obstacle.

In our setting, GO predicts the phase of the single layer density along the scatterer
to be precisely that of the incoming wave, as in the Kirchhoff approximation (2.6).
Thus, for the incoming plane wave (2.4), the solution behaves as

u(t) ∼ c(t)eikd·γ(t), k → ∞, t ∈ (s1, s2),

where c(t) is a smooth and wavenumber-independent function (in the sense that c(t)
and its derivatives are bounded with respect to growing k). A common approach to
exploit this asymptotic property is by factoring out the phase function [4, 8, 14, 11]

(3.1) ΦGO(t) = eikd·γ(t).

If one factors out a different function near the shadow boundary, then it should
reduce to a smooth multiple of ΦGO(t) in the illuminated region in order to maintain
a nonoscillatory solution in this region.

3.2. The shadow region: GTD. The GTD approximation due to Keller [19]
uses Fermat’s principle to extend the GO solution into the shadow: rays are such that
their optical path length is stationary. A ray can move into the shadow by striking the
obstacle tangentially at a shadow boundary point s, moving along the boundary for a
while, and then exiting tangentially as shown in Figure 3. The ray along the boundary
is commonly called a creeping ray. An expression for the creeping ray involves the
local curvature κ [18]:

(3.2) u(t) ∼ c(t)eik|t−s|eiα0k
1/3

∫
t
s
κ2/3(τ)dτ , k → ∞,

for t in the shadow region and where c(t) is again a smooth and wavenumber inde-
pendent function. This expression was derived for any t that is a fixed distance O(1)
away from s, which implies in particular that t may not coincide with s.
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s

Fig. 3. A GTD ray.

Keller notes that (3.2) is only the first term in a countable series over the modes
αn. In [18] the expression

αn ≈ 1

2

[
3π

(
n+

3

4

)]2/3
eiπ/3

is used. A more accurate expression is

(3.3) αn = νn+12
−1/3e−2πi/3,

where νn is the nth root of the Airy function. The former appears from the latter by
considering the large n asymptotics of the roots of the Airy function. Note that rays
can also travel around the obstacles indefinitely, obtained by replacing t in (3.2) by
t+mL, m ∈ N. Finally, there are two series in total, one for each shadow boundary
point, travelling around the obstacle in opposite directions [18].

The imaginary part of the exponent in the factor exp(iα0k
1/3

∫ s+t

s κ2/3(τ)dτ)
results in exponential decay of the solution in the shadow. This accounts for the
attenuation of the wave due to the shedding of energy in the tangential direction. It
is obtained under the assumption that this shedding only depends on the boundary
conditions and on geometric properties of the obstacle.

The dominant part of the phase in expression (3.2) is the factor |t − s|. This is
precisely the arclength of the trajectory along ∂Ω connecting the point γ(t) to the
shadow boundary point at γ(s). For the purpose of phase extraction in the shadow
region, one may define the phase function

(3.4) ΦGTD(t) = eik|t−s|eiα0k
1/3

∫
t
s
κ2/3(τ)dτ .

This phase function is suitable for extraction in the shadow region near the shadow
boundary s, as long as t remains bounded away from s for increasing frequency. For
convex obstacles in two dimensions, the validity of this phase function is also restricted
by the creeping ray coming from the other shadow boundary: a different approach is
called for in the region where both creeping rays are of similar size.

If one factors out a different function near the shadow boundary, then it should
reduce to a smooth multiple of ΦGTD(t) in the shadow region in order to maintain a
nonoscillatory solution in this region.

3.3. Transitional region. The transitional behavior of the solution near the
shadow boundary, from the illuminated region into the shadow, has been extensively
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studied. The developments started with the work of Fock [10], resulting in the name
Fock domain for the transitional region. Contributions were made by Ludwig [24],
Morawetz and Ludwig [28], Babich and Buldyrev [2], Buslaev [5], and others. We
refer to [2, section 13.9] and [8, section 5] for a detailed account of the history with
references. In this section we focus on the uniform expansion of Melrose and Taylor
[27], because the formulation is particularly convenient to use for phase extraction.
The Melrose–Taylor expansion is valid in a region across the shadow boundary that
does not depend on the wavenumber k and thus seems well suited to connect the
illuminated and shadow regions in a wavenumber-independent way.

