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1 Introduction

The description of the hadron structure is one of the major challenges for the comprehen-

sion of strong interactions. Transverse momentum dependent parton distribution functions

(TMDPDFs) depict parton momenta in 3-dimensions and provide more detailed informa-

tion on hadrons than the one-dimensional collinear parton distribution functions (PDFs).

In this work, we present the extraction of unpolarized TMDPDF and non-perturbative

part of TMD evolution from the fit of Drell-Yan and Z-boson production measurements.

At hadron colliders, in the regime of the small transverse momentum of the produced

vector/scalar-boson, the cross-section is factorizable in terms of universal TMDPDFs [1–3].

The phenomenological analysis of Drell-Yan and Z-boson production processes (we refer to

them as Drell-Yan (DY) processes, for simplicity) within the TMD factorization has a long

history, see e.g. refs. [4–13]. However, many of these works have been produced before a

rigorous formulation of the TMD factorization and TMD evolution and for that reason are

outdated. These articles differ, among the others, in the phenomenological construction

of the factorized cross-section (which is relevant for the theoretical precision that can be

achieved), the composition of perturbative and non-perturbative contributions and the

inspected data sets. Also, the majority of the fits included in this list operates only at

perturbative leading order (LO) and do not include the highly precise measurements made
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at LHC. In the present work, we aim to cover this gap and to obtain precise values of

the TMDPDFs and of the non-perturbative part of the TMD evolution consistently with

modern theory and data.

Over the past few years the theory of TMD factorization has developed consistently.

In particular, nowadays its perturbative structure is completely understood, which is con-

firmed by multiple next-to-next-to-leading order (NNLO) perturbative calculations [14–22].

Also there was a critical progress in the understanding of the structure of TMD evolu-

tion [1, 3, 23–25], and the relation between different components of TMD scaling [26, 27].

For a recent review of the state-of-the-art, we refer to [28, 29]. The present extraction

is founded on these theory achievements and uses the highest perturbative input avail-

able nowadays, that is, the complete NNLO (two-loop coefficient functions together with

three-loop evolution).

The extraction of the TMDPDF requires an articulated consideration of the scale set-

tings, which is performed here using the ζ-prescription. Since the approach is novel in

the TMD factorization studies, we explain its origin and importance in a few words, and

we refer to the original paper [27] for the details. The ζ-prescription consists of a partic-

ular choice of renormalization and rapidity evolution scales for TMD distributions. The

double scale dependence is characteristic of the TMD distinctions, and it can be traced

in perturbative calculation due to the different origin of divergences. The presence of two

scales results in a non-elementary problem of the scale-fixation choice for TMD distri-

butions. Within ζ-prescription the TMD evolution is made effectively one-dimensional,

which allows selecting the best values for the scale parameters (this choice is known as

an optimal TMD distribution) that guarantee the perturbative stability. As a major out-

come, the ζ-prescription consistently separates the non-perturbative part of the evolution

kernel from the non-perturbative parton distribution. For this reason, the values of the

non-perturbative evolution extracted in this work are universal and can be used directly

in other applications, e.g., the analysis of polarized TMD distributions [30, 31] or jet pro-

ductions [32, 33].

Beyond the modern state-of-the-art implementation of TMD factorization, here we

reconsider the extraction of TMDPDF including a larger set of experimental data and we

provide a solid statistical analysis of error-propagation. Comparing this fit with the most

recent and complete extractions made in refs. [12, 13], the number of analyzed data points

is significantly bigger (457 points against 293 in [12] and 309 in [13], which is the biggest

amount of DY data ever considered, to our knowledge). This number of data has been

achieved by including the results from PHENIX [34], E772 [35] experiments, differential

rapidity bins from ATLAS [36] and the measurement of the Drell-Yan cross-section in the

muon channel at D0 [37]. These data points are included in the analysis of TMD cross-

section for the first time.1 For the determination of the extraction uncertainties we apply

1Let us mention, that the LHC data has also been analyzed in the resummation approach [38–40] with

the same level of perturbative input. However, the resummation approach should not be confused with

the TMD factorization, although they have several common points. The resummation approach is founded

on collinear factorization, and it has theoretically no access to a non-perturbatively generated transverse

momentum. For that reason, the resummation approach is only applicable at high-energy and at larger

values of qT .
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the replica method [41–44], routinely used for the extraction of collinear PDFs. We have

found that the inclusion of the LHC data essentially reduces the uncertainty band for non-

perturbative functions. Nonetheless, the available data leave uncovered a large portion of

the energy/momentum phase space that should be filled by experiments in the future.

As a result, we obtain a consistent and complete picture of the unpolarized TMDPDFs

and their evolution kernel supporting it with a well established statistical treatment. We

think that such screening is fundamental to provide clear indications to experimentalists

and theorists about the validity of the TMD factorization theorem, and it represents a

notable improvement in the understanding of transverse momentum structure of a hadron.

The results of this work are available as a part of artemide-package for TMD phenomenol-

ogy [45]. The library contains the routines for the evaluation of TMDPDFs and their evo-

lution (mean values and distribution of replicas) and the routines for the evaluation of the

related cross-section.

The paper is organized as follows. In section 2 we review the TMD factorization

and the necessary elements of the theory, such as TMD evolution and ζ-prescription in

section 2.1, fundamental requirements on the model building and collinear matching in

section 2.2. We formulate the non-perturbative models for rapidity anomalous dimension

in section 2.3, and for TMDPDF in section 2.4. The selection of the data set is discussed

in section 3, while the details of the statistical analysis can be found in section 4 and in the

appendices. Finally, we present the results in section 5. In particular, the quality of the

fit is discussed in section 5.1 and the extracted non-perturbative functions are discussed in

section 5.2.

2 Drell-Yan cross section in TMD factorization

The leading term of the TMD-factorized cross section for the DY process (h1 + h2 →
Z/γ∗(→ ll′) +X) has the following structure [1, 2, 46]

dσ

dQ2dydq2T
=σ0

∑
f1,f2

Hf1f2(Q,µ)

∫
d2b

4π
ei(b·qT )Ff1←h1(x1,b;µ,ζ1)Ff2←h2(x2,b;µ,ζ2), (2.1)

where Q2 = (l + l′)2, qT and y are transverse component and rapidity of the lepton pair

momentum with respect to collision axis, and the variables x1,2 are defined as

x1,2 =

√
Q2 + q2T√

s
e±y . (2.2)

The function Ff→h is the unpolarized TMDPDF2 of the parton flavor f in hadron h in

impact parameter space b. The function H is the hard-scattering coefficient function and σ0
is a kinematic factor. For a more detailed definition, we refer the reader to refs. [9, 13, 47].

2Traditionally, the unpolarized TMDPDF is denoted as f1(x, b). Here, we use the notation F (x, b)

in order to avoid any confusion with the collinear function f(x, µ) and non-perturbative ansatz fNP(x, b)

introduced in the following.
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The factorization formula in eq. (2.1) is accurate to leading power in q2T /Q
2, while power-

suppressed corrections are presently unknown (see refs. [48, 49] for recent developments).

The scales µ and ζ1,2 are the renormalization and rapidity scales, respectively [1, 3,

23, 24]. In order to minimize the logarithms in hard coefficient function H, we set the

renormalization scale µ equal to the hard scale Q. Moreover, the rapidity scales must obey

the relation ζ1ζ2 = Q4: we make the symmetric choice ζ1 = ζ2 = Q2.

