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Abstract. In radiotherapy, the constant margin taken around the vis-
ible tumor is a very coarse approximation of the invasion margin of
cancerous cells. In this article, a new formulation to estimate the
invasion margin of a tumor by extrapolating low tumor densities in mag-
netic resonance images (MRIs) is proposed. The current imaging tech-
niques are able to show parts of the tumor where cancerous cells are
dense enough. However, tissue parts containing small number of tumor
cells are not enhanced in images. We propose a way to estimate these
parts using the tumor mass visible in the image. Our formulation is
based on the Fisher-Kolmogorov Equation that is been widely used to
model the growth of brain tumors. As a proof of concept, we show some
promising preliminary results, which demonstrate the feasibility of the
approach.

1 Introduction

Glial based tumors form the major class of tumors in the central nervous sys-
tem. Among this class, high grade ones are incurable despite state-of-the-art
therapies, and patients have a median survival rate of approximately 1 year, [I].
The diffusive nature of these tumors inhibits the apparent boundary between
cancerous and healthy regions, decreasing effects of conventional therapy, like
surgical resection and radiotherapy. The current imaging techniques are able to
detect only a part of the total tumor, [2]. In the literature there are several sug-
gestions for the lowest detection limit of CT images in terms number of tumor
cells per unit volume or area, [2,[B[4]. Based on these suggestions and medical
advice, in this work we are using a relative value: 5% of the maximum number
of tumor cells brain paranchyma can hold, as this detection limit. Although up
to our knowledge, there is no such a limit suggested for MRI it is the common
practice to assume the same limit for T2 weighted images. In Figure [Tl we illus-
trate the visible tumor profile in the image (the solid line curve) and the total
tumor profile as given in theory. The usual clinical practice is to surgically re-
move the visible part and try to kill tumor cells invisible in the images, using
radiotherapy and/or chemotherapy. The conventional radiotherapy treatment
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Fig. 1. Left: T2-weighted MR image with the tumor, Middle: Visible tumor density
profile for the black line of the left image is given in solid curve and the theoretical
tumor density profile shown by the dashed curve, Right: Regions with less tumor density
than 5% are not visible in the image. The aim of this paper is to estimate cell density
distribution in these regions (dashed curve).

uses a geometric approach and applies radiation in a constant margin of about
2 c¢m, around the surgical site. This approach does not take into account differ-
ent speed of tumor diffusion for the grey and the white matter, [5]. Using the
same margin for both matters may kill healthy grey tissue while not reaching
the extent of tumor cells in the white matter, leaving alive cancerous cells on the
fibers. These cells would cause reccurence of the tumor in time. By constructing
physiologically determined radiotherapy margin, which takes into account tu-
mor growth dynamics and the properties of the tissue, the therapy can be more
effective.

Mathematical modeling of tumor growth dynamics gives us a better insight
on the physiology of this process and it could be used to improve the treat-
ment planning (surgery, radiotherapy or chemotherapy). There is a lot of work
on modelling the growth of high grade gliomas. Approaches taken to solve this
problem can be coarsely classified into two groups, microscopic and macroscopic
ones. Microscopic ones try to describe cell divisions and invasion by means of in-
teractions between tumor cells and their surrounding tissue, [6,[7]. On the other
hand, macroscopic models describe the evolution of local tumor cell densities
and try to capture the dynamics by general equations and with fewer parame-
ters. Moreover, such models may more easily be adapted to act on real medical
images. Most of the macroscopic models, [ILB,[], are based on the reaction-
diffusion formalism introduced by Murray in [8/[I]. This formalism uses the
general type of PDEs called the reaction-diffusion to model the tumor growth
dynamics.

