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Abstract: We discuss a mode expansion technique to rigorously model
the diffraction from three-dimensional pits and holes in a perfectly con-
ducting layer with finite thickness. On the basis of our simulations we
predict extraordinary transmission through a single hole,caused by the
Fabry-Perot effect inside the hole. Furthermore, we study the fundamental
building block for extraordinary transmission through hole arrays: two and
three holes. Coupled electromagnetic surface waves, the perfect conductor
equivalent of a surface plasmon, are found to play a key role in the mutual
interaction between two or three holes.
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1. Introduction

The scattering from a single sub-wavelength hole in a conducting metal layer was already
modelled in the 1940s and 1950s [1, 2, 3, 4, 5]. Apart from the assumption that the metal is
perfectly conducting, the metal layer was also assumed to beinfinitely thin; these assumptions
made it possible to calculate the diffraction analytically. However, with respect to enhanced
transmission through sub-wavelength hole arrays, as reported in Ref. [6], these assumptions are
not valid. Furthermore, it is believed that the excitation of surface plasmons by neighboring
holes plays an important role in the enhanced transmission.

To model this collective effect and to determine its importance, a lot of geometries have
been studied and a lot of methods have been used. To name just afew: Infinitely long, single
slits [7, 8] and double slits [9] in metals with finite conductivity were modelled with the Green’s
function approach. Coupled-wave analysis has been used to study gratings of slits (see, for
example, [10, 11, 12]). Gratings that are periodic in two dimensions were studied with a modal
method [13] and with the finite-difference time-domain method [14]. The modal method [15]
and the boundary element method [16] were used for a single rectangular hole in a perfect
conductor.

However, the specific case of two holes and their mutual interaction has not received much
attention. This is remarkable, because it is a fundamental system and building block of a hole
array. Yet, especially when the two holes are a wavelength ormore apart, as the corresponding
computational domain is then also large, this system is not easy to calculate.

For two-dimensional structures, such as infinite slits or circular symmetric setups, or for
periodic systems in which the computational domain is only as large as one unit cell, current

#67559 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 16 March 2006

(C) 2006 OSA 3 April 2006 / Vol. 14,  No. 7 / OPTICS EXPRESS  2553

http://www.nag.com/nagware/mt/doc/d01fcf.html


z

x

y

Lx
Ly

D

Fig. 1. Problem under consideration. Multiple rectangular holes in a perfectly conducting
layer with finite thickness.

computer power suffices to obtain acceptable accuracy. For afinite number of three-dimensional
holes that are far apart, however, a clever computational scheme is needed to prevent computa-
tion times of days or even weeks.

We present a rigorous modal method, similar to the methods inRefs. [17, 15, 18], that turns
our three-dimensional diffraction problem into a two-dimensional numerical problem. Using
this method, we calculate the transmission through one, twoand three holes and we determine
the influence that a second and third hole have on the transmission through the first. Parameters
such as size of the hole, distance between two holes and thickness of the conducting layer are
varied.

For the modal method that we use, the perfect conductor assumption is essential. Hence, our
method is of quantitative value when the imaginary part of the index of refraction is so large,
that the skin depth of the metal is small compared to the typical length scales of the geometry.
This is for example the case in the terahertz and microwave frequency regimes, where also a lot
of research is done in sub-wavelength hole arrays [19, 20]. However, we argue that, apart from
absorption of energy in the metal, all relevant physics is present in our model. That also in-
cludes the surface plasmon equivalent of a perfect conductor: an electromagnetic surface wave.
Thus, the understanding we gain from our results will also help us to understand extraordinary
transmission in the optical regime.

We find that extraordinary transmission occurs for a single hole when the lowest order waveg-
uide mode is just above cut-off. This is due to the Fabry-Perot resonance of this lowest order
mode inside the waveguide. Furthermore, we calculate the transmission through two and three
holes. In order to understand the mutual interaction between two and three holes, we normalize
by the transmisson through an identical but single hole. In this way we are able to isolate the
effect that the presence of the second (and third) hole has onthe transmission through the first.
By changing the polarization of the incident light and by replacing one of the holes by a pit, we
are able to show that coupled electromagnetic surface wavescause the enhanced and decreased
transmission.

This paper is organized as follows. In the next section, we will define the problem under
consideration. Then, we will describe the field above and below the layer, as well as inside
the holes by mode expansions. Matching these expressions gives the system of equations that
needs to be solved. After a few words on the numerical implementation, we will show results
on single as well as multiple holes and pits.

2. Problem definition and system parameters

Let (x,y,z) be a rectangular Cartesian coordinate system. Perpendicular to thez-axis we have a
perfectly conducting layer with finite thicknessD. In this layer a finite number of rectangular
holes and pits are present. See Fig. 1. A hole is a rectangularcylinder that is open on both
sides and is as long as the thickness of the layer; a pit has an open end at one side, either
at z= D/2 or atz= −D/2, and a depthdp < D. The sub- or superscriptp denotes the number
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of the pit or hole. The lengths in thex- andy-direction areLp
x andLp

y , respectively. The cross-
section of a hole or a pitp is given byΩp =

{
(x,y)

∣∣ xp
0 < x < xp

0 +Lp
x , yp

0 < y < yp
0 +Lp

y
}

.
The halfspacesz> D/2 andz< −D/2 are filled with homogeneous dielectrics with index of
refractionnu andnℓ, respectively. Every hole and pit is filled with a homegeneous dielectric
with index of refractionnp. The corresponding relative permeabilities areεu = n2

u, εℓ = n2
ℓ

andεp = n2
p. The magnetic permeability isµ0 everywhere.

A monochromatic incident field can originate from above and/or from below. The wavelength
of the field in free space is given byλ . The local wavelengths areλu = λ/nu, λℓ = λ/nℓ

andλp = λ/np. The corresponding wave vectors areku = 2π/λu, kℓ = 2π/λℓ andkp = 2π/λp.
The harmonic time dependence of the electromagnetic field isgiven by the factor exp(−iωt),
with ω > 0, which will be omitted throughout.

3. Mode expansions

In each pit or hole, the electromagnetic field is expanded in aset of propagating or evanescent
waveguide modes. In the next section, we describe these modes, that are characterized by the
geometry of the pit or hole they live in, by their polarization, by their spatial frequency and by
their direction of propagation.

In section 3.2, we describe the electromagnetic field above and below the conducting layer.
This field is expanded in propagating and evanescent plane waves, that are characterized by
their polarization and their direction of propagation.