In the following of this section, we briefly review the relevant ingredients of

eq. (2.1), discussing the TMD evolution and the separation between perturbative and

non-perturbative components. Then we describe the models used to parametrize the non-

perturbative input. Finally, we give the final expression for the cross section and discuss

the perturbative input used for the fits.

2.1 TMD evolution

In order to consistently combine the perturbative and non-perturbative parts of the TMD

factorization formula (2.1), and to separate the matching and evolution effects within

TMDPDFs, we use the ζ-prescription. It is based on the notion of double-scale evolution,

and consists in a special definition evolution scale. We refer to ref. [27] for a detailed

description of the double-scale evolution and its properties. In this section, we present

minimal introduction to ζ-prescription and formulas that are used in the fit.

The TMD evolution in the (µ, ζ)-plane is governed by the pair of differential equations

whose kernels define a bi-dimensional scalar potential. The logarithm of the TMD evolution

factor R is given by the difference between potentials at different points of (µ, ζ)-plane,

and for that reason, TMD distribution evaluated on two points with the same value of

potentials are equal. Within the ζ-prescription, a TMD distribution is defined by an

equipotential line, instead of the scales (µ, ζ), and it evolution is given by a transition

between equipotential lines.

The line that goes through the saddle point of the potential is special, since it is a

uniquely and non-perturbatively defined, and spans the whole range in µ and ζ. This line

provides a natural starting point for the definition of the non-perturbative component of

TMD distributions. Given ζ = ζµ(b) belonging to the special line,3 we define the optimal

TMD distribution as

Ff←h(x, b;µ, ζµ(b)) = Ff←h(x, b) µ ∈ special line, (2.3)

where in the r.h.s. we have emphasized its “naive scale-independence”. The evolution of

the optimal TMD distribution to a generic set of scales (µ, ζ) is then simply given by

Ff←h(x, b;µ, ζ) = Rf [b; (µ, ζ)→ (µ0, ζµ0(b))]Ff←h(x, b), (2.4)

where Rf is the TMD evolution factor whose expression is

Rf [b; (µ1, ζ1)→ (µ2, ζ2)] = exp

[∫
P

(
γfF (µ, ζ)

2

dµ2

µ2
−Df (µ, b)

dζ

ζ

)]
. (2.5)

3This approach, dubbed ζ-prescription, has been proposed in ref. [13]. A comprehensive discussion on

this prescription and the definition of the optimal TMD can be found in ref. [27].
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Note that the r.h.s. of eq. (2.4) is effectively independent on µ0. The anomalous dimen-

sion γF and rapidity anomalous dimension D are universal for all TMD distributions and

their perturbative expressions are currently known up to three-loop [20, 21, 50, 51]. Impor-

tantly, the rapidity anomalous dimension has a non-perturbative component that is usually

extracted from data along with the non-perturbative component of TMD distributions.

The integration path P in eq. (2.5), that connects the points (µ1, ζ1) and (µ2, ζ2) in the

evolution plane, is in principle arbitrary. In practice, the evolution factor Rf is independent

on the path P only if all terms in the perturbation expansion of the anomalous dimensions

are included. This property is violated by the truncation of perturbative expansion. How-

ever, one can define a scheme for the evolution that preserves the conservativeness of the

potential. Clearly, the difference between schemes tends to vanish as more and more terms

are included in the perturbative expansions. In this work, we use the so-called improved-γ

scheme defined in ref. [27]. For the numerical implementation of the evolution factor we

use the simplest possible path, i.e. a straight line that connects ζ to ζµ(b) at fixed µ. By

doing this, the evolution factor takes the form

Rf [b; (µ, ζ)→ (µ, ζµ(b))] = Rf [b; (µ, ζ)] =

(
ζ

ζµ(b)

)−Df (µ,b)

. (2.6)

Remarkably, this expression does not involve any integration. This entails a great simpli-

fication of the numerical implementation of the TMD evolution.

2.2 General requirements for the TMD distributions

The non-perturbative parts of the TMDPDF F and the rapidity anomalous dimension are

to be extracted from data. However, a number of theoretically justified constraints can

be enforced.

• For b→ 0, the non-perturbative component of both TMD distributions and rapidity

anomalous dimension is expected to be suppressed. In particular, in this regime

TMDPDF can be computed as

b→ 0, Ff→h(x, b) =
∑
f ′

∫ 1

x

dy

y
Cf←f ′

(
x

y
, ln
(
b2µ2

))
ff ′←h(y, µ), (2.7)

where ff←h is the collinear PDF for the parton flavor f . The coefficient functions C

are currently known up to two-loop order [18, 19].

• The leading power correction to the small-b is of order b2. This follows from the

operator product expansion and it has been confirmed by the explicit evaluation

of the renormalon contributions [25]. In general, power corrections to the small-b

must scale as b2n, i.e. only even powers of b are allowed in the Taylor expansion

around b = 0.

• The asymptotic for b→∞ is mostly unknown. A reasonable restriction is that both

TMDs and evolution factor should tend to zero in this limit. However, the decay law

is unknown. Typical choices are a gaussian or an exponential falloff.
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These restrictions significantly constrain the behavior of the non-perturbative components,

particularly at small b. At large b, instead, theoretical constraints are milder. Based

of these considerations, in the following we propose models for the rapidity anomalous

dimension and the intrinsic part of TMDPDFs.

2.3 Model for rapidity anomalous dimension

The non-perturbative rapidity anomalous dimension Df is modeled by the following func-

tion

Df (µ, b) = Dfres (µ, b∗(b)) + g(b), (2.8)

where Dfres is the resummed perturbative part of Df , g is an even function of b vanishing

as b→ 0, and

b∗(b) =

√
b2B2

NP

b2 +B2
NP

. (2.9)

The resummed anomalous dimension Dfres can be expanded as

Dfres (µ, b) =

∞∑
n=0

ans (µ)dfn(X), (2.10)

where X = β0as(µ) ln(µ2b2e2γE/4), with as = g2/(4π)2. The leading term reads

df0(X) = − Γf0
2β0

ln(1−X), (2.11)

where β0 is the leading-order (LO) coefficient of the expansion of the QCD β-function and

Γf0 is LO cusp anomalous dimension (β0 = (11CA − 2Nf )/3 and Γ0 = 4CF , respectively).

For our studies we have used eq. (2.10) at NNLO (i.e. up to df2). The NNLO expression

incorporates the three-loop anomalous dimension and can be found in refs. [27, 52].

Due the definition of df0 in eq. (2.11), the resummed rapidity anomalous dimension is

singular at X = 1. Roughly, it corresponds to b2 ∼ 4e−2γE/Λ2
QCD ' (4.5 GeV−1)2, which

is deep in the non-pertrubative region of b. In order to avoid the singularity, we replace

b with b∗ defined in eq. (2.9) in the resummed part of the anomalous dimension. Since b∗

never exceeds BNP, the value of Dres approach Dres(µ,BNP) at large b. The function g(b) in

eq. (2.8) represents the non-perturbative contribution to the anomalous dimension. Based

on general considerations, the Taylor expansion around b = 0 of this function contains

only even powers of b, starting from b2. Therefore, generally, the model (2.8) satisfies all

requirements listed in section 2.2.

In our research we have tested different models for g(b). We have found that, the

current data do not allow for an accurate extraction of the function g at large-b. Practically,

only the leading term ∼ b2 could be rigorously fixed, and it should be small enough, so it

does not affect the small-b part (that is fixed by perturbation theory). Finally, we have

adopted a simple one-parameter exponential model

g(b) = c0bb
∗(b). (2.12)
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At small b this model behaves as g(b) ∼ λ0b
2, whereas, at large b, instead, it behaves as

g(b) ∼ λ0bBNP. The other candidate for the final model of non-perturbative evolution was

a more traditional Gaussian model, g(b) ∼ c0b2 (see ref. [53] for a recent review). However,

since exponential and Gaussian models provide a similar description of the experimental

data, we find preferable to use the exponential model in eq. (2.12). The reason is that it

appears to extend the validity of the perturbative series to higher values of b.

2.4 Model for TMDPDF

In our fits, the model that parametrizes the intrinsic non-perturbative component of the

TMDPDFs is implemented by means of the following general form

Ff→h(x, b) = fNP(x, b)
∑
f ′

∫ 1

x

dy

y
Cf←f ′

(
x

y
, ln
(
b2µ2

))
ff ′←h(y, µ), (2.13)

where fNP is a function to be fitted to data. Eq. (2.13) is not the most general ansatz that

satisfies the requirements discussed in the previous section. In particular, fNP may depend

on the flavor and also on the convolution variable y, but we have found that this ansatz is

sufficient to describe the data at the current level of precision.

The factorization scale µ in the r.h.s. of eq. (2.13) is chosen to be

µ =
2e−γE

|b|
+ 2 GeV . (2.14)

This choice allows the impact parameter |b| not to reach the Landau pole. In any case

it was found that the dependence on the exact value of the scale is not very large [27].

Concerning the input collinear PDFs ff ′←h, we have tried different publicly available sets

and found that there is a marked dependence on the particular choice. It implies that

the TMD physics is sensitive to the x-dependence at small-b, which is totally dictated by

choice of PDF set by contraction of our model (2.13). We leave a detailed study of this

dependence for a future publication. For the current fit, we have used the central replica

of the NNPDF3.1 NNLO set [43] through the LHAPDF library [54]. This set provides

the best description of the data. The LHAPDF library also provides the strong running

coupling αs consistently with the PDF set.4 The flavor number Nf is so consistently and

automatically fixed at the correct scale through αs and ultimately the PDF sets.

The shape of the function fNP significantly influences the value of the cross section.

Therefore, in order to avoid possible parametric biases, it should be chosen to be as flexible

as possible taking into account the following theoretical constraints. First, fNP has to be

such that limb→0 f(x, b) = 1. Second, it should be an even function of b, i.e. the Taylor

expansion around b = 0 should only contain even powers of b. We have found that a

suitable parametrization of fNP has the form

fNP(x, b) = exp

(
−r1(x, b)
r2(x, b)

)
, (2.15)

4The transition between perturbative/non-perturbative regimes in model (2.8) for D takes a place at

αs(∼ 1GeV). Therefore, it is significantly influenced by a particular realization of running α at small values

of µ. In this way, out choice of PDF set indirectly affects non-pertrubative part of the evolution.
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Function H Cf←f ′ Γcusp D γF αs running PDF evolution

Order α2
s α2

s α3
s

α2
s

resummed
α3
s

NNLO provided by

NNPDF3.1 [43]

Table 1. Summary of perturbative orders used in the fit for each part of the cross section.

where at small b r1(x, b) ∼ r1(x, 0)b2 + . . . and r2(x, b) ∼ 1 + . . .. The function r1
gives dominant behavior at small-b, whereas the function r2 controls the large-b region.

The Padé-like form of the exponent guaranties that the higher powers of b do not give a

large contribution. Therefore the functions r1 and r2 can be expanded around b = 0 and

truncated after the first few terms. We have performed numerous tests and found that the

current data do not resolve the higher modes of the x-dependence, and thus the functions

r1 and r2 can be simple polynomials in x. Specifically, we use the following model

fNP(x, b) = exp

(
−(λ1(1− x) + λ2x+ λ3x(1− x))b2√

1 + λ4xλ5b2

)
, (2.16)

where λ1,...,5 > 0. This parametrization, with five free parameters, is able to accommodate

a range of different behaviors, such as the exponential and the Gaussian one, with some

degree of redundancy. Specifically, we have found that the number of free parameters can

be reduced to three or four without a significant deterioration in the description of the data.

2.5 Summary on theory input

The final formula to compare to the DY experimental data is

dσ

dQ2dydq2T
= σ0

∑
f1,f2

Hf1f2(Q,Q)

∫
d2b

4π
eib·qT {R[b; (Q,Q2)]}2Ff1←h1(x1, b)Ff2←h2(x2, b).

(2.17)

The explicit form of the TMDPDFs F is given in eq. (2.13) with the non-perturbative

input given in eq. (2.16). The expression for the TMD evolution factor is given in eq. (2.6).

The model used for D anomalous dimension is given in eq. (2.8) with the non-perturbative

input given in eq. (2.12). In conclusion, in our fit there is a total of seven free parameters

(two for the evolution and five for the TMDPDFs). The summary of the perturbative input

used for the computation of the observables is presented in table 1.

3 Data selection

The TMD factorization of the cross section is valid only in small transverse-momentum (qT )

regime. Therefore, we need to impose a cut on the experimental data set that limits the

kinematics of the data points to this region. In our fit we have selected the data according

to the following rule: given a data point p ± σ, with p being the central value and σ its

uncorrelated relative uncertainty, corresponding to some values of qT and Q (which are

taken to be the center of the bin), we include it in the fit only if

δ ≡ qT
Q

< 0.1, or δ < 0.25 if δ2 < σ. (3.1)

– 8 –
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These conditions are chosen for the following reasons. In ref. [13] it has been demonstrated

that, within the experimental accuracy of the data set included in the fit, TMD factorization

is valid in the range δ < (0.1 − 0.25). At higher values of δ, power corrections to TMD

factorization, that scale as q2T /Q
2 = δ2, should be taken into account. Specifically, in the

TMD framework, these corrections can be regarded as a theoretical uncertainty. Based on

this consideration, if the (uncorrelated) experimental uncertainty of a given data point is

smaller than the theoretical uncertainty associated to the expected size of power corrections,

we drop this point from the fit. This is the origin of the second condition in eq. (3.1). This

data selection is particularly conservative because it drops points that could potentially be

described by TMD factorization (see e.g. ref. [12] where less conservative cuts are used).

However, this choice guarantees that we operate well within the range of validity TMD

factorization. In the literature the power corrections are usually included with the so

called Y-terms. These corrections also allow to interpolate between the TMD factorization

regime and the collinear factorization regime qT ∼ Q. The inclusion of Y-term would

extend the qT -range available for the fit, but, as explained above, would not improve the

knowledge of TMD distributions.

Table 2 reports a summary of the full data set included in our fit. Remarkably, after

imposing the cut in eq. (3.1), the number of data points included in our fit is 457. Despite

the conservative cut, this is the largest set of DY data considered so far within a TMD

fit. Our data set spans a wide range in energy, from Q = 4 GeV to Q = 150 GeV, and in

x, from x ∼ 0.5 · 10−4 to x ∼ 1. We recall that a single DY data point is simultaneously

sensitive to a larger and a smaller value of x. This is because the cross section is given by a

pair of TMDPDFs, eq. (2.1), computed in x1 and x2 such that x1x2 ' Q2/s, see eq. (2.2).

In our fit we have compared absolute values of cross-section, whenever they are avail-

able. The only data set that require normalization factors are all CMS data, ATLAS at

7 TeV, and DO electron-pair measurements. For these sets we have normalized the integral

of the theory prediction to corresponding integral over the data (see explicit expression

in ref. [13]). To our best knowledge, it is the first fit of TMD factorization to absolute

values of cross-section in the modern time, compare e.g to the latest and most advanced

fits in [11–13].

The kinematic region in x and Q covered by the data set considered for our fit is

shown in figure 1. The boxes enclose the sub-regions covered by the single data sets.

Looking at figure 1, it is possible to distinguish two main clusters of data: the “low-energy

experiments”, i.e. E288, E605, E7725 and PHENIX, that place themselves at invariant-

mass energies between 4 and 18 GeV, and the “high-energy experiments”, i.e. all those

from Tevatron and LHC, that are instead distributed around the Z-peak region. From

this plot we observe that, while the high-energy experiments span a wide range in x, the

coverage in x of the low-energy ones is more limited. This is a consequence of the fact

all the low-energy experiments but PHENIX are fixed-target experiments. On the other

hand, the number of data points belonging to the low-energy and high-energy experiments

is of the same order ensuring a balanced distribution of data in Q.

5Notice that the experiments E605 and E772 have been included in a fit of TMPDFs for the first time

in this work.

– 9 –



J
H
E
P
0
6
(
2
0
1
9
)
0
2
8

Experiment ref.
√
s [GeV] Q [GeV] y/xF

fiducial

region

Npt

after cuts

E288 (200) [55] 19.4
4–9 in

1 GeV bins∗
0.1 < xF < 0.7 — 43

E288 (300) [55] 23.8
4–12 in

1 GeV bins∗
−0.09 < xF < 0.51 — 53

E288 (400) [55] 27.4
5–14 in

1 GeV bins∗
−0.27 < xF < 0.33 — 76

E605 [56] 38.8
7–18 in

5 bins∗
−0.1 < xF < 0.2 — 53

E772 [35] 38.8
5–15 in

8 bins∗
0.1 < xF < 0.3 — 35

PHENIX [34] 200 4.8–8.2 1.2 < y < 2.2 — 3

CDF (run1) [57] 1800 66–116 — — 33

CDF (run2) [58] 1960 66–116 — — 39

D0 (run1) [59] 1800 75–105 — — 16

D0 (run2) [60] 1960 70–110 — — 8

D0 (run2)µ [37] 1960 65–115 |y| < 1.7
pT > 15 GeV

|η| < 1.7
3

ATLAS (7TeV) [61] 7000 66–116

|y| < 1

1 < |y| < 2

2 < |y| < 2.4

pT > 20 GeV

|η| < 2.4
15

ATLAS (8TeV) [36] 8000 66–116
|y| < 2.4

in 6 bins

pT > 20 GeV

|η| < 2.4
30

ATLAS (8TeV) [36] 8000 46–66 |y| < 2.4
pT > 20 GeV

|η| < 2.4
3

ATLAS (8TeV) [36] 8000 116–150 |y| < 2.4
pT > 20 GeV

|η| < 2.4
7

CMS (7TeV) [62] 7000 60–120 |y| < 2.1
pT > 20 GeV

|η| < 2.1
8

CMS (8TeV) [63] 8000 60–120 |y| < 2.1
pT > 20 GeV

|η| < 2.1
8

LHCb (7TeV) [64] 7000 60–120 2 < y < 4.5
pT > 20 GeV

2 < η < 4.5
8

LHCb (8TeV) [65] 8000 60–120 2 < y < 4.5
pT > 20 GeV

2 < η < 4.5
7

LHCb (13TeV) [66] 13000 60–120 2 < y < 4.5
pT > 20 GeV

2 < η < 4.5
9

Total 457

*Bins with 9 . Q . 11 are omitted due to the Υ resonance.

Table 2. Summary table for the data included in the fit.. For each data set we report: the reference

publication, the centre-of-mass energy, the coverage in Q and y or xF , possible cuts on the fiducial

region, and the number of data points that survive the cut in eq. (3.1).
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E288
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E772
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CDF, D0

ATLAS

CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

Total:

457 data points
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Figure 1. Density distribution of data points in the plain (Q, x) for each experiment analyzed in

the fit.

4 Statistical analysis

In this section we discuss the treatment of the experimental information within our fit.

The final purpose is to provide a suitable definition of the χ2 that allows for a correct ex-

ploitation of experimental uncertainties. A proper treatment of uncorrelated and correlated

uncertainties is fundamental to obtain a faithful extraction of the TMDPDFs.

Let us consider an ensemble of n measurements having the following structure

mi ± σi,stat ± σi,unc ± σ(1)i,corr ± · · · ± σ
(k)
i,corr , (4.1)

where mi, with i = 1, . . . , n, is the central value of the i-th measurement, σi,stat its (uncor-

related) statistical uncertainty, σi,unc its uncorrelated systematic uncertainty,6 and σ
(l)
i,corr,

with l = 1, . . . , k, its correlated systematic uncertainties. Uncorrelated uncertainties give

an estimate of the degree of knowledge of a particular data point irrespective of the other

measurements of the data set. A typical example of uncorrelated uncertainty is the statis-

tical one but also other systematic sources are possible. Correlated uncertainties, instead,

provide an estimate of the correlation between the statistical fluctuations of two separate

data points of the same data set. Typically, correlated uncertainties are of systematic

origin, e.g. they are connected with the apparatus used to perform the measurements.

6There could be more than one uncorrelated systematic uncertainty. In this case, σi,unc is just the square

root of the sum in quadrature of all the uncorrelated systematic uncertainties.
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With this information at hand, one can construct the experimental covariance matrix

Vij as follows (see for example refs. [41, 67]):

Vij =
(
σ2i,stat + σ2i,unc

)
δij +

k∑
l=1

σ
(l)
i,corrσ

(l)
j,corr . (4.2)

Given a set of predictions ti corresponding to the n measurements of the ensemble, the χ2

takes the form

χ2 =

n∑
i,j=1

(mi − ti)V −1ij (mj − tj) = yT ·V−1 · y , (4.3)

where in the second equality we have used the matrix notation and defined the residuals

yi = mi − ti. The χ2 in eq. (4.3) takes into account the possible different nature of the

experimental uncertainties leading to a faithful estimate of the agreement between data

and theoretical predictions. An efficient way to compute the χ2 in eq. (4.3) is discussed in

appendix A.

As we will show below, the presence of sizable correlated uncertainties may give rise

to significant shifts such that a visual comparison between central experimental values and

theoretical predictions is misleading. Specifically, an apparent visual disagreement may

still be compatible with an acceptable value of the χ2. However, it is possible to quantify

the effect of the correlated uncertainties on the single data points by computing the so-

called systematic shifts di. In this approach the χ2-value (4.3) is presented by a sum of

two terms [67]

χ2 = χ2
D + χ2

λ, (4.4)

where χ2
D is the uncorrelated contribution and χ2

λ is a penalty term. Loosely speaking,

χ2
D(χ2

λ) demonstrates the agreement in the shape(normalization) between theory and mea-

surement. Applying these shifts to the theoretical predictions7 should produce a more

trustful visual comparison. The explicit computation of the systematic shifts is presented

in appendix B.

5 Results

In this section we present the results of our analysis. We start commenting the quality of

the fit and comparing the input data set to the theoretical predictions. Then we turn to

consider the outcome for TMDPDFs and the numerical values of the parameters extracted

from the fit. We detail our study on error propagation from experimental data that is

handled by a Monte Carlo sampling, known also as the replica method. To this end, we

have generated 100 pseudodata replicas according the rules described in ref. [41], and we

performed the χ2-minimization for each pseudodata set. The central values are the mean

of the obtained 100 fits.

5.1 Agreement between theory and experiment

In table 3 we report the values of the χ2 (for central values), normalized to the number of

data points Npt, for the individual experiments, for some relevant subsets of experiments,

7They could be equally well applied to the experimental central values.
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Data set Npt χ2
D/Npt χ2

λ/Npt χ2/Npt 〈d/σ〉

E288 (200) 43 0.79 0.06 0.86 41.15%

E288 (300) 53 0.89 0.04 0.93 35.72%

E288 (400) 76 0.78 0.01 0.80 26.52%

E605 53 0.49 0.05 0.54 24.74%

E772 35 1.65 0.05 1.70 13.24%

PHENIX 3 0.28 0.02 0.30 4.08%

Low energy data 263 0.86 0.04 0.90

CDF (run1) 33 0.54 0.14 0.68 8.42%

CDF (run2) 39 1.37 0.01 1.37 2.90%

D0 (run1) 16 0.76 0.00 0.76 0.12%

D0 (run2) • 8 1.51 0.00 1.51 0.00%

D0 (run2)µ • 3 0.33 0.36 0.68 0.33%

Tevatron 99 0.97 0.06 1.03

ATLAS (7 TeV) |y| < 1 • 5 2.16 0.00 2.17 −0.05%

ATLAS (7 TeV) 1 < |y| < 2 • 5 5.13 0.00 5.14 −0.07%

ATLAS (7 TeV) 2 < |y| < 2.4 • 5 1.08 0.00 1.08 −0.02%

ATLAS (8 TeV) |y| < 0.4 5 1.86 0.33 2.19 3.68%

ATLAS (8 TeV) 0.4 < |y| < 0.8 5 2.41 0.68 3.09 3.66%

ATLAS (8 TeV) 0.8 < |y| < 1.2 5 1.02 0.54 1.56 3.77%

ATLAS (8 TeV) 1.2 < |y| < 1.6 5 1.24 0.49 1.73 4.29%

ATLAS (8 TeV) 1.6 < |y| < 2.0 5 0.42 0.59 1.01 4.93%

ATLAS (8 TeV) 2.0 < |y| < 2.4 5 1.55 1.21 2.76 5.56%

ATLAS (8 TeV) 46–66 GeV 3 0.43 0.07 0.49 1.45%

ATLAS (8 TeV) 116–150 GeV 7 0.74 0.13 0.87 1.96%

ATLAS total 55 1.65 0.37 2.02

CMS (7 TeV) • 8 1.26 0.00 1.26 0.00%

CMS (8 TeV) • 8 0.85 0.00 0.85 0.00%

CMS total 16 1.06 0.00 1.06

LHCb (7 TeV) 8 2.05 0.90 2.95 5.69%

LHCb (8 TeV) 7 3.85 1.69 5.54 5.65%

LHCb (13 TeV) 9 0.60 0.29 0.89 6.34%

LHCb total 24 2.03 0.90 2.93

High energy data 194 1.30 0.25 1.55

Global 457 1.05 0.12 1.17

Table 3. Distribution of values of χ2 over the data set. Decomposition of χ2 to uncorrelated part

χ2
D and shift part χ2

λ is made with nuisance parameter. The average shift is (resulted from the

nuisance parameters) is shown relative to the value of cross section. The experiments marked with

a • have differential cross sections normalized by total cross-section, the normalization is treated

as explained in [13].
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χ2/#p = 1.87 + 0.32 = 2.19 av.shift = 3.6%

ATLAS 8 TeV 0.0<|y|<0.4

χ2/#p = 2.51 + 0.76 = 3.27 av.shift = 3.6%

ATLAS 8 TeV 0.4<|y|<0.8

χ2/#p = 1.07 + 0.57 = 1.64 av.shift = 3.7%

ATLAS 8 TeV 0.8<|y|<1.2

χ2/#p = 1.27 + 0.46 = 1.73 av.shift = 4.2%

ATLAS 8 TeV 1.2<|y|<1.6

χ2/#p = 0.33 + 0.58 = 0.91 av.shift = 4.9%

ATLAS 8 TeV 1.6<|y|<2.0

χ2/#p = 1.49 + 1.16 = 2.66 av.shift = 5.5%

ATLAS 8 TeV 2.0<|y|<2.4
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Figure 2. Ratio of theoretical and experimental points as a function of the binned di-lepton

transverse momentum for the measured at ATLAS in the range 66 < Q < 116 GeV (dashed red

lines). The experimental points (blue dots) are surrounded by a box describing their error. The

representation takes into account the shifts as described in the text.

and for the global data set included in this analysis. Specifically, table 3 displays, along the

number of data points Npt, the uncorrelated contribution to the χ2 (χ2
D), the penalty term

(χ2
λ), and the sum of the two, i.e. the total χ2 referring to eq. (4.4) (see also eq. (B.7)). The

last column, instead, reports the average (over the data set) systematic shift di (as defined

in eq. (B.5)), over the cross-section value in percentage. Some experiments (in table 3

these are indicated with a •) present the normalized cross-section. In these cases, we have

normalized the cross section to its integrated value (a similar approach was adopted in [13]).

The first observation is that the value of the global χ2 is particularly good (χ2/Npt =

1.18). This means that the fit has achieved a satisfactory description of the entire data

set. We also observe that the description of the low-energy subset is substantially bet-

ter (χ2/Npt = 0.93) than the high-energy one (χ2/Npt = 1.52). This is not surprising

because the high-energy experiments from Tevatron and LHC are much more accurate

than the low-energy ones. In addition, amongst the high-energy experiments, LHCb

has the largest χ2, while ATLAS, CMS, and the Tevatron experiments are fairly de-

scribed. Dropping the best (PHENIX) and the worst (LHCb 8TeV) set (in total 10 points),

we get χ2/Npt = 1.12.

In order to achieve a visual assessment of the agreement between data and theory, in

figures 2, 3, 4 we display the ratio between theoretical predictions (red dashed lines) and

experimental data points along with their uncorrelated uncertainty (blue bands) for some

representative data sets included in the fit. In particular, we show plots for the LHC and

one of the E288 data sets. An example of cross-section values without systematic shifts is

given in appendix B in figure 9. The theoretical predictions have been corrected including

the systematic shifts computed as described in appendix B (see eq. (B.6)).
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χ2/#p = 1.26 + 0. = 1.26 av.shift = 0.%

CMS 7 TeV

χ2/#p = 0.85 + 0. = 0.85 av.shift = 0.%
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χ2 /#p = 0.6 + 0.29 = 0.89 av.shift = 6.3%

LHCb 13 TeV
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Figure 3. Ratio of theoretical and experimental points as a function of the binned di-lepton

transverse momentum for the measured at CMS and LHCb experiments (dashed red lines). The

experimental points (blue dots) are surrounded by a box describing their error. The representation

takes into account the shifts as described in the text.

From figures 2–3, we see that, despite the small experimental uncorrelated uncertainties

at the percent level or below, our fit is able to describe the LHC data sets fairly well.

However, the 8 TeV data set of LHCb presents a pronounced shape discrepancy that causes

the large value of the χ2 reported in table 3. A similar tension between data and theory

seems to be present also in the most forward rapidity bin (2 < |y| < 2.4) of the ATLAS data

set at 8 TeV. We ascribe the origin of the discrepancy to the insufficient shape of collinear

PDFs at very large x (x ' 0.7). In this region, collinear PDFs are poorly known. The fact

that TMDPDF is sensitive to the shape of collinear PDF could be used to constrain the

behavior of PDF. Such a study is certainly interesting but goes beyond the scope of this

paper. Note, that the LHCb set could also be affected by the poor knowledge of PDFs at

small-x, since for this set x reaches values down to ∼ 10−4.

In figure 4, the data-theory comparison for one of the E288 data sets shows that the

uncorrelated experimental uncertainties range between 5% and a few tens of percent. Such

large uncertainties make the agreement with the theoretical predictions easier to achieve,

giving rise to small χ2’s. Similar comments apply to all low energy experiments. We note

the systematic underestimation for the cross-section for experiments E288, E605 and E772,

which is of the order of 25% on average. Nonetheless, such a large difference between data

and the theory does not produce large χ2-values, due to large systematic uncertainties

for this data. The reported correlated systematic error for E288(E605, E772) experiments

is 25%(15%, 10%) [35, 55, 56]. This systematic discrepancy has been recently discussed

in [68], where it was connected to the fixed-target nature of these experiments.

5.2 Extracted values of TMDPDF and rapidity anomalous dimension

We now turn to the values of the TMDPDFs and rapidity anomalous dimension as ex-

tracted from the fit. Our results for the non-perturbative parameters are presented in
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Figure 4. Ratio of theoretical and experimental points as a function of the binned di-lepton

transverse momentum at E288 (300) (dashed red lines). The experimental points (blue dots) are

surrounded by a box describing their error. The representation takes into account the shifts as

described in the text.

BNP c0 λ1 λ2 λ3 λ4 λ5

Full data set

3.31± 0.28 0.024± 0.006 0.258± 0.022 8.18± 1.00 −4.76± 1.38 300.± 89. 2.44± 0.12

2.5(fixed) 0.037± 0.007 0.248± 0.025 8.15± 1.40 −4.96± 1.60 275.± 53. 2.52± 0.13

Excluding LHC-data

1.21± 0.50 0.057± 0.038 0.21± 0.17 12.1± 4.4 −3.51± 5.40 316.± 196. 2.11± 0.28

2.5(fixed) 0.014± 0.012 0.14± 0.08 11.2± 3.8 −2.48± 3.96 413.± 277. 2.07± 0.21

Table 4. Values of parameters extracted in the fit in the model (2.12), (2.16). The error corresponds

to a standard uncorrelated deviation calculated over 300(100) replicas for full(reduced) data set.

table 4. The central values and the uncertainty band correspond to the mean and standard

deviation of parameter distributions obtained by χ2-minimization of 300 pseudodata repli-

cas. One should take into account that the uncertainties presented here take into account

the correlation among parameters.

Analyzing the result of the fit one should keep in mind that high-energy and low-energy

experiments unequally contribute to the χ2-value. Because the data from LHC have tiny

errors (especially the data measured at ATLAS), they contribute decisively to the value

of χ2. For this reason, the minimum of χ2 is shifted towards the local minimum of the

LHC data set, especially for smaller x values (say x . 0.05). To determine the effect of the

LHC data set we have additionally performed a fit without the LHC data (100 pseudodata

replicas) and we show the results in the second part of table 4. One can see that the values

obtained in both fits nicely agree with each other, apart from for BNP (and we discuss this

fact later in the text). It is clear that inclusion of the LHC data affects very strongly the

uncertainty in the parameter determination.
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Figure 5. The D anomalous dimension in b space for two values of µ. The bands correspond

respectively to the case in which one includes all experiments (blue) and to the case in which LHC

data are excluded (red-dashed).

The plot of the extracted rapidity anomalous dimension (together with 1σ band) is

shown in figure 5 at µ = 4 GeV and µ = 91 GeV. One can see that the fitted value of BNP is

pretty large. This reflects the fact that high-energy experiments (which dominate our χ2)

prefer the entirely perturbative rapidity anomalous dimension. This was already pointed

out in previous works [11, 13, 52]. The value of the parameter c0 extracted from the fit

is compatible with the renormalon approximation discussed in ref. [25]. In the absence of

LHC measurements the fitted value of BNP = 1.2, which is very close to values obtained

in previous LHC-less data fits (compare to bmax ∼ 1.1 in refs. [6, 12]).

We have observed that the values of global χ2 (for the full data set) are practically

the same for the values of BNP in a wide region. Fixing BNP = {1., 2., 3., 4.}GeV−1 we

have obtained the minimal values of χ2/Npt = {1.27, 1.18, 1.17, 1.18}. At larger BNP,

the fit becomes unstable due to influence of the Landau pole (the actual position of the

singularity in the resummed expression depends on the realization of the strong coupling

values at very-low energies, and typically located at b = 5. − 8.GeV−1.). We admit that

the distribution of the χ2 between experiments is different. In particular, for the very large

BNP small-value of χ2 is achieved by better agreement with LHCb experiment, whereas the

agreement with the majority of the data is worsen. Considering this picture, we conclude

that the obtained error-band on BNP, presented in table 4, does not reflect the realistic

state. It is probably due to strong correlation between BNP and other parameters, and

due to the theory-data tension for some particular data subsets. To support the extraction

presented here, and to show that it is not strongly affected by this freedom, we have also

performed the fit of the data at fixed BNP = 2.5 GeV−1. The results are presented in

table 4. Clearly, all parameter of fNP are in agreement within uncertainty band, while the

value of c0 (which is anti-correlated to BNP is tends to compensate its change.

In figure 6 we show the intrinsic non-perturbative part of TMDPDF, fNP, as a function

of b at different values of x. We present fNP extracted respectively from the full (blue band)

and from LHC-less (red band) data sets. Notably and for all the values of x, the inclusion

of LHC data reduces the error-band. The reduction is not so significative at x ∼ 0.1, but it

is an order of magnitude at x ∼ 10−3. One should also take into account that this picture is

somewhat model-biased. The high-energy experiments (and thus LHC data) are sensitive

to small-b values (say b . 2 GeV−1) and they are practically insensitive to large-b values.
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Figure 6. The intrinsic non-perturbative part of the TMDPDF as in eq. (2.16). The bands

correspond respectively to the case in which one includes all experiments (blue) and to the case in

which LHC data are excluded (red-dashed).
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Figure 7. The moments of fNP defined in (5.1) as a function of x. The blue (red-dashed) bands

correspond to extraction made with (without) LHC data.

On the contrary for the low-energy experiments one finds that the values of b ∼ 5-6 GeV−1

give a sizable contribution to the cross-section. Given the small number of parameters

in our model, one cannot entirely decorrelate large and small b behavior, and thus the

error-band at large-b is particularly underestimated.

An important feature of our extraction is the essential dependence of fNP on x. Indeed,

in the overwhelming part of previous studies (see e.g. [6, 11, 13]) the x dependence of fNP

was absent (an exception is the x-dependent fNP in ref. [12]). In our case, the x-dependence

is highly non-trivial and it has been uncovered due to presence of high-precision high-energy

experiments. We have checked, that we are not able to fit LHC data with x-independent

fNP, whereas the rest of data could equally-well be described by a simpler x-independent

fNP. We have found that the present data set prefers a wide exponential-like fNP at larger

x (x ∼ 0.1 − 0.5) and narrower Gaussian-like fNP at smaller x. In order to quantify this

behavior we consider b-moments of fNP defined as

〈fNP(x)〉 =

∫
d2b fNP(x, b), 〈b2NP(x)〉 =

∫
d2b b2 fNP(x, b)

〈fNP(x)〉
. (5.1)

The values of 〈fNP(x)〉 and 〈b2NP(x)〉 are shown in figure 7. Unfortunately, these func-

tions have no direct physical meaning, but they show clearly that at x & 0.05 the non-

perturbative behavior of the unpolarized TMDPDF changes to become wider and expo-

nential-like. In kT -space it would correspond to a narrower kT distribution for larger x.

Such behavior has been already observed in ref. [12]. Still observing figure 7, it is clear

that the data without LHC points have no restricting power for x . 10−2.
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Finally, in figure 8 we present the three-dimensional illustration for the unpolarized

TMDPDF f1 in position and momentum spaces. The TMDPDF in momentum space is

defined as

f1(x,kT ) =

∫
d2b

(2π)2
f1(x, b)e

−i(b·kT ). (5.2)

The 1σ-uncertainty level is presented by color since the absolute value of the band is

visually unresolved. For demonstration purposes we present the combination of the d-

and d̄-flavor distributions. Note, that generally, fNP is flavor dependent, although we

omit its flavor dependence in the present work. Nonetheless, the extracted TMDPDFs

have a flavor dependence and it is driven solely by the collinear PDF. The results of

the extraction, together with the code for the cross-section, are available as a part of the

artemide package [45]. The replicas of full data set and LHC-less data set are labeled

as BSV19.bFIT and BSV19.bFIT.noLHC correspondingly. The extractions with the fixed

BNP = 2.5 GeV−1 are labeled by BSV19.bFIX and BSV19.bFIX.noLHC.

6 Conclusions

We have extracted the unpolarized transverse momentum dependent parton distribution

function (TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper ker-

nel) from Drell-Yan data. The analysis has been performed in the ζ-prescription with

NNLO perturbative inputs. We have also provided an estimation of the errors on the ex-

tracted functions with the replica method. The values of TMDPDF and rapidity anomalous

dimension, together with the code that evaluates the cross-section, are available at [45], as

a part of the artemide package. We plan to release grids for TMDPDFs extracted in this

work also through the TMDlib [69].

Theoretical predictions are based on the newly developed concepts of ζ-prescription and

optimal TMD proposed in ref. [27]. This combination provides a clear separation between

the non-perturbative effects in the evolution factor and the intrinsic transverse momentum

dependence. Additionally, the ζ-prescription permits the usage of different perturbative

orders in the collinear matching and TMD evolution. For that reasons, the precise values

of the rapidity anomalous dimension (±1%(4%, 6%) accuracy at b = 1(3, 5) GeV−1) are

relevant for any observable that obeys TMD evolution.

In our analysis, we have included a large set of data points, which spans a wide range

of energies (4 < Q < 150 GeV) and x (x > 10−4), see figure 1. The data set can be roughly

split into the low-energy data, which includes experiments E288, E605, E772 and PHENIX

at RHIC, and the high-energy data from Tevatron (CDF and D0) and LHC (ATLAS,

CMS, LHCb) in similar proportion. To exclude the influence of power corrections to TMD

factorization we consider only the low-qT part of the data set, as described in section 3. A

good portion of data is included in the fit of TMD distributions for the first time, that is the

data from E772, PHENIX, some parts of ATLAS and D0 data. For the first time, the data

from LHC have been included without restrictions (the only previous attempt to include

LHC data in a TMDPDF fit is [13], where systematic uncertainties and normalization has

been treated in a simplified manner). We have shown that the inclusion of LHC data
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Figure 8. The down quark TMD PDF in b-space(left) and kT -space(right) presented at different

values of x. The color shows the size of the uncertainty relative the value of distribution.

greatly restricts the non-perturbative models at smaller b (b . 2 GeV−1) and smaller x

(x . 0.05), and therefore they are highly relevant for studies of the intrinsic structure of

hadrons. A detailed comparison of fits with and without LHC data has been discussed in

section 5.

The extracted TMDPDF shows a non-trivial x-dependence that is not dictated only

by the collinear asymptotic limit of PDFs. In particular, we find that the unpolarized

TMDPDF is bigger (in impact parameter space) at larger x, see figure 7. This indirectly

implies a smaller value of the typical parton transverse momentum kT for larger x. A

similar behavior has been also observed in [12]. We also find a strong dependence on the

PDF set. The PDFs play the role of a “model-independent” input at small values of b,

and largely determines the x-dependence of TMDPDF. In particular, we have used the

NNPDF3.1(nnlo) set [43], since it provides the best agreement with data. We think that

the reason for the better agreement with this PDF set is that it has been fitted to the

modern LHC data. The fact that TMD observables are so sensitive to the collinear input

can be used to put extra restrictions to PDFs. A detailed study of this possibility is left

for the future.
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A Efficient computation of χ2

The evaluation of χ2 values (4.3) involves the inversion of voluminous covariance matrix. A

convenient way to compute the χ2 relies on the Cholesky decomposition of the covariance

matrix V, which is presented in this appendix.
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The Cholesky decomposition can be applied for any symmetric and positive definite

matrix, such as the covariance matrix V, defined in eq. (4.2). The decomposition has

the form

V = L · LT , (A.1)

where L is a lower triangular matrix whose entries are related recursively to those of V

as follows:

Lkk =

√√√√Vkk −
k−1∑
j=1

L2
kj ,

Lik =
1

Lkk

Vik − k−1∑
j=1

LijLkj

 , k < i ,

Lik = 0 , k > i .

(A.2)

It is then easy to see that the χ2 can be written as

χ2 =
∣∣L−1 · y∣∣2 . (A.3)

Now, the vector x ≡ L−1 · y is the solution of the lower-diagonal linear system:

L · x = y , (A.4)

that can be efficiently solved by forward substitution, so that:

χ2 = |x|2 . (A.5)

Following this procedure, one does not need to compute explicitly the inverse of the co-

variance matrix V, simplifying significantly the computation of the χ2.

B Determining the systematic shifts

In this appendix we present the decomposition of the χ2-value to the uncorrelated and

penalty parts with the help of the so-called “nuisance parameters”. This representation

is helpful for visualization of the effect of systematic uncertainties, and allows to compute

the systematic shifts. Our presentation follows refs. [41, 67].

In order to quantify the effect of systematic uncertainties, we write the χ2 in terms of

the so-called “nuisance parameters” λα. It is possible to show [67] that the definition of

the χ2 in eq. (4.3) is equivalent to

χ2 =
n∑
i=1

1

s2i

(
mi − ti −

k∑
α=1

λασ
(α)
i,corr

)2

+
k∑

α=1

λ2α , (B.1)

where s2i = σ2i,stat + σ2i,unc. The optimal value of the nuisance parameters can then be

determined by minimizing the χ2 with respect to them imposing that

∂χ2

∂λβ
= 0 . (B.2)
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Figure 9. Ratio of theoretical and experimental points as a function of the binned di-lepton

transverse momentum for the measured at ATLAS in the range 66 < Q < 116 GeV. Black lines

corresponds to the values ti predicted by the theory, whereas red dashed lines corresponds to

t̄i (B.6). The experimental points (blue dots) are surrounded by a box describing their error. For

this data set, the correlated systematic uncertainty is mainly given by luminocity uncertainty is

∼ 2.8% [36].

This yields the system
k∑

β=1

Aαβλβ = ρα , (B.3)

with:

Aαβ = δαβ +

n∑
i=1

σ
(α)
i,corrσ

(β)
i,corr

s2i
and ρα =

n∑
i=1

mi − ti
s2i

σ
(α)
i,corr , (B.4)

that determines the values of λβ . The quantity

di =
k∑

α=1

λασ
(α)
i,corr (B.5)

in eq. (B.1) can be interpreted as a shift caused by the correlated systematic uncertainties.

As a matter of fact, defining the shifted predictions as

ti = ti + di , (B.6)

the χ2 reads

χ2 =
n∑
i=1

(
mi − ti
si

)2

+
k∑

α=1

λ2α = χ2
D + χ2

λ . (B.7)

Therefore, up to a penalty term χ2
λ given by the sum of the square of the nuisance param-

eters, the χ2 takes the form of the uncorrelated definition χ2
D, i.e. with diagonal covari-

ance matrix.
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In order to achieve a visual assessment of the agreement between data and theory, it

appears natural to compare the central experimental values mi to the shifted theoretical

predictions ti in units of the uncorrelated uncertainty si. The example of comparison of

shifted/unshifted data is given in figure 9.
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[52] M.G. Echevarria, A. Idilbi, A. Schäfer and I. Scimemi, Model-Independent Evolution of

Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL, Eur. Phys. J.

C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].

[53] J. Collins and T. Rogers, Understanding the large-distance behavior of

transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel,

Phys. Rev. D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].

[54] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.

C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

[55] A.S. Ito et al., Measurement of the Continuum of Dimuons Produced in High-Energy

Proton-Nucleus Collisions, Phys. Rev. D 23 (1981) 604 [INSPIRE].

[56] G. Moreno et al., Dimuon production in proton-copper collisions at
√
s = 38.8 GeV, Phys.

Rev. D 43 (1991) 2815 [INSPIRE].

[57] CDF collaboration, The transverse momentum and total cross section of e+e− pairs in the Z

boson region from pp̄ collisions at
√
s = 1.8 TeV, Phys. Rev. Lett. 84 (2000) 845

[hep-ex/0001021] [INSPIRE].

[58] CDF collaboration, Transverse momentum cross section of e+e− pairs in the Z-boson region

from pp̄ collisions at
√
s = 1.96 TeV, Phys. Rev. D 86 (2012) 052010 [arXiv:1207.7138]

[INSPIRE].

[59] D0 collaboration, Measurement of the inclusive differential cross section for Z bosons as a

function of transverse momentum in p̄p collisions at
√
s = 1.8 TeV, Phys. Rev. D 61 (2000)

032004 [hep-ex/9907009] [INSPIRE].

[60] D0 collaboration, Measurement of the shape of the boson transverse momentum distribution

in pp̄→ Z/γ∗ → e+e− +X events produced at
√
s = 1.96 TeV, Phys. Rev. Lett. 100 (2008)

102002 [arXiv:0712.0803] [INSPIRE].

– 26 –

https://teorica.fis.ucm.es/artemide/
https://github.com/vladimirovalexey/artemide-public
https://doi.org/10.1103/PhysRevD.51.3357
https://arxiv.org/abs/hep-ph/9403227
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9403227
https://doi.org/10.1007/JHEP02(2012)124
https://arxiv.org/abs/1109.6027
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6027
https://doi.org/10.1007/JHEP05(2018)150
https://arxiv.org/abs/1712.09389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09389
https://doi.org/10.1007/JHEP04(2019)123
https://arxiv.org/abs/1812.08189
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.08189
https://doi.org/10.1016/j.physletb.2005.08.067
https://arxiv.org/abs/hep-ph/0508055
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0508055
https://doi.org/10.1103/PhysRevLett.102.212002
https://arxiv.org/abs/0902.3519
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3519
https://doi.org/10.1140/epjc/s10052-013-2636-y
https://doi.org/10.1140/epjc/s10052-013-2636-y
https://arxiv.org/abs/1208.1281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1281
https://doi.org/10.1103/PhysRevD.91.074020
https://arxiv.org/abs/1412.3820
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3820
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7420
https://doi.org/10.1103/PhysRevD.23.604
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D23,604%22
https://doi.org/10.1103/PhysRevD.43.2815
https://doi.org/10.1103/PhysRevD.43.2815
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D43,2815%22
https://doi.org/10.1103/PhysRevLett.84.845
https://arxiv.org/abs/hep-ex/0001021
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0001021
https://doi.org/10.1103/PhysRevD.86.052010
https://arxiv.org/abs/1207.7138
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7138
https://doi.org/10.1103/PhysRevD.61.032004
https://doi.org/10.1103/PhysRevD.61.032004
https://arxiv.org/abs/hep-ex/9907009
https://inspirehep.net/search?p=find+EPRINT+hep-ex/9907009
https://doi.org/10.1103/PhysRevLett.100.102002
https://doi.org/10.1103/PhysRevLett.100.102002
https://arxiv.org/abs/0712.0803
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0803


J
H
E
P
0
6
(
2
0
1
9
)
0
2
8

[61] ATLAS collaboration, Measurement of the Z/γ∗ boson transverse momentum distribution in

pp collisions at
√
s = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145

[arXiv:1406.3660] [INSPIRE].

[62] CMS collaboration, Measurement of the Rapidity and Transverse Momentum Distributions

of Z Bosons in pp Collisions at
√
s = 7 TeV, Phys. Rev. D 85 (2012) 032002

[arXiv:1110.4973] [INSPIRE].

[63] CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons

produced in proton-proton collisions at
√
s = 8 TeV, JHEP 02 (2017) 096

[arXiv:1606.05864] [INSPIRE].

[64] LHCb collaboration, Measurement of the forward Z boson production cross-section in pp

collisions at
√
s = 7 TeV, JHEP 08 (2015) 039 [arXiv:1505.07024] [INSPIRE].

[65] LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at√
s = 8 TeV, JHEP 01 (2016) 155 [arXiv:1511.08039] [INSPIRE].

[66] LHCb collaboration, Measurement of the forward Z boson production cross-section in pp

collisions at
√
s = 13 TeV, JHEP 09 (2016) 136 [arXiv:1607.06495] [INSPIRE].

[67] R.D. Ball et al., Parton Distribution Benchmarking with LHC Data, JHEP 04 (2013) 125

[arXiv:1211.5142] [INSPIRE].

[68] A. Bacchetta, G. Bozzi, M. Lambertsen, F. Piacenza, J. Steiglechner and W. Vogelsang,

Difficulties in the description of Drell-Yan processes at moderate invariant mass and high

transverse momentum, arXiv:1901.06916 [INSPIRE].

[69] F. Hautmann et al., TMDlib and TMDplotter: library and plotting tools for

transverse-momentum-dependent parton distributions, Eur. Phys. J. C 74 (2014) 3220

[arXiv:1408.3015] [INSPIRE].

– 27 –

https://doi.org/10.1007/JHEP09(2014)145
https://arxiv.org/abs/1406.3660
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3660
https://doi.org/10.1103/PhysRevD.85.032002
https://arxiv.org/abs/1110.4973
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4973
https://doi.org/10.1007/JHEP02(2017)096
https://arxiv.org/abs/1606.05864
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.05864
https://doi.org/10.1007/JHEP08(2015)039
https://arxiv.org/abs/1505.07024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07024
https://doi.org/10.1007/JHEP01(2016)155
https://arxiv.org/abs/1511.08039
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.08039
https://doi.org/10.1007/JHEP09(2016)136
https://arxiv.org/abs/1607.06495
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06495
https://doi.org/10.1007/JHEP04(2013)125
https://arxiv.org/abs/1211.5142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5142
https://arxiv.org/abs/1901.06916
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.06916
https://doi.org/10.1140/epjc/s10052-014-3220-9
https://arxiv.org/abs/1408.3015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3015

	Introduction
	Drell-Yan cross section in TMD factorization
	TMD evolution
	General requirements for the TMD distributions
	Model for rapidity anomalous dimension
	Model for TMDPDF
	Summary on theory input

	Data selection
	Statistical analysis
	Results
	Agreement between theory and experiment
	Extracted values of TMDPDF and rapidity anomalous dimension

	Conclusions
	Efficient computation of chi**(2)
	Determining the systematic shifts