We are proposing a method to estimate the distribution of tumor cells for low
density regions using a single image with a set of estimated parameters. Our
formulation constructs an approximation to the tails of the tumor distribution
(invasion margins) which are not visible in images. In addition, this formula-
tion creates appropriate initial conditions for tumor growth models, which can
be used for simulating tumor growth and predicting the distribution of the tu-
mor in a future time. Using an initial condition with well estimated tails will
increase ability of these models to predict tails of tumor as well as its whole
distribution.
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2 Method

2.1 Fisher-Kolmogorov Equation

In this article, we assume that tumor growth dynamics obey a reaction-diffusion
Equation similar to the ones proposed in [3,4], in which diffusion of tumor cells
is correlated with the diffusion of water, hence with the DT-MRI. The specific
Equation we will use is the Fisher-Kolmogorov (F-KPP) Equation given as:

ou
o =V (DE)Vu) +pu(l —u) (1)

DVu - =0 (2)

where w is the normalized tumor cell density between [0, 1] (normalized cell den-
sities will be used throughout this article), D represents the diffusion tensor of
tumor cells and p corresponds to the proliferation rate of tumor cells. In Equa-
tion [T}, the first term of the right hand-side describes the diffusion of tumor cells
towards the tissue, which is governed by D. The second term, pu(l — u), is the
so called reaction term, and it describes proliferation of tumor cells as a logistic
growth. There are different types of reaction terms that can be used like the
gompertz growth model, puln(l/u), or exponential growth model, pu. Equa-
tion [l represents the no-flux boundary condition, where X is the boundary of
the brain (ventricles and the skull) and 7 5 is the normal to the boundary. This
condition describes the fact that tumor cells do not diffuse through ventricles
and through the skull.

The simple version of this Equation in 1D with constant coefficients and no
boundary conditions was first proposed by Fisher, [9], to model the spread of a
favoured gene in a population:

ou 0%u

o = daxQ + pu(l —u) (3)

where d is the diffusion coefficient. The travelling wave solutions of Equation [3
have been studied throughly by Kolmogorov. Later on Aronson et al. have ex-
tended this analysis to the infinite cylinder and studied the travelling plane
solutions in [10].

Here we wish to summarize some relevant results in these works. At large
times, Equation Bl admits a travelling wave solution in the infinite cylinder. In
other words, when the change of u is non-zero in only one direction, n, for very
large times the solution can be given in the form:

u(x,t) =umn-x—ct) =u(f) as t — oo (4)

where ¢ corresponds to the speed of the front and £ = (x - n — ct) is the moving
frame. The speed of the front is a constant, which depends on coefficients D and
p, and also on the tails of the initial condition u(x,0). When the initial condition
has a compact support the speed of the travelling wave can be given as, [10]:

c= 2\/pn - (Dn) (5)
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Fig. 2. (a) Shape of the wavefront is plotted for different time values (0-2500 days)
in the moving frame. The profile converges in time. (b) The approximated tail using
Equation [§ (solid curve) and actual tails of the wave front at t = 60,90,125 days (from
left to right). As time increases the solid curve approximates the actual tail better.

The planar initial condition with compact support converges to a travelling plane
with speed c¢ in time. As the speed of the travelling plane converges to ¢ the shape
of it also converges to a constant shape, which does not have an analytical form.
Figure illustrates the convergence of the front shape both for whole front
and for the low density parts.

2.2 Tumor Tail Extrapolation

Our aim in this article is to extrapolate the low tumor density regions, invisible
in the image, from the visible part of the tumor, at a given time instant. We
are going to use the fact that the front shape is constant for the travelling plane
solution for large times to extrapolate the low density regions.

Since we are trying to extrapolate the tails (low values of u) we propose to
linearize the nonlinear reaction term in Equation [l around v = 0 and assume
1 — u can be well approximated by 1:

Ou
9 = DA+ pu (6)

This Equation also admits a travelling wave solution in the infinite cylinder, with
the speed c given in Equation [0l The travelling wave solution for this Equation
has an analytical solution, and for the low tumor density parts the solution can
be given as:

u(x,t) = u(€) = Ae™ for A= —\/p/(n-(Dn)) (7)

where A is an integration constant.

The value of £ for a point corresponds to the distance of it from the inflection
point of the front shape, which is at u = 0.5 (see Figure . However, the
only information we get from images is the location of the last visible iso-density
contour ug, which we assume to be equal to 0.05, in terms of normalized tumor
densities, see Figure [l Applying the solution given in Equation [0 for the value
ug, we find A = upero where &, = {¢ | u(¢) = uo}. Placing this in Equation [T



342 E. Konukoglu et al.
u(x,t) = uge ME780) = g7 (8)

where £ = £ — &, which is the distance of a point from the iso-density surface
u = ug. Unlike &, £ is observable in the images since the ug iso-density contour
is visible. In Figure we plot the tail approximation given by Equation [} as
a function of ¢ together with the front shape of the travelling plane taken at
different time instants.