It should be noted that most uniform expressions in literature which are explicit
in the parameters of the problem, in the sense that they do not require the solution
of a problem-dependent PDE or ODE, are valid only in a shrinking region of size
O(k−1/3) around the shadow boundary (e.g., [2, section 13.7], [30, section 2.2]). A
further approximation often made in practice is to assume that the curvature of the
obstacle is constant near the shadow boundary. We elaborate briefly on the nature of
the approximation that results in the limitation on the validity of uniform expansions.
Next, we formulate the Melrose–Taylor expansion. Though this expansion is valid
mathematically in a region that does not depend on the wavenumber k, it is not
unaffected by the approximation in practice.

3.3.1. The Fock–Leontovic̆ equation. In the transitional region near the
shadow boundary, neither GTD nor GO apply. The nature of the scattering problem is
described by the Fock–Leontovic̆ equation. Here, we briefly summarize its derivation
based on the description in the review [30].

We may use the following ansatz for the Helmholtz equation

us(t, n) ∼ A(t, n)eikt,

where t refers to position along the scatterer and n is the normal distance to the
scatterer. Investigating A(t, n) in the vicinity of a shadow boundary leads to an
appropriate rescaling of variables,

(3.5) t = s+ k−1/3κ(s)−2/3 t̂

and

n = k−2/3κ(s)−1/3n̂.

With this rescaling, the leading order term of Â(t̂, n̂) = A(t, n) solves the Fock–
Leontovic̆ equation,

(3.6)
∂2Â

∂n̂2
+ 2i

∂Â

∂t̂
+ 2n̂Â = 0

with approximate boundary condition

(3.7) Â(t̂, 0) = −e−it̂3/6.

This boundary condition ensures that the actual Dirichlet boundary condition is sat-
isfied to third order close to the shadow boundary. The amplitude Â can be obtained
from a Fourier transform of (3.6),

(3.8) Â(t̂, n̂) = −21/3
∫ ∞

−∞

Ai(−21/3z)Ai(−21/3(z + n̂)e2πi/3)

Ai(−21/3e2πi/3z)
e−it̂zdz.
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The value of the single layer density q(t) is found by taking the normal derivative of
this expression at n = 0, i.e., on the surface of the scatterer.

We make two remarks:
• The rescaling (3.5) is a natural one in this setting and demonstrates that
the transition from illuminated to shadow regions occurs in a region of size
O(k−1/3).

• The approximate nature of the boundary condition (3.7) limits the accuracy
of (3.8) outside of this region.

3.3.2. The uniform asymptotics of Melrose and Taylor. Three attractive
features of the Melrose–Taylor (hereafter abbreviated MT) expansion for the purpose
of numerical simulations are the following:

• The influence of the geometric properties of the obstacle is confined to one
single function Z(t), for which an explicit expression is available.

• The uniform character of the expansion is captured by a single special func-
tion, Ψ(τ), which can be approximated a priori, regardless of the shape of the
obstacle.

• The expansion is valid in a region across the shadow boundary that does not
depend on the wavenumber.

Though both functions Z and Ψ can be found earlier in the literature; this uniform
expansion was independently rigorously proved using microlocal analysis in [27]. Sev-
eral clarifications of the formulas are given in [8, section 5]. Here, we formulate the
result in essentially the same form as in [8, Theorem 5.1].

Theorem 1. There exists Δ > 0 such that

(3.9) q(t) ∼ eikd·γ(t)
∑

l,m≥0

k2/3−2l/3−mbl,m(t)Ψ(l)(k1/3Z(t)),

valid for t ∈ IΔ := [s1 −Δ, s1 +Δ] ∪ [s2 −Δ, s2 +Δ]. The functions bl,m, Ψ and Z
have the following properties:

1. bl,m(t) are complex-valued C∞ functions on IΔ.
2. Z(t) is a C∞ and real-valued function on IΔ with simple zeros at t = s1 and
t = s2, being positive for (s1, s2) ∩ IΔ and negative otherwise.

3. Ψ is an entire function specified by

(3.10) Ψ(τ) = e−i τ
3

3

∫
Γ

eizτ

Ai(e2πi/3z)
dz,

where Ai is the Airy function and Γ is a path that connects ∞ei(π−δ) with
+∞ for δ > 0 sufficiently small.

The function Ψ(τ) is also called the Fock function, with its integral representation
referred to as the Fock integral [10]. For the precise meaning of the asymptotic expan-
sion one employs the symbolic classes of Hörmander, as detailed in [27]. Essentially,
the difference between the left-hand side and a number of terms of the right-hand side
decays at a certain algebraic rate in k.

