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1 Introduction

The direct detection of gravitational waves at LIGO/VIRGO [1, 2] has started an exciting

new age of gravitational wave astronomy. Scattering amplitudes have emerged as the latest

tool in computing the gravitational dynamics of binary systems in the perturbative regime.

In contrast to the traditional post-Newtonian expansion, which is a simultaneous expansion

in the Newton constant, G, and a relative velocity, v, relativistic scattering amplitudes can

naturally lead to results up to a fixed order in G but to all orders in velocity, known as

the post-Minkowskian (PM) expansion [3–23]. A recent highlight is the result of Bern et

al. [19, 20] for the conservative dynamics of black hole binary systems at O(G3), i.e. the

third-post-Minkowskian (3PM) order. The result points to many interesting questions,

some of which are explored in the present paper.

1. The scattering angle for massive particles in refs. [19, 20] contains a term that di-

verges in the high-energy limit. Ref. [24] recently found that the high-energy limit

of massless scattering is universal at O(G3), i.e., it is independent of the number

of supersymmetries and dominated by graviton exchange. Does the aforementioned

term in the massive scattering angle appear in the presence of supersymmetry, and

does it exhibit universality in the high-energy limit?

2. The computation of the scattering angle in refs. [19, 20] proceeds by first extracting

a classical potential using a non-relativistic effective field theory (EFT) [16], then

calculating the scattering trajectory by solving the classical equations of motion.

However, there is a well-known alternative method: the eikonal approximation [23–

43], which calculates the classical scattering angle from suitable Fourier transforms

of quantum scattering amplitudes. Do the two methods give equivalent results at

O(G3) for the scattering of massive scalar particles?

3. Refs. [19, 20] resum the velocity dependence of the O(G3) result by first calculating

the velocity expansion to the 7th-post-Newtonian order, i.e. O(G3v10) around the

static limit, then fitting the series to an ansatz, which is shown to be unique. Can we

instead directly obtain exact velocity dependence, as is common in the calculation of

relativistic scattering amplitudes?

The answers to the above three questions are all yes, as we will show using a calculation

of two-loop, i.e. O(G3), scattering of extremal black holes in N = 8 supergravity [44–46].
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The last question about exact velocity dependence is especially of current interest due

to two reasons. First, a direct calculation without a series expansion to high orders can

be computationally more efficient. Second, ref. [47] raised questions about the velocity

resummation of refs. [19, 20] in the case of Einstein gravity. Since then, the correctness

of the latter result has been verified at high orders in the velocity expansion [48, 49], an

alternative method for resummation of the velocity series has been used with identical

results [50], and the unitarity cut construction of the loop integrand has been checked

against direct Feynman diagram computations [51]. Still, a direct relativistic calculation

that bypasses velocity resummation will be a valuable additional confirmation of the result,

and will provide a way to streamline future calculations at O(G3) and beyond.

The study of classical gravitational scattering in N = 8 supergravity was initiated in

a beautiful paper by Caron-Huot and Zahraee [52], which we build upon. The large set

of symmetries of this theory provides important simplifications, which make it the perfect

theoretical laboratory to study various conceptual questions and test the technology to be

applied at higher orders in perturbation theory. This is familiar to how precision QCD

practitioners have often sharpened their axes with simpler calculations in N = 4 super-

Yang-Mills theory before honing in on the beast. A lot is known about N = 8 supergravity,

in particular the complete loop integrands for the quantum four-point amplitude are avail-

able through five loops [53–61]. These were constructed using the unitarity method [62–66]

and the different incarnations of the double copy [67–70]. These results, being valid in

D-dimensions, can be used to easily obtain massive integrands via Kaluza-Klein reduction,

as we will do in this paper.1

Moving on to integration, we will obtain the part of the amplitude relevant for classical

conservative dynamics using the method of regions [71]. In particular, integration in the

“soft region” produces the correct small momentum transfer expansion of the amplitude [23,

72], up to contact terms that are irrelevant for long-range classical physics at any order in G.

