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Abstract:  We discuss a mode expansion technique to rigorously model
the diffraction from three-dimensional pits and holes ineaf@ctly con-
ducting layer with finite thickness. On the basis of our siiohs we
predict extraordinary transmission through a single hobysed by the
Fabry-Perot effect inside the hole. Furthermore, we sthdyfindamental
building block for extraordinary transmission throughdatrays: two and
three holes. Coupled electromagnetic surface waves, ttiecbeonductor
equivalent of a surface plasmon, are found to play a key roteeé mutual
interaction between two or three holes.
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1. Introduction

The scattering from a single sub-wavelength hole in a caimyienetal layer was already
modelled in the 1940s and 1950s [1, 2, 3, 4, 5]. Apart from $sumption that the metal is
perfectly conducting, the metal layer was also assumed iofinéely thin; these assumptions
made it possible to calculate the diffraction analyticatpwever, with respect to enhanced
transmission through sub-wavelength hole arrays, astegpor Ref. [6], these assumptions are
not valid. Furthermore, it is believed that the excitatidrsorface plasmons by neighboring
holes plays an important role in the enhanced transmission.

To model this collective effect and to determine its impoce, a lot of geometries have
been studied and a lot of methods have been used. To namef@yst nfinitely long, single
slits [7, 8] and double slits [9] in metals with finite condivdy were modelled with the Green'’s
function approach. Coupled-wave analysis has been usetdy gratings of slits (see, for
example, [10, 11, 12]). Gratings that are periodic in twoelisions were studied with a modal
method [13] and with the finite-difference time-domain noettil4]. The modal method [15]
and the boundary element method [16] were used for a singtarrgular hole in a perfect
conductor.

However, the specific case of two holes and their mutualactén has not received much
attention. This is remarkable, because it is a fundamepsaéms and building block of a hole
array. Yet, especially when the two holes are a wavelengthare apart, as the corresponding
computational domain is then also large, this system is asy & calculate.

For two-dimensional structures, such as infinite slits ecutar symmetric setups, or for
periodic systems in which the computational domain is oslyaage as one unit cell, current
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Fig. 1. Problem under consideration. Multiple rectangular holes in agirieonducting
layer with finite thickness.

computer power suffices to obtain acceptable accuracy. fitteanumber of three-dimensional
holes that are far apart, however, a clever computatiomeae is needed to prevent computa-
tion times of days or even weeks.

We present a rigorous modal method, similar to the metho&efs. [17, 15, 18], that turns
our three-dimensional diffraction problem into a two-dim®nal numerical problem. Using
this method, we calculate the transmission through oneatvabthree holes and we determine
the influence that a second and third hole have on the trasemithrough the first. Parameters
such as size of the hole, distance between two holes andh#sslof the conducting layer are
varied.

For the modal method that we use, the perfect conductor gegmis essential. Hence, our
method is of quantitative value when the imaginary part efitidex of refraction is so large,
that the skin depth of the metal is small compared to the &fpéngth scales of the geometry.
This is for example the case in the terahertz and microwaeigncy regimes, where also a lot
of research is done in sub-wavelength hole arrays [19, 20jed¥er, we argue that, apart from
absorption of energy in the metal, all relevant physics &sent in our model. That also in-
cludes the surface plasmon equivalent of a perfect condwielectromagnetic surface wave.
Thus, the understanding we gain from our results will aldp hs to understand extraordinary
transmission in the optical regime.

We find that extraordinary transmission occurs for a single twhen the lowest order waveg-
uide mode is just above cut-off. This is due to the Fabry-Pesonance of this lowest order
mode inside the waveguide. Furthermore, we calculate #mstnission through two and three
holes. In order to understand the mutual interaction batwe and three holes, we normalize
by the transmisson through an identical but single holehisiway we are able to isolate the
effect that the presence of the second (and third) hole h#seomansmission through the first.
By changing the polarization of the incident light and bylagpng one of the holes by a pit, we
are able to show that coupled electromagnetic surface veatese the enhanced and decreased
transmission.

This paper is organized as follows. In the next section, wledeifine the problem under
consideration. Then, we will describe the field above andwehe layer, as well as inside
the holes by mode expansions. Matching these expressiees fie system of equations that
needs to be solved. After a few words on the numerical impfgation, we will show results
on single as well as multiple holes and pits.

2. Problem definition and system parameters

Let (x,,2) be a rectangular Cartesian coordinate system. Perpeadioithez-axis we have a

perfectly conducting layer with finite thickneBs In this layer a finite number of rectangular
holes and pits are present. See Fig. 1. A hole is a rectangyliader that is open on both
sides and is as long as the thickness of the layer; a pit hapam end at one side, either
atz=D/2 or atz= —D/2, and a depthl, < D. The sub- or superscrigtdenotes the number
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of the pit or hole. The lengths in the andy-direction areL.{ and L{,’, respectively. The cross-
section of a hole or a pip is given byQp = { (x,y) | X§ <x< x5 +Lf, y§ <y<y§+LJ}.
The halfspaceg > D/2 andz < —D/2 are filled with homogeneous dielectrics with index of
refractionn, andny, respectively. Every hole and pit is filled with a homegersediglectric
with index of refractionnp. The corresponding relative permeabilities age= na, & = nf,
andey, = n%. The magnetic permeability jg everywhere.

A monochromatic incident field can originate from above anttbm below. The wavelength
of the field in free space is given by. The local wavelengths ard, = A/ny, Ay = A /ng
andA, = A /np. The corresponding wave vectors &ge= 211/ Ay, ky = 211/A, andkp = 211/ Ap.
The harmonic time dependence of the electromagnetic fiedtén by the factor exp-iwt),
with w > 0, which will be omitted throughout.