In the following we are only concerned with the first term in this expansion. The
phase function that presents itself is the leading order term of (3.9),

(3.11) ΦMT (t) = eikd·γ(t)b0,0(t)Ψ(k1/3Z(t)).

This function should be a smooth multiple of the GO phase function (3.1) in the
illuminated region and of the GTD phase function (3.4) in the shadow region. We
intend to verify both.
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First, the function b0,0(t) is determined by requiring that the expansion (3.9)
agrees with the Kirchhoff approximation in the illuminated region. Since the function
Z(t) is positive on the illuminated side, the MT expansion reduces to the Kirchhoff
approximation through the asymptotic behavior of Ψ(τ) for large and positive τ .
Asymptotically, it is known that

Ψ(τ) ∼ −2iτ, τ → ∞,

and we must, by (2.6), have,

b0,0(t) =
n(t) · d
Z(t)

.

The reduction to the Kirchhoff approximation is given with more detail in [8] and
[27]. In particular, all terms in the expansion of Ψ(τ) for τ → +∞ can be obtained.

It is instructive to also study how the MT expansion reduces to the asymptotics in
the shadow region away from the shadow boundary. In spite of the uniform character
of the MT expansion, surprisingly it does not accurately describe the creeping rays.

3.3.3. MT expansion versus GTD in the deep shadow. We consider the
behavior of the MT expansion at a point t in the shadow region that is a bounded
distance away from the shadow boundary—a regime commonly called the deep shadow
[2, section 13.8], [30, section 2.2]. This follows from the behavior of Ψ(τ) for large
negative arguments. Using residue calculus, one finds that

(3.12) Ψ(τ) ∼ e−iτ3/3−iτe−2πi/3ν1(1 +O(e−|τ |β)), τ → −∞,

where ν1 = −2.33811 . . . is the smallest root (in absolute value) of the Airy function.
The expansion of Ψ can be used to deduce an expression for Z(t). The wavenumber-

dependent components of the MT expansion are confined to the terms

eikd·γ(t)Ψ(k1/3Z(t)),

which in view of (3.12) reduce for negative Z(t) asymptotically to

(3.13) eikd·γ(t)e−ikZ(t)3/3−ik1/3Z(t)e−2πi/3ν1 .

Identifying the k1/3 with the corresponding term in (3.2), and using expression (3.3)
for the modes α0, the appropriate form of the function Z in neighborhoods around
each of the shadow boundaries s1 and s2 is, respectively,

Z1(t) = 2−1/3

∫ t

s1

κ2/3(τ)dτ,(3.14)

Z2(t) = −2−1/3

∫ t

s2

κ2/3(τ)dτ.

However, the identification of (3.13) with the GTD expression (3.2) is not com-
plete. Let us fix the shadow bounday point s = s1. The expressions for s2 are similar.
The leading order phase term of (3.13) is

kd · γ(t)− kZ1(t)
3/3,
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while the leading order phase term of GTD is

|t− s1| = s1 − t.

We expand the former around the point s1. By construction we have that d · γ′(s1) =
−1. From the Frenet formulas, we also have d · γ′′(s1) = 0, d · γ(3)(s1) = κ(s1)

2, and
d · γ(4)(s1) = 0. Thus,

d · γ(t) = d · γ(s1) + (s1 − t) + κ(s1)
2(t− s1)

3/6 +O((t− s1)
5).

Similarly, expanding the cubic term in Z1(t) yields

Z(t)3/3 =
1

6
κ(s1)

2(s1 − t)3 +
1

6
κ(s1)κ

′(s1)(s1 − t)4 +O((s1 − t)5).

The difference between the latter two expressions, i.e., the phase of (3.13), is

d · γ(s1) + (s1 − t) +O((t− s1)
4).

Since d ·γ(s1) is independent of t, it can be absorbed into the constants of the asymp-
totic expressions. Thus, the phase of the MT expansion agrees with the phase of the
GTD expression only up to third order near the shadow boundary. The exponential
decay of both expansions, given by the k1/3 term in the exponential, does agree per-
fectly. Any change in the function Z(t) that corrects for the leading order term of
the phase would necessarily cause a mismatch in the k1/3 term. Thus, surprisingly
enough, the predictions of GTD and the MT expansion differ in the shadow region by
a phase factor. Only one of them can be accurate, and numerical experience indicates
that the GTD expression is more appropriate to use.

