Extrathymic T-cell differentiation in vitro

Graham Pawelec

1 April 2004

The first 'Innovation' article in *Nature Reviews Immunology*¹ discussed the introduction of a technique for the extrathymic generation of T cells in culture², which was suggested as being a useful new tool for studying T-cell differentiation in a way that was not previously possible^{1,3}. The originators of this technique showed that extrathymic differentiation from bone-marrow progenitors in vitro can be accomplished using the OP9 stromal cell line, ectopically expressing the Notch ligand delta-like 1 (REFS 1,2). It was stated that this allowed T-cell-differentiation processes to be studied in a simple cell-culture system for the first time. Although this might be true for mouse cells, it is not the case for human cells. Some years ago, we showed that $CD34^+$ lineage-negative human haematpoietic progenitors could acquire mature T-cell characteristics in a thymus-free culture system. This depended on the presence of peripheral-blood mononuclear cells (PBMCs) as feeder cells, cytokine cocktails and the use of serum-free media. Given the importance of delta-like 1, identified in the mouse system, and the fact that Notch ligands, including this one, are expressed by antigen-presenting cells⁴, one could ask why previous attempts by others to establish extrathymic T-cell-differentiation systems using PBMCs were less successful^{5–7}. We suggest that the reason for such failures was probably the choice of culture medium and, to a lesser extent, the choice of cytokine cocktail and feeder cells. We tested many different formulations over the years, at first containing human serum or fetal-calf serum, with little success. We also tested many serum-free formulations, with equal lack of success. However, the use of the then newly developed X-Vivo 10 medium from BioWhittaker allowed development, for the first time, of T cells in the absence of thymic components in a limitingdilution cloning system. It was necessary to include stem-cell factor (SCF), fms-related tyrosine kinase 3 ligand (FLT3L), interleukin-2 (IL-2) and IL-3 in the cytokine cocktail. Cloning efficiencies were markedly increased by additional inclusion of oncostatin M or IL-7 (REF. 8). Feeder cells consisted of irradiated (at a dose such that no cells escaped proliferation blockade after irradiation) PBMCs pooled from 20 different donors. During the cloning procedure, these cells would have interacted with each other as a multi-way mixed-lymphocyte culture, resulting in cytokine release, and macrophage and dendritic-cell activation. The purity of the starting haematopoietic-cell population and the high cloning efficiency that could be achieved ruled out the possibility that the T cells isolated were derived from contaminants in the starting population. Derived T cells were not autoreactive, suggesting that negative selection had taken place in a system where the feeder cells did express MHC class II or class I molecules, unlike the OP9 mouse system recently discussed¹. Derived clones were mostly CD4⁺ $\alpha\beta$ -T-cell receptor 2 (TCR2)⁺, expressed a wide range of antigen-receptor clonotypes, responded to mitogenic stimulation by proliferation and cytokine release⁸, and had the cell-surface markers and growth characteristics⁹ typical of human CD4⁺ T-cell clones. Currently, human T-cell clones derived in this manner are being examined¹⁰ by European Union-supported consortia focused on ageing of the immune system, ImAginE and T-CIA (see further information for websites). Perhaps because of our focus on immunogerontology, and exclusively in humans, these previous findings might have been overlooked.

Graham Pawelec

University of Tübingen Center for Medical Research (ZMF), Waldhörnlestr. 22, D-72072 Tübingen, Germany.

e-mail: graham.pawelec@uni-tuebingen.de

FURTHER INFORMATION

ImAginE, Immunology and Ageing in Europe: http://www.medizin.uni-tuebingen.de/imagine/ T-CIA, T Cell Immunity and Ageing: http://www.medizin.uni-tuebingen.de/t-cia/ European Searchable Tumour Line Database: http://www.medizin.uni-tuebingen.de/estdab/ Graham Pawelec's homepage: http://www.medizin.uni-tuebingen.de/tati/

References

- 1. Zúňiga-Pflücker, J. C. T-cell development made simple. *Nature Rev. Immunol.* **4**, 67–72 (2004).
- 2. Schmitt, T. M. & Zúňiga-Pflücker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 *in vitro*. *Immunity* **17**, 749–756 (2002).
- 3. Lehar, S. M. & Bevan, M. J. T cell development in culture. *Immunity* **17**, 689–692 (2002).
- 4. Yamaguchi, E. *et al.* Expression of Notch ligands, Jagged 1, 2 and Delta 1 in antigen presenting cells in mice. *Immunol. Lett.* **81**, 59–64 (2002).
- Tjonnfjord, G. E., Veiby, O. P., Steen, R. & Egeland, T. T lymphocyte differentiation in *vitro* from adult human prethymic CD34⁺ bone marrow cells. *J. Exp. Med.* **177**, 1531– 1539 (1993)
- Galy, A., Verma, S., Barcena, A. & Spits, H. Precursors of CD3⁺CD4⁺CD8⁺ cells in the human thymus are defined by expression of CD34 — delineation of early events in human thymic development. *J. Exp. Med.* **178**, 391–401 (1993).
- Freedman, A. R. *et al.* Generation of human T lymphocytes from bone marrow CD34⁺ cells *in vitro*. *Nature Med.* 2, 46–51 (1996).
- 8. Pawelec, G. *et al.* Extrathymic T cell differentiation *in vitro* from human CD34⁺ stem cells. *J. Leukocyte Biol.* **64**, 733–739 (1998).
- 9. Pawelec, G. *et al.* Finite lifespans of T cell clones derived from CD34⁺ human haematopoietic stem cells *in vitro*. *Exp. Gerontol.* **34**, 69–77 (1999).
- 10. Pawelec, G., Barnett, Y., Mariani, E. & Solana, R. Human CD4⁺ T cell clone longevity in tissue culture. *Exp. Gerontol.* **37**, 265–269 (2002).