3. Mode expansions

In each pit or hole, the electromagnetic field is expandedsetaf propagating or evanescent
waveguide modes. In the next section, we describe theseantiée are characterized by the
geometry of the pit or hole they live in, by their polarizatjdoy their spatial frequency and by
their direction of propagation.

In section 3.2, we describe the electromagnetic field abodebalow the conducting layer.
This field is expanded in propagating and evanescent planesy¢hat are characterized by
their polarization and their direction of propagation.

3.1. Inside the holes and pits

Solving Maxwell’'s equations inside the pits and holes mdarding solutions of the scalar
Helmholtz equation for every Cartesian component of thetedenagnetic field. The boundary
conditions imply that, at a perfect conductor, the tangemiectric field as well as the nor-
mal magnetic field vanish. We then find solutions that areedalfaveguide modes. These are
propagating or evanescent in thdirection:

50 ]- [ )

with propagation constan given by [21]:

Vo= /K8 — V2 — V2, &)

wherey andy, determine the spatial behaviounirandy-direction:

my 7T my 7T
Y = LQ’W_ Ly 3
with m, andm, integers. The bold subscrigt= (a1, a2, a3, as) is a multi-index that describes
four discrete variablesy; (or p) denotes the pit numbes, indicates the polarization (TE or
TM), as is determined byn, andm, anda, specifies whether the mode is travelling upwards
or downwards.

Because the matching conditions at the interfaces+D/2 only involve thex- andy-
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component of the fields, it is convenient to introduce th®fing notation:

—Ey
e(x,y,z) =1, x [I[; x E(X,y,2)] = ( —-Ey ) , (4a)
0
_Hy
h(x,y,2 =l;xH(xy,z) = Hx |, (4b)
0

with T, the unit vector in thez-direction. In this way, the lower caseandh are the rotated
transverse components of the electric and magnetic fieldh&umore, we split the transverse
components of the modes into a real part that depends amdy and a complex part that

depends oz
[ eﬂ(X7Y7Z) 1 :U_(X y) [ na(Z) ]
hd (X7 y’ Z) o Za(z) 7

where the subscrigt = (a1, a2, a3) and thus the transverse vectorfielg do not depend on
the direction of propagation of the mode.
We normalize the real parts of the modes by [22]:

& va)a, = [[ Vaxixy) vax(xy)" + vay(xy) vay(ey) ] dkay =1 (6)
Qp

®)

where the superscriptdenotes complex conjugation [23]. Furthermore, the modeshog-
onal such that for different modesanda’:

(valvg)g, =0, ifa+a. @)

Note that the time averaged Poynting vector inzttirection of a mode is given by:

1 * * 1 * * *
Suz=5Re(EaxHay—EayHax) = 5Re(Nala) (VaxVax+VayVay), ()

and, hence, the scalar prodyoiy | UE)Qp of a modea with itself is proportional to the flow of
energy of this mode through a plane of constant

For a full listing of the waveguide modes, see Appendix A. Tilnede functiongEq,Hg)
are complete in the following sense: any time harmonic edetagnetic field with frequenay
satisfying the source-free Maxwell equations inside thiesxand pits can be expressed as a
linear combination of these mode functions. HencezfoetweerD/2 and—D/2, we have:

EPY(r) ] _ Ea(r)
|: Hpit(r) —Zaa Ha(r) ) (9)
for some expansion coefficientég that will be determined by matching the field inside the
holes and pits to the field above and below the conducting.laye

3.2. Above and below the layer

The total electric and magnetic field above and below the wctiny layer consist of the

(known) incident field, its corresponding reflected fieldaftihesults from the incident field

when the conducting layer does not contain any pits or haled)the scattered field (that re-
sults from the presence of the pits and holes):

En ] [EM L [EM T, [EM
{Hm}‘{w(r) lorr) || we) |- (10)
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The reflected field can easily be calculated from the incifleltt and we therefore consider the
sum of the incident and reflected field to be known. The scadtBeld can be written as:

ES(r)} / [Epm]
{ Hr) | 4 P [ Hg(r)
where the coefficientbg are still to be determined ar((EB, Hﬂ) are plane waves with wave

vectork, above the layer ankl, below the layer. The transverse componefikisky) of the
wave vector are real and tkecomponent is given by:

Ky = +/ kG — k2 — K3, (12a)
ky=—/k2— k& — K. (12b)

The sign before the square root follows from the assumeddependence eXp-iwt) and from
the fact that the scattered field propagates away from theéuwmiimg layer. The subscrift =
(B1,B2) is a short notation for the polarizatioB) and thex- andy-component of the wave
vector 3, = (k«,ky)). The polarization can either be S or P. S-polarized meaatstie z-
component of the electric field is zero (and thus correspdaadEE polarization inside the
holes and pits), while for P-polarization tzecomponent of the magnetic field is zero (TM
polarization). Note that the integréildf, is a shorthand notation fdfif dk,dky.

We use Eqg. (4) to obtain the transverse components of the planes and, as before, we
split these into a part that depends»oandy and a part that depends an

epxy2) | 16
[ h(x,y.2) ] =Up(Y) l %2 ] | (13)

These are given in Appendix B.
Analogous to the normalization of the waveguide mode famstj we normalizevg such
that:

(0] 0)z = [ [0 (%) U x(X)" + Upy(X.Y) Upry (x.9)°] Xy = G 5 (B2~ B5).
R2
(14)
Note that the integration is over an entire plane. The drés the Kronecker delta and the
second is the two-dimensional Dirac delta function:

1 00 0 )
5(B2) = 4 / / dhkV axdy, By = (ke ky). (15)

—00 —00

Analogous to the scalar product for the waveguide mode iomst the scalar product of two
identical plane waveéuﬁ | UB>R2 is related to the flow of energy of the plane wave through a
plane of constarz.

Because of the use of rotated transverse electric and nmadjieéds, we have the following
convenient relations between the transverse componeti® @lectric and the magnetic field
of the plane waves:

ks
hg(X,y,2) = ——eg(X,y,z =S 16a
B( )Y ) wHo B( )Y )7 Bl d ( )
WEE
hﬁ (X7 Y, Z) = k 2 eB (Xv Y Z)v ﬁl =P (16b)
Z
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Furthermore, every time-harmonic solution of Maxwell'siatjons with frequency in the half
spacez > D/2 andz< —D/2, that propagates away from the conducting layer can benebguh
in terms of the plane wave&g,Hg). In particular, we have, for the scattered transverseréect
field:

Exy2) =y / b €5 (x.,2) Bz, (17)
B o

where, as before, the integration oyris a short-hand notation for integrating ovgrandky.
By using Eq. (14) and (16) we define an operatdrthat works on any two-dimensional
vectorfieldf : R? — C2:

A () = lo? szo (tu3,)._, v5, 6 +7 % (f|vp)., V5, dBz, (18)

where the superscript S or P naturally means fat S or 31 = P. This operator is basically
the integral version of the operatg}‘%x that can be applied to the electric field of a plane

wave to calculate the corresponding magnetic field. Please that the factor%‘EO in the

second integral is singular fo¢ + k§ = w?egollp. This is, of course, the fingerprint of the
coupled electromagnetic surface waydthough the integrand is integrable, in the numerical
implementation prudence is necessary.

In any planez is constant and in particular far= +D/2, the scattered transverse magnetic
field can now be expressed in terms of the electric field:

h*(x.y,£D/2) = o/ [€%(x,y,+D/2)]. (19)
This equation holds for allx,y) with —co < X,y < co.

4. Matching at the interfaces

At the interfacez = +D/2, we have the following relations for the tangential eliecand the
tangential magnetic field:

Piodid e V(xy),z=+D/2 (20a)
P =hith+hs (xy) €| Qay 2=+D/2, (20b)

ay

Here, Qq, is, as before, the cross-section of the pit or hole that isohby indexas;. In
Eqg. (20a), because the layer is perfectly conducting, theafuthe incident and reflected tan-
gential electric field vanishes at= +D/2, hence:

fl=¢"  V(xy),z=+D/2 (21)
Using this together with Eq. (19), we have for Eq. (20b):
WPt 41+ o/ (1), (22)

which is valid for all(x,y, +D/2) within the holes and pits. The waveguide modes that consti-
tute e’ andhP vanish outside the pits and holes, as indicated by the rgietdnnctionrl in
Eq. (31) and (32) in Appendix B.
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In order to obtain a system of equations that is suitable fonerical implementation, we
project this equation on the functiary; by using the scalar product defined in Eq. (34):

> aar {a (£D/2) = ) 2aNla(+D/2) (/ () [Ug)q, = (N +h" |vg)g (23)

where the summation over, is a summation over the two directions of propagatian is

not contained ira). This equation is valid for alfr’, hence for alla; (counting the number

of holes and pits), for alér; (TE and TM polarization) and for attz (the mode numbersyy
andm,). Consequently, solving the system of Eq. (23) foredlland forz= +D/2 gives the
waveguide mode expansion coefficieags Note that the term on the right acts as a source term.
The factor{sz% (Va) | u;)Qd is called the interaction integral. Physically speakihggiscribes

the interaction of a waveguide mode via the scattered plane waves through operator
with another moder’. In Appendix C we will discuss some of its properties and ahoeétto
compute it numerically.

To obtain an expression for the scattered field, we use Eq.t¢lgroject Eq. (21) for the
tangential electric field on the plane wave mode funcégn

bg = Zaa<ea e (24)

In this way, the scattered field can be expressed in the ardpbtof the modes of the pits and
holes:

[ o) ] - BZE/ % (a [€g) [ E’;((?) } dBz. (25)

It can be shown that this integrand is integrable everywlexeept, possibly, at the edges of the
holes and pits. The occurrence of infinite fields near infipgéarp, conducting wedges is well-
known [24]. For a protruding, right angle, perfectly contiig wedge, the field components
perpendicular to the sharp edge may become infinite ilké3, wherer is the distance to
the edge. The field components parallel to the edge remate.fiurthermore, the charge
density always remains finite. At an intruding wedge, like thner part of a waveguide, all
field components remain finite.

With Eg. (23) and (24) we have formulated our three-dimamali@ectorial scattering prob-
lem as a linear system for the amplitudes of the waveguideesadly. Since these modes
are parametrized by two parameteyg §nd y,), we have thus reduced the three-dimensional
scattering problem to a two-dimensional numerical problem

5. Numerical implementation

Of course, when implementing our diffraction problem intocamputer code we will have to
truncate the infinite series of waveguide modes. For laggand y, and depending on the
sizeL{ andL{, the mode of concern will be evanescent in thairection. For large imagi-
nary y,, the mode will only penetrate into the hole or pit a very sndadtance. It is therefore
reasonable to expect that only the modes with a small imagipawill contribute to the total
result. Roberts [17] used 168 modes, while Gai¢idal and coworkers [15] used only one. To
compare the results of two calculations, one with a nuniband the second with a smaller
numberN, we define the following measure:

IS (€0&p|Ey — En|?+ Ho[Hg — Hn|?) dxdydz
Vp

Fi = : 26
NN \J/ﬂ (€0€p|Ex|? + Ho|Hg|?) dxdydz (26)
p
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Fig. 2. Relative errof 5 with N = 2600 as a function of the number of waveguide
modes K = 120,440,960, 1680). Setup is a single hole with a perpendicular incident, lin-
early polarized plane wave. As a referencé\1s also plotted.

1.02

——N=120
- - -N=440
B, s N = 960

<~ N = 1680

Electric field (a.u.)
Electric field (a.u.)

0 0.05 0.1 o 0.05 0.1
X (A) X (A)
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Fig. 3. Line scan of the absolute value of theomponent of the electric field in a plane
with constantz, through the center of the hole, for various numbers of waveguideemod
Setup is a single holéx = Ly = D = A /5, with a perpendicular incident, linearly polarized
plane wave.

where the integration is over the volurkig of the hole (or pit). Here(Eg,Hy) is the elec-

tromagnetic field inside the hole for which the series aradated afteN waveguide modes
and(En,Hn) is the electromagnetic field inside the hole obtained bydation afteiN waveg-
uide modes. Hence, this measure corresponds to the ertar anergy.

Fig. 2 shows this error as a function of the number of unknofens few typical setups.
It is clear that only several hundreds of unknowns per holpibare enough to model our
three-dimensional problem accurately, provided thathiekhess of the layer is not too small.

Fig. 3 shows a line scan of the electric field inside a single,h@r various numbers of
waveguide modes. Fig. 3(a) shows the field at the entran¢edfdle, whereas Fig. 3(b) shows
the field in the middle of the hole. Large humbers of waveguidales are needed to show
the singular behaviour at the rim of the hole, as is clear ffogn 3(a). Inside the hole, where
the fields are smooth and regular, the difference with regpete electric field between 120
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waveguide modes and as much as 2600 waveguide modes is nbtmawe than 1 percent.
Hence, if the singular behaviour of the fields dominates tieti®n, as is the case when the
conducting layer is thin as compared to the wavelength, mdenexpansion technique is prob-
ably not the most suitable method.

A small system of equations with only several hundreds ofomins is solved on a regular
desk top computer in only a few seconds. Consequently, nwapating time is spent on
calculating the interaction integral, which takes a fewrsois discussed in Appendix C, these
integrals contain an exponential factor that oscillatesevitly when modex anda’ live in
pits or holes that are far apart. Moreover, the integral @iostthe factor 1k, that is singular
on the circle given by?2 + k§ = k2. As stated before, this is the fingerprint of theupled
electromagnetic surface wavehe integrand is still integrable, but a careful implenagion is
required.

However, because the interaction integral only involves tlanez = +£D/2, it does not
depend on the following important parameters: the thickiiz®f the conducting layer; the
index of refractiom,, inside the pit or hole; whether the scatterer is a pit or a aotk in case of
a pit, its depttdy. Consequently, once the interaction integrals are cafedif@r a certain setup,
we can vary these parameters with negligible computatieffatt. This is a great advantage
of our method. The possibility to construct a library of edéded interaction integrals is also
beneficial.

6. Extraordinary transmission

In this section we discuss our first results. Calculationsevdene for single as well as multiple
holes and pits. For all calculations, we took into accountialper of 440 waveguide modes,
such that the error in the energy is less than 1 percent. Adsrand pits are square(= Ly =L)
and the index of refraction above and below the layer as wéfiside the pits and holes is taken
to be unity.

In the following we (among other things) calulate the endhgy through a hole for various
setups. This energy flux through a plane with z; is calculated directly from the coefficients
of the waveguide modes in the following way:

//Szdxdy: ZZZ%Re{a% ag“* N (zo) g4(20)* ’ 27)
p

a,
Q 4 dq

wherea, denotes the direction of propagation of the waveguide middee that two waveguide
modes that have an opposite direction of propagation btiatteaotherwise identical together
produce a non-zero energy flux.

6.1. Extraordinary transmission through a single hole

Fig. 4 shows the energy flux through a single hole as a funaifahe layer thickness. The

energy flux is normalized by the energy that is incident oratlea of the hole (the scalar optics
normalization). Results are shown for various sizes of tile.lFor sizes where all waveguide
modes are below or at cut-off, the amount of energy cominguidiin the hole decreases expo-
nentially with the layer thickness, as expected. When theeébwrder modes are just above
cut-off a strong modulation of the energy flux with layer #ress is seen. The period of this
modulation is half of the effective wavelengthi{2y;) of the propagating mode, indicating that
the interference of this mode with its own reflection is resble for the increased and de-
creased transmission. It follows from Fig. 4 that if the |etverder mode is just above cut-off,

extraordinary transmission of a factor of abous $eems possible. If the size of the hole is
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Fig. 4. Energy flux through single hole as a function of layer thicknessnalized by the
energy that is incident on the area of the hole. Incident field is a peiqéad linearly
polarized plane wave. The hole is squdrg:= Ly = L with different values ot. for every
curve, as listed in the legend. The number at the right of each curve isutnéer of
waveguide modes above cut-off.

1AU. 3
05 1x10°AU.
-90 -90 U

(@) Ly =Ly = 0.2A (b) Lx =L, = 0.6 © Ly=Ly=A

Fig. 5. Polar plot of the near field scattering from a single square pit witpthd = A /4.

For different sizes, the Poynting vector in the radial direction is shotahalf circle with
radiusA, with its center coinciding with the center of the pitzat D/2. Black line is for
the (y, z)-plane, gray for théx, z)-plane. Incident field is a perpendicular plane wave, with
its electric field linearly polarized along thedirection. The radial scale is arbitrary, but
equal for all three figures.

increased further, more and more modes are propagatinghanabtmalized energy flux de-
creases below unity. Going from= A to L = 2A, the energy flux increases to just below unity.
For large holes, one expects an energy flux of unity, of couirse energy flux that is shown,
is calculated directly from the coefficients found for theveguide modes and hence, it is not
necessarily the energy that will travel along thaxis and, possibly, arrive at a far field detector.
However, because of the perfect conductor assumption, efchés energy is absorbed.

Fig. 5 gives information on the direction along which mostgy is scattered. It shows polar
plots of the energy, scattered from a single pit with deptd. Shown is the Poynting vector
in the radial direction along a half circle with radius of amavelength, hence the scattering in
the near field. The scattering in the plane in which the iniddectric field is polarized can
be non-zero along the interface, because the corresportiogic field then points in the
direction. The scattering in the perpendicular plane canbeoalong thez-direction, for the
tangential field at a perfect conductor must be zero. For wiflitsizeL = A /5 the scattering
is like that of a dipole, whereas for larger pits the scattgis mainly along the optical axis
(the z-axis).

#67559 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 16 March 2006
(C) 2006 OSA 3 April 2006/ Vol. 14, No. 7/ OPTICS EXPRESS 2562



E' perpendicular to line that connects centers E' parallel to line that connects centers

—e— two holes, K

I
~

~—u— three holes,

~

P
®

A\

"‘ » ko’-:?,‘.! ‘\:—}‘%—%«"“ o«

—e— two holes, k‘x = k‘y =0

[
o

I3
=

I
~

= @ =two holes, k‘x =k/10, k'y =0

~ S o—tttse. ¢+ two holes, k‘x:fk/lo‘ k‘y:O

——
—=— three holes, k, = k‘y =0
0.2

05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
distance between centers of holes (A) distance between centers of holes (A)

(a) (b)

E' parallel to line that connects centers

H
normalized energyflux through one hole

normalized energyflux through one hole

o
®

e
~

"
N

z
—e— two holes.
- ® - one hole, one pit at upper side|
,/\ one hole, one pit at lower side X two holes

-

] A at upper side
|

2 o B V=

one hole, one pit
atlower side

l three holes

l one hole, one pit

o
©

normalized energyflux through one hole
o
o

o
2

o

05 1 15 2 25 3 35 4
distance between centers (A)

(© (d)

Fig. 6. Energy flux through a hole, normalized by the energy flux tti@mgdentical single
hole, as a function of the distance between two holes (or one hole andthrieigs and
holes are all square, withy = Ly = L = A /4. Incident field is a linearly polarized plane
wave, with polarization as stated at the top of the figures. Incidence iggjvesipendicular,
except for the dashed and dotted lines in Fig. 6(b). Hlé{eé, 0 means that the plane of
incidence is thgx, z)-plane. Fig. 6(d) shows cross-sections of the four used geometries.
The bold arrows denote where the energy flux is calculated. The thilafebe layer

is A /2 and the depth of the pits Xs/4.

6.2. Extraordinary transmission through multiple holes

In Fig. 6, we show the effect that the presence of a secondhardihole or pit have on the
energy flux, as calculated with equation (27), through ttst finle. As a function of the dis-
tance between the centers of the two or three scatterergntirgy flux through one hole is
calculated. This energy flux is normalized by the energy fhueuigh an identical, but single
hole, also calculated with our method. With this specialhmalization, we are able to isolate
the effect that the presence of the second and third scaltave on the transmission through
the first. The incident field is again a linearly polarizedndavave. To distinguish the two
basic directions of polarization we define a reference pthrnmugh the line that connects the
centers of the scatterers and thaxis. The electric field of the incident plane wave is either
directed perpendicular to this plane or else parallel ®phane. Fig. 6(a) shows the normalized
energy flux through one of two holes and through one of thréeshfor perpendicular polar-
ization. A modulation of the energy flux as a function of digta between the centers of the
holes only occurs for holes that are less than two wavelsraplart. We believe that enhanced
or decreased transmission in this case is caused by theimgublevanescent fields scattered
from one hole to the other and/or by polarization rotatiothatcorners of the hole. The solid
lines in Fig. 6(b) show the same calculations, but now foafarpolarization. The modulation

#67559 - $15.00 USD Received 27 January 2006; revised 16 March 2006; accepted 16 March 2006
(C) 2006 OSA 3 April 2006/ Vol. 14, No. 7/ OPTICS EXPRESS 2563



E parallel to line that connects centers

15

0.5

—e— | = 0.49 A, scalar optics normalization

«e | =0.49 A, normalized by energy through single hole|
L = 0.6 A, scalar optics normalization
L = 0.6 A, normalized by energy through single hole

normalized energy flux trhough one hole
4.3
.
.

1 15 2 25 3
distance between centers of holes (\)

Fig. 7. Comparison between the scalar optics normalization (solid line) arsirthle hole
normalization (dashed line). The vertical axis shows the energy fluxighrone of two
holes, the horizontal axis the distance between the centers of the two Hoéelkoles are
square, witl. = 0.49A (black) andL = 0.6A (gray). The thickness of the conducting layer
isA/2.
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Fig. 8. Cartesian components of the Poynting vector in a plane of comzstatra distance
of A /20 below the metal layer. Gray scale is in arbitrary units, the same for atiefig
The layer contains two holes withy = Ly = A /4 and the thickness of the layerig2. A
parallel polarized plane wave is incident from above, perpendicul&édnce. Top figure
corresponds to a maximum in energy throughput, lower figure to a minirSe® arrows
in Fig. 6(b).
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of the energy flux is now also present for large distancesdmtvthe holes. Its period is equal
to the wavelength of the incident field. Its amplitude forelholes is twice the amplitude for
two holes. Furthermore, the amplitude is proportional ® itiverse of the distance between
the centers of the holes, as expected for a cylindrical wié¥lee propagation direction of the
incident plane wave is slightly tilted (dashed and dottee lin Fig. 6(b)) then a phase shift
occurs that is equal to the delay that the incident field égpees in reaching the farthest hole
as compared to the nearest hole. Fig. 6(c) shows, for thddntifield polarized parallel, the
normalized energy flux through a hole in the presence of a it pit has its open end at the
upper side (dashed, black line) or at the lower side (sot@ly {ine). The field is incident from
above. The modulation period for the latter is half that &f finst. Furthermore, the amplitude
for both cases is much smaller than for the case of two hotdisl(black line).

Fig. 7 shows a comparison of the usual scalar optics noratadiz, where the transmission
is normalized by the energy that is incident on the area ofitie, with the normalization used
in Fig. 6. The setup is two square holes, at varying distafi@oh other. The incident field
is a parallel incident plane wave. Shown is, again, the trésson through one of these two
holes. The transmission, when normalized by the transamgsirough an identical but single
hole, always varies around unity. Hence, the presence siitend hole can lead to an increase
as well as a decrease in transmission. However, when thar smatics normalization is used,
we already know from Fig. 4 that the layer thickness has anénfte on the transmission. This
influence is of another nature. For holes that are so smalathaodes are evanescent (shown
in black), the transmission decreases exponentially waigierl thickness. When the size of the
holes is such that at least one mode is propagating (showray) the Fabry-Perot effect can
cause enhanced transmission for a single hole.

We think that, for the cases in which the incident electritfie polarized perpendicular to
the reference plane, the enhanced and reduced transmikatooccurs when the single hole
normalization is used, is mainly caused by waves Witk O that are scattered along the metal
surface. These scattered waves cause a periodicity of demggle when two scatterers at the
same side of the metal layer contribute and a periodicityatff the wavelength when there is
only one source, as is the case when one hole is accompangg@ibwith its open end at the
non-illuminated side. In this case, the surface wave thexd#ted at the exit of the hole travels
to the pit. It there excites another surface wave that teadvatk to the hole and interferes. This
results in a phase shift that corresponds to twice the disthetween the hole and the pit. See
also Ref. [9]. The doubling of the amplitude for three holesampared to two holes also fits
nicely in the picture of the interfering surface waves.

For a perfect conductor, a wave propagating along the sukféit its wave vector equal to
the wave vector of the incident light, is the analogue of dag@ plasmon. It is often stated
that perfect metals do not support surface plasmons. Hayweecbelieve that the expression
surface plasmoifor surface plasmon polaritgris confusing. The endingon suggests a sort
of localization. For a surface plasmon, as described byetample, Raether [25], this means
that it is bound to the interface between the metal and tHeatiéc. The derivation by Raether
of the surface plasmon wave vector (which is only valid foradifiterface) is also valid for an
interface between a perfect conductor and a dielectricn;Tthe plasmon wave vector is just the
wave vector of the light. The penetration depth inside théahis zero and the charges inside
the metal oscillate only in the plane of the interface betwis® metal and the dielectric. The
plasmon - or, bettegoupled electromagnetic surface wavhen has a constant field strength
in the half space above the metal and is not bound to the sufféie existence and the physical
nature of the phenomenon, however, are the same for bothdactam with finite conductivity
and an idealized perfect conductor. The only differenckadinite decay length and absorption
caused by finite conductivity.
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Fig. 8 shows the three cartesian components of the Poynéomwin a plane that id /20
below the metal layer. The metal layer contains two squalesh®he small arrows in Fig. 6(b)
indicate the data points for which we calculated the nead islshown in the upper and lower
figure. Hence, the incident electric field is polarized in #direction. This means that the
wave along the surface is mainly propagating energy inxtdé@ection. For the two setups,
the difference is indeed largest for thkeeomponent of the Poynting vector. Note that, near the
holes, especially in the upper figure, theomponent of the Poynting vector points towards the
metal layer.

7. Conclusion

We have described a mode expansion method to rigorouslylasdcthe diffraction by a per-
fectly conducting layer with finite thickness, that contiectangular pits and/or holes. The
electromagnetic field above and below the conducting lasyeritten as an integral over plane
waves. These plane waves can be S- or P-polarized and théggappagating or evanescent.
The field inside the pits and holes is expanded into waveguigges, that can have TE or TM
polarization and can also be propagating or evanescentstrsyof equations is derived by
matching the tangential field components at the interfakgsinknowns, this system only con-
tains the expansion coefficients of the waveguide modessatiteiefore very small. For each
pit or hole with a size that is of the order of the wavelengthhef incident light, about 400
waveguide modes are sufficient for an accuracy in the endrtgse than one percent. Once
the system of equations of a particular diffraction geognistcomposed, important parameters
such as the thickness of the conducting layer and the indesfigiction inside the pit or hole
can be varied with negligible computational effort.

We have shown results on extraordinary transmission thraiggle as well as multiple
holes. For a single hole, with transverse sizes such thabwest order waveguide mode is just
above cut-off, a strong modulation of the transmitted eparga function of layer thickness was
obtained. This is due to the interference of this lowest ondede with its own reflection (the
Fabry-Perot effect). For two or three holes, a strong mdatuian the transmitted energy was
found as a function of the distance between neighbouringshdiut only for one polarization
of the incident field. Since we normalize the transmittedrgyndy the energy transmitted by
a single, identical hole, the displayed increase and dserisaonly due to the presence of the
second (and third) hole. The fact that this modulation isllygpresent when the incident field
is polarized in the perpendicular direction clearly poteta plasmon mechanism. Actually, the
termcoupled electromagnetic surface waveuld be more appropriate, as the boundedness of
this kind of wave depends on the conductivity of the metal.

Except for absorption, all relevant physics is present eriodel. This means that, apart
from the microwave and terahertz frequency regimes, thdtesfound can also be of use in the
optical domain, as long as the penetration depth inside #talrs not too large as compared
to the thickness of the metal layer and the distances betthedmoles or pits.
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A. The waveguide modes

We here give a complete listing of the waveguide modes. Ttagao transverse components of
the modes are split into a transverse part and a part thahdsjpaz

€a(X,,2) Na(2)
= UE(Xa y) . (28)
ha(X,Y,2) la(2)
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With:
rﬂ =/ )/)%+V$7

(29)

and
2(LRLY) M2, if my# 0andm, # 0,

a— -2
{\/E(LQL)F,’) , ifmy=00rm,=0,
we first define the following auxiliary functions:

(30)

¥ COS( Y Xp) SIN(K Yp)
— SNV Xp) COS Y Yp)
Y COS Vs Xp) SIN(K Yp)
¥ SIN( Vi Xp) COS K Yp)

N _ _
a

], a; =TE,

Va(Xp,Yp) = (31)

N
ra rl (Xp7Yp)
a

], az=TM,

a> =TE,

a,=TM,

—iAa Ta M(Xp,Yp) COS Y Xp) COS( ¥ Yp),

o B B (32)
iNg Mgl (Xpayp) Sin(%(xp) Sin(Vpr),

19&()?p7)7p) = {

where we have introduced local coordinates for every pitobe:x, = x— xgjp =y-— yop. Fur-
thermore, the functiofl(xp,yp) is a rectangle function that indicates that the mode funstio
are identical to zero outside the cross-sectional areaeqf-th hole:

M= [H(Xp) — HXp = LY)] [H(Yp) —H(Yp —LY)]

where Hx) is the Heaviside step function. By using (31) it is easy to the two different
modes are orthogonal in the sense:

(33)

(vava)q, = / / [ua,x(x,y) Vg x(%Y)" + Uay(X,Y) U;/,y(x,y)*} dxdy=0, a#a’.
Qy
(34)
Hence,{ g } is an orthonormal system with respect to the scalar pro®4dt (
The following auxiliary functions are needed for thdependent partgg andly in Eq. (5):

—expl-iy(z— 7)),

expliy(z—2)],

IVo/Kp| > €, 04 = —,

lVz/kp| > €, 04 =+,

fa(z)=4¢ L (35)
—ikpysteosyz2),  |yp/Kpl <€, 04 =—,
iSin(VZZ)7 |Vz/kp| < E,04=+,
exp—iv(z—2)], |ye/kpl > €, a8 =—,
expliyy(z—2)],  |Ve/kpl > €, a8 =+,

Gal2) = Lo (36)
kpyy “sin(y22),  |Vz/kp| <€ 0a=—,
cog¥;2), [Vz/Kpl < €, Q4=+,

The constantg} andz) are thez-coordinates of the upper and lower end of the pit or hole,
respectively. Hence, for holes we hafe= D/2 andz) = —D//2, for pits we either have] =
D/2 andz) = D/2—d, or we havez] = —D/2+d, andZ) = —D/2. We have introduced
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the constant factors like efiy,z}) to make sure that, for imaginairy, the moduli of the
exponents are always equal to or smaller than unity. In Es). §8d (36) we use the sine and
cosine functions instead of the exponential function ifgh@pagation constant is very small
as compared tép, with smallness parameter[26]. If we would not do this, fory, = 0 for
some mode, we would miss the mode function that is linearand our set of modes would
not be complete [27]. In our implementation, we take 10-°. For thez-dependent parts we
now have:
WHoYa (2), az =TE, .
Na(2) Voo /B t0(2), ap=TM, (37)

Epéo
Zf 9 = TEa
Za(2) = V:fa(2), a2 (38)
KpOa(2), a>=TM.

Note that the modes are propagating inzkdirection if ¢ < kp, while for ' > kp the modes
are evanescent. For a square pit or hale= Ly) with Ly < A,/2 all modes are evanescent.
Finally, the (rotated) transverse components of the modethan given by:

[ cay 1 Contey [ no(2 ] 0
ha (X,Y,2) {a(2)
and the longitudinal components:
Eas(XY,2) = {0’ g 2=TE (40a)
t0 a(Xy)%a(2), a2=TM,
a (X z =TE
Ha 2(y.2) = {g:m Y) Ga (). T (40b)

We note here that the normalization of the waveguide modesvies onlyug, which is the
part of the transverse field that does not depend. arhis means that the abovedependent
part is only defined up to a constant. We have chosen thisanstich that for both TE and
TM polarization the waveguide modes have the same order ghituale.

B. The plane waves above and below the layer

The transverse components of the plane wags g are divided into a part that dependsyon

andy and a part that depends an
eg(X,Y,2)
hp(x.y,2)

A,.\
NN

] =Ug(X,y) l Z:: § ] (41)

We will give a listing of these functions here. With:

Fp=/k2+k2, (42)

and 1
B — — E_[v (43)
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we define the following functions that are independert of

Ng . ki
i é(kxx+kyy) Y -3 k2+ 2 >0
I_I} —kx ) Bl y P ky )
0 2,12
/\B 1 s B]_:S,kx+ky:0,
vg(xy) = A ) (44)
B gi(kectky) ( X ) Bi=Pk+kZ>0
I',; ky * ky
1 2, 1.2
Ng 0 ) Bi=P ki +kj=0,
8p(xy) = Aggelkoxtioy) (45)

For thez-dependent part we have the following auxiliary function:

e {exp[ikg(z—D/Z)], 2>D/2, )
expliki(z+D/2)], z<-D/2,

and the actuat-dependent parts:

wHo fg(2), B1=S.
ng(2) = (47)

kz\/gfp(Z% PL=P,
k:fg(2), BL=S,
%@ {k 32, PL=P

Note thatk, k,; ande in the above equations are eithgr k! ande, or kg, k§ andeg,, depending
onz Thez-components of the plane waves are given by:

(48)

_ o, PL=S5, 49
p.2(xY,2) = \/gﬁp(x,y)fﬁ(& Pr=P, e
o 1003,7) = {g,,(x,y) fa(2), Zii (49b)

Note that we did not take special precautions for the cagéhaO. For the waveguide modes
in the previous section, we made sure that, when it happeg;th- 0, the set of mode func-
tions is still complete. The plane waves in the upper and tdvedf spaces, however, form a
continuous set, parametrized byo < ky, ky < . The plane waves witk, = 0 are only a set of
measure zero in the space of all plane waves and are thene@exant for the completeness.

C. The interaction integral

In this appendix we elaborate on the interaction integratl describes the interaction of waveg-
uide moden, via the scattered field through operatdt with another waveguide moae. We
will first write out the integral and then we will discuss thenmerical implementation.
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C.1. The interaction integral
The interaction integral is given by:

(o 0a)|vg)a, = [ o (o

s _
UBZ>Q,, <U"/

a UEZ>Q,, <u"_/

Please recall thgk = (ky, ky) and thatf dB, = [/ dk«dky. We consider one of the scalar prod-
ucts, withB = (B1, 32) andf; = :

s *
Uﬁ2>Qp, dBZ

u[§2>;’y dBo. (50)

Ko+ yp+LY
<UE|UI3>Qp:/ /UE(XJ)-Uﬁ(XvV)*dXdy’
5%
Ly
i (kxS +kyyB) // a(Xp,Yp) - Ug (Xp,Yp) ™ dXp dXp, (51)
00

where we have changed to local coordinates. This final doulégral is in fact a Fourier
integral that can be calculated analytically:

Ly
FE k) = [ [ 0a(%0.55)-Up (R, Tp)" 6% 0%,
00
YKy i, (Kx) SPny(ky) + Yok S, (Kx) Cr%y(ky)v a; =TE,B1 =S,
_ Nal\g ek i (k) S, (Ky) — ks (k) el (k) =0, @2 =TM, B =S
Falp | WkxCh (k) Srey(ky) — Yy S, (Kx) C"E‘y(ky)v a, =TE, B =P,
Yk Cl (Kx) s, (Ky) + Yk Sin, (k) i, (Ky), a,=TM, B, =P
(52)

where the functionsfy, andsf, with subscriptj = x,y are given by:

iki
: i L= (CDme ] g 2y,
c? (ki z/ ' coqyiz)e kizdz = 53a
mJ( J) 0 S(VJ ) %LJ, kj :iyj,kj 7&07 ( )
Lj, ki=vy; =0,
Yi e
5 e (L (CDme ], k£ 2y,
P (ki) — Cikizg, ) TN
Smj(kl)—/o sin(yjz)e “i*dz= +1iL;, kj = +y;, kj #0, (53b)

Note thatF (kx,ky) is zero for all(ky,ky) when the waveguide mode is TM polarized and
the plane wave is S-polarized. Hence, these polarizationsotl interact. For the interaction
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Fig. 9. The division of the integration area into 12 domains. Not on scale.

integral we now have:

(o (UE)|Ua7>Qp, / / w—:me'("xﬂﬁ"vﬂv) Fa (k, Ky) F2 (K, ky) ™ dliedlky,

[ [ SRR asbom) R k) B (k) disd, (54)

with A = x¥ —x2 and A, =y —yP, the distance between pif and p. From the above

equation it is clear that this double integral is difficultr fowo reasons. First, the fac-
tor expli (k«Ax + kyAy)] oscillates violently when pip’ and p are far apart. Second, the fac-
tor k; L is singular fork2 + kf, = k2. The integrand is still integrable, but care has to be taken.

C.2. Numerical computation of the interaction integrals

Since we have to calculate a lot of interaction integralshaee to find a method that is both
fast and accurate. To select the best numerical integratiotine we concentrate on the two
most difficult parts of the interaction integral: the ciratethe (ky, ky)-plane where the square

rootk, = (k> — k2 — k}g)l/2 is equal to zero and the exponential factor Bk + ikyAy) that
oscillates violently when the two holes or pits under coesation are far apart. The square
root term would be best tackled with polar coordinates, wasithe exponential term would be
easier to integrate with cartesian coordinates. To oveedhis problem, we split the integration
area in 12 domains. See Fig. 9. From symmetry propertieseointiegrand, it follows that it
suffices to integrate over half th&, ky)-plane [28]. Furthermore, in the domains 1, 6 and 11
that are situated within the circkg + k§ = k?, only the real parts need to be calculated. For the
other domains, we only need the imaginary parts:

(o (a)|Vai)g, = NEZanRe(IN)+N€Z%)UlmiIm(IN), (55)

with my a multiplication factor and/” a set of domain numbers:

fora; =aj: m =4, N = {1,11}, Mou = {2,3,4,5,12}, (56a)
forai #ay: m = 2, Sin = {1,6,11}, Aou = {2,3,4,5,7,8,9,10,12}, (56b)
and with
Iy = / / |a g (ke, k) k. (57)
domainN
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the double integral over one of the domains. Hégg; is shorthand notation for the integrand
of the interaction integral.

The two half rings, domains 11 and 12, are called the idRgng [(k— 5)? < kZ + k2 < k]
and the outed-ring [(k* < kZ +kZ < (k+8)?]. The value of5 is chosen such, that the number
of oscillations of the exponential factor inside the ringsimall. However, thé-rings should
be wide enough to contain the steepest part of the squardactor (typically larger than or
equal tok/10). Within the twod-rings, we choose a polar coordinate system. Furthermare, w
apply a substitution to get rid of the square root singufaite then use a standard, adaptive
quadrature routine from the NAG foundation toolbox for Nt DO1FCF [29].

Regarding the domains 1 to 10, we assume that the squareaatot fs sufficiently flat. In
these areas, we split the integrand in a slowly varying pattthe (possibly) quickly oscillating
exponential factor. Domains 1, 2, 6 and 7 are the areas thdicamded by the inner and outer
d-ring. We approximate this boundary linearly on a cartegjad. The slowly varying part is
also approximated linearly, on a cartesian grid. This lirsggoroximation times the exponential
factor can now be integrated exactly. The domains 3, 4, 5 a¥%l 80 are rectangular areas,
bounded byK; andkmax. Here, we approximate the slowly varying part parabolicahd we
integrate exactly this parabolic approximation times tkgo@ent.
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