3.3.4. An apparent contradiction. The phase difference between MT expan-
sion and GTD does not seem to be widely recognized, although it is alluded to by
Melrose and Taylor themselves in a following paper [26, p. 615]: “. . . Notice that the
phase function ψ1 is not really well-defined, since altering it by a term vanishing as
s3 at B makes a change in a1 which can be absorbed without altering the properties
(1.36)–(1.39).”

The asymptotic behavior of the solution across the shadow boundary is accu-
rately described by Babich and Buldyrev, following earlier work of Ludwig [24], in [2,
Chapter 13]. However, the expressions involve a phase function ξ(M,γ) that is not
explicitly given but that can be expanded in a series near the shadow boundary [2,
equation (13.2.1)]:

ξ(M,γ) ∼
∞∑
j=0

ξj(M)γj.

Here, M is a point in the field near the shadow boundary and γ is a local coordinate
with γ = 0 at the shadow boundary: M and γ are ultimately identifiable with t in
(3.9) and the integration variable z in (3.10), respectively. The function ξ itself solves
a problem-dependent eikonal-like equation; see also the description by Kim in [20,
section 3.4]. Its expansion near the shadow boundary induces an approximation much
like that of the approximate boundary condition (3.7). Kim shows in [20, section 3.4.1]
how the MT expansion results from the description by Babich and Buldyrev, showing
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Fig. 4. The oscillations of the solution are visualized by showing the quantity Re(q/‖q‖). The
solution is shown for the case of scattering by a circular object with radius r = 1/2 and wavenumber
k = 100 (top), the result after extracting GO phase (second) and GTD phase (third). The bottom
panel shows Re(q/ΦMT ). The shadow boundaries are indicated with dashed lines.

explicitly that terms beyond third order are absorbed in the smooth functions bl,m(t)
with the higher order terms, thus resulting in the phase discrepancy.1

Finally, it should be noted that there are no theoretical issues with the MT
expansion. The main culprit is the fact that expansion (3.9) only guarantees that the
difference between the left and the first terms of the right-hand side is algebraically
small in k in absolute size and not in relative size. Yet, in the shadow region, both
quantities are exponentially small and their difference is small beyond all orders in
k. It seems that the fourth order term of the phase becomes relevant only at a point
where the solution is already exponentially small.

The advantages of the MT expansion remain: the geometric properties are de-
coupled from the complicated wavenumber dependency via the explicit functions Z(t)
and Ψ(τ). For the purpose of uniformly accurate phase extraction, it suffices to cor-
rect the phase of the MT expansion in the shadow region. Although not C∞ smooth,
a simple phase correction can be devised by switching in the shadow region to the
modified expression

(3.15) ΦMT
mod(t) = eik(s1−t+Z(τ)3/3−d·γ(s1))n(t) · d

Z(t)
Ψ(k1/3Z(t)), t < s1.

The exponential in front of the definition essentially removes the phase of the MT
expansion and adds in the phase of GTD. Note that both phases match to third order
at the shadow boundary.

3.4. A comparison of different functions for phase extraction. Figure 4
shows the oscillations of the solution for a circle of radius r = 1/2 with k = 100. The

1The authors would like to thank Valery Smyshlaev for pointing out this connection and sug-
gesting the reference [20].
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Fig. 5. The real part of the exact solution for the circle, with the same parameters as in
Figure 4, after factoring out the globally defined GTD-phase. Wavenumber-dependent variations
are visible near the shadow boundaries (vertical lines).

two lower panels here show the solution with the GO and GTD phases factored out. To
be precise, the latter corresponds to using a single phase function that incorporates
the dominating behavior of the GTD solution in the shadow behind both shadow
boundaries,

ΦGTD
global(t) =

⎧⎪⎪⎨
⎪⎪⎩
exp(ik(s1 − t− α0k

1/3
∫ t

s1
κ2/3(τ)dτ)), t < s1,

exp(ikd · γ(t)), s1 < t < s2,

exp(ik(t− s2 + α0k
1/3

∫ t

s2
κ2/3(τ)dτ)), t > s2.

After factoring out the GTD-phase, there remains an unknown function that is
nonoscillatory, except in the deep shadow. Oscillations appear in the deep shadow
due to the fact that the solution is a sum of two contributions—recall that two rays
originate at each of the two shadow boundaries propagating in opposite directions. In
the middle of the shadow region, these two contributions are of similar size, and the
dominating behavior of either one of them is not sufficient for describing the total.

The GTD approximation is valid in illuminated and shadow regions but does
show breakdown as k → ∞ in the boundary between these regions. This is not very
apparent in case of a circular scatterer and k = 100 as shown in the bottom panel of
Figure 4. Figure 5 shows the real part of the solution for the circle after extraction of
the GTD-phase function. The remainder is indeed nonoscillatory almost everywhere,
but exhibits large variations near the shadow boundary. The size of the deflection
increases with k. This behavior can be seen as a boundary layer, which we would
also like to extract from the solution as it introduces k-dependent variation in the
solution which prevents a discretization with a fixed number of degrees of freedom.
As this boundary layer does not really correspond to oscillations with a certain phase,
one may think of the MT-phase function as being a “generalized phase function,”
extracting not just phases of oscillations but any wavenumber-dependent variation
from the solution.

Finally, we illustrate the result after the extraction of the generalized, uniform
phase functions (3.11) and (3.15) in Figure 6. The remainder is essentially one on large
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Fig. 6. Real and imaginary parts of the exact solution for the same circular scatterer as in
Figure 4, after factoring out the uniformly accurate MT phase functions. In each of the two plots,
the imaginary parts are below the real parts. Top: original form based on (3.11). Oscillations are
still present in the shadow. Bottom: result after phase correction based on (3.15). Oscillations only
appear in the deep shadow region where the creeping rays in opposite directions overlap.

parts of the scatterer. There is a similar breakdown of the solution as in the case of
GTD in the deep shadow. In addition to having the same problem with overlapping
solutions in the deep shadow, the first uniform phase function (3.11) also leads to
oscillations in the shadow, since it is essentially local to the shadow boundary (top
panel). The corrected phase function does not have this problem (bottom panel).

4. Two numerical methods. We devise two numerical methods based on ex-
traction of the MT uniformy accurate phase functions, which are given by (3.11) or
(3.15) near the first shadow boundary. To that end, we must formulate a globally
valid phase function which agrees with the local expressions near each of the two
shadow boundaries. We explore two ways of doing so:

1. In the first method, we construct a single function Z(t) with simple zeros at
s1 and s2, in complete accordance with the formulation of Theorem 1. This
function is based on the expressions (3.14) for Z1(t) and Z2(t) near each of
the shadow boundaries.

2. In the second method, we explicitly approximate the two contributions orig-
inating at each of the two shadow boundaries separately, in a way that is
similar to the partition of unity finite element method (PUFEM) [25].

Both methods are defined in more detail below.
The results for both approaches are comparable. The first method is closer to

the theory. The second method offers more flexibility and shows that the PUFEM
formulation is well suited to combine knowledge from different asymptotic expansions
valid in different parts of a problem. In particular, one could easily adapt the scheme
to factor out all three phase functions ΦGO, ΦGTD, and ΦMT in an overlapping way.
We also attempt to adapt the scheme in order to track the individual creeping rays
in the region where they overlap.
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Both methods rely on a partition of unity and a localization around each shadow
boundary point. Thus, we define two intervals [a1, b1] and [a2, b2], both in [0, L] and
such that

0 < a1 < s1 < b1 < a2 < s2 < b2 < L.

We define the partitioning functions as

ξ1(t) =

{
1, t < b1,

0, t > a2,
and ξ1(t) + ξ2(t) = 1, t ∈ R,

with, in addition, ξ1(t) > 0, t ∈ (b1, a2). The computational domain is always intended
to be the interval [a1, b2].

4.1. Method one: A global function Z. In the first variant we define a
globally valid function Z from Eq. (3.14) using the partitioning functions ξ1 and ξ2
defined above:

Z(t) = ξ1(t)Z1(t) + ξ2(t)Z2(t), t ∈ [0, L].

In turn, this function defines a global and uniformly accurate phase function

(4.1) ΦMT
global(t) :=

⎧⎪⎪⎨
⎪⎪⎩
eik(s1−t+Z(t)3/3−d·γ(s1)) n(t)·d

Z(t) Ψ(k1/3Z(t)), 0 < t < s1,

eikd·γ(t) n(t)·dZ(t) Ψ(k1/3Z(t)), s1 < t < s2,

eik(t−s2+Z(t)3/3−d·γ(s2)) n(t)·d
Z(t) Ψ(k1/3Z(t)), s2 < t < L.

The phase correction limits the smoothness of ΦMT across the shadow boundaries.
However, recall that the phases to the left and to the right of the shadow boundaries
do agree to third order. Hence, this is not a limitation in practice, as we intend to
use low order basis functions in the discretization.

Next, we define a spline space VN [a1, b2], spanned by N splines {φj}Nj=1 of low
degree l = 1 or l = 3. We solve integral equation (2.7) approximately, using a
collocation approach with collocation points {ti}Ni=1 that coincide with the nodes of

the splines. This leads to an approximation qs ≈ ϕN ∈ VN [a1, b2].
Note that the solution is not defined in the deep shadow, i.e., for τ < a1 and

τ > b2. As we have seen above, the solution in the deep shadow does not allow an
ansatz with a single phase function due to the overlap of creeping rays. A common
approach to truncate the computational domain in the deep shadow is to approximate
the solution by zero, since it is exponentially small. However, in the proposed rep-
resentation of the solution, truncating the smooth solution ϕN in the shadow leads
to inaccuracies, since qs is not expected to be small in the deep shadow. Indeed,
the exponential decay is extracted in the phase function and we have qs ≈ 1 at the
truncation point. Instead, we continue ϕN into the deep shadow using its value at the
truncation points, i.e., using ϕN (a1) and ϕN (b2), respectively. This choice ensures,
by the theory of Filon-type quadrature, a suitable approximation to the oscillatory
integral in the left-hand side of (2.7) [17]. Thus, we modify the solution ansatz as
follows:

q(t) ≈

⎧⎪⎪⎨
⎪⎪⎩
ϕN (a1)Φ

MT
global(t), t < a1,

ϕN (t)ΦMT
global(t), a1 ≤ t ≤ b2,

ϕN (b2)Φ
MT
global(t), t > b2.
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The collocation approach can now be formulated as

N∑
j=1

cj
[
αi,j + w1

i φj(a) + w2
i φj(b)

]
= −eikd·γ(ti), i = 1, 2, . . . , N,

where

αi,j =

∫ L

0

K(τ, ti)Φ
MT
global(τ)φj(τ)dτ,

w1
i =

∫ a1

0

K(τ, ti)Φ
MT
global(τ)dτ,

w2
i =

∫ L

b2

K(τ, ti)Φ
MT
global(τ)dτ.

This linear system has moderate size, and a direct solver can be applied.

4.2. Method two: Using two local Z-functions. The global function Z
defined in the first method is somewhat arbitrary in the illuminated region. In the
second method, we aim for a discretization that mimicks the structure of the different
asymptotic regimes explicitly, which is similar to the general PUFEM. The two Z
functions corresponding to the shadow boundaries are not connected.

We write an ansatz for the solution of the form

q(t) = qs,1(t)ΦMT,1(t) + qs,2(t)ΦMT,2(t),

where the two phase functions are defined as

ΦMT,1(t) = ΦMT (s1 − t)ξ1(t),(4.2)

ΦMT,2(t) = ΦMT (t− s2)ξ2(t).

Note that this ansatz ensures that the unknowns qs,1 and qs,2 are both O(1)
except in the deep shadow. Note also that these phase functions are defined for t < 0
and t > L. This property will be used later on in the next section.

We suggest a spline collocation method for qs,1 and qs,2, using two natural spline
spaces, V 1

N [a1, a2] and V
2
N [b1, b2], spanned by the spline basis functions {φ1j}Nj=1 and

{φ2j}Nj=1, respectively. As before, we extend the solution ansatz into the deep shadow
by its values at the truncation points,

(4.3) q(t) ≈

⎧⎪⎨
⎪⎩
ϕN,1(a1)ΦMT,1(t), t < a1,

ϕN,1(t)ΦMT,1(t) + ϕN,2(t)ΦMT,2(t), a1 ≤ t ≤ b2,

ϕN,2(b2)ΦMT,2(t), t > b2.

The collocation method for (2.5) is then obtained using a set of collocation points
{ti}2Ni=1 that is the union of the sets of spline nodes associated with V 1

N and V 2
N , and

enforcing the equation at these points:

(4.4)

N∑
j=1

[
c1,j(w

1
i φ

1
j (a1) + α1

i,j) + c2,j(w
2
i φ

2
j(b2) + α2

i,j)
]

= −eikd·γ(ti), i = 1, 2, . . . , 2N,



470 ANDREAS ASHEIM AND DAAN HUYBRECHS

where

α1
i,j =

∫ L

0

K(τ, ti)ΦMT,1(τ)φ
1
j (τ)dτ,

α2
i,j =

∫ L

0

K(τ, ti)ΦMT,2(τ)φ
2
j (τ)dτ,

w1
i =

∫ a1

0

K(τ, ti)ΦMT,1(τ)dτ, w2
i =

∫ L

b2

K(τ, ti)ΦMT,2(τ)dτ.

4.3. Additional treatment of the deep shadow behavior. The problem as-
sociated with overlapping contributions in the deep shadow implies that the proposed
numerical methods still disregard an exponentially small contribution. For any fixed
value of the wavenumber, this exponentially small contribution can still be significant.
One way to proceed would be to extend the two spline spaces of method two such that
they wrap around in the deep shadow and overlap with each other. This approach
presents serious numerical difficulties, which are not further pursued in this paper.

However, a simple modification to the second scheme does account to some extent
for the overlapping rays. Since the approximate solutions are already extended by a
constant outside of the definition of the splines, one can let the two rays wrap around
by extending this constant even further beyond the deepest shadow point. More
specifically, we modify the ansatz (4.3) to be

q(t) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕN,1(a1)ΦMT,1(t) + ϕN,2(b2)ΦMT,2(L+ t), t < a1,

ϕN,1(t)ΦMT,1(t) + ϕN,2(t)ΦMT,2(t)

+ϕN,1(a1)ΦMT,1(t− L) + ϕN,2(b2)ΦMT,2(L + t), a1 ≤ t ≤ b2,

ϕN,2(b2)ΦMT,2(t) + ϕN,1(a1)ΦMT,1(t− L), t > b2.

Subsequently, the only required modification to the method is to redefine the integrals
w1

i and w2
i to be

w̃1
i =

∫ a1

a1−L

K(τ, ti)ΦMT,1(τ)dτ,

w̃2
i =

∫ b2+L

b2

K(τ, ti)ΦMT,2(τ)dτ.

5. Numerical results. We illustrate the accuracy of both methods with a num-
ber of examples. We focus on the accuracy that can be gained compared to factoring
out only the phase in the illuminated region, i.e., we mainly illustrate the improved
accuracy across the shadow boundary that results from factoring out the adverse
wavenumber-dependent behavior in the transitional regions and in the shadow. In
these experiments, the integrals corresponding to matrix entries are resolved with a
generic numerical quadrature routine, the quadgk -function in MATLAB. This rou-
tine handles the singular integrals in a straightforward manner. All the integrals are
resolved with a tolerance of 10−11. The special function Ψ was precomputed to ma-
chine precision at a large number of Chebyshev points on the interval [−10, 7] using
the steepest descent method [14]. The function Ψ can accordingly be evaluated ef-
ficiently and to high precision at any point in this interval through its Chebyshev
expansion.
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(a) Without phase correction (b) With phase correction

Fig. 7. Illustration of the relative error of the approximation for q in the first method, for
scattering by a circular object with k = 50 and using N = 20 linear spline basis functions. A
global phase function is extracted with and without phase correction. The spline space extends from
a1 = L/10 to b2 = 9L/10 (dashed lines). Gray lines correspond to shadow boundaries.

Fig. 8. The absolute value of the computed approximations to qs corresponding to Figure 7, with
and without phase correction in the shadow regions. The approximation is extended by a constant
outside the support of the spline space. The dashed line shows the exact solution q divided by the
corrected MT asymptotics.

5.1. A circular scatterer. First, the two numerical methods are applied to a
circular scatterer, for which an analytic solution is available in the form of an infinite
series involving Bessel functions.

The first method computes the solution with nearly four digits of accuracy in
the illuminated region with a very modest number of unknowns, N = 20, and with
k = 50; see Figure 7. The relative accuracy is clearly uniform across the shadow
boundaries. The global phase function is used without phase correction in the left
panel and with phase correction in the right panel: the improvement in the shadow is
clearly visible. It should also be noted that a relative accuracy between 1% and 10%
is maintained even beyond the truncation points of the spline space. This is due to
extending the approximate solution by a constant, which multiplies the exponentially
decaying phase function. This approximation remains accurate for a little while, until
the effect of the overlapping creeping rays limits the relative acccuracy in the deeper
shadow. The corresponding approximations to the smooth function qs are shown in
Figure 8.
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(a) Without phase correction (b) With phase correction

Fig. 9. Relative errors in the approximation of q computed by the second method for the same
problem as in Figure 7, using N = 10 hat functions in each spline space.

Fig. 10. Method 2 implemented with overlapping creeping rays using k = 10 and N = 10.

Also shown in Figure 7 are the Kirchhoff approximation and the leading or-
der term of the MT expansion. The Kirchhoff approximation breaks down near the
shadow boundaries; the MT expansion is clearly uniform. However, the improvement
from the numerical approach is very significant: the accuracy improves by two orders
of magnitude, even well beyond the shadow boundaries.

The results of the second method for the same problem are shown in Figure 9. The
accuracy is comparable to the results of the first method, using the same total number
of degrees of freedom. The accuracy can be improved further by implementing the
overlapping creeping rays in the deep shadow as described in section 4.3. The effect
will be more noticeable at lower frequencies. For Figure 10 we redid the experiment,
but this time with k = 10, and then compared the method implemented with and
without overlapping creeping rays. A clear improvement can be observed.

In order to show robustness with respect to increasing k, the experiment is re-
peated for varying k, using the second method with overlapping creeping rays. The
results in Figure 11 show that there is no qualitative difference in the error behavior
for increasing k.

It should be noted that achieving small relative error on an exponentially decaying
solution is extremely difficult. The absolute errors of the approximations of both
methods are shown in Figure 12. All methods achieve a uniformly small absolute error
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Fig. 11. Same experiment as in Figure 9(b) but for increasing values of k: k = 20, 40, 80, 120.

(a) Method one (b) Method two

Fig. 12. Absolute errors of the approximation of q using method one and method two (with
overlap), corresponding to the relative errors shown in Figure 7 and Figure 9(b).

throughout the computational domain. This explains the lack of relative accuracy in
the deepest shadow: relative accuracy cannot be achieved if the size of the solution is
comparable to the overall absolute error in the computations.

Finally, note that the absolute error is defined here as∣∣q − ϕNΦMT
global

∣∣ .
It is common in literature to assess the absolute error using∣∣∣q − ϕNΦMT

global

∣∣∣
k

instead. The division by the wavenumber is motivated by the fact that the solution is
O(k) in the illuminated region and dividing by k results in a normalization. However,
the solution is no longer O(k) near the shadow boundary, and, hence, dividing by k
results in an underestimation of the actual absolute error of the solution.

5.2. An ellipse-shaped scatterer. An analytic solution is no longer avail-
able for an ellipse-shaped scatterer. Moreover, both the parametrization and the
Z-function are not easily expressed in closed form. By considering an ellipse that
is slightly skew relative to the incident wave, the problem is nonsymmetric as well.



474 ANDREAS ASHEIM AND DAAN HUYBRECHS

(a) (b)

Fig. 13. Relative error of the approximation of q using the second method with phase correction
for an ellipse-shaped scatterer, with k = 50, using N = 15 hat functions in each spline space and
truncating at a1 = 0.15L and b2 = 0.85L.
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Fig. 14. Same experiment as in Figure 13(b) but for increasing values of k: k = 10, 20, 40, 80, 120.

For this experiment, the parametrization was constructed using a Fourier-based rep-
resentation of the scatterer, obtained by interpolating the ellipse at 100 points. The
function Z was approximated using Gaussian quadrature. A reference solution to the
problem was obtained using a Galerkin BEM method [16] with 4096 unknowns. The
ellipse used here has a minor semiaxis of length 1/2 and a major semi-axis of length
1, rotated 30◦ relative to the y-axis. The incident plane wave travels in the direction
of the positive x-axis, as illustrated in Figure 13(a).

The numerical experiment was carried out using the second method with N = 15
hat functions in each spline space. One observes a similar gain in accuracy by using
the numerical method as before, when compared to the Kirchhoff approximation and
the MT expansion. However, it seems that the second shadow boundary poses more
problems than the first one. This is probably due to a more rapid change in the
curvature behind this shadow boundary.

The experiment that produced Figure 11 was repeated for the case of an ellipse-
shaped scatterer. The results in Figure 14 show that also in this case the error is
bounded as k increases. Note that in this case the error actually diminishes with
increasing k.
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[25] J. M. Melenk and I. Babuška, The partition of unity finite element method: basic theory
and applications, Comput. Methods Appl. Math., 139 (1996), pp. 289–314.

[26] R. B. Melrose, The radiation pattern of a diffracted wave near the shadow boundary, Comm.
Partial Differential Equations, 11 (1986), pp. 599–672.



476 ANDREAS ASHEIM AND DAAN HUYBRECHS

[27] R. B. Melrose and M. E. Taylor, Near peak scattering and the corrected Kirchhoff approx-
imation for a convex obstacle, Adv. Math., 55 (1985), pp. 242–315.

[28] C. S. Morawetz and D. Ludwig, An inequality for the reduced wave operator and the justi-
fication of geometrical optics, Comm. Pure Appl. Math., 21 (1968), pp. 187–203.
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