However, conservative classical dynamics actually arises from the “potential region” which

is a sub-region contained in the soft region [16]. Strictly speaking, the potential region

is defined in the near-static limit and produces an expansion of the Feynman integrals as

a series in small velocity. But since the velocity series can be resummed to all orders,

the resummed result will be also referred to as the amplitude evaluated in the potential

region. In addition to isolating conservative effects, evaluating in the potential region also

simplifies the integrals considerably.

Refs. [19, 20] exploits the fact that infrared (IR) divergences cancel when matching the

EFT against full theory, and circumvents the evaluation of IR divergent integrals. In this

paper, all IR divergent integrals will be evaluated explicitly in dimensional regularization

(which serves as both UV and IR regulators). This will allows us to check against the

predictions from eikonal exponentiation, which expresses the divergent amplitude in an

exponentiated form. Additionally, we will evaluate all integrals relativistically with full

dependence on velocity, without constructing and resumming a velocity series. This is made

possible by employing the method of differential equations for Feynman integrals [73–76],

1See also [22] for a recent application of KK reduction in the context of the eikonal approximation.

– 2 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
3

with a crucial new ingredient being the use of modified boundary conditions that isolate the

contributions from the potential region. While ref. [20] already presented a precursor of our

differential equations method as an alternative to the “expansion-resummation method”,

it was only successfully applied to a subset of the needed integrals that do not involve

infrared divergences due to “iteration” of graviton exchanges. This paper will use a finer

control of boundary conditions to evaluate all integrals using differential equations. We

also perform soft expansions prior to the construction of differential equations, resulting

in dramatic speedups in computation. Another improvement is that we transform the

differential equations into Henn’s canonical form [77, 78]. In this form, the differential

equations have a simple analytic structure, and can be easily solved to higher orders in

the ε expansion. (See also [79] for advances in automated solution of generic univariate

differential equations that are solvable by iterated integrals.)

In the context of N = 8 supergravity, ref. [52] put forward a tantalizing conjecture:

that the energy levels of a pair of black holes in such theory retain hydrogen-like degen-

eracies to all orders in perturbation theory. This is tantamount to the classical black hole

binary orbits being integrable and showing no precession. Two pieces of evidence were

provided in support of this conjecture: first, the absence of precession for the full O(G2)

dynamics, which directly follows from an analog of the “no-triangle” hypothesis [80–85]

for massive scattering; and second, various all-orders-in-G calculations in the probe limit

for different charge configurations. It is known that O(G3) (or any odd power of G) cor-

rections to the conservative dynamics cannot yield precession [86, 87]. Instead we will use

the scattering angle at O(G3) to test this conjecture, and see that it deviates from the

integrable Newtonian result at this order. We will extract the scattering angle both from

appropriate derivatives of the “eikonal phase” and via the EFT techniques of refs. [19, 20],

finding agreement between both methods.

Although we perform our calculations in N = 8 supergravity, we expect the techniques

here developed to be directly applicable to Einstein gravity as well. Such application is

beyond the scope of the present paper and we leave it for future work.

This paper is organized as follows: in section 2 we setup our conventions, we review

some basic features of extremal black holes in N = 8 supergravity, and discuss the different

limits that will be used in the paper. In section 3 we construct the tree-level four-point

amplitude, as well as the one- and two-loop massive integrands from the known massless

integrands via Kaluza-Klein reduction and truncation to the appropriate sector. In sec-

tion 4 we briefly discuss the integration regions involved in our problem, and introduce our

new integration method based on differential equations, which is applied to calculate the

full one- and two-loop amplitudes in the potential region. In section 5 we assemble the

scattering amplitudes. In section 6 we review the eikonal method, and use it to calculate

the order Gn≤3 eikonal phase, while checking exponentiation. Then we use the eikonal

phase to calculate the gravitational scattering angle and we compare its high-energy limit

with the result of refs. [19, 20] in Einstein gravity. In section 7 we cross check our results

via the EFT method of ref. [16], and we comment on the advantages of this approach.

We calculate the conservative Hamiltonian by matching, and find the scattering angle by

solving the classical equations of motion. In section 8 we present our conclusions. We in-
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clude two appendices: appendix A contains some technical details about the computation

of integrals in the near-static limit and appendix B collects the solution to our two-loop

differential equations. The results are provided in computer-readable format as supple-

mentary material (see comments at the beginning of each file for detailed descriptions).

2 Kinematics and setup

We model the dynamics of two half-BPS black holes in N = 8 supergravity [88, 89] by

considering the scattering of two massive point particles in half-BPS multiplets, which

interact via the massless supergravity multiplet. We use an all-outgoing convention for the

external momenta pi, and the masses of the particles are

p2
1 = p2

4 = m2
1 , p2

2 = p2
3 = m2

2 . (2.1)

We will parametrize the scattering amplitudes in terms of the usual invariants s = (p1+p2)2,

t = (p1 + p4)2 = q2 and u = (p1 + p3)2, where we introduced the four-momentum transfer

q = p1 + p4 for later convenience. As is common in the study of scattering amplitudes we

will cross the incoming particles to the final state, so that all particles are outgoing. The

physical scattering configuration corresponds to the region s > (m1 + m2)2, t = q2 < 0

and u < 0.2

The half-BPS multiplet in N = 8 supergravity contains massive states with spin 0 ≤
S ≤ 2. In this work we will focus on particular scalar components, φ and φ̄, with S = 0

and leave the study of spinning states for later work. The interactions between different

half-BPS particles are mediated by the massless supergraviton multiplet. In addition to

gravitons the N = 8 supergraviton multiplet contains 28 (vector) graviphotons, AIJ , and

70 scalars φIJKL, as well as fermions which will not be important for our discussion. Black

holes in N = 8 supergravity interact with the graviphotons and scalars with charges CIJ
given by an 8 × 8 matrix. Here I, J, . . . are SU(8) R-symmetry indices and the vectors a

scalars are in SU(8) representations of the appropriate dimension. We will not print the

Lagrangian here, because it is lengthy. For our purposes, however, all scattering amplitudes

could be built from the three-particle amplitudes:

M tree
3 (1φ, 2φ̄, 3h) = 16πG (ε3 · p1)2 , (2.2)

M tree
3 (1φ, 2φ̄, 3AIJ ) = 8πG

√
2 (ε3 · p1)CIJ , (2.3)

M tree
3 (1φ, 2φ̄, 3φIJKL) = 16πG (CIJ CKL − CIK CJL + CILCJK) , (2.4)

using factorization and unitarity, as done in ref. [52]. Here ε are polarization vectors.

In general the charges, CIJ are complex and the black holes are dyonic. The charges

are also central charges of the supersymmetry algebra, and the BPS condition requires

their magnitude to be equal to the mass

CIKCKJ = m2 δIJ . (2.5)

2We use a mostly minus metric.
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When studying a pair of black holes we need only consider the relative phases in their

BPS charges. These are parameterized by three angles along which the charges might be

misaligned

C1 = m1

(
0 14×4

−14×4 0

)
, C1 = m2

(
0 Φ

−Φ 0

)
, (2.6)

with Φ = diag(eiφ1 , eiφ2 , eiφ3 , eiφ4) and
∑

i φi = 0. For the two- and one-angle cases,

however, there always exist a duality frame where the magnetic charges are zero. We point

the reader to ref. [52] for a more detailed discussion of the charges.

Although we will construct the full (quantum) loop integrands for the scattering am-

plitudes of these black holes, we are ultimately interested in their classical conservative

dynamics. In the classical limit of hyperbolic scattering, the orbital angular momentum

of the black hole binary system is much larger than ~. Thus, the classical limit of the

scattering amplitudes simply corresponds to the large angular momentum limit J � 1 (in

natural units), which establishes a hierarchy of scales

s, |u|,m2
1,m

2
2 ∼ J2|t| � |t| = |q|2 . (2.7)

As a result, we are interested in calculating scattering amplitudes in the limit of small q, or

more precisely as an expansion in small q. From a heuristic calculation in the Newtonian

limit, the leading-order scattering angle θ is of the order Gm/(vr) ∼ Gmq/v, where m and

r are the total mass and relative transverse distance of the system. So for generic values of

v, the quantity Gmq is of order θ, and for each additional order of G, we need to expand

the amplitude up to one additional power of q to obtain corrections to the scattering angle

of order θL, where L is the loop order. Terms that are more subleading in q at the same

power of G are quantum corrections that vanish classically. In summary, at O(Gn), we

only need to expand the scattering amplitude of massive particles up to O(|q|n−2) in the

small-q expansion [72], in order to extract the classical dynamics. In practice this will

imply, among other things, that when we calculate an amplitude some loop integrals can

be discarded before any calculation, if they are beyond the classical order.

Furthermore, we will only be interested in the conservative dynamics, so we will restrict

the components of the momentum transfer q = (q0, q) to scale as

|q| � q0 , (2.8)

so that the graviton multiplet mediates instantaneous long-range interactions. Note that

the latter expansion involves an additional small parameter, a velocity |v| = q0/|q| � 1,

on top of the classical limit J � 1. We will refer to this expansion as the near-static limit,

and we delay a more detailed discussion to section 4.

Finally, in comparing our results to Einstein gravity, it will be useful to take the high-

energy or ultra-relativistic limit in which the black holes are highly boosted. This simply

makes the hierarchy of scales in eq. (2.7) more strict

s, |u| � m2
1,m

2
2 ∼ J2|t| � |t| . (2.9)
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In this context, it will be useful to introduce the variable

σ = cosh η =
s−m2

1 −m2
2

2m1m2
=
p1 · p2

m1m2
, (2.10)

which is simply the relativistic factor of particle 1 in the rest-frame of particle 2 (or vice

versa). In terms of this variable the high-energy limit simply corresponds to taking σ � 1.

Note that in our setup it is important that we take the classical limit first, before taking

the high-energy limit, so that J � σ. This is equivalent to having the hierarchy of scales

in eq. (2.9). The opposite limit, J � σ, is closely connected to the regime of massless

high-energy scattering considered in ref. [24].

In summary, we will be interested in the three limits

Generic classical limit: J � 1 , (2.11)

near-static classical limit: J � 1, |v| � 1 , (2.12)

high-energy classical limit: J � 1 then σ � 1 , (2.13)

expressed here in terms of their corresponding dimensionless expansion parameters.

3 Integrands from Kaluza-Klein reduction

In this section we construct the tree amplitude and loop integrands for the scattering of the

two black holes via Kaluza-Klein (KK) reduction. Ref. [52] studied the case of three-angle

misalignment in the BPS charges. While such case is the most rich and interesting, we

will focus on the single-angle misalignment case, which is the one we can access via KK

reduction from the existing integrands. Let us explain this in more detail: we consider Type

IIA supergravity in D = 10 and perform KK reduction on a six-torus of radius R. When

dimensionally reducing the massless integrand we will identify the massive black holes with

KK gravitons, with ten-dimensional momenta ki and masses arising from the components

of momenta outside of D = 4. The supersymmetry algebra in higher dimensions, upon

reduction, identifies the extra-dimensional momenta as BPS charges (see e.g. appendix B

of ref. [52]). There is only one relative angle between the extra dimensional momenta, so

the dimensional reduction only provides the result for one-angle misalignment. Because of

this, one might perform a rotation to set the momenta along all but two directions to zero

and effectively reduce from D = 6. Henceforth, for simplicity, we shall then pretend we are

reducing from six dimensions. Then we can write the momenta of the four particles as

k1 =

 p1

0

m1

 , k2 =

 p2

m2 sinφ

m2 cosφ

 , k3 =

 p3

−m2 sinφ

−m2 cosφ

 , k4 =

 p4

0

−m1

 .

(3.1)

The compactness of the extra dimensions requires the extra dimensional momenta to be

discrete and of order ∼ R−1. We will choose the masses m1 and m2 to correspond to the

two lightest KK modes, φ1, φ2. Depending on the momentum in the extra dimensions the

massless six-dimensional scalar, φ, will reduce to either of these.

– 6 –
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1 2

34

(a)

1 2

34

(b)

1 2

34

(c)

Figure 1. Example of KK reduction with massless exchange. The diagram in (a) reduces to the

pair of diagrams in (b) and (c). The thin and thick lines denote massless and massive momenta

respectively.

We will see momentarily that the massless integrands for maximal supergravity, have

two simplifying features which imply that we just need a few basic rules to perform the KK

reduction. First, the loop integrands are proportional to the tree amplitude to all orders.

This follows from the supersymmetry Ward identity [54], and implies that the polarization

dependence is trivial and factors out of the integrand. Second, through two loops, the

integrands are composed only of scalar loop integrals, so we only need to understand how

to KK reduce propagators.

Let us first discuss the rules for reducing the massless loop integrand. The integration

over loop momentum reduces as

d6` −→ 1

(2πR)2

∑
`4,`5∈2πRZ

d4` , (3.2)

where the factors of (2πR)2 simply relate the D = 6 and D = 4 Newton’s constant

G = G6D(2πR)−2, and the sum is over all possible ways to assign a KK momentum to each

leg in a given diagram, subject to the constraint of momentum conservation in the extra

dimensions. Since we are choosing our external legs to be two particular KK modes, this

means in practice that we should sum over all the ways the external massive particles could

route inside the diagram. We are interested in the diagrams that feature the exchange of

massless particle in the graviton multiplet, so we will truncate the full massive integrand

to this sector. We delay a discussion about the consistency of this truncation to the end of

this section. The truncation to massless exchange, together with momentum conservation

imposes an additional rule when routing the external particles through the diagram, namely

that lines corresponding to different KK modes cannot cross at a three-point vertex.

As an example, consider the massless non-planar double-box integral in figure 1(a).

It is easy to see that there are two alternative ways to route the mass/extra-dimensional

momenta through the diagram, shown in figure 1(b) and (c). So this massless integral will

yield two contributions to the massive integrand. In contrast, there are also examples in

which there is no way to route the masses. We will find several of these when constructing

the two loop integrand.

Finally, using the identifications in eq. (3.1) we find that the reduction of the external

invariants is given by the following simple replacement rules

s→ s− |m1 +m2e
iφ|2 , t→ t , u→ u− |m1 −m2e

iφ|2 , (3.3)
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1 4

32

(a) Box: III

1 4

32

(b) Non-planar box: IX

Figure 2. One-loop topologies.

and similarly for loop momenta

(`+ ki)
2 → (`+ pi)

2 −m2
i , (3.4)

which follows from the orthogonality of the four-dimensional loop momentum and the

extra-dimensional components of the external momentum.

3.1 Tree level amplitude

As a warmup let’s start with the tree level amplitude. We will write it as

M tree
4 (1, 2, 3, 4) = 8πG6D K

stu
, (3.5)

where K is the four point matrix element of the supersymmetric t8t8R
4 operator (see e.g.

ref. [90], eq. (9.A.18)). In four dimensions K = [3 4]4 / 〈1 2〉4 δ(16)(Q), where Q is the

on-shell super-momentum [91]. For simplicity we choose the incoming and outgoing states

to be complex conjugate scalars φ and φ̄ in the graviton multiplet. The corresponding

component of K is simply s4 and the D-dimensional scalar amplitude is

M tree
4 (1φ, 2φ, 3φ̄, 4φ̄) = 8πG6D s3

tu
. (3.6)

Using our rules for dimensional reduction we find the result

M tree
4 (1φ1 , 2φ2 , 3φ̄2 , 4φ̄1) = 8πG

(s− |m1 +m2e
iφ|2)3

t(u− |m1 −m2eiφ|2)
. (3.7)

Although this is the full amplitude we want to restrict to the massless exchange sector. We

can partial fraction (3.7) as

M tree
4 (1φ1 , 2φ2 , 3φ̄2 , 4φ̄1) = 8πG

(s− |m1 +m2e
iφ|2)2

−t + massive exchange , (3.8)

which using s − |m1 + m2e
iφ|2 = 2m1m2(cosh η − cosφ), where η is the relative rapidity,

η = arccosh(σ), agrees with eq. (3.18) of ref. [52], restricted to the one-angle case.

3.2 One-loop integrand

The one-loop massless integrand was constructed long ago in refs. [53, 54],

M1-loop
4 (1, 2, 3, 4) = −i8πG6DstuM tree

4 (1, 2, 3, 4)
(
I

(1)
1234 + I

(1)
1342 + I

(1)
1423 ) , (3.9)
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(a) Double box: I
(2) P
1234

1 4

32

(b) Non-planar double-box: I
(2)NP
1234

Figure 3. Massless two-loop topologies.

where all the integrals are one-loop boxes with the specified ordering of the external legs.

Using the reduction rules described above

stuM tree
4 (1φ, 2φ, 3φ̄, 4φ̄)→ 8πG(s− |m1 +m2e

iφ|2)4 , (3.10)

and KK reduction maps the massless integrals to massive integrals as follows,

I
(1)
1234 → III , I

(1)
1342 → 0 , I

(1)
1423 → IX . (3.11)

Where the integrals are shown in figure 2, and 0 indicates that there is no way to route the

momenta so the reduction yields zero. Putting all together we find the one-loop integrand

M1-loop
4 (1φ1 , 2φ2 , 3φ̄2 , 4φ̄1) = −i(8πG)2 (s− |m1 +m2e

iφ|2)4
(
III + IX ) , (3.12)

where we have truncated to the massless exchange sector. This matches the result in

eqs. (3.33) and (3.34) of ref. [52].

3.3 Two-loop integrand

The massless two loop integrand was constructed in ref. [54] using the unitarity method.

It takes the remarkably simple form

M2-loop
4 (1, 2, 3, 4) = − (8πG6D)2stuM tree

4 (1, 2, 3, 4)

×
(
s2 I

(2) P
1234 + s2 I

(2) P
3421 + s2 I

(2) NP
1234 + s2 I

(2) NP
3421 + cyclic

)
,

(3.13)

where “ + cyclic” means adding the two other cyclic permutations of (2, 3, 4) and the

integrals, which are all scalar, are shown in figure 3. It is easy to find how the integrals

map under the dimensional reduction. The planar integrals reduce as follows

I
(2) P
1234 → IIII , I

(2) P
1342 → 0 , I

(2) P
1423 → IH + I + I ,

I
(2) P
3421 → 0 , I

(2) P
4231 → IIII , I

(2) P
2341 → IH + I + I ,

(3.14)

where IIII is the double-box integral in figure 4(a), IH is the H integral in figure 5(a),

I , I are the self-energy diagrams in figure 6(a-b), and the integrals with a bar denote

their crossed versions, obtained by exchanging p2 ↔ −p3, which are also shown in the

same figures. It is interesting to note that the H and self-energy diagrams come from the

dimensional reduction of the same massless diagrams. The non-planar integrals reduce

as follows

I
(2) NP
1234 → IXI , I

(2) NP
1342 → IXI , I

(2) NP
1423 → II

Y+ II

Y,

I
(2) NP
3421 → IIX , I

(2) NP
4231 → IIX , I

(2) NP
2341 → IIY + IIY ,

(3.15)
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Figure 4. Two loop integrals that are of the double-box type.
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(a) H
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(c) IY
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32

(d) IY
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(e) I

Y
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32

(f) I

Y

Figure 5. Two loop integrals that are not of the double-box type.

where we will refer to IIX and IXI as non-planar double-boxes, and the rest of the integrals

are shown in figures 4 and 5. The KK reduced two-loop integrand is then given by

M2-loop
4 (1φ1 , 2φ2 , 3φ̄2 , 4φ̄1) = (8πG)3(s− |m1 +m2e

iφ|2)4

×
[
(s− |m1 +m2e

iφ|2)2(IIII + IXI + IIX)

+ (u− |m1 −m2e
iφ|2)2(IIII + IXI + IIX)

+ t2(IH+I +I +IIY+II

Y+IH+I +I +IIY+II

Y)
]
.

(3.16)

3.4 Comments on the consistency of the integrands

Finally, let us make some brief comments about the consistency of the integrands we have

constructed in this section. We have focused on the sector of the theory where KK modes
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Figure 6. Two-loop integrals that include a self-interaction.

with masses m1,m2 of order R−1 exchange massless particles. This is not a consistent

truncation, however, since there is no parametric separation between the masses of the KK

modes which are all of order R−1.3 This manifests itself in various ways. For instance, the

tree amplitude in eq. 3.7, features the exchange of massive particle of mass ∼ m1 −m2,

which is required by crossing symmetry. Similarly, at loop-level, it is known that the sum of

the box and crossed-box integrals contains a mass singularity (see e.g. [92]). Consequently,

the amplitude in eq. (3.12) has collinear divergences in violation of the theorem of ref. [93]

which precludes them in quantum gravity.4 All of these issues are manifestations of the

well known fact that there is no consistent quantum theory of a finite number of massive

particles coupled to maximal supergravity. In attempting to fix these problems, one is

bound to discover the tower of KK modes, which arise from a consistent massless theory

in higher dimensions. In spite of these comments, our truncated theory has a well-defined

classical Lagrangian and is a useful toy model to explore the questions we are interested

in this paper, so we will ignore all of these issues henceforth.