3.1. Inside the holes and pits

Solving Maxwell’s equations inside the pits and holes meansfinding solutions of the scalar
Helmholtz equation for every Cartesian component of the electromagnetic field. The boundary
conditions imply that, at a perfect conductor, the tangential electric field as well as the nor-
mal magnetic field vanish. We then find solutions that are called waveguide modes. These are
propagating or evanescent in thez-direction:

[
Eααα(r)
Hααα(r)

]
=

[
Eααα(x,y)
Hααα(x,y)

]
e±iγzz, (1)

with propagation constantγz given by [21]:

γz =
√

k2
p− γ2

x − γ2
y , (2)

whereγx andγy determine the spatial behaviour inx andy-direction:

γx =
mxπ
Lp

x
, γy =

myπ
Lp

y
, (3)

with mx andmy integers. The bold subscriptααα = (α1,α2,α3,α4) is a multi-index that describes
four discrete variables:α1 (or p) denotes the pit number,α2 indicates the polarization (TE or
TM), α3 is determined bymx andmy andα4 specifies whether the mode is travelling upwards
or downwards.

Because the matching conditions at the interfacesz = ±D/2 only involve thex- and y-
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component of the fields, it is convenient to introduce the following notation:

e(x,y,z) ≡ ı̂̂ı̂ız× [ı̂̂ı̂ız×E(x,y,z)] =




−Ex

−Ey

0


 , (4a)

h(x,y,z) ≡ ı̂̂ı̂ız×H(x,y,z) =




−Hy

Hx

0


 , (4b)

with ı̂̂ı̂ız the unit vector in thez-direction. In this way, the lower casee andh are the rotated
transverse components of the electric and magnetic field. Furthermore, we split the transverse
components of the modes into a real part that depends onx and y and a complex part that
depends onz: [

eααα(x,y,z)

hααα(x,y,z)

]
= υυυᾱαα(x,y)

[
ηααα(z)

ζααα(z)

]
, (5)

where the subscript̄ααα = (α1,α2,α3) and thus the transverse vectorfieldυυυᾱαα do not depend on
the direction of propagation of the mode.

We normalize the real parts of the modes by [22]:

〈υυυᾱαα |υυυᾱαα〉Ωp
≡
∫∫

Ωp

[υᾱαα,x(x,y)υᾱαα,x(x,y)
∗ +υᾱαα,y(x,y)υᾱαα,y(x,y)

∗] dxdy = 1, (6)

where the superscript∗ denotes complex conjugation [23]. Furthermore, the modes are orthog-
onal such that for different modes̄ααα andᾱαα ′:

〈υυυᾱαα |υυυᾱαα ′〉Ωp′
= 0, if ᾱαα 6= ᾱαα ′. (7)

Note that the time averaged Poynting vector in thez-direction of a mode is given by:

Sααα ,z =
1
2

Re
(
Eααα ,xH∗

ααα,y−Eααα,yH∗
ααα ,x

)
=

1
2

Re(ηααα ζ ∗
ααα)
(
υυυᾱαα,xυυυ∗

ᾱαα,x +υυυᾱαα,yυυυ∗
ᾱαα,y

)
, (8)

and, hence, the scalar product〈υυυᾱαα |υυυᾱαα〉Ωp
of a modeᾱαα with itself is proportional to the flow of

energy of this mode through a plane of constantz.
For a full listing of the waveguide modes, see Appendix A. Themode functions(Eααα ,Hααα)

are complete in the following sense: any time harmonic electromagnetic field with frequencyω
satisfying the source-free Maxwell equations inside the holes and pits can be expressed as a
linear combination of these mode functions. Hence, forzbetweenD/2 and−D/2, we have:

[
Epit(r)
Hpit(r)

]
= ∑

ααα
aααα

[
Eααα(r)
Hααα(r)

]
, (9)

for some expansion coefficientsaααα that will be determined by matching the field inside the
holes and pits to the field above and below the conducting layer.

3.2. Above and below the layer

The total electric and magnetic field above and below the conducting layer consist of the
(known) incident field, its corresponding reflected field (that results from the incident field
when the conducting layer does not contain any pits or holes)and the scattered field (that re-
sults from the presence of the pits and holes):

[
E(r)
H(r)

]
=

[
Ei(r)
H i(r)

]
+

[
Er(r)
Hr(r)

]
+

[
Es(r)
Hs(r)

]
. (10)
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The reflected field can easily be calculated from the incidentfield and we therefore consider the
sum of the incident and reflected field to be known. The scattered field can be written as:

[
Es(r)
Hs(r)

]
= ∑

β1

∞∫

−∞

bβββ

[
Eβββ (r)
Hβββ (r)

]
dβ2, (11)

where the coefficientsbβββ are still to be determined and
(
Eβββ ,Hβββ

)
are plane waves with wave

vectorku above the layer andkℓ below the layer. The transverse components(kx,ky) of the
wave vector are real and thez-component is given by:

ku
z = +

√
k2

u−k2
x −k2

y, (12a)

kℓ
z = −

√
k2
ℓ −k2

x −k2
y. (12b)

The sign before the square root follows from the assumed timedependence exp(−iωt) and from
the fact that the scattered field propagates away from the conducting layer. The subscriptβββ =
(β1,β2) is a short notation for the polarization (β1) and thex- andy-component of the wave
vector (β2 = (kx,ky)). The polarization can either be S or P. S-polarized means that thez-
component of the electric field is zero (and thus correspondsto TE polarization inside the
holes and pits), while for P-polarization thez-component of the magnetic field is zero (TM
polarization). Note that the integral

∫
dβ2 is a shorthand notation for

∫∫
dkxdky.

We use Eq. (4) to obtain the transverse components of the plane waves and, as before, we
split these into a part that depends onx andy and a part that depends onz:

[
eβββ (x,y,z)

hβββ (x,y,z)

]
= υυυβββ (x,y)

[
ηβββ (z)

ζβββ (z)

]
. (13)

These are given in Appendix B.
Analogous to the normalization of the waveguide mode functions, we normalizeυυυβββ such

that:
〈
υυυβββ
∣∣υυυβββ ′

〉
R2 ≡

∫∫

R2

[
υβββ ,x(x,y)υβββ ′,x(x,y)

∗ +υβββ ,y(x,y)υβββ ′,y(x,y)
∗] dxdy = δβ1β ′

1
δ
(
β2−β ′

2

)
.

(14)
Note that the integration is over an entire plane. The firstδ is the Kronecker delta and the
second is the two-dimensional Dirac delta function:

δ (β2) =
1

4π2

∞∫

−∞

∞∫

−∞

ei(kxx+kyy) dxdy, β2 = (kx,ky). (15)

Analogous to the scalar product for the waveguide mode functions, the scalar product of two
identical plane waves

〈
υυυβββ
∣∣υυυβββ

〉
R2 is related to the flow of energy of the plane wave through a

plane of constantz.
Because of the use of rotated transverse electric and magnetic fields, we have the following

convenient relations between the transverse components ofthe electric and the magnetic field
of the plane waves:

hβββ (x,y,z) =
kz

ωµ0
eβββ (x,y,z), β1 = S, (16a)

hβββ (x,y,z) =
ωεε0

kz
eβββ (x,y,z), β1 = P. (16b)
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Furthermore, every time-harmonic solution of Maxwell’s equations with frequencyω in the half
spacesz> D/2 andz<−D/2, that propagates away from the conducting layer can be expanded
in terms of the plane waves(Eβββ ,Hβββ ). In particular, we have, for the scattered transverse electric
field:

es(x,y,z) = ∑
β1

∞∫

−∞

bβββ eβββ (x,y,z)dβ2, (17)

where, as before, the integration overβ2 is a short-hand notation for integrating overkx andky.
By using Eq. (14) and (16) we define an operatorA that works on any two-dimensional

vectorfieldf : R
2 → C

2:

A (f) ≡
∞∫

−∞

kz

ωµ0

〈
f
∣∣∣υυυS

β2

〉
R2

υυυS
β2

dβ2 +

∞∫

−∞

ωεε0

kz

〈
f
∣∣∣υυυP

β2

〉
R2

υυυP
β2

dβ2, (18)

where the superscript S or P naturally means thatβ1 = S orβ1 = P. This operator is basically
the integral version of the operatorkωµ0

× that can be applied to the electric field of a plane

wave to calculate the corresponding magnetic field. Please note that the factorωεε0
kz

in the

second integral is singular fork2
x + k2

y = ω2εε0µ0. This is, of course, the fingerprint of the
coupled electromagnetic surface wave. Although the integrand is integrable, in the numerical
implementation prudence is necessary.

In any planez is constant and in particular forz= ±D/2, the scattered transverse magnetic
field can now be expressed in terms of the electric field:

hs(x,y,±D/2) = A [es(x,y,±D/2)] . (19)

This equation holds for all(x,y) with −∞ < x,y < ∞.

4. Matching at the interfaces

At the interfacesz= ±D/2, we have the following relations for the tangential electric and the
tangential magnetic field:

epit = ei +er +es, ∀(x,y), z= ±D/2, (20a)

hpit = hi +hr +hs, (x,y) ∈
⋃

α1

Ωα1, z= ±D/2, (20b)

Here,Ωα1 is, as before, the cross-section of the pit or hole that is denoted by indexα1. In
Eq. (20a), because the layer is perfectly conducting, the sum of the incident and reflected tan-
gential electric field vanishes atz= ±D/2, hence:

epit = es, ∀(x,y), z= ±D/2. (21)

Using this together with Eq. (19), we have for Eq. (20b):

hpit = hi +hr +A

(
epit
)

, (22)

which is valid for all(x,y,±D/2) within the holes and pits. The waveguide modes that consti-
tuteepit andhpit vanish outside the pits and holes, as indicated by the rectangle functionΠ in
Eq. (31) and (32) in Appendix B.
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In order to obtain a system of equations that is suitable for numerical implementation, we
project this equation on the functionυυυᾱαα ′ by using the scalar product defined in Eq. (34):

∑
α4

aααα ′ ζααα ′(±D/2)−∑
ααα

aααα ηααα(±D/2)
〈
A (υυυᾱαα)

∣∣υυυᾱαα ′
〉

Ωp′
=
〈
hi +hr

∣∣υυυᾱαα ′
〉

Ωp′
, (23)

where the summation overα4 is a summation over the two directions of propagation (α4 is
not contained inᾱαα). This equation is valid for allᾱαα ′, hence for allα1 (counting the number
of holes and pits), for allα2 (TE and TM polarization) and for allα3 (the mode numbers,mx

andmy). Consequently, solving the system of Eq. (23) for allᾱαα ′ and forz= ±D/2 gives the
waveguide mode expansion coefficientsaααα . Note that the term on the right acts as a source term.
The factor

〈
A (υυυᾱαα)

∣∣υυυᾱαα ′
〉

Ωp′
is called the interaction integral. Physically speaking, it describes

the interaction of a waveguide modēααα , via the scattered plane waves through operatorA ,
with another modeᾱαα ′. In Appendix C we will discuss some of its properties and a method to
compute it numerically.

To obtain an expression for the scattered field, we use Eq. (14) to project Eq. (21) for the
tangential electric field on the plane wave mode functioneβββ ′ :

bβββ ′ = ∑
ααα

aααα
〈
eααα
∣∣eβββ ′

〉
. (24)

In this way, the scattered field can be expressed in the amplitudes of the modes of the pits and
holes: [

Es(r)
Hs(r)

]
= ∑

β1

∑
ααα

∞∫

−∞

aααα
〈
eααα
∣∣eβββ
〉[ Eβββ (r)

Hβββ (r)

]
dβ2. (25)

It can be shown that this integrand is integrable everywhere, except, possibly, at the edges of the
holes and pits. The occurrence of infinite fields near infinitely sharp, conducting wedges is well-
known [24]. For a protruding, right angle, perfectly conducting wedge, the field components
perpendicular to the sharp edge may become infinite liker−1/3, wherer is the distance to
the edge. The field components parallel to the edge remain finite. Furthermore, the charge
density always remains finite. At an intruding wedge, like the inner part of a waveguide, all
field components remain finite.

With Eq. (23) and (24) we have formulated our three-dimensional vectorial scattering prob-
lem as a linear system for the amplitudes of the waveguide modes only. Since these modes
are parametrized by two parameters (γx andγy), we have thus reduced the three-dimensional
scattering problem to a two-dimensional numerical problem.

5. Numerical implementation

Of course, when implementing our diffraction problem into acomputer code we will have to
truncate the infinite series of waveguide modes. For largeγx and γy, and depending on the
sizeLp

x andLp
y , the mode of concern will be evanescent in thez-direction. For large imagi-

nary γz, the mode will only penetrate into the hole or pit a very smalldistance. It is therefore
reasonable to expect that only the modes with a small imaginary γz will contribute to the total
result. Roberts [17] used 168 modes, while Garcı́a-Vidal and coworkers [15] used only one. To
compare the results of two calculations, one with a numberN and the second with a smaller
numberÑ, we define the following measure:

FNÑ =

∫∫∫

Vp

(
ε0εp |EÑ −EN|2 + µ0|HÑ −HN|2

)
dxdydz

∫∫∫

Vp

(
ε0εp |EÑ|2 + µ0|HÑ|2

)
dxdydz

, (26)

#67559 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 16 March 2006

(C) 2006 OSA 3 April 2006 / Vol. 14,  No. 7 / OPTICS EXPRESS  2559



0 500 1000 1500 2000

10
−4

10
−3

10
−2

10
−1

Number of waveguide modes

E
st

im
at

ed
 r

el
at

iv
e 

er
ro

r 
in

 e
ne

rg
y

L
x
 = L

y
 = D = λ/5

L
x
 = L

y
 = λ/5, D = λ/50

L
x
 = L

y
 = D = 4/5 λ

L
x
 = L

y
 = 4/5 λ, D = λ/50

1/N
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Fig. 3. Line scan of the absolute value of thex-component of the electric field in a plane
with constantz, through the center of the hole, for various numbers of waveguide modes.
Setup is a single hole,Lx = Ly = D = λ/5, with a perpendicular incident, linearly polarized
plane wave.

where the integration is over the volumeVp of the hole (or pit). Here,
(
EÑ,HÑ

)
is the elec-

tromagnetic field inside the hole for which the series are truncated after̃N waveguide modes
and(EN,HN) is the electromagnetic field inside the hole obtained by truncation afterN waveg-
uide modes. Hence, this measure corresponds to the error in the energy.

Fig. 2 shows this error as a function of the number of unknownsfor a few typical setups.
It is clear that only several hundreds of unknowns per hole orpit are enough to model our
three-dimensional problem accurately, provided that the thickness of the layer is not too small.

Fig. 3 shows a line scan of the electric field inside a single hole, for various numbers of
waveguide modes. Fig. 3(a) shows the field at the entrance of the hole, whereas Fig. 3(b) shows
the field in the middle of the hole. Large numbers of waveguidemodes are needed to show
the singular behaviour at the rim of the hole, as is clear fromFig. 3(a). Inside the hole, where
the fields are smooth and regular, the difference with respect to the electric field between 120
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waveguide modes and as much as 2600 waveguide modes is not much more than 1 percent.
Hence, if the singular behaviour of the fields dominates the solution, as is the case when the
conducting layer is thin as compared to the wavelength, our mode expansion technique is prob-
ably not the most suitable method.

A small system of equations with only several hundreds of unknowns is solved on a regular
desk top computer in only a few seconds. Consequently, most computing time is spent on
calculating the interaction integral, which takes a few hours. As discussed in Appendix C, these
integrals contain an exponential factor that oscillates violently when modeᾱαα andᾱαα ′ live in
pits or holes that are far apart. Moreover, the integral contains the factor 1/kz that is singular
on the circle given byk2

x + k2
y = k2. As stated before, this is the fingerprint of thecoupled

electromagnetic surface wave. The integrand is still integrable, but a careful implementation is
required.

However, because the interaction integral only involves the planez = ±D/2, it does not
depend on the following important parameters: the thickness D of the conducting layer; the
index of refractionnp inside the pit or hole; whether the scatterer is a pit or a holeand, in case of
a pit, its depthdp. Consequently, once the interaction integrals are calculated for a certain setup,
we can vary these parameters with negligible computationaleffort. This is a great advantage
of our method. The possibility to construct a library of calculated interaction integrals is also
beneficial.

6. Extraordinary transmission

In this section we discuss our first results. Calculations were done for single as well as multiple
holes and pits. For all calculations, we took into account a number of 440 waveguide modes,
such that the error in the energy is less than 1 percent. All holes and pits are square (Lx = Ly = L)
and the index of refraction above and below the layer as well as inside the pits and holes is taken
to be unity.

In the following we (among other things) calulate the energyflux through a hole for various
setups. This energy flux through a plane withz= z0 is calculated directly from the coefficients
of the waveguide modes in the following way:

∫∫

Ωp

Sz dxdy = ∑̄
ααα

∑
α4

∑̃
α4

1
2

Re
[
aα4

ᾱαα aα̃4∗
ᾱαα ηα4

ᾱαα (z0) ζ α̃4
ᾱαα (z0)

∗
]
, (27)

whereα4 denotes the direction of propagation of the waveguide mode.Note that two waveguide
modes that have an opposite direction of propagation but that are otherwise identical together
produce a non-zero energy flux.

6.1. Extraordinary transmission through a single hole

Fig. 4 shows the energy flux through a single hole as a functionof the layer thickness. The
energy flux is normalized by the energy that is incident on thearea of the hole (the scalar optics
normalization). Results are shown for various sizes of the hole. For sizes where all waveguide
modes are below or at cut-off, the amount of energy coming through the hole decreases expo-
nentially with the layer thickness, as expected. When the lowest order modes are just above
cut-off a strong modulation of the energy flux with layer thickness is seen. The period of this
modulation is half of the effective wavelength (2π/γz) of the propagating mode, indicating that
the interference of this mode with its own reflection is responsible for the increased and de-
creased transmission. It follows from Fig. 4 that if the lowest order mode is just above cut-off,
extraordinary transmission of a factor of about 1.5 seems possible. If the size of the hole is
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Fig. 5. Polar plot of the near field scattering from a single square pit with a depthd = λ/4.
For different sizes, the Poynting vector in the radial direction is shown, at a half circle with
radiusλ , with its center coinciding with the center of the pit, atz= D/2. Black line is for
the(y,z)-plane, gray for the(x,z)-plane. Incident field is a perpendicular plane wave, with
its electric field linearly polarized along thex-direction. The radial scale is arbitrary, but
equal for all three figures.

increased further, more and more modes are propagating and the normalized energy flux de-
creases below unity. Going fromL = λ to L = 2λ , the energy flux increases to just below unity.
For large holes, one expects an energy flux of unity, of course. The energy flux that is shown,
is calculated directly from the coefficients found for the waveguide modes and hence, it is not
necessarily the energy that will travel along thez-axis and, possibly, arrive at a far field detector.
However, because of the perfect conductor assumption, noneof this energy is absorbed.

Fig. 5 gives information on the direction along which most energy is scattered. It shows polar
plots of the energy, scattered from a single pit with depthλ/4. Shown is the Poynting vector
in the radial direction along a half circle with radius of onewavelength, hence the scattering in
the near field. The scattering in the plane in which the incident electric field is polarized can
be non-zero along the interface, because the correspondingelectric field then points in thez-
direction. The scattering in the perpendicular plane can not be along thez-direction, for the
tangential field at a perfect conductor must be zero. For a pitwith sizeL = λ/5 the scattering
is like that of a dipole, whereas for larger pits the scattering is mainly along the optical axis
(thez-axis).

#67559 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 16 March 2006

(C) 2006 OSA 3 April 2006 / Vol. 14,  No. 7 / OPTICS EXPRESS  2562



0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

distance between centers of holes (λ)

no
rm

al
iz

ed
 e

ne
rg

yf
lu

x 
th

ro
ug

h 
on

e 
ho

le

Ei perpendicular to line that connects centers

two holes, k
x
i  = k

y
i  = 0

three holes, k
x
i  = k

y
i  = 0

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

distance between centers of holes (λ)

no
rm

al
iz

ed
 e

ne
rg

yf
lu

x 
th

ro
ug

h 
on

e 
ho

le

Ei parallel to line that connects centers

two holes, k
x
i  = k

y
i  = 0

two holes, k
x
i  = k/10, k

y
i  = 0

two holes, k
x
i  = −k/10, k

y
i  = 0

three holes, k
x
i  = k

y
i  = 0

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.7

0.8

0.9

1

1.1

1.2

1.3

distance between centers (λ)

no
rm

al
iz

ed
 e

ne
rg

yf
lu

x 
th

ro
ug

h 
on

e 
ho

le

Ei parallel to line that connects centers

two holes
one hole, one pit at upper side
one hole, one pit at lower side

(c)

x

z

two holes

three holes

one hole, one pit
at upper side

one hole, one pit
at lower side

(d)

Fig. 6. Energy flux through a hole, normalized by the energy flux through an identical single
hole, as a function of the distance between two holes (or one hole and one pit). Pits and
holes are all square, withLx = Ly = L = λ/4. Incident field is a linearly polarized plane
wave, with polarization as stated at the top of the figures. Incidence is always perpendicular,
except for the dashed and dotted lines in Fig. 6(b). Here,ki

x 6= 0 means that the plane of
incidence is the(x,z)-plane. Fig. 6(d) shows cross-sections of the four used geometries.
The bold arrows denote where the energy flux is calculated. The thickness of the layer
is λ/2 and the depth of the pits isλ/4.

6.2. Extraordinary transmission through multiple holes

In Fig. 6, we show the effect that the presence of a second and third hole or pit have on the
energy flux, as calculated with equation (27), through the first hole. As a function of the dis-
tance between the centers of the two or three scatterers, theenergy flux through one hole is
calculated. This energy flux is normalized by the energy flux through an identical, but single
hole, also calculated with our method. With this special normalization, we are able to isolate
the effect that the presence of the second and third scatterer have on the transmission through
the first. The incident field is again a linearly polarized plane wave. To distinguish the two
basic directions of polarization we define a reference planethrough the line that connects the
centers of the scatterers and thez-axis. The electric field of the incident plane wave is either
directed perpendicular to this plane or else parallel to this plane. Fig. 6(a) shows the normalized
energy flux through one of two holes and through one of three holes for perpendicular polar-
ization. A modulation of the energy flux as a function of distance between the centers of the
holes only occurs for holes that are less than two wavelengths apart. We believe that enhanced
or decreased transmission in this case is caused by the coupling of evanescent fields scattered
from one hole to the other and/or by polarization rotation atthe corners of the hole. The solid
lines in Fig. 6(b) show the same calculations, but now for parallel polarization. The modulation
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Fig. 8. Cartesian components of the Poynting vector in a plane of constantz, at a distance
of λ/20 below the metal layer. Gray scale is in arbitrary units, the same for all figures.
The layer contains two holes withLx = Ly = λ/4 and the thickness of the layer isλ/2. A
parallel polarized plane wave is incident from above, perpendicular incidence. Top figure
corresponds to a maximum in energy throughput, lower figure to a minimum. See arrows
in Fig. 6(b).
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of the energy flux is now also present for large distances between the holes. Its period is equal
to the wavelength of the incident field. Its amplitude for three holes is twice the amplitude for
two holes. Furthermore, the amplitude is proportional to the inverse of the distance between
the centers of the holes, as expected for a cylindrical wave.If the propagation direction of the
incident plane wave is slightly tilted (dashed and dotted line in Fig. 6(b)) then a phase shift
occurs that is equal to the delay that the incident field experiences in reaching the farthest hole
as compared to the nearest hole. Fig. 6(c) shows, for the incident field polarized parallel, the
normalized energy flux through a hole in the presence of a pit.This pit has its open end at the
upper side (dashed, black line) or at the lower side (solid, gray line). The field is incident from
above. The modulation period for the latter is half that of the first. Furthermore, the amplitude
for both cases is much smaller than for the case of two holes (solid, black line).

Fig. 7 shows a comparison of the usual scalar optics normalization, where the transmission
is normalized by the energy that is incident on the area of thehole, with the normalization used
in Fig. 6. The setup is two square holes, at varying distance of each other. The incident field
is a parallel incident plane wave. Shown is, again, the transmission through one of these two
holes. The transmission, when normalized by the transmission through an identical but single
hole, always varies around unity. Hence, the presence of thesecond hole can lead to an increase
as well as a decrease in transmission. However, when the scalar optics normalization is used,
we already know from Fig. 4 that the layer thickness has an influence on the transmission. This
influence is of another nature. For holes that are so small that all modes are evanescent (shown
in black), the transmission decreases exponentially with layer thickness. When the size of the
holes is such that at least one mode is propagating (shown in gray) the Fabry-Perot effect can
cause enhanced transmission for a single hole.

We think that, for the cases in which the incident electric field is polarized perpendicular to
the reference plane, the enhanced and reduced transmissionthat occurs when the single hole
normalization is used, is mainly caused by waves withkz = 0 that are scattered along the metal
surface. These scattered waves cause a periodicity of a wavelength when two scatterers at the
same side of the metal layer contribute and a periodicity of half the wavelength when there is
only one source, as is the case when one hole is accompanied bya pit with its open end at the
non-illuminated side. In this case, the surface wave that isexcited at the exit of the hole travels
to the pit. It there excites another surface wave that travels back to the hole and interferes. This
results in a phase shift that corresponds to twice the distance between the hole and the pit. See
also Ref. [9]. The doubling of the amplitude for three holes as compared to two holes also fits
nicely in the picture of the interfering surface waves.

For a perfect conductor, a wave propagating along the surface with its wave vector equal to
the wave vector of the incident light, is the analogue of a surface plasmon. It is often stated
that perfect metals do not support surface plasmons. However, we believe that the expression
surface plasmon(or surface plasmon polariton) is confusing. The ending -on suggests a sort
of localization. For a surface plasmon, as described by, forexample, Raether [25], this means
that it is bound to the interface between the metal and the dielectric. The derivation by Raether
of the surface plasmon wave vector (which is only valid for a flat interface) is also valid for an
interface between a perfect conductor and a dielectric. Then, the plasmon wave vector is just the
wave vector of the light. The penetration depth inside the metal is zero and the charges inside
the metal oscillate only in the plane of the interface between the metal and the dielectric. The
plasmon - or, better,coupled electromagnetic surface wave- then has a constant field strength
in the half space above the metal and is not bound to the surface. The existence and the physical
nature of the phenomenon, however, are the same for both a conductor with finite conductivity
and an idealized perfect conductor. The only difference is the finite decay length and absorption
caused by finite conductivity.
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Fig. 8 shows the three cartesian components of the Poynting vector in a plane that isλ/20
below the metal layer. The metal layer contains two square holes. The small arrows in Fig. 6(b)
indicate the data points for which we calculated the near field as shown in the upper and lower
figure. Hence, the incident electric field is polarized in thex-direction. This means that the
wave along the surface is mainly propagating energy in thex-direction. For the two setups,
the difference is indeed largest for thex-component of the Poynting vector. Note that, near the
holes, especially in the upper figure, thez-component of the Poynting vector points towards the
metal layer.

7. Conclusion

We have described a mode expansion method to rigorously calculate the diffraction by a per-
fectly conducting layer with finite thickness, that contains rectangular pits and/or holes. The
electromagnetic field above and below the conducting layer is written as an integral over plane
waves. These plane waves can be S- or P-polarized and they canbe propagating or evanescent.
The field inside the pits and holes is expanded into waveguidemodes, that can have TE or TM
polarization and can also be propagating or evanescent. A system of equations is derived by
matching the tangential field components at the interfaces.As unknowns, this system only con-
tains the expansion coefficients of the waveguide modes and is therefore very small. For each
pit or hole with a size that is of the order of the wavelength ofthe incident light, about 400
waveguide modes are sufficient for an accuracy in the energy of less than one percent. Once
the system of equations of a particular diffraction geometry is composed, important parameters
such as the thickness of the conducting layer and the index ofrefraction inside the pit or hole
can be varied with negligible computational effort.

We have shown results on extraordinary transmission through single as well as multiple
holes. For a single hole, with transverse sizes such that thelowest order waveguide mode is just
above cut-off, a strong modulation of the transmitted energy as a function of layer thickness was
obtained. This is due to the interference of this lowest order mode with its own reflection (the
Fabry-Perot effect). For two or three holes, a strong modulation in the transmitted energy was
found as a function of the distance between neighbouring holes, but only for one polarization
of the incident field. Since we normalize the transmitted energy by the energy transmitted by
a single, identical hole, the displayed increase and decrease is only due to the presence of the
second (and third) hole. The fact that this modulation is hardly present when the incident field
is polarized in the perpendicular direction clearly pointsto a plasmon mechanism. Actually, the
termcoupled electromagnetic surface wavewould be more appropriate, as the boundedness of
this kind of wave depends on the conductivity of the metal.

Except for absorption, all relevant physics is present in the model. This means that, apart
from the microwave and terahertz frequency regimes, the results found can also be of use in the
optical domain, as long as the penetration depth inside the metal is not too large as compared
to the thickness of the metal layer and the distances betweenthe holes or pits.
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A. The waveguide modes

We here give a complete listing of the waveguide modes. The rotated transverse components of
the modes are split into a transverse part and a part that depends onz:

[
eααα(x,y,z)

hααα(x,y,z)

]
= υυυᾱαα(x,y)

[
ηααα(z)

ζααα(z)

]
. (28)
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With:
Γααα =

√
γ2
x + γ2

y , (29)

and

Λααα =





2
(
Lp

xLp
y
)−1/2

, if mx 6= 0 andmy 6= 0,
√

2
(
Lp

xLp
y
)−1/2

, if mx = 0 ormy = 0,
(30)

we first define the following auxiliary functions:

υυυᾱαα(x̄p, ȳp) =





Λααα
Γααα

Π(x̄p, ȳp)

[
γycos(γx x̄p)sin(γy ȳp)

−γx sin(γx x̄p)cos(γy ȳp)

]
, α2 = TE,

Λααα
Γααα

Π(x̄p, ȳp)

[
γx cos(γx x̄p)sin(γy ȳp)

γysin(γx x̄p)cos(γy ȳp)

]
, α2 = TM,

(31)

ϑᾱαα(x̄p, ȳp) =




−iΛααα Γααα Π(x̄p, ȳp) cos(γx x̄p)cos(γy ȳp), α2 = TE,

iΛααα Γααα Π(x̄p, ȳp) sin(γx x̄p)sin(γy ȳp), α2 = TM,
(32)

where we have introduced local coordinates for every pit or hole: x̄p ≡ x−xp
0, ȳp ≡ y−yp

0. Fur-
thermore, the functionΠ(x̄p, ȳp) is a rectangle function that indicates that the mode functions
are identical to zero outside the cross-sectional area of the p-th hole:

Π ≡ [H(x̄p)−H(x̄p−Lp
x)]
[
H(ȳp)−H(ȳp−Lp

y)
]
, (33)

where H(x) is the Heaviside step function. By using (31) it is easy to seethat two different
modes are orthogonal in the sense:

〈
υυυᾱαα
∣∣υυυᾱαα ′

〉
Ωp′

≡
∫∫

Ωp′

[
υᾱαα,x(x,y)υᾱαα ′,x(x,y)

∗ +υᾱαα,y(x,y)υᾱαα ′,y(x,y)
∗
]

dxdy = 0, ᾱαα 6= ᾱαα ′.

(34)
Hence,{υυυᾱαα } is an orthonormal system with respect to the scalar product (34).

The following auxiliary functions are needed for thez-dependent partsηααα andζααα in Eq. (5):

fααα(z) =





−exp[−iγz(z−zp
1)], |γz/kp| ≥ ε, α4 = −,

exp[iγz(z−zp
2)], |γz/kp| ≥ ε, α4 = +,

−ikp γ−1
z cos(γzz), |γz/kp| < ε, α4 = −,

i sin(γzz), |γz/kp| < ε, α4 = +,

(35)

gααα(z) =





exp[−iγz(z−zp
1)], |γz/kp| ≥ ε, α4 = −,

exp[iγz(z−zp
2)], |γz/kp| ≥ ε, α4 = +,

kp γ−1
z sin(γzz), |γz/kp| < ε, α4 = −,

cos(γzz), |γz/kp| < ε, α4 = +,

(36)

The constantszp
1 andzp

2 are thez-coordinates of the upper and lower end of the pit or hole,
respectively. Hence, for holes we havezp

1 = D/2 andzp
2 = −D/2, for pits we either havezp

1 =
D/2 andzp

2 = D/2− dp or we havezp
1 = −D/2+ dp and zp

2 = −D/2. We have introduced
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the constant factors like exp(iγzz
p
1) to make sure that, for imaginairyγz, the moduli of the

exponents are always equal to or smaller than unity. In Eq. (35) and (36) we use the sine and
cosine functions instead of the exponential function if thepropagation constantγz is very small
as compared tokp, with smallness parameterε [26]. If we would not do this, forγz = 0 for
some mode, we would miss the mode function that is linear inz and our set of modes would
not be complete [27]. In our implementation, we takeε = 10−5. For thez-dependent parts we
now have:

ηααα(z) =





ωµ0gααα(z), α2 = TE,

γz

√
µ0

εpε0
fααα(z), α2 = TM,

(37)

ζααα(z) =





γz fααα(z), α2 = TE,

kpgααα(z), α2 = TM.
(38)

Note that the modes are propagating in thez-direction ifΓααα < kp, while for Γααα > kp the modes
are evanescent. For a square pit or hole (Lx = Ly) with Lx < λp/2 all modes are evanescent.
Finally, the (rotated) transverse components of the modes are then given by:

[
eααα(x,y,z)

hααα(x,y,z)

]
= υυυᾱαα(x,y)

[
ηααα(z)

ζααα(z)

]
, (39)

and the longitudinal components:

Eααα,z(x,y,z) =

{
0, α2 = TE,√

µ0
εpε0

ϑᾱαα(x,y)gααα(z), α2 = TM,
(40a)

Hααα,z(x,y,z) =

{
ϑᾱαα(x,y)gααα(z), α2 = TE,

0, α2 = TM.
(40b)

We note here that the normalization of the waveguide modes involves onlyυυυᾱαα , which is the
part of the transverse field that does not depend onz. This means that the abovez-dependent
part is only defined up to a constant. We have chosen this constant such that for both TE and
TM polarization the waveguide modes have the same order of magnitude.

B. The plane waves above and below the layer

The transverse components of the plane wavesEβββ ,Hβββ are divided into a part that depends onx
andy and a part that depends onz:

[
eβββ (x,y,z)

hβββ (x,y,z)

]
= υυυβββ (x,y)

[
ηβββ (z)

ζβββ (z)

]
. (41)

We will give a listing of these functions here. With:

Γβββ =
√

k2
x +k2

y, (42)

and

Λβββ = − 1
2π

, (43)
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we define the following functions that are independent ofz:

υυυβββ (x,y) =





Λβββ

Γβββ
ei(kxx+kyy)

(
ky

−kx

)
, β1 = S, k2

x +k2
y > 0,

Λβββ

(
0

−1

)
, β1 = S, k2

x +k2
y = 0,

Λβββ

Γβββ
ei(kxx+kyy)

(
kx

ky

)
, β1 = P, k2

x +k2
y > 0,

Λβββ

(
1

0

)
, β1 = P, k2

x +k2
y = 0,

(44)

ϑβββ (x,y) = Λβββ Γβββ ei(kxx+kyy), (45)

For thez-dependent part we have the following auxiliary function:

fβββ (z) =





exp[iku
z(z−D/2)], z> D/2,

exp[ikℓ
z(z+D/2)], z< −D/2,

(46)

and the actualz-dependent parts:

ηβββ (z) =





ωµ0 fβββ (z), β1 = S,

kz

√
µ0
εε0

fβββ (z), β1 = P,
(47)

ζβββ (z) =





kz fβββ (z), β1 = S,

k fβββ (z), β1 = P.
(48)

Note thatk, kz andε in the above equations are eitherku, ku
z andεu or kℓ, kℓ

z andεℓ, depending
onz. Thez-components of the plane waves are given by:

Eβββ ,z(x,y,z) =

{
0, β1 = S,√

µ0
εε0

ϑβββ (x,y) fβββ (z), β1 = P,
(49a)

Hβββ ,z(x,y,z) =

{
ϑβββ (x,y) fβββ (z), β1 = S,

0, β1 = P.
(49b)

Note that we did not take special precautions for the case that kz = 0. For the waveguide modes
in the previous section, we made sure that, when it happens that γz = 0, the set of mode func-
tions is still complete. The plane waves in the upper and lower half spaces, however, form a
continuous set, parametrized by−∞ < kx,ky < ∞. The plane waves withkz = 0 are only a set of
measure zero in the space of all plane waves and are thereforeirrelevant for the completeness.

C. The interaction integral

In this appendix we elaborate on the interaction integral that describes the interaction of waveg-
uide modeᾱαα , via the scattered field through operatorA , with another waveguide modēααα ′. We
will first write out the integral and then we will discuss the numerical implementation.
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C.1. The interaction integral

The interaction integral is given by:

〈
A (υυυᾱαα)

∣∣υυυᾱαα ′
〉

Ωp′
=

∞∫

−∞

kz

ωµ0

〈
υυυᾱαα

∣∣∣υυυS
β2

〉
Ωp

〈
υυυᾱαα ′

∣∣∣υυυS
β2

〉∗
Ωp′

dβ2

+

∞∫

−∞

ωεε0

kz

〈
υυυᾱαα

∣∣∣υυυP
β2

〉
Ωp

〈
υυυᾱαα ′

∣∣∣υυυP
β2

〉∗
Ωp′

dβ2. (50)

Please recall thatβ2 = (kx,ky) and that
∫

dβ2 =
∫∫

dkx dky. We consider one of the scalar prod-
ucts, withβββ = (β1,β2) andβ1 = S,P:

〈
υυυᾱαα
∣∣υυυβββ

〉
Ωp

=

xp
0+Lp

x∫

xp
0

yp
0+Lp

y∫

yp
0

υυυᾱαα(x,y) ·υυυβββ (x,y)∗dxdy,

= e−i(kxxp
0+kyyp

0)
Lp

x∫

0

Lp
y∫

0

υυυᾱαα(x̄p, ȳp) ·υυυβββ (x̄p, ȳp)
∗dx̄pdx̄p, (51)

where we have changed to local coordinates. This final doubleintegral is in fact a Fourier
integral that can be calculated analytically:

Fβ1
ᾱαα (kx,ky) ≡

Lp
x∫

0

Lp
y∫

0

υυυᾱαα(x̄p, ȳp) ·υυυβββ (x̄p, ȳp)
∗dx̄pdx̄p,

=
Λααα Λβββ

Γααα Γβββ





γykycp
mx(kx)sp

my(ky)+ γxkx sp
mx(kx)cp

my(ky), α2 = TE, β1 = S,

γxkycp
mx(kx)sp

my(ky)− γykx sp
mx(kx)cp

my(ky) = 0, α2 = TM, β1 = S,

γykx cp
mx(kx)sp

my(ky)− γxkysp
mx(kx)cp

my(ky), α2 = TE, β1 = P,

γxkx cp
mx(kx)sp

my(ky)+ γykysp
mx(kx)cp

my(ky), α2 = TM, β1 = P,

(52)

where the functionscp
mj andsp

mj with subscriptj = x,y are given by:

cp
mj

(k j) ≡
∫ Lp

j

0
cos(γ jz)e

−ik j zdz=





ik j

γ2
j −k2

j

[
1− (−1)mj e−ik j L j

]
, k j 6= ±γ j ,

1
2L j , k j = ±γ j , k j 6= 0,

L j , k j = γ j = 0,

(53a)

sp
mj

(k j) ≡
∫ Lp

j

0
sin(γ jz)e

−ik j zdz=





γ j

γ2
j −k2

j

[
1− (−1)mj e−ik j L j

]
, k j 6= ±γ j ,

∓1
2 iL j , k j = ±γ j , k j 6= 0,

0, k j = γ j = 0.

(53b)

Note thatFβ1
ᾱαα (kx,ky) is zero for all(kx,ky) when the waveguide mode is TM polarized and

the plane wave is S-polarized. Hence, these polarizations do not interact. For the interaction

#67559 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 16 March 2006

(C) 2006 OSA 3 April 2006 / Vol. 14,  No. 7 / OPTICS EXPRESS  2570



kx

ky

d k K1

1

2 3

4 5

6

78

910

11
12

kmax

Fig. 9. The division of the integration area into 12 domains. Not on scale.

integral we now have:

〈
A (υυυᾱαα)

∣∣υυυᾱαα ′
〉

Ωp′
=

∞∫

−∞

∞∫

−∞

kz

ωµ0
ei(kx∆x+ky∆y) FS

ᾱαα (kx,ky)FS
ᾱαα ′(kx,ky)

∗dkxdky,

+

∞∫

−∞

∞∫

−∞

ωεε0

kz
ei(kx∆x+ky∆y) FP

ᾱαα (kx,ky)FP
ᾱαα ′(kx,ky)

∗dkxdky, (54)

with ∆x = xp′
0 − xp

0 and ∆y = yp′
0 − yp

0, the distance between pitp′ and p. From the above
equation it is clear that this double integral is difficult for two reasons. First, the fac-
tor exp[i (kx∆x +ky∆y)] oscillates violently when pitp′ and p are far apart. Second, the fac-
tor k−1

z is singular fork2
x +k2

y = k2. The integrand is still integrable, but care has to be taken.

C.2. Numerical computation of the interaction integrals

Since we have to calculate a lot of interaction integrals, wehave to find a method that is both
fast and accurate. To select the best numerical integrationroutine we concentrate on the two
most difficult parts of the interaction integral: the circlein the (kx,ky)-plane where the square

root kz =
(
k2−k2

x −k2
y

)1/2
is equal to zero and the exponential factor exp(ikx∆x + iky∆y) that

oscillates violently when the two holes or pits under consideration are far apart. The square
root term would be best tackled with polar coordinates, whereas the exponential term would be
easier to integrate with cartesian coordinates. To overcome this problem, we split the integration
area in 12 domains. See Fig. 9. From symmetry properties of the integrand, it follows that it
suffices to integrate over half the(kx,ky)-plane [28]. Furthermore, in the domains 1, 6 and 11
that are situated within the circlek2

x +k2
y = k2, only the real parts need to be calculated. For the

other domains, we only need the imaginary parts:
〈
A (υυυᾱαα)

∣∣υυυᾱαα ′
〉

Ωp′
= ∑

N∈Nin

mf Re(IN)+ ∑
N∈Nout

mf i Im(IN) , (55)

with mf a multiplication factor andN a set of domain numbers:

for α1 = α ′
1 : mf = 4, Nin = {1,11}, Nout = {2,3,4,5,12}, (56a)

for α1 6= α ′
1 : mf = 2, Nin = {1,6,11}, Nout = {2,3,4,5,7,8,9,10,12}, (56b)

and with
IN =

∫∫

domainN

Iᾱααᾱαα ′(kx,ky)dkxdky. (57)
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the double integral over one of the domains. Here,Iᾱααᾱαα ′ is shorthand notation for the integrand
of the interaction integral.

The two half rings, domains 11 and 12, are called the innerδ -ring [(k−δ )2 ≤ k2
x +k2

y ≤ k2]
and the outerδ -ring [(k2 < k2

x +k2
y ≤ (k+δ )2]. The value ofδ is chosen such, that the number

of oscillations of the exponential factor inside the rings is small. However, theδ -rings should
be wide enough to contain the steepest part of the square rootfactor (typically larger than or
equal tok/10). Within the twoδ -rings, we choose a polar coordinate system. Furthermore, we
apply a substitution to get rid of the square root singularity. We then use a standard, adaptive
quadrature routine from the NAG foundation toolbox for Matlab, D01FCF [29].

Regarding the domains 1 to 10, we assume that the square root factor is sufficiently flat. In
these areas, we split the integrand in a slowly varying part and the (possibly) quickly oscillating
exponential factor. Domains 1, 2, 6 and 7 are the areas that are bounded by the inner and outer
δ -ring. We approximate this boundary linearly on a cartesiangrid. The slowly varying part is
also approximated linearly, on a cartesian grid. This linear approximation times the exponential
factor can now be integrated exactly. The domains 3, 4, 5 and 8, 9, 10 are rectangular areas,
bounded byK1 andkmax. Here, we approximate the slowly varying part parabolically and we
integrate exactly this parabolic approximation times the exponent.
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