This approximation is only valid when the diffusion tensor is constant over
the whole domain and the motion is only in one direction, which is not the case.
Moreover when the tumor front is curved, its motion is not in one direction and
the solution cannot be given in terms of travelling wave. However, to compute
the tumor cell densities at tails in MR images we make the following hypothesis:
D is constant and the motion of the front is only in one direction within a voxel.
Based on this assumption we construct the solution given in Equation [7 for each
voxel. The direction of motion and the initial value for each voxel are defined by
adjacent voxels. The 1-dimensional illustration of this idea is given in Figure Bl
Equation[7is the integral solution of du/dn = (A{)u, since £ direction is normal

ul
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Fig. 3. The formulation constructs the solution at grid point p+ 1 using the D, as the
diffusion tensor and u, as the initial value

to the front. Replacing n with Vu/ | Vu | in this Equation, we obtain the
following static Hamilton-Jacobi Equation that constructs the solution given by
Equation [ at each voxel as shown in Figure Bl

V' Vu - (DVu)
Vpu

where I is the last visible iso-density contour of the tumor in the image. This
Equation has two solutions at each point, one with increasing u and one with
decreasing u. Since the F-KPP Equation tells us that as we move away from
the visible contour, the values of u will decrease, for all points we choose the
decreasing solution. Using Equation [ we start from I' and move outwards as
we find u values for each point. We also have to include the no-flux boundary
condition given in Equation [I]in this approximation. Let 2 be the whole image
domain and 2 be ventricles and the skull with its exterior. We enforce the
no-flux boundary condition by setting the domain of Equation@as 2, = 2/025p.
In which 2p is the closure of 25.

=1, u(l") =wuo 9)
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2.3 Numerical Implementation

There are several numerical techniques proposed to solve static H-J Equations,
amongst which sweeping methods, such as fast marching, are the most popular.
However, we do not use the sweeping methods because they construct the integral
solution at the center of each voxel, for which the accuracy is low when the
resolution of the image is low. In order to solve Equation [ numerically we
embed the static H-J Equation into a dynamic one using the method proposed
by Osher in [I1]. This methodology allows us to make use of the level set idea
and obtain subvoxel accuracy. This is crucial since the resolution of MR images
is not high (1mm x Imm x 4mm). The embedding is done by placing each iso-
density contour of u as the zero-level set of a higher dimensional function v.
Namely, the embedding is such that, u(£§) = 7 iso-density contour corresponds
to the v(&,7) = 0. Using this we transform Equation [d into Equation [I0l

ov(E,T) _ V' Vv - (DVv)

5 Jor for T € (0, ug] (10)

where 7 decreases at every iteration so that we find lower tumor density regions.
As the zero level-set of v moves over the domain of u, {2, for different 7 we
construct the u value at each point as u(§) = 7 for £ | v(¢,7) = 0. We have used
the method proposed by Bryson et al. in [12] to solve this dynamic H-J Equation
numerically in 3D, due to its ease of implementation and accuracy properties.
Using an adaptive 7 step as: Ar = 7/30 the algorithm takes around 30 seconds
to compute the tails in the whole brain until « = 0.0005.

As of implementing Equation [Ilin 3D, we have used finite differences with a
semi-implicit solver (pre-conditioned conjugate gradient). The boundary condi-
tions for the diffusion part given in Equation [2 were included in the numerical
scheme by using the flux method proposed by McCorquodale et al. in [13].

3 Results

We have run our experiments by artifically placing tumors on T2-weighted im-
ages taken from healthy subjects. We assume Equation [l models the tumor
growth accurately, so we compare our results using a synthetic tumor grown
with this model, for which we know the whole distribution. Giese et al. in [5]
have shown in-vitro that tumor cells move faster on myelin sheath. We use this
information and a correlation between water and tumor diffusion to construct
our tumor diffusion tensor, D, from DT-MR images of subjects as done in [3,[4].
We use Dgypey = dol, where I is the identity matrix, creating isotropic diffusion
tensor Dgyrey for the grey matter. Dypite = dootDuyater is the diffusion tensor
for tumor cells in the white matter, which has the same orientation as the nor-
malized water diffusion D,,qte at that point. « describes the speed difference of
tumor cells in the white and the grey matter. In our experiments we have taken
« so that the largest diffusion in the white matter would be equal to 50 times
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Fig. 4. Left: Sagital and axial views of the T2-weighted image for the synthetic tumor
including its iso-density contours from 0.05 to 0.003. Right: Sagital and axial views of
the same T2-weighted image with estimated iso-density contours based on our method.
Black contours correspond to constant margin radiotherapy regions for lem and 2cm.

the isotropic diffusion in the grey matter. The two parameters for the formula-
tion, dy and p were set using the values proposed in [I] as 0.0013¢m?/day and
0.012cells/day respectively.

This experiment shows the ability of the proposed model in constructing low
tumor density regions from a single image. For this, we first grew a synthetic
tumor for 180 days. Then we applied the 5% detection threshold and created
the T2-weighted image with the synthetic tumor. In Figure @l on the left we
show the saggital and the axial slices of the T2-weighted image with some iso-
density contours below the detection threshold. In the same figure on the right
we show same images with corresponding iso-density contours extrapolated by
the H-J formulation. In both sagital and axial views, we see that the extrapolated
tumor tails using H-J formulation are in very good agreement with tails of the
synthetic tumor. We can conclude that in case of a synthetic tumor grown by
the F-KPP model, given an image and a set of estimated parameters (D and p),
the proposed formulation is successful in extrapolating the low tumor density
parts, which are undetectable by current imaging techniques. We also plotted
the conventional radiotherapy regions (in black) on the image with extrapolated
tumor tails to show the difference between the constant margin approach and
the estimated invasion regions. Observe that by using physiologically determined
radiotherapy margin instead of a constant one, more tumor cells can be killed
while less healthy tissue is harmed.

4 Discussion

We have proposed a formulation to estimate low tumor density regions in a given
MR image, which are undetectable by current imaging techniques, provided a set
of parameters {D, p} either manually adjusted or estimated by the radiothera-
pist. Our formulation is based on the F-KPP growth model, which is been widely
used for simulating tumor growth in medical images. As a proof of concept we
have demonstrated the ability of this formulation in constructing tumor tails by
comparing it with a synthetic tumor. Based on these results, we conclude that
our formulation is successful in using the underlying tissue structure and the
dependence of low density regions to the visible part, for extrapolating unde-
tectable parts of the tumor. These promising preliminary results demonstrate
the feasibility of this approach for real patient images.
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Fig.5. Left: Undetectable tails of the synthetic tumor are plotted (white). Middle:
Contours predicted by F-KPP model (black) using a simple step-edge initialization
with actual contours (white). Right: Contours predicted using our tumor tail estimation
as an initial condition with actual contours (white).

This formulation constructs an estimate for the undetectable part of the tu-
mor in images, showing the invasion margin, which can be used to determine
radiotherapy regions based on tumor growth dynamics. It also provides medical
doctors a tool to observe the effect of parameters, like speed of the tumor front
and proliferation rate, on undetectable parts of the tumor. Moreover, it con-
structs an appropriate initial condition for tumor growth models, which can be
used for predicting the future distribution of the tumor. Since the initial condi-
tion is the key to predict future tumor densities and tail distributions influence
these values, using an initial condition with good tail estimates will increase the
accuracy of prediction. In Figure Bl we demonstrate the ability of our formula-
tion in creating appropriate initial conditions for the prediction of future tumor
cell density. Indeed, we compare two predictions at day 180 (in black) using
the F-KPP model based on the knowledge of the visible tumor at day 90. In
the middle image, a simple step-edge initialization while in the right image our
tumor tail estimation is used. We observe that the prediction starting with an
initial condition with appropriate tails is much more accurate in the case of a
synthetic tumor grown by the F-KPP model.

The ability of the proposed formulation has been demonstrated using syn-
thetic tumors. We are currently working on validating the performance of the
formulation in images with histo-pathological data . Besides that, automatic es-
timation of model parameters, like D and p, from images taken at different time
instances is an open problem we are working on.
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