4 Integration via velocity differential equations

In the previous section we have constructed the full quantum integrand for the four-point

amplitude through two loops. In this section we will calculate the integrals using the

method of regions [71, 94] to extract the contributions which are relevant for the con-

servative dynamics. After briefly reviewing the various regions involved the problem, we

introduce a new method to calculate the integrals in the potential region, using single-scale

fully relativistic differential equations with modified boundary conditions. We illustrate

the method using several examples at one and two loops.

3We thank Chia-Hsien Shen for discussions related to this point.
4This stands in contrast to Einstein gravity, whose quantum one-loop amplitude was shown in ref. [20]

to lack collinear divergences
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4.1 Regions and power counting

Following the discussion in ref. [20], we consider an internal graviton line with four-

momentum ` = (ω, `), whose components can scale as

hard : (ω, `) ∼ (m,m) , (4.1)

soft : (ω, `) ∼ (|q|, |q|) ∼ J−1 (m|v|,m|v|) , (4.2)

potential : (ω, `) ∼ (|q||v|, |q|) ∼ J−1 (m|v|2,m|v|) , (4.3)

radiation : (ω, `) ∼ (|q||v|, |q||v|) ∼ J−1 (m|v|2,m|v|2) , (4.4)

where we take as reference scale m = m1 + m2, and each scaling defines a region. Note

that the four different regions are defined using two small parameters |q| (or J−1) and the

velocity |v|, which define the classical and non-relativistic limit respectively. Of the four

regions, only the potential region contains off-shell modes, which can be integrated out

and yield the conservative part of the dynamics. Their contributions can be captured by a

non-relativistic EFT which was introduced and put to use in refs. [16, 19, 20], and we will

utilize in section 7.

The method of regions [71, 94] instructs us to expand the integrand using the scaling

corresponding to a given region, and then integrate over the whole space of loop momenta

in dimensional regularization. Our goal is to calculate the contributions from the poten-

tial region.

4.2 Outline of the new method

Ref. [19] introduced a “non-relativistic integration” method by which one must first expand

in velocity before expanding in |q|. This produces simple integrals akin to those appearing

in NRGR [95, 96] at the cost of breaking manifest relativistic invariance in the first step. As

explained above the potential region is defined by a double expansion, and we might chose to

expand in the opposite order, first in small |q|, and then in velocity. The expansion in small

|q| is just the expansion in the soft region where all graviton momentum components are

uniformly small (of order |q|). The result of this expansion is a power series in |q| truncated

at an appropriate order, with each term in the expansion given by fully relativistic soft

integrals with linearized matter propagators. To simplify the expressions, we will apply

the well-known method of integration-by-parts reduction [97] to these soft integrals to

rewrite them as a linear combination of master integrals. Then we will construct differential

equations [73–76] in the canonical form [77, 78] for these master integrals. The choice of

a basis of the master integrals will be an important technical point to be discussed later.

The selection of pure basis integrals is also facilitated by automated tools [98, 99].

The upside of the soft expansion is that it keeps the integrals fully relativistic, but here

we are only interested in the contributions from the potential region. Thus, in a second

step we should re-expand the integrals in the potential region where graviton momenta are

dominated by spatial components, since the potential region isolates conservative classical

effects [16, 19, 20]. After the expansion in the potential region, each term in the previous
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Figure 7. Kinematic setup with special variables.

small-q expansion would be rewritten as a Taylor series in the velocity (ratio of spatial to

time components) of external momenta. Unlike the first step, which gives the expansion in

small |q| to some finite order, in the second step the velocity expansion can be performed

to all orders by using method of differential equations for the soft master integrals. A key

observation is that we can construct differential equations for the soft integrals directly

before re-expanding in the potