AUTHOR	Marsh ${ }_{9}$ Herbert W.
TITLE	Extracurricular Activities: A Beneficial Extension of the Traditional Curriculum or a Subversion of
	Academic Goals.
PUB DATE	7 Sep 88
NOTE	41 p .
PUB TYPE	Reports - Research/Technical (143)
EDRS PRICE	MFOL/PCO2 Plus Postage.
DESCRIPTORS	*Academic Aspiration; *Extracurricular Activities;
	Grade 10; Grade 12; *High School Graduate:; High
	Schools; *National Surveys; Outcomes of Education;
	Postsecondary Education; *Student Participation
IDENTIFIERS	*High School and Beyond (NCES)

ABSTRACT

As part of the High School and Beyond study, students in a large nationally-representative sample were asked whether or not they had participated in each of a variety of extracurricular activities in tineir sophomore year (1980) and again in their senior year (1982) of high school. Data for 1984--2 years after the subjects graduated from higi school--were included. Out of 10,613 students, a sample size of 4,000 was assumed for the purposes of statistical testing. After controlling background variables and sophomore outcomes, total participation was significantly and favorably related to 17 of 22 senior and postsecondary outcomes (e.g., sccial and academic self-concept, educational aspirations, coursework selection, homework, absenteeism, academic achievement, and subsequent college attendance). However, there were significant non-linear components to most relations indicating that participation in too many activities produced diminishing recurns. The benefits of participation also differed substantially depending on the particular activity. Participation in sport, honor societies, studeni government, school publications, school subject-matter clubs, church organizations, and community service organizations was consistently beneficial, but participation in some activities had mixed or predominantly negative effects. A 39 -item list of references and eight data tables are included. (Author/TJF)

[^0]
Extracurricular Activities: A Beneficial Extension of the Traditional Curriculum or A Subversion of Academic Goals

U.S. DEPARTMENT OF EDUCATION

Otice ed Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER ERIC
This document has been reproduced as received from the person or organization originating it
0 Minor changes have been made to improve reproduction quality.

- Founts of view or opinions stated in this docsrent oo not necessarily represent official OERI position or auhcy
"PERMISSION TO REPRODUCE THIS material has been granted by
- University of Sydney

7 September, 1988

Herbert W. Marsh
\qquad

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Running Head: Extracurricular Activities

The data used in this paper were made available by the Inter-university Consortium for Political and Social Research. I would like to thank Raymond Debus, Raymond King, Michael Bailey, and Rosalie Robinson for helpful comments on earlier drafts of this manuscript.

Extracurricular Activities: A Beneficial Extension of the Traditional Curriculum or A Subversior, of Academic Goals

Abstract

As part of the High School and Beyond (HSB) study, a large nationally representative sample of students were asked whether or not they had participated in each of a variety of extracurricular activities in their sophomore and again in their senior year of high school. After controlling background variables and sophomore outcomes, total participation was significantly and favorably related to 17 of 22 senior and post-secondary outcomes le.g., social and academic self-concept, educational aspirations, coursework selection, homework, absentesism, academic achievement and subsequent college attendance). There were, however, significant nonlinear components to most relations indicating that participation in too many activities produced diminishing returns. The benefits of participation also differed substantially depending on the particular activity. Participation in sport, honor societies, student government, school publications, school subject-matter clubs, church arganizations, and community-service organizations was consistently beneficial but participation in some activities had mixed or predominantly negative effects.

Extracurricular Activities: A Beneficial Extension of the
Curriculum or A Subversion of Traditional Academic Goals
The purpose of the present investigation is to relate participation in extracurricular activities to changes in academic achievement, attitudes, and behaviors during the last two years of high school and to subsequent college attendance and other post-secondary outcomes. The study is based on the large, nationally representative, longitudinal High School and Beyond (HSB) data.

Previous Research

Otto (1982) and Holland and Andre (1987, 1988; also see Brown, 1988; Taylor \& Chiogioji, 1988) have recently reviewed the voluminous literature relating participation in extracurricular activities to a multitude of outcomes. This research can be organized in terms of the theoretical basis, the type of the extracurricular activity, the outcome variables related to participation, the methodological design and, perhaps, the adequacy of the study.

Much c the research in this fiele has an empirical, atheoretical orientation (see Brown, 1988). Many of the theoretical bases that have been proposed are derived from, or are in reaction to, Coleman’s (1959, 1961) seminal work. Adolescent society, accọrding to a perhaps over-simplified interpretation of Colemari, emphasizes peer acceptance and an irresponsible, hedonistic, indifferent approach to acadomic achievement and knowledge transmission. Holland and Andre (1987), for exaniple, interpreted Coleman's position to mean that an emphasis on extracurricular activities subverted the more traditional academic goa!s of education. They proposed ani alternative devel opmental perspective in which extracurricular activities are viewed as "experiences that further the total devel opment of the individual students" (Holland \& Andre, 1987). From this developmental perspective, extracurricular activities facilitate nonacademic goals but may also facilitate the more narrowly defined goals of the academic perspective. Participation in extracurricular activities may, for example, enhance perceived social status which in turn influences educational aspirations and concomitant behaviors (Spady, 1970, 1971). Depending on one's theoretical perspective, participation in extracurricular activities may be posited to: (a) divert attention from academic pursuits as evidenced by its negative effects on narrowly defined academic goals, (b) have little or ne effect on academic outcomes but contribute to desirable nonacademic outcomes, or (c) have positive effects on nonac• emic outcomes and
facilitate academic growth -- perhaps indirectly -- as well.
Participation in extracurricular activities is necessarily defined by self-selectinn and so it is difficult to separate true effects from preexisting differences in students who participate in the activities. The experimental designs ussed most frequently are: (a) one-wave designs that merely correlate participation levels with outcome variables with no control variables, (b) one-wave designs in which participation-outcome relations are controlled for background variables such as socioeconomic status (SES), and (c) longitudinal, multi-wave designs that relate changes in outcome variables to participation after controlling backgrourid variables. Because the goal of most research -- at least ultimately -- is to infer the consequences of participation in extracurricular activities, there is little justification for single-wave designs even though this type of study predominates.

The reviews by Otto (1982) and by Holland and Andre (1987) were severely hampered by serious methodolagical problems in existing research. Specific problems relevant to this study noted by Holl and and Andre and by others were: (a) Much of the research is based on small-scale samples of convenience that may have limited generality. (b) Participation in extracurricular activities is by necessity defined by self-selection so that it is impossible to determine whether participation is "cause" or "effect" in a single wave of data. (c) The differential effects of participating in specific extra-curricular activities -- with the notable exception of sport -- have been largely ignored. (d) Previous research is based largely on white, male, high school senior athletes and variously defined comparison groups. There has been insufficient attention to the generality of effects across different subgroups.

Researchers have not typically given serious attention to the classification of extracurricular activities other than sport. As noted by Brown (1988, p. 110) the two broad categories of extracurricular activity in existing research have been "sports and 'everything else'." Hanks and Eckland (1976) cited an unreported factor analysis as their basis for collapsing 8 activties into two categories -- sport and social participation (e.g., publications, debate, drama, student government, music, service clubs, academic groups, religious groups). In an alternative approach, Synder and Spreitzer (1977) considered sport and one additional, more narrowly defined activity -- serious involvement in music. Spady (1970) initially considered soorts and a service-leadership category but subsequently expanded the list to include social clubs and performing arts (music, art, drama, and
publications) in his 1971 study. Grabe (1976, 1981) included five categories: athletics, academics; fine arts, clubs, and social life. Other researchers (e.g., Lindsay, 1984; Otto, 1975; 1976) have collapsed participation in all extracurricular activities into a single score. Synder (1969) derived a single activities score based on the extent of a students' involvement and the activity's prestige.

Researchers typically emphasize the supposed consequences rather than the antecedents of participation in extracurricular activity. Whereas many researchers have used regression-type analyses to control background variables (e.g., SES, IQ), the intent is usually to equate groups rather than to test antecedents of participation. A notable exception, however, is the negative relation between school size and participation rates (Baird, 1969; Barker \& Gump, 1964; Grabe, 1976; Wicker; 1968; see Holland \& Andre, 1987, for a sunimary). Smaller schools have a larger number of activities relative to the number of students and so more students are able to participate in more activities. This negative relation between school size and participation rates in one of the most robust findings in this field.

The array of outcomes -- possible consequences -- that have been related to extracurricular participation is extensive. The most frequently considered, however, are academic achievement, educational and occupational aspirations (or attainments), and a variety of personal-social characteristics (e.g., general and academic self-concept, social status, and delinquency). Some researchers have also posited personal-social outcomes to mediate the influence of participation on subsequent behavior (e.g., participation enhances selt-concept which increases educational aspirations). Academic Achievement.

Otto (1982, p. 218) concluded that there "is no evidence -- only anecdotes and testimonials -- that the amount of participation in extracurricular activities affects academic performance, whether favorably or unfavorably." Noting that slightly higher grade point averages (GPA) may be associated with athletic participation, Otto suggested that the higher grades may be a pre-existing difference, that athletes may take easier courses, and that eligibility requirements preclude those with- low marks from participating. Andre and Holland (1987) also noted that correlations between athletic participation and GFA were generally reduced substantially when background characteristics were controlled. Two studies (Hanks \& Eckland, 197'; Hauser \& Lueptow, 1978) that appear to more methodologically adequate than most are considered in greater detail.

Based on school records from five high schools, Hauser and Lueptow (1978) obtained information on 10 and sports participation and on GPA in sophomore, junior and senior years. Although data were collected at only one time, this is in effect a longitudinal design. Athletes had higher GPAs in all three years, but did not differ from nonparticipants in their senior year after controlling for their initially higher GPAs. Thus, changes in GPAs over the three years were unrelated to participation. Controlling just IG, however, did not completely eliminate the positive relation between participation and GPA. The authors interpreted their results to indicate that correlations between participation and GPA were due to pre-existing differences.

Hanks and Eckland (1976) considered a national sample of students initially tested in 1955 when they were high school sophomores and followed up 15 years later. The study has the important limitation that senior year variables -- including extracurricular activities -- were retrospective reports 12 years after high school graduation. For both boys and girls, sporting involvement was very weakly correlated to sophomore and senior GPAs but was not significantly related to senior GPA after controlling for sophomore variables. A general category of other extrecurricular activities, however, was significantly related to both sophomore and senior GPAs. In their path analysis, participation was still significantly related to senior GPA even after controlling for SES, academic track, sOphomore GPA, sophomore standardized achievement scores, and other sophomore variables. These results provide what appear to be the most convincing evidence that extra-curricular activities other than sports are positively related to changes in high school GPA. The interpretations must be tempered, however, by the fact that both senior ǴPA and extracurricular activities were retrospective reports. Educational and Qccugational Aspirations and Attainments.

Educational aspirations. Otto (1982) concluded that there was convincing evidence that participation in extracurricular activities is positively associated with educational aspirations even after controlling for variables such as academic performance and SES. Positive relations were shown for both sports participation and other extracurricular activities and apparently generalize across sex and ethnicity. Studies reviewed by Holland and Andre (1988) were generally consistent with Otto's conclusions. Holland and Andre also noted some studies in which the benefits of participation were larger for students from lower-SES backgrounds.

Despite the generally consistent pattern of relations found between participation in extracurricular activities and educational aspirations, an
important caution must be noted. Studies of this relation are typically not. longitudinal in that educational aspirations and extracurricular participation were both measured in the senior year of high school. This leaves ambiguous the ordering of these variables so that it is possible that initially higher educational aspirations lead to greater participation. Hanks and Eckland (1976), for example, found that sophomere educational aspirations were significantly correlated with subsequent participation in extracurricular activities éven after controlling SES, standardized test scores, sophomore grades, and academic track. More convincing evidence would be that changes in educational aspirations during high school are positively correlated with extracurricular participation. This sort of evidence requires longitudinal studies that assess educational aspirations at the beginning and end of high scinool.

Educational and occupational attainment. Otto (1982) concluded that studies of the effects of extracurricular activities on latter life achievements were limited and provided equivocal results. At least for educational attainment, however; these conclusions appear to be overly. pessimistic. Holland and Andre (1987), for example, concluded that "some research, using causal modeling techniques, has indicated that, in males, participation does have relationships with the outccme variable of educational attainment that are independent of obvious moderator variables" (p. 447). Four apparently methodologically sound studies (Hanks \& Ecki end, 1976; Howell, Miracle and Rees, 1984; Otto \& Alwin, 1977; Spady, 1970) will be considered in greater detail.

Both Hanks and Eckland (1976 -- see earlier description) and Otto (1975; 1976; Otto * Alwin, 1977; also see Otto, 1982) used similar designs in that educational attainment was measured in e long-term followup of subjects who had previously been surveyed while in high school. In the Otto study, the iriitial survey was conducted during the senior year of migh school. In summarizing his own research, Otto (1982) noted that extracurricular activity had à positive effect on education, occupation and inome 15 years after high school even after controlling SES, measured intelligence, academic performance, educational and occupational aspirations, and personal adjustment measured in the senior year of high school. Hank's and Eckland found that participation in extracurricular activities other than sport was positively related to educational attainment after controllirig SES, standardized test scores, school grades and edisatiorial aspirations. Using similar controls, sport participation was not significantly related to
educational attainment.
The Howell et al. (1984) research is potentially the strongest study considered he: ?. Data came from the Youth in Transition study that had five waves of data from a national sample of boys starting when they were sophomores in high school and ending five years after high school graduation. Howell et al. found that sport participation was significantly related to educational attainment after controlling race, SES, IQ, and GFA. Further analyses indicated that this effect was largely mediated by educational and occupational aspirations. Unfortunately, however, Howell et al. did not control earlier educational aspirations even though this variable was available. Thus, it is possible that educational aspirations at the start of high school affected both sport participation and educational aspirations in the senior year. Of surprize was the finding that the positive effects of sporting participation were not associated with football, basketball or baseball, but were due to participation in "other" sports.

The Spady (1970, 1971) studies are perhaps the most controversial of the studies considered here. Spady asked boys from two high schools to provide data during their senior year in high school and again four years later. In the 1970 study participation in sports and other activities were related to educational aspirations and attainment. Students who participated in both spórts and other activities had higher educational aspirations and subsequent attainments, thus supporting the positive benefits of extracurricular activities. The controversial finding was that students who participated in athletics only and had high educational aspirations were less likely to satisfy their goals, particularly if their self-perceived status was higher than their actual status as judged by their peers. Because of the theoretical orientation of his research, Spady's critical variable was the difference between educational aspirations and actual attainment. Spady did not conclude that participation in sports had a negative effect on educational attainment and his published results suggest the opposite conclusion. Instead, his major conclusion was that participation in sport created high educational aspirations that might not be fulfilled if a student was initially disadvantaged and did not participate in other activities.

In his 1971 study, Spady expanded the categories of extracurricular activities to include leadership, sports, social, performing arts, and none. His major dependent variables were educational aspirations, attending more than one year of college, and the difference between aspirations and attainment. Although results differed somewhat depending on the particular
outcome, all extracurricular activities were associated with more positive outcomes than no activities and leadership activities were associated with with more positive benefits than the other activities.

Personal-Social Characteristics

Personal-social characteristics is a catch-all category of outcomes considered by Holland and Andre (1987) as is the corresponding "other outcomes" category in Otto's 1982 review. Summarizing some of his own research, Otto (1982) suggested that participation in extracurricular activities is related to improved personal adjustment, socializing patterns, and social integration, and to less self-estrangement and powerlessness.

Holland and Andre (1987) noted a number of studies in whicin participation in extracurricular activity was associated with higher selfconcept, though the nature of the relation varied depending on sex and the type of activity. The problem with interpretations of these findings is that there was typically no basis for determining whether participatio affects these personal-social characteristics or is merely correlated with them. Holland and Andre, for example, reported that Schendel (1965) found that athletes were more dominant then nonathletes at both 9 th and 12 th grades, but that nonathletes actually showed more growth in dominance over this period. Whereas most research considering self-concept has considered only general self-concept, there is a growing recognition of the importance of considering a multifaceted self-concept. Marsh and Shavelson (1985), for example, concluded that self-concept cannot be adequately understood if this multidimensionality is ignored. They report that specifically relevant dimensions of self-concept are typically more highly correlated with criterion variables than are general measures of self. In relation to participation in extracurricular activities, particularly relevant dimensions are academic self-concept and social self-concept (which is similar to the self-perceived social status or popularity emphasized in other research).

Some studies also suggest that participation in sport.s is associated with lower levels of delinquency after controlling for variables such as SES and academic performance (e.g., Schafer, 1969; Landers and Landers, 1978). The Landers and Landers study in particular, however, has been severely critiqued (e.g., Peek, Ficou, Alton, \& Curry, 1979). Ot (o (1982, p. 224) concludes that "the notion that participation in athletics acts as a deterrent to delinquency is suspect."

A frequent implicit or explicit assumption is that distal benefits of extrezurricular activities are mediated by personal-secial variables. Spady
(1970), for example, posited that participation in sport increased perceived social status and that this leads to higher educatic .al aspirations. Spady (1971; p. 396) goes on to suggest that extracurricular activities "not only provide participants with varying degrees of status and prestige, they also facilitate the development of skills and attitudes that serve as resources in students' quests for future success." Spreitzer and Pugh (1973) take a similar view. Otto and Alwin (1977) also suggest that the benefits of participation in extracurricular activities may be mediated by the influence of significant others. In each of these examples a personalsocial characteristic was posited to play a dual role. First, it was an outcome that was affected by participation in extracurricular activities. Second, it meditiated the effect of extracurricular activities on subsequent, more distal outcomes.

Methods

An Qvervigw of The Fresent Investigation

The present investigation is based on responses by the sophomore cohort of the High School and Beyond (HSB) study conducted by the Nation:? Center for Educational Statistics (NCES, 1986). The data file includes an extensive set of variables collected from a very large, nationally representative sample of students in 1980 when respondents were sophomores, in 1982 when respondents were seniors, and in 1984 two years after the normal time of high school graduation. Variables selected for the present investigation are categorized as background/demographic variables (e.g., SES, race, gender, school year size, prior educational experiences), outcome variables collected in the sophomore and again in the senior years of high school lo.g., standardized achievement tests, GPA, coursework selection, self-concept, lecus of control, absenteeism, getting into trouble, educational and occupational aspirations), post-secondary outcomes (educational itainment, educational and occupational aspirations), and 16 categories of extracurricular activity. The background and outcome variables are described in greater detail in Appendix 1 and the entracurricular activities are summarized in Table 1.

Insert Table 1 About Here

In preliminary analyses, factor analysis is used to explore relations among the different types of extracurricular activity, the antecedents of extracurricular participation are examined, and participation is related to dropping out of high school out between the sophomore and senior years. The major analyses, however, are the examination of the possible effects of
extriacurricular participation on a wide variety of senior year and postsecondary outcome variables. In these analyses, multiple regression is used to relate extracurricular participation to senior and post-secondary outcomes after controlling all background variubles and sophomore outcomes. In the first set of analyses, total particiyation across the 16 categories is.considered. In these analyses the differential effects of participation in sophomore and senior years are considered as well as the type of participat. on (participant or leader). Linear and nonlinear effects of total participation are also considered as are the mediating influences of different oimensions of self-concept. In the second set of analyses, the differential effects of participation in the 16 activity categories are considered. Finally, the generality of the effects are examined across levels of sex, rase, SES, school year size, college expectations and academic ability. Samele

Data for the present investigation are based on the sommercially available data file for the second follow-up of the srرphomore cohort of the HSB study. A detailed description of this di a base is available in the user's manual produced by the National Center for Educational Statistics (NCES, 1986). The data file includes variables collected in 1980 when respondent's were sophomores, in 1982 when respondents were seniors, and in 1984 two years after the normal t ie of high school graduation. The sophomore cohort initially involved a two-st je prubability sample of 1,015 high schools and approximately 36 sophomores within each of these schools. The second follow-up consisted of a random probability sample of 14,825 of the original sample. Because the focus of the present investigation is on changes that occur during the last two years of high school, only students who attended the same high school in their sophomore and senior years are considered in the major analyses (students who had the same school identification number in 1980 and 1982, had not dropped out, had not transferred to another school and had not already graduated), thereby reducing the sample size to a total of 10,613 students. Preliminary analyses on the entire sample were conducted, however, to determine if participation in extracurricular activities was related to dropping uut, transferring to another school, or graduating early.

Fesponses in the present analysis were weighted so as to take into account the disproportionate sampling rf specified subgroups in the HSB des.gn (NCES, 198í, Table 3.5-1) and still maintain the total sample size at 10,6:3. Because of the cluster sampling in the HSB study, standard errors
based on the assumption of simple random sampling substantially underestimate the sampling variability in summary statistics and distort tests of statistical significance. In order to compensate for this bias, the weight for each respondent was divided by the estimated design effect of 2.40 (NCES, 1986, Table 3.6-5), reducing the nominal sample size from 10,613 to 10,613/2.4=4422 for purposes of testing statistical significance. (This reduction in nominal sample size has no effect at all on cell means and parameter estimates; it only affects the df used in tests of statistical significance.) A correlation matrix was then constructed for all the variables using pairwise deletion for missing values. The weighted number of cases for each variable varied from 3441 to the maximum possible of 4422 . For purposes of statistical testing, a sample size of 4000 was assumed. Design and Analysis

The HSE study was designed to assess the impact of a wide variety of independent variables on student growth and changes during the last two years of high school. The major independent variables in the present investigation were derived from the extracurricular activity variables presented in Table 1. The remaining 49 variables (see Appendix 1) were classified as 与aĩkground variables, and as sophomore, senior and post-secondary outcomes. For specific sinalyses, additional variables (e.g., interaction terms and nonlinear components) were formed from these variables. Consistent with the logic of the H5E design (e.g., Jencks, 1985; Hoffer, Greeley and Coleman, 1985; Marsh, in press), relations between extracurricular participation and outcome variables are not interpreted as participation effects. Even after controlling for background variables (e.g., sex, SES, race) there is insufficient basis for interpretting such relations as effects of participation in extracurricular activities. The relations of extracurricular participation to senior and pust-secondary outcome variables after controlling for background variables and.sophomore outcomes are, however, interpreted as extracurricular participation effects. In the operationalization of this design, multiple regression was used to predict each of the 22 senior and post-secondary outcomes from the combined set of the 12 background variables, the 15 sophomore outcomes, and the extracurricular participation variables. TJ the extent that the beta weights relating the participation variables to the senior and post-secondary outcome variables are statistically significant, participation is interpreted to affect the outcome :ariable. Freliminary Analyses

Extracurricular particigation variables. An important, unresolved
problem in this area of research is the definition of extracurricular variables to be considered. Inspection of the 11 sophomore and 17 senior items from the HSB study (Table 1) reveal many strengths but also some limitations of the available data. The strengths are the rich diversity of activities, the fact that most activities were measured in both sophomore and senior years, and the separation of participation and leadership role in the senior year. A potential limitation is that the senior and sophomore responses are not stricily parallel, though it may be argued that some activities (e.g., honor societies) are not relevant to sophomores and that sophomores will rarely have leadership roles in extracurricular activities. Also; whereas the variety of extracurricular activities is extensive, combining a few seemingly distinct activities (e.g., debate and drama) into a single item may be dubious.

The original 11 sophomore items were dichotomously scored (1=nonparticipant, 2=participant) whereas the 17 senior items were trichotomously scored il=nonparticipant, 2=participant, 3=leader/officer). For present purposes responses to the 17 senior items were used to define two sets of 17 dichotomous variables representing participation (1=nonparticipant, 2=participant, 2=1eader/officer) and leadership (1=nonparticipant, $1=$ participant, $2=1$ eader/officer) respectively. A set of 5 total scores were derived from responses to these 45 (11 sophomore and two sets of 17 senior) dichotomous variables.

1) Total $=$ mean of nonmissing values for all 45 variables.
2) Ti Total $=$ mean of nonmissing values for the 11 sophomore items.
3) T2 Total $=$ mean of nonmissing values for the 34 senior items.
4) T2 Farticipation Total $=$ mean of nonmissing values for the 17 senior items (scored $0=n o m p a r t i c i p a n t, 1=p a r t i c i p a n t, ~ i=o f f i c e r / l e a d e r) . ~$
5) T2 Leadership Total = mean of nonmissing values for the 17 senior items (scored $0=n o n p a r t i c i p a n t, ~ 0=p a r t i c i p a n t, 1=0 f f i c e r / l e a d e r)$. [Note: $T 2=T P 2+T L 2]$
In addition, a set of 16 activity scores were defined as the mean of nonmissing responses to the ite.ns in each of the 16 extracurricular activities shown in Table 1. Because there are more senior items than sophomore items, and because senior leadership is scered separately from participation, senior participation is given more importance in scores based on both sophomore and senior responses. The validity of this a priori definition of total participation is empirically tested as part of the study. Results and Discussion

Eactor analyses of activity responses. In preliminary analyses, a variety of factor analyses were performed on the activity scores. In the first set of analyses, responses to the original 28 activity items were factor analyzed. Because the items are all either dichotomous or trichotomous and typically very skewed, the factor analysis results must be interpreted cautiously. Also, because the items represent two testing occasions and 16 activity areas, empirically derived factors may represent a mixture of the influences of time and content. Application of the "eigenvalue greater than 1" rule suggested that 11 factors were needed whereas maximum likelihood tests (SPSS, 1986) indicated that 15 factors were statistically significant. Examination of oblique solutions in which the number of factors varied from 5 to 16 suggested that the 11 factor solution shown in Table 2 was most interpretable. Given the potential problems in this application of factor analysis, the solution is surprisingly clean.

Insert Table 2 About Here
Ten of the 11 factors are defined primarily by matching items from the sopnomore and senior years. The one additional factor is defined primarily by apparently high-status activities that were only surveyed in the senior year (e.g., honor societies, student government; school publications). Seniors were asked to distinguish between varsity athletics and other athletics whereas sophomures were only asked about general sporting participation, but all three items load substantially on the same factor (many varsity athletes al so participate in other sports). One item unique to the senior survey -fraternities and sororities -- did not load on any of the factors due in part to the low participation rate (less than 3%). Another item unique to the senior survey -- community service clubs and activities -- loaded modestly on the community youth organizations factor. The only exception to the general pattern of results was the pair of responses to participation in school subject-matter clubs; the sophomore variable tended to load on the hobby club factor whereas the senior variable tended to load on the first factor along with participation in honor societies.

In a second set of factor analyses, total scores representing the 16 activity areas were factor analyzed. A wide variety of different analyses, failed to provide an adequate solution. In all the solutions, many of the activity scores had small factor loadings and at least 3 or 4 scores did not load substantially on any factors. Furthermore, the composition of the factors varied substantially. Cheerleading, for example, was coupled with dance or
with vocational education (but never both) in different solutions. School publication participation was sometimes coupled with student government and honor societies and sometimes with drama/debate. Sport sometimes appeared on its own as a separate factor and was sometimes coupled with student government. When sport and student government formed a separate factor, honor societies and school subject clubs defined a separate factor. In other soluticns, however, student government, yearbook/newspaper; and honors societies formed one factor whereas school subject clubs combined with hobby clubs.

In summary, factor analyṣes of responses to the individual items provided a clean solution whereas factor analyses of the 16 activity scores did not. Inspection of the correlation matrices used in these two analyses provides some clues. Correlations among the 16 activity scores, ranging from -. 02 to
.32 (median $=.12$), were very low. In contrast, correlations between: responses to matching items on the sophomore and senior surveys varied from .22 to .65 (median $=.39$). These results suggest that participation in the same activity is reasonably stable over time, but that each of the different activities are reasonably independen': Whereas it may be justfiable to collapse responses to different activities to form a total participation index, it is likely that potentially important effects of specific activities will be masked by doing so. For this reason, separate analyses are conducted for total scores based on all activities and for the set of 16 total activity scores.

Students who dropegd outs transferreds or graduated early. As noted earlier, the major analyses are based on students who attended the same school in 1980 and 1982. This is necessary because the focus of the study is on changes that occur between the sophomore and senior years of high school. An important issue, however, is the effect of participation in extracurricular activities on students dropping out of school between their sophomore and senior years of high school. For purposes of just the analyses described in this section; all students in the original HSE sample were considered. In addition to the background variables and sophomore outcomes, thiee dichotomous variables were defined to indicate whether or not students dropped out of school, transferred to a new school, or graduated early. After controlling background variables and sophomore outcomes, total participation in extracurricular activities during the sophomore year was not significantly related to any of these variables. Results predicting students who drop out are summarized in Table 3. Dropping out of school is most strongly related to absenteeism, school grades, and getting into trouble, but is not significantly related to participation in extracurricular activities.

Antecedents of Total Extracurricular Participation

The question to be asked in this section is what is the relationship of the total activity scores to the background variables and saphomore outcomes? For the total activity score collapsed across sophomore and senior responses, the 12 background variables and the 15 sophomore outcomes explain 17.0% of the variance; 4.0% is uniquely due to the background variables, 6.9% is uniquely due to the sophomore outcomes, and the remainder can be explained by either background variables or sophomore outcomes (see Tables 3 and 4). Because the background variables are assumed to precede the sophomore outcomes, the joint effects are interpreted to be the indirect effects of the background variables that are mediated through the sophomore outcomes. Results for the other total scores (Table 4) show a similar pattern though the amount of variance explained is smaller. In one additional analysis the total senior activity score, was predicted by the sophomore activity score in addition to the background variables and sophomore outcomes. The correlation between the sophomore and senior activity scores is .32 though about hainf of this can be explained in terms of background veriables and sophomore outcomes.

Because there are substantial correlations among the backgrounc variables and particularly among the sophomore outcomes, it is difficult to determine the effects of each variable separately. The relation between each background variable and total activity is represented by three coefficients (Table 3): the simple correlation (r), the relation after controlling the other background variables (b1), and the relation after controlling the other background variables and the sophomore outcomes (b2). Inspection of r and b1 suggest that total participation is positively associated with college expectations, attending a smaller high school, attending a rural high school, being black, being female, and coming from a family with a higher SES. Even after controlling for background variables, sophomore outcomes are all positively associated with total participation (b1 in Table 3). Because the sophomore outcomes are substantially correlated, however, the unique contribution of each sophomore outcome (b2 in Table 3) tends to be smaller. The largest positive associations are for social self-concept, GPA, and educational aspirations. Whereas results for analyses based on the other total scores are not presented, the general pattern of results are similar though the sizes of the coefficients tend to be smaller.

Because of the nature of the background variables it may be legitimate to interpret them as affecting extracurricular participation. The interpretation

Extracurricular Activities 15

of the sophomore outcomes is not so clear-cut. A similar pattern of relations was observed, howèver, between sophomore outcomes and senior activity variables. Furthermore, sophomore outcomes continued to explain much of the variance in senior activities even after controlling for sophomore activities and background variables. That is, changes in levels of participation in extracurricular activities were associated with sophomore outcomes. Because many competing explanations can be ruled out, it may also be reasonable to infer that sophomore outcomes affect subsequent extracurricular activity.

This suggestion that sophomore outcomes may affect pariticipation is particularly important for studies that attempt to infer the effects of participation on the basis of a single wave of data. As noted previously (Holland \& Andre, 1987; Otto, 1982) it is not be possible to establish whether a correlation between participation and outcomes represents a cause or an effect if the relation is not examined with longitudinal data. Congeguences of Iotal Extracurricular Participation.

Consistent with the design of the HSB study, total activity scores are interpreted to affect senior and post-secondary outcomes if the total activity scores are significantly related to these outcomes after controlling the effects of background variables and sophomore outcomes. As is typical in HSB studies, the influence of any independent variable on senior and postsecondary outcomes .tends to be small after controlling the influence of earlier variables. The effects of total extracurricular participation is, however, statistically significant for 13 of 22 outcomes (Table 5) and all of these effects are positive (see Table 6). Extracurricular participation favorably affected (in order of size of the effect) social self-concept, academic self-concept, taking advanced courses, time spent on homework, postsecondary educational aspirations, GPA, parental involvement, absenteeism, senior year educational aspirations, being in the academic track, college attendance, parental aspirations and senior occupational aspirations. Whereas the sizes of these statistically significant and positive effects are small, the effects are in addition to the already substantial effects of background variables and sophomore outcomes.

Insert Tables 5 and 6 About Here

Iests of the operationalization of total activity scores. The total activity score as operationalized in this study represents a combination of consistency of participation over the sophomore to senior years and -- in the senior year -- the type of participation (i.e., participant or leader). In order to test this operationalization and also because of the potential
importance of these disferent components of participation, it is important to examine the effects of each component separately.'Using similar analyses as used for the total activity score, the effects of more specific total activity scores and combinations of these total scores were examined.

In contrast to total activity scores, total sophomore participation scores had almost no effect on senior and post-secondary outcomes. There were significant effects for only 2 or 22 outcomes. The two significant effects on academic and social self-concept were both positive, but much smaller than the effects of the total participation scores. Total senior activity scores, on the other hand, had almost the same effects as the total activity scores across sophomore and senior years. These results suggest that extracuŕricular participation at the end of high school is much more important than at the beginning of high school.

In the operationalization of total senior activity scores, participation earned one point and participation in a leadership role earned an additional point. In order to further examine this distinction, separate analyses were done on participation (i.e., leadership and participation were not differentiated) and on leadership (i.e., only leadership was counted). Farticipation has more significant and larger effects than does leadership. Whereas there are significant effects associated with leadership, these are generally not in addition to the effects of participation. When multiple regression was used to optimally weight the senior participation and leadership scores, the variance explained was nearly the same as the simple unweighted average of the two (i.e., the total senior activity score). It should be noted that because the variance in the participation scores was much greater than in the leadership scores, the a priori operationalization weighted the participation scores more highly than the leadership scores . I this was shown to be appropriate. These findings may initially appear to be paradoxical, but the apparent explanation $i s$ that the overall benefits attributable to participation is greater because so many more students are able to participate than are able to hold leadership roles in the extracurricular activities.

In a final analysis, multiple regression was used to weight the total sophomore activity score, the senior leadership score and the senior participation score in the prediction of each senior and post-secondary outcome. This optimally weighted combination, however, has nearly the same relation to each of the senior and post-secondary outcomes as does the a priori total score. These empirical analyses provide strong support for the a priori definition of the total activity scores.

Nonlinear relations between total garticipation and gutcomes. Implicit in the application of multiple regression is the assumption that total activity scores are linearly related to the senior and post-secondary outcomes. Though this assumption has not been previously tested to my knowledge, it may be that participation in too many activities has diminishing returns. In order to test this possibility, a quadratic term was computed by including the squared total activity score (after standardizing to $\mathrm{Mn}=0, \mathrm{SD}=1$) to the regression equation. The addition of the nonlinear term contributes significantly to the prediction of the senior and sophomore outcomes. When both linear and nonlinear terms are included, the linear term is statistically significant for 17 of the 22 outcomes whereas the nonlinear term is significant for 15 of the outcomes. In every case, the linear component is more positively related to the outcomes when the quadratic term is included, suggesting that the nonlinear component suppressed the linear relationship between participation and subsequent outcomes.

For all relations with a significant nonlinear component, the form of the relationship is very consistent. All 15 relations represent an inverted U shaped function in which the maximum outcome (see Table 6) is realized somewhere between . 2 and 1.6 standard deviations above the mean of the total activity scores. This indicates that for much of the range of total activity scores greater participation leads to greater benefits. For nearly all the outcomes affected by participation in extracurricular activities, however, there is a point beyond which adritional activities apparently leads to diminishing benefits. It is interesting to note that this nonlinearity is evident in the social self-concept and academic self-concept variables as well as in outcomes representing more traditional academic outcomes.

Mediating variables. Previous research has suggested that participatior: in e:tracurricula: activities may enhance different components of selfconcept and this may lead to changes in other outcomes. Self-concept is posited to serve a dual role as a proximal outcome that is affected by participarion in extracurricular activies and as a mediating variable that mediates the effects of participation on more distal outcomes. There are three different components of self-concept in the senior outcome variables -- general self-concept, academic self-concept, and social self-concept. If the effects of participation on other outcomes are mediated by these variables, then the inclusion of the self-concept variables in the regression equations as predictor variables instead of outcome (predicted) variables should substantially reduce the influence of the total activity scores.

As posited, the inclusion of the self-concept variables substantially reduced the variance attributed to the total activity scores (see Table 6). For the remaining outcome variables that were significantly affected by total participation, the variance accounted for by total activities was reduced about 40% when the self-concept variables were controlled. The effects of total participation, however, remained statistically for most of these outcome variables. Supplemental analyses were conducted to determine how much of this reduction was attributable to each of the different self-concept variables. Controlling general self-concept had almost no effect on activityoutcome relations due to the fact that general self-concept was apparently unaffected by participation (Table 6). Whereas the effect of participation was substantially larger for social self-concept than for academic self-concept, controlling academic self-concept reduced the sizes of participation-cutcome relations more than did controlling social self-concept.

In additional, unreported analyses, the participation-outcome variables were controlled for parental involvement and parental aspirations. Controlling for these influences of a significant other, however, did not reduce the size of the participation-outcome relations as much as did controlling the self-concept variables. Furthermore, when both the parental variables and the self-concept variables were controlled, the reduction in the sizes of the participation-outcome relations differed little from that due to controlling just the self-concept variables.

The observation that general self-concept is much less important than specific dimensions of self-concept is consistent with recent research emphasizing the multidimensionality of self-concept. The fact that controlling academic self-concept reduced participation-outcome relations more than did controlling social self-concept apparently is due to the academic orientation of many of the other outcomes.
Conseguences of Particigation in Specific Extracurricular Activities.
Total participation across 16 different activity areas was shown to have small but significantly positive effects on a wide variety of senior and post-secondary outcomes. The question to be addressed here is whether there are some activities that have more positive effects and others that have littie effect or even negative effects?

In a preliminary analysis, the effects of the entire set of 16 activity scores were assessed instead of the effects of just the single total activity score. The set of 16 specific activity scores explained significantly more variance than the total activity score, thus providing further justification
for the examination of separate activities. In subsequent analyses, a backwarde elimination process was used to elimirrate activity scores that did not centribute significantly ($p<.05$) to the predirtion of each of the 22 senior anó post-secondary outcomes. Separate analyses were conducted for each outcome. In summarizing these results (Table 7), the dashes indicate that an activity score was eliminated by the backwards elimination procedure because it did not contribute uniquely to the prediction of the corresponding outcome. Other entries are the stildardized regression weights, all of which are statistically significant, in the final set of regression equations. Insert iable 7 About Here
Across the 16 ectivities and 22 outcomes, there were a total 76 statistically significant effects; 58 were positive and 18 were negative. One activity (community youth groups) had no significant effects. Three activities had only significantly negative effects (dance; hobby clubs; find fraternities and sororities) and vocational education clubs had predominantly negative effects. Three activities (junior achievement; drama; and music) had mixed positive and negative effects. Eight activities had only positive effects -.- the numbers in parentheses being the number of positive effects -- sport (13), honor societies (7), student government (7), community" service organizations (6), school publications (5), church organizations (5), school subject matter activities (4), and cheerleading (1).

Implicit in the interpretations of these relations is the assumption that participation in extracurricular activities affects senior and postsecondary outcomes. The characteristics of the study make this interpretation plausible, but it is always dubious to infer causation on the basis of correlation. I am particularly cautious about the interpretation of the participation in honor societies. Whereas it is reasonable to assume that being selected for such a group has positive benefits, the basis of selection overlaps substantially with the outcomes considered here. Because this selection is likely to take place at least a year after collection of sophomore outcomes, controlling for sophomore outcomes may not fully control the criteria used in the selection process. On the other hand, the background and sophomore outcomes do provide important controls. For example, the participation in honor societies correlates with senior grades . 44 with no controls, . 33 controlling just background variables, and only .032 controlling background and sophomore outcomes (including sophomore grades which correlated . 43 with participation). The relevant question is whether this small residual growth in school grades was parl of the selection process
or occurred subsequent to the selection process, but this question cannot be addressed with the HSB data. Whereas such an alternative explanation could apply to participation in other activities, the possibility appears remote.

Based on these analyses, sport is the most beneficial extracurricular activity. Its largest effect is on social self-concept but it also favorably afferts academic self-concept, course selection, homework, absenteeism, educational aspirations and attainment, parental aspirations and parental involvement. Its affect on social self-concept is much greater than any of the other activities, but so is its affect on academic self-concept, senior and post--secondary educational aspirations, and college attendance.

Participation in student government and in school publications also have substantial benefits. Like sport, the largest effects are on social self-concept but generalize to other outcomes as well. The conservative nature of the analyses used here may also under represent the benefits associated with these activities. "All activities were entered simultaneously, and so the effects in Table 7 are the effects associated with a particular activity after controlling for participation in all other activities. Because participation levels in the different activities are not highly correlated (median $r=.12$) this is not an important problem. Participation in honors societies; student government and school publications are, however, moderately correlated (rs between . 23 and .29) and each of these activities has positive effects on other outcomes.

Eeing involved in church-related activities improves time spent on homework, a lack of absenteeism, staying out of trouble, parent involvement, and also academic self-concept. Whereas these effects may be predictable -except perhaps the academic self-concept effect -- they are nevertheless worthwhile benefits. The positive effects of participation in community service organizations -- particularly given the lack of effects of community youth organizations -- is curious. The positive effects, it should be noted, occur for only educational and occupational aspirations and for college attendance. Perhaps participation in these organization provides important contacts, reinforcement, or even monetary incentives in the way of scholarships that affect these senior and post-secondary outcomes.

Several of the activities have exclusively or primarily negative effects. Being in a fraternity or sorority increases the likelihood of getting into trouble but has no other effects. Being involved in dance results in taking fewer math and science and other "academic" courses, but has no other negative effects. Being involved in music also results in
taking fewer academic courses but increases educational aspirations and college attendance. Participation in hobby clubs reduces perceived parental aspirations (but not the student's own educational aspirations), occupational aspirations, and college attendance.

Participation in vocational educational activities has a particularly interesting set of effects. Except for sport, it has the largest number of significant effects but most are negative: poorer standardized test scores, less honors courses, less likely to be in the academic track, less math and science and other academic courses. Participation does, however, have slight positive effects on school grades (perhaps reflecting coursework selection) and general self-concept. In fact, participation in this activity is the only one to have any effect -- positive or negative -- on general self-concept. Whether these predominantly negative effects are necessarily bad involves a value judgment that may go beyond the scope of this study. The Consistency of Effectis Across Different Subgrougs.

The analyses considered thus far examined the effects of extracurricular participation across all students. The results suggest that there are generally positive effects associated with participation. The question to be addressed here is whether these benefits differ for particular subgroups within the total sample. For purposes of answering this question, seven Variables were conṣidered: Black, Hispanic, SES, sex, school year size, college expectations and sophomore academic ability scores. Scores for each of these seven variables were multiplied by the total participation ecore (after standardizing both scores to $M_{n}=0, S D=1$), and these seven cross-product. scores were entered into the multiple regression equations to predict the 22 senior and post-secondary outcomes. The additional variance explained by the set of seven crossproducts (i.e., interaction terms) were tested for statistical significance ($p<.05$). If this overall test was significant, then the statistical significance of each of the individual interaction terms was examined. The additional variance attributable to the set of seven crossproducts never exceeded 0.4% of the variance but was statistically significant for 8 of the 22 outcomes (see Table 8). In these 8 regression equations, a total of 11 individual interaction terms weŕe statistically significant. Over half (7 of 11) involved ses. Inspection of these interactions indicates that students from lower-SES families benefit more than students from higher-SES families for all 7 interactions. Three of the 11 interactions involve ability. For these interactions, however, the benefits of participation are greater for initially more able students. Whereas the
effects of participation in extracurricular activities interact with some of the background variables to a small extent for a few of the outcomes, the effects are generally consistent across levels of these variables. In summary the effects of participation in extracurricular activities are reasonably consistent across sex, ethnicity, ability levels, school year size and levels of college participation, though, perhaps not for levels of SES.

Insert Table 8 About Here
Analyses described above ask whether the effects of total participation iriteract with selected background variables, and the answer -- at least to a first order approxination -- was that they did not. The next question to be addressed is whether the effects of participation in particular activities interacted with background variables. If the approach considered thus far was applied, interaction terms between each of the 16 activities and the 7 background variables ($16 \times 7=112$ interaction terms) would be entered into the regression equations along with the 11 background variables, 15 sophomore outcomes and 16 activity scores for each of the 22 outcomes. Besides outstripping the capacity of most computers, trying to interpret the 2464 interaction effects resulting from such an analysis would be daunting. To reduce the scope of the analysis, I selected eight activities shown to have the most ëffect in earlier ànalyses (sport, subject-matter, vocational education, church r.elated, honor societies, school publications, studen. government, and community service; see Table 7) and five background variables that included all of those that interacted with total participation in earlier analyses (Black, Hispanic, SES, 5E\%, sophomore ability; see Table 8). This reduced the number of interaction terms to be considered in eain equation to 40 . The set of 40 interaction terms did not contribute significantly to the prediction of any of the 22 outcomes (all p >.25). In an alternative approach, I used a backward elimination procedure to eliminate all interactions that were not statistically significant at p < .01 and at $p<.05$. Of the total of 880 interactions, only $7(0.8 \%)$ were significant at $p<.01$ whereas only $27(3.1 \%)$ were significant at $p<.05$. Because the number of statistically significant interactions did not even reach the number that might be expected on the basis of chance alone, the interpretation of these effects was not pursued. These results suggest that the effects of participation in these particular extracurricular activities are reasonably consistent across sex, ethnicity, SES and ability levels. Summary and Implications
The overall purpose of the present investigation was to determine the
effect of participation 7 extracurricular activities on senior and postsecondary cutcomes. The results provided clear support for the benefits of participations but with a few qua. fications. First, there was a nonlinear effect in many of the relations indicating that participation in activities beyond an optimum may have diminishing returns. This optimum was, however, always well above the average participation level and so it is only extreme levels of participation that are worrisome. Second, the benefits associated with different activities varied substantially. A few activities (e.g., sport, honor societies, school publications, student government, service organizations, and church organizations) had only positive effects on a variety of outcomes, but some other activities had either litti: systematic effect or systematically negative effects. Third, for some outcomes s.tudents from lower-SES backgrounds apparently derived more benefits from participation. The first two qualifications -- the nonlinearity and differential effects of specific activities -- eppear to be important new contributions of the present investigation.

The most important methodological issue facing researchers in this field is determiring whether correlations between participation levels and gutcomes reflect the causal influence of participation. Because of the nature of extracurricular activities as a self-selected intervention, there may never be any completely adequate solution to this problem. Studirs based on a single-wave of data apparently are not able to resolve this próblem and should not be given undue attention. Even in multi-wave studies, it is important that posttest outcome measures be controlled for appropriate pretest meesures. The best approach apparently is to correct each posttest outcome for background variables and for a set of pretest outcomes that largely parallel the posttest outcomes. In this respect, it is thanges in the outcomes that are related to participation in extracurricular activities. Even this i:gorous design, however, is not fool-proof. Because participation levels may al.o change over the period between the multiple waves of data collection, there is still the possibility that changes in the outcome variables lead to changes in participation levels. This counter explanation of the results is plausible if the case of some activities like honor societies in which the subsequent. o'dicomes overlap with the selection criteria used to determine membership. For other activities this courter-explanation seems less viable.

There is a tendency in the study of eytracurricular activities to collapse many activities -- except, perhaps, sport -- ınto a single global participation category. The results of the present investigation demonstrate
apparent limitations to this practice. The factor analytic results provided nó empirical support for collapsing different categories, showing instead that the categcries of participation are relatively uncorrelated. Consistent witn these resillts, subsequent analyses showed differential benefits associated with particular extracurricular activities.

Previous research has been largely empirical in nature and theoretical accounts of how participation in extracurricular activities affects social and academic outcomes have not been well articulated. The most influential theoretical approach is the zero-sum type model proposed by Coleman (1961; also see Otto \& Alwin, 1977) in which commitment to academic, social or academic pursuits necessitates a reduction in commitment to the other two. Because extracurricular activities represent the social and athletic domains, participation in them is posited to detract from traditional academic pursuits. Despite the important influence of this iheoretical hypothesis, there seems to be overwhelming evidence against it. As found here, participation in extracurricular activities has typically been found to facilitate academic outcomes rather than to detract from them. Limited support for the negative effects of participation may come from the nonlinear relation between total activity scores and many outcomes in that participation beyond some optimal point has diminishing returns. This only occurs, however, for very high participation levels. An alternative perspective is that participation in extracurricular activitias enhances self-concept and the improved self-concept has positive effects on other outcomes. Support for this position was found here in that controlling general, social and academic self-concept variables reduced the sizes of other participation-outcome relatisns. Interestingly, !!owever, the mediating influence of self-concept was due primarily to academic self-concept, less to social self-concept and not at all to general self-concept. This pattern of results is consistent with a multidimensional perspective on self-concept in which specific facets of self-concept are more strongly related criterion measures than are general measures of self-concept. The observation that academic self-concept mediates more variance than social self-cencept reflects in part the academic orientation of many of the outcomes selected for this study. It also apparently reflecte, however, an increased identification with academic related pursuits produced by participation in extracurricular activities beyond the influence of participation on social status.

Extracurricular Activities 25

REFERENCES

Baird, L.L. (1969). Big school, small school: A critical examination of the

Barker, R. G. \& Gump; P. V. (1964). Big schoole small schogl: High schogl siz르 and student behavior. Stanford, CA: Stanford University Press.
Brown, B. B. (1988). The vital agenda for research on extracurricular influences: A reply to Holland and Andre. Review of Educational Researcha 58. 107-111.

Cohen, J. \& Cohen, P. (1983). Apelied multiple regressionforrelation analysis for the behavioral sciences (2nd ed.). Hillsdale NJ: Erlbaum.
Coleman, J. S. (1959). Academic achievement and the structure of competition. Harvard Educational Reviews 292 330-351.
Coleman, J. 5. (1961). The adolescent society. New York: Free Press of Glencoe.

Cook, T. D., \& Campbell, D'. T. (1979). Quagizi=xperimentation: Design \& analysis issues for field settings. Chicago: fand McNally.
Grabe, M. (1976). Big school, small school: Impact of tho high school environment. Contemegrary Educational Psychologys $\underline{1}_{2}$ 20-25.
Grabe, M. '1981). School size and the importance of school activities. Adol으들n므로 61, 21-31.

Hanks, M. P., \& Eckland, G. K. (1976). Athletics and social participation in the educational attainment process. Sociology of Educationg 49ュ 271-294.
Hauser, W. J., \& Lueptow, L. B. (1978). Participation in athletics and academic achievment: A replication and extension. The Sociological Quarterly y_{2} 192 304-309.
Heyns, B., \& Hilton, T. L. (1982). The cognitive tests for High School and

Hoffer, T., Greeley, A. M., \& Coleman, J. S. (1985). Achievement grawth in public and Catholic schools. Sociolggy of Education, 5g, 74-97.
Holland, A., \& Andre, T. (1988). Beauty is in the eye of the reviewer. Review of Educational Research 5 틀 113-118.
Holland, A., \& Andre, T. (1987). Participation in extracurricular activities in secondary schocl: What is known, what needs to be known? Fieview of Educational Researchs 57ュ 437-466.

Holland, A., \& Andre, T. (1988). Beauty is in the eye of the reviewer. Review

Howell, F. M., Miracle, A. W., \& Rees, C. R. (1984). Do high school athletics pay? : The effects of varsity participation on socioeconomic attainment. Sociology of Sport Journalı 1_{2} 15-25.
jencks, C. (1985). How much do high school students learn. Sociolology of Education, 58, 128-135.
Landers, D. M., \& Landers, D. M. (1978). Socialization via interscholastic athletics: Its effects on delinquency. Solciglogy of Education, 51, 57-65. Lindsay, P. (1984). High school size, participation in activities, and young adult social participation: Some enduring effects of schooling. Educational Evaluation and Policy Analysis. 6 $_{2}$ 73-83.
Marsh, H. W. (in press). The effects of attending single-sex and coeducational high school on achievement, attitudes and behaviors and on se: differences. Journal of Educational Psychologys.
Marsh, H. W., \& Shavelson, R. (1985). Self-concept: Its multifacets, hierarchical structure. Educational Psycholoyistı 20_ 107-123.
National Center for Educational Statistics (1986). High School and Beyond́a 1980: Sophomore cohort second follow-up (1984). Data fille user's manual. Ann Arbor, MI: Inter-university Consortium for Political and Social Research. Utto, L. B. (1975). Extracurricular activities in the educational attainment process. Rural Soligologys 40 $_{2}$ 162-176.
Otto, L. B. (1976). Extracurricular activities and aspirations in the status attainment process. fural Sociglogy, 41, 217-233.
Otto, L. B. (1982). Extracurricular aćtivities. In H. J. Walberg (Ed.)., Improving educational standards and productivity (pp. 217-233). Berkeley, CA: McCuthan.

Otto, L. B., \& Alwin, D.F. (1977). Athletics, aspirations, and attainments. Sociology of Edusationg 42. 102-113.
Pedhazur, E. J. (1982). Multiple regression in behavioral research (2nd ed.). New York: Holt, Rinehart and Winston.
Feek, C. W., Picou, J. S., Alston, J. P. \& Curry, W. W. (1979).
Interscholastic athletics and delinquent behavior: Appraisal or Applause? Sociology of Educations 52_{1} 429-438.
Schafer, W. E. (1969). Farticipation in interscholastic athletics and delinquency: A preliminary study. Social Problems, $1 \underline{I}_{2} 40-47$.
Schendel, J. S. (1965). The psychological characteristics of high school athletes and nonparticipants in athletics at three educational 'evels.

Snyder, E. E. (1969). A longitudinal analysis of the relationship between high school values, social participation, and educational-occupational achievement. Sogiology of Educations 42s 261-270.
Snyder, E. E., *Spreitzer, E. (1977). Participation in sports as related to educational expectations among high school girls. Sociology of Educations

502 47-55.
Spady, E. E. (1970). Lament for the letterman: Effects of peer status and extracurricular activities on goals and achievement. American Journal of Sociology, 75ュ 680-702.

Spady, E. E. (1971). Status, achievement, and motivation in the American high school. School Review Tg $_{2}$ 379-403.

Spreitzer, E., \& Pugh, M. (1973). Interscholastic athletics and educational expectations. Sociology of Education, 46, $_{2}$ 171-182.
Taylor, J. L., \& Chiogioji, E. N. (1988). The Holland and Andre study on extracurricular activities: Imbalanced and incomplete. Keview of Educational Research_ 58, 99-105.

Wicker, A. (1968). Undermaning, performances, and students’ subjective experiences in behavior settings of large and small high schools. Journal of Personality and Social Psychology, 10_{2} 255-261.
Willems, E. (1967). Sense of obligation to high school activities as related to school size and marginality of student. Child Develogmenta $3 \underline{B}_{2}$ 12471260.

Table 1
The Percentage of Students Participating in 16 Categories of Extracurricular
Participation in Iheir Sophowore and Senior Years of High School

Gctivity (Verbatis mording of the itens)	Sophomore Senior		
	Partic	Partic Leader	
Sports			
Athletic teas - in or out of school (sophosore)	57%	--	--
Varsity athletic teans (senior)	--	36%	15\%
Other athletic teass in or out of school (senior)	--	412	102
Cheer leading Cheer leaders, pep club, majorettes	15\%	147	41
Drana/Debate Debating or drama	112	132	32
Music			
Band or Orchestra	17%	15\%	3%
Dance/Chorus Chorus or dance	23\%	19%	4%
Hobby Clubs Hotby clubs such as photography, adel building hot rod, electronics, craft	212	19%	37
School Subject Clubs School subject natter clubs such as science, history, languages, business, art.	277	20%	3\%
Vocational Education Clubs Vocational education clubs such as Future Homenakers, Teachers, Farners of Anerica, DECA, FBLA, or VICA	142	24%	8\%
Coneunity Youth Clubs Youth organizations in the conaunity such as scouts, Y, etc.	20\%	176	67
Church Activities Church activities including youth groups	40%	372	117
Junior Achievement Junior achievement	6%	5\%	12
Publications School newspaper, sagazine, yearbook annual (senior)	--	19%	6%
Student Government Student council, student governaent, political club (senior)	--	172	77
Service Clubs Service clubs or other comunity service activities (senior)	--	16\%	47
Honor Societies Honorary club5, such as Beta club or National Honor 50ciety (senior)	--	162	3\%
Fraternity/Sorority Sororities or fraternities (participation)	--	37	17

Motes. In their sophonore year students were asked "Have you participated ín any of the following types of activities eitier in or out of school?" to which they responded "Have not participated" or "Have participated actively." In their senior year students mere asked "Have you participated in any of the following types of activities either in or out of school this year?" to which they responded "Have not participated," "Have participated actively (but not as a leader or officer)" or "Have participated actively as a leader or officer" Senior participation percentages reported here include those participating as a leader or officer.

Table 2
Factor Analysis of the Responses to the Original 28 Activity Itens

Variable	1	2	3	4	5	6	7	8	9	10	
Sports											
Sophomore	-11	67		00			-02	05			05
Senior (Varsity)	09	76	01	00					-01	-08	-08
Senior (other)	01	60	00			-01			05	07	03
Cheerleading											
Sophomore Senior		-04	01	03	78	-02		-03	02	00	03
Senior	19	02		05	56	-09		-11	12	09	-10
Drama/Debate											
Sophomore		-01	01		-02		01	64	07	05	
Senior	26	-01	07		-09	09	-02	46	20	10	-04
Husit											
Sophomore	-08	00	73 -		05	05	09	05	-06	-06	03
Senior	03	00	94-01	01			-03		03		-03
Dance/Chorus											
Sophoinore	-16	00	01-0		12	15	03	14	50	-07	07
Senior	-04	00	$02-0$	03	04	05	01	04	82	-04	01
Hatby Clubs											
Sophomore	-05	01	$01-0$		01	01	02	01	00	01	50
Senior	13	02	020	03	-08	-09	-02	-09	07	12	41

School Subject Clubs	17	02	00	05	07	10	05	06	-02	-12	25
Sophosare	17	02									
Senior	40	-03	-03	07	-01	-06	03	-02	00	00	16
Vocational		$0 d u c a t i o n ~ c l u b s ~$									
Sophomore	-07	00	-02	50	07	06	03	06	-03	-09	04
Senior	-03	00	01	82	-04	-02	-03	-02	-01	09	-06

Conmunity Youth Clubs

Sophonore	-16	05	04	-05	09	17	09	18	-01	65	07
Senior	-06	05	02	04	02	09	00	06	-07	34	13

Church Activities

Sophonore	05	-01	04	04	-02	66	60	-01	06	00	-02
Senior	15	04	03	05	-07	63	00	-12	12	19	-07

| Junior fechievenent | -09 | 00 | -01 | -03 | 01 | -01 | 76 | 06 | 05 | 09 | 00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sophomore | -11 | 00 | -02 | 06 | -06 | 06 | 40 | -10 | c9 | 11 | -01 |

Publications Senior	38	05	-01	-02	05	00	-01	12	05	02	06

Student Senior	39	14	00	-01	12	01	01	09	02	06	-04

Service Clubs

| Senior | 23 | 01 | -03 | -02 | 04 | 07 | 07 | 03 | 04 | 30 | 00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Honor Societies
 Senior | 48 | 02 | 05 | -04 | 07 | 11 | 02 | 06 | -04 | -02 | 02 |
| Fraternity/Sorority
 Senior | 14 | 01 | 03 | 05 | 02 | -05 | 11 | -07 | 07 | 15 | -02 |

Factor Correlations

[^1]Table 3
Bropping Out of High School, Background Variables, Sophomore Dutcones, and Participation in Extracurricular Activities

	${ }_{6}^{\text {Dropping Out }}$	Total Activities r b1 b2
Activities		
Soph Total	005	

Background Varizoles

Sex	01	074	0748	03
SES	00	1411	1588	0981
Race--Black	-01	0741	1228	0981
Race--Hi spanic	-01	00	0661	0624
Public School	02	-01	0531	05tit
Repeated Grade	${ }^{\text {a }}$	-03	00	01
College Expect	-03	2281	19tt	0711
Kindergarten	-0814	03	00	00
Urban	0688	-02	02	02
Rural	00	1081	11t	1014
Mother Morks	02	01	00	-01
School Year Size	048	-124	-13t	-124

Sophonore Outcones

Acad Ability	-054	094t	03	-09t!
6rades	-114	229	19tt	1091
Acad Track	-00	1388	05tit	01
Honor 5	02	174	124	084
Hosemork	-01	$164 t$	0972	0581
Absenteeis:	-17\%	086	05ti	02
Locus Control	-01	1117	054t	01
Self-Esteen	-02	1114	0798	-01
Parent Inv	-01	.1547	1098	0418
Parent Ed Aspir	-05!	1988	0897	02
Educ Aspir	-02	2331	154	0801
Occup Aspir	00	1342	048	00
Acadenic Self	. 03	2314	1674	048
Irouble	-1114	129	0771	041
Social Self	01	2081	174	174
Mult R Squared	148			170
Unique to Background Variables	014			040
Unique to Suphoeare Outcone Variables	090			069

Note. In the first sultiple regression dropping out was predicted fros the background variables, the sophosore outcones, and participation in extraciurricular activities in the sophonore year. For just this analysis, no cases mere excluded. In the second eultiple regression, the total activities for sophonore and senior year mere related to background variables and sophonore outcones. For this analysis $r=$ siaple correlation, bl = relation after controlling background variables, $b 2=$ relation after controlling for background variables and sophonore outcoses. All coefficients are presented mithout decieal points.
a
This ites case from the senior survey and so was not available for students whe had dropped out.
1p<.05; if p <.01.

Table 4
Antecedents of Extracurricular Participation: Percentage of Variance in
Total Activity Scores Predictable Froe the Set of 11 Background Variables and 15 Sophonore Dutcones (see Appendix 1 for description of variables)

Total Activity Scores (Predicted Scores)

gackground
Variables

Total	10.1%	8.2%	8.2%	8.4%	5.1%	5.0%
Unique	4.0%	3.5%	2.4%	3.4%	2.5%	2.6%
Sophomore						
Rutcomes						

Total	13.0%	11.1%	11.1%	11.4%	6.5%	6.7%
Unique	6.9%	6.4%	4.4%	6.4%	4.0%	4.3%

TI Total
Activity

Total	--	-	10.4%	--	-	--
Unique	--	--	5.2%	--	-	--

Mult R^{2}
$\begin{array}{lllllll}\times 100 \% & 17.0 \% & 14.6 \% & 19.8 \% & 14.8 \% & 9.0 \% & 9.3 \%\end{array}$
Hote, I =50phonore year, $\mathrm{T} 2=$ senior year. Each total activity score mas predicted froe the set of 11 background variables, the set of 15 sopheore outcones, and -- for just one analysis of the T2 total score -- the T1 total activity score. Total variance is the variance predicted by a set of predictor variables without controlling any other variables. Unique variance is the variance predicted by one set of predictor variables that cannot be predicted ay other sets of variables in the sabe analysis.
See Table 4 for the beta weights for this analysis.

Table 5
Consequences of Extracurricular Participation: Percentage of Variance in Each Senior and Post-secondary Outcone that is Predictable Fron Various Total Activity Scores After Controlling For the Set of 11 Background Variables and 15 Sophonore Outcones (see Appendix 1 for description of variables)

Outcones (Predicted Variable)	Total Activity Scores (Predictor Variables)						
	Total	II	T2	T2P	T2L	T2P, T2L	T1, T2P, T2L
Senior Year							
Acad Ability	000	000	000	000	000	000	000
Grades	003tt	000	002:4	00274	002t:	002t	002tt
Honors	$0064 t$	001	005:	005:	003%	005tt	006tt
Acad Track	002tt	000	0011	0014	000	001%	002t:
Homework	005t	000	003:	00481	001	005tt	005:
Absenteeisa	0024	000	0012	0028	000	0012	0028
Math Pattern	000	000	000	000	000	000	000
Science Patt	000	000	000	000	000	000	000
Acad Credit	000	000	000	000	000	000	000
Locus Cont]	000	000	000	000	000	000	000
General Self	001	001	000	000	000	000	001
Parent Inv	00384	001	002t	002t:	0018	0024	003:
Parent Aspir	0014	000	0017	0018	000	001	001
Educ Aspir	002t	600	002*	002	0018	002tt	002t
Occup Aspir	0014	000	002	002\%	0014	0014	0021
Acad Self	0097:	0014	008:	007tt	005tt	008tt	00814
Trouble	000	000	000	000	000	000	000
Social Self	02141	006tt	0174	0174	00914	0174:	021:1
Post-secondary							
Uneaployed	000	000	000	000	000	000	000
University	001t	000	002t	002t\%	0014	00274	0024%
Educ Aspir	004tt	000	00614	00681	003tt	006	0064
Occup Aspir	001	000	0014	000	0011	0011	001

Note. Total=total activity score. II=total sophomore activity score. T2=total senior activity score. T2P=total senior participation score. T2L=total senior leadership score. (Note: $\mathrm{T} 2=\mathrm{T} 2 \mathrm{P}+\mathrm{T} 2 \mathrm{~L}$) A series of aultiple regressions wás conducted in which each senior and post-secondary outcone was predicted fron (a) background variables, (b) sophmaore outcones, and (c) one or more total activity scores. The values presented are the unique variance due to each individual or each set of activity scores.
tp<.05; tip<.01.

Table 6
Consequences of Extracurricular Participation: Linear and Monlinear Conponents of the Total Activity Scores, Linear and Monlinear Conponents After Controlling
Senior Social and Acadenic Sell-Concepts

Outcones (Predicted Variables)	$\text { Linear }^{a}$		Linear and Nonlinear				Linear and Nonlinear Controlling Acadenic - Social Self Concept		
	r	beta	beta linear	beta	2-score Maxinua	$\mathrm{Var}^{\text {d }}$	beta linear	beta quad	$\text { Var }{ }^{d}$
Senior Year									
Acad Ability	1064t	004	032tt	-040:t	0.40	0011	027:	-037t	001 t
Grades	231\%	063:	085t	-030t	1.42	004ilt	0497t	-012	0011
Honors	20381	0864	$1108 t$	-034t	1.62	00781	101tt	-029	00571
Acad Track	181:1	045t	067t	-030	---	002t:	050tt	-022	$0018 t$
Homemork	193t	078t:	114:4	-0498:	1.16	006tt	087t	-036t	004t1
Absenteeisa	10184	054tt	079t:	-035	---	003tt	059tt	-025	002t
Hath Pattern	11914	-015	005	-028	---	001	-002	-024	001
Sci Pattern	1204t	-005	015	-027	---	000	004	-022	000
Acad Credit	12914	-011	003	-019	---	000	-009	-013	000
Locus Contl	1121	023	070tt	-065tt	0.54	003:	04781	-054tt	002tt
General Self	0904t	005	001	005	---	000	-070tt	0408	002tt
Parent-Inv	160tt	067tt	096t	-040t	1.20	0054	059:1	-022	002t:
Parent Aspir	193:	035\%	092tt	-080:t	0.58	005t:	06314	-066\%	002t!
Educ Aspir	228t!	051:	11081	-082tt	0.67	0061:	07314	-964it	003:
Occup Aspir	12981	0364	067tt	-043t	0.78	002tt	053:	-036	0014
Acad Selt	2858t	109tt	167t	-080tt	1.04	01374	--*	---	---
Trouble	095t	014	053:	-054tt	0.49	002t:	0511	-054tt	002t
Social Self	2941t	162ttt	2491:	-120	1.04	030tt	---	---	---
Post-secondary									
Eaployed	0421	-013	020	-046	0.22	001%	009	-0411	001
University ${ }^{\text {- }}$	18984	034t	091tt	-078tt	0.58	0041:	06617	-067:	003:
Educ Aspir	$2168 t$	06614	120:t	-075tt	0.80	0078:	096:	-064:	004:
Occup Aspir	122tt	028	0461	-026	---	001	037	-021	001
1 p < .05; it p (.01.									

a $\mathrm{r}=$ correlation between the total activity score and the outcone, beta $=$ standardized beta for total activity scores in a regression equation containing the background variables and sophonore outcones. The standardized beta weights for the linear and quadratic (quad) conponents of the total activity sceres mere estinated in a regression equation containing the background variables and the sophonore outcones. All the equations with significant nonlinear components dre inverted U-shaped curves for shich the axian point is between
.2 and 1.6 standard deviations above the nean of the distribution of total activity scores. .Senior social and acadeaic solf-concepts were considered as predictor variables instead of outcones. Variance uniquely defined by the total activity scores (see Table 5).

Extracurricular Activities 34

Table 7
Consequences of Extracurricular Participation: The Effects (standardized beta weights) of Each of the 16 Different Extracurricular Activities on the Seniur and Post-secondary Outcones After Controlling for the Set of 11 Background Variables and 15 Sophonore Outcones (see Appendix 1 for description of variables)

Note. A series of aultiple regressinns was conducted in which each senior and post-secondary outcone was predicted with three sets of variables: (a) background variables, (b) sophonore outcones, and (c) the set of 16 activity scores. Backwards elinination was used to elininate all activity.scores that did not contribute significantly (p < . 05) to the prediction of the outcone. The standardized beta weights, presented without decinal points, are presented for all activity scores that were not elininated li.e., that contributed significantly to the prediction of an outcose in addition to the set of background variables and sophonore outcones).
tp<.05; \#p<.01.

Table 8
Consequences of Extracurricular Participation: Interactions Between Total Activities and Selected. Variab! as (Sex, SES, Black, Hisp, Sex, College Expectations, School Year Size, and Sophonore Acadenic Ability).

Outcones	Varian to Int	a Background Variables Interacting ${ }^{b}$ ion Significantly with Total activity
Senior Year		
Acad Ability	0018	SES(-03)
Grades	002tt	SES(-03) Sex (-03) Abil 1031
Honors	00418	Abil (03)
Acad Track	001	---
Hosemork	002	---
Absenteeisa	002	---
Math Pattern	001	---
Sci Pattarn	00:	---
Acad Credit	001	---
Locus Contl	001	---
General Self	002	---
Parent Inv	001	\cdots
Parent Aspir	003:1	SES(-03) Abil (04)
Educ Aspir	002tt	SES(-04)
Occup Aspir	001	---
Acad Self	0028 .	SES(-03)
Irouble	001	---
Sacial Self	0021	SES(-04)
Post-secondary		
Eaployed	001	---
University	0024	SES(-05)
Educ Aspir	001	---
Occup Aspir	002	---

Note. Interaction teras mere calculated by aultiplying the total activity score by each of the 7 interacting variables after standardizing all 8 variables (i.e., $M n=0,5 D=11$. Variance due to the interactions is the additional variance that can be explained by the 7 interaction teras after. controlling for the background variables, the sophomore outcones, and the total activity score. When the set of interaction teres was statistically significant (ps.05) each separate interaction tere that was statistically significant (p<.05) is shown and the standardized beta weight, presented with a decieal point, is presented in parentheses.
\& p < .05; if p<.01.

Appendix 1

Definition and Bescription of Variables Considered

Variables Description

Background Variables

Sex. [SEX] I=Male, $2=$ fenale.
SES. [BBSES, FYSES] Mean of 1980 and 1982 coaposite socioecononic status defined by.occupation status, sother's education, father's education, fanily incone, and aterial possessions in the hone.

Race--Black. [Race2] Ethnicity is Black. (I=yes, $0=n o l$
Race--Hispanic, [Race2] Ethnicity is Mexican, Cuban, Puerto Rican, or other Hi spanic. ($1=$ yes, $0=n o)$

Public School. [SCHSAMP] Attended a public school (I=yes, $0=$ nol
Repeated 6rade, [FY59AA-FY59AH] Nuaber of grades repeated in grades 1-8. College Expectations. [BB072A, BB072B, YB068A, YBO68B] Mean of college expectations in 6th, 7th, 8th and 9th grades.
Kindergarten. [YB012] Ment to kindergarten. (1=yes, $0=n o)$
Urban. [HSURBAN] High School in an Urban Setting ($0=$ suburban or rural, I=Urban)
Rural. [HSURBAN] High School in an rural Setting ($0=$ suburban or urban, $1=$ rural)
Mother Morks. [8BO37A, BBO37B, BBO37C] Mean of responses asking if eother morked while respondent was in high school, in eleaentary school and before respondent mas in elementary school. I!=did not work, $2=$ part tiae, $3=$ full tiae)

School Year Size, [SB002B, FSI] Total aenbershi.p of the school year.

Sophomore (1980) and/or Senior (1982) Outcome Variables
Acadeaic Ability, [YBMTHIFS, YBMTHIFS, YBREADFS, YBUOCBFS, YBSCIMFS, YBURITFS; FYMTHIFS, FYnTHIFS, FYREADFS, FYYOCBFS, FYSCINFS, FYURITFS] sophonore and senior ability tests mere based on a conposite of the same six tests in atheatics, reading, vocabulary, science, and writing after scores for each test were standardized lsee Heyns \& Hilton, 1982, for a revien of the tests).

6rades. [BB007; FY7l Sophoaore and senior self-reported high school grades (higher scores reflect higher grades).

Honors. [BBOIIC, BBO11D; FY9C, FY9D] In 1980 and 1982 the aean of standardized responses to two dichotonous itens asking students if they had taken honors level or advanced coursemork in English and athenatics.
Acadenic Irack [BBOO2; FY2] In 1980 and 1982 participated in acadenic track ($1=$ yes, $0=n 0$)

Honemork [8BO15; FYI5] 1980 and 1982 tiae per meek spent on honework. Absenteeisa [BBOI6; FYIb] 1980 and 1982 frequency absent froe school but not ill (scored so that higher scores represent less absenteeisul. Math Pattern. [MATHPATM] In 1982 the ath course-taking pattern

'scut risular wctavaties i!.

(4-concentration, $3=$ college-bound, $2=$ general studies, $1=1$ ieited or nonparticipantl
Science Pattern. [SCIPATW] In 1982 the science course-taking pattern 14=concentration, $3=c o l l e g e-b o u n d, 2=g e n e r a l ~ s t u d i e s, ~ 1=1 i a i t e d ~ o r ~ n o n-~$ participant)
Acadenic Credits. (NEMBASEI In 1982 nuaber of credits in six acadeaic areas. Locus of Control. [BBLOCUS, FYLOCUS] 1980 and 1982 coaposite locus of control (higher values refiect a eore internal locus)
General Self-Concept. [8BCONCPT; FYCONCPR] 1980 and 1982 coaposite variables siailar to Rosenberg's (!965) self-esteen scale (higher values reflect more positive scores)

Parent Involvenent. [8B046A-BB046C, BB0476; FY57A-FY57C, FY6CF (19a) and 1982 aeans of 2 -score responses asking if eother and father eonitor school work; parents know what l'a doing, and spend tiae talking to ay parents (higher scores reflect greater parental involveaent).
Parent Aspirations. [B8061; FYB1C] 1980 and 1982 asking students to indicate the level of education that their parents want the to get.
Educational Aspirations. [880616, 88065, B8067; FY766, FY80, FY82] 1980 and 1982 eeans of 2 -score responses asking if disappointed if do not graduate froe college, expected level of schooling and lowest level of schooling satisfied with (higher scores reflect higher educational aspiratiors). Occupational Aspirations [BBO62, FY] 1980 and 1982 occupational aspirations at age 30 (scaled the saee may as parent's occupational status in the SES coaposite).
rtadenic Self-concept. 1980 and 1982 conposite variables constructed froe responses to one cluster of 8 dichotonous itens that refer to attitudes toward English [YB035A-YB0350] and eathenatics [YB035E-YB035H] \{e.g., I dread English (aathenatics) classes; English (aathenatics) ilass does not scare at at alll, and 3 iteas asking if respondent is interested in school [B8059C], is seen by others as a good student [YB053i], and feels he/she has the ability to coaplete college [8B069]. The standardized eean of the first eight ites mas averaged w_{1} th the standardized atans to the other three itens in 1980. Because the first cluster of 8 iteas was not included en 1982 survey, only the eean of the atandardized responses to the other three iteas was used thigher scores reflect more positive acadeaic selfconcepts).

Trcuble. [YB053F, B80598, B8059D, B8059E, [BBO6IA; F'Y74F, FY668, FY66E, FY66F, FY76Al 1980 and 1982 aeans of 2-score responses asking if othars see you as a trouble akker, if had disciplinery prahless in school, if suspended froe schoo!, if cut classes, and if had serious tiauble with the lam. (higher values reflect eore trouble).

Social Self-concept. [8B047A, B80́47C, YBO53A, YBO53C, Y8053F, B8061D; FY60A, FY60C, FY74A, FY74C, FY746; FY7601 1980 and 1982 aeans of 2-score
responses asking the frequency of visiting friends and of going erst on dates, whether others see you as popular, socially active, and one of the leading crowd, and whether respondent sees hia/herself as popular thigher scores reflect aore social self-concepts).

Post-Secondary Outcone Variables (based on 1981 data)
Uneaployed [JOBSOC82, JOBSFE82, JOBSOC83, JOBSFE84] Sue of activity variables indicating student was neither eaployed (full or part-tiee) nor a student (full or part-tiee) at each of four points.
University [PSESOC82, PSESFE82, PSESOCB3, PSESFE84] Sua of activity variables indicating student was not a student (0), was a part-ties student (1), or was a full-tiae student (2) at a post-5econdary institution at each of four points in tise.

Educational Aspiration's. [SY13] A single ite asking for expected level of schooling (higher scores reflect higher educational aspirations).
Occupational Aspirations [SY54A] Occupational aspirations at age 30.
Note: Values in brackets refer to variable nases used on the HSB data file. Those starting with 68 or YB cose froe the 1980 (sophomore) survey, and those starting with FY cose from the 1982 (senior) survey. Most outcose variables for the sophoaore and senior years are paired, and unless othermise noted, are defined with parallel variables fros the two surveys. For all composite variables consisting of the sean of specific indicators, the sean of :ll nonaissing values was coeputed and a aissing value was assigned only if all the variables were sissing.
a
These variables are based on evaluations of actual stiudent high school tra.scripts that were provide by the school and analyzed by 458 staff.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made from the original document.

[^1]: Mote. See Table 1 for the wording of the itens. All factor loadings and fattor coefficients, presented without decinal points, were derived from a principal axis factor analysis (SPSS, 1986).
 a
 Factor labels are based on the content of itens that define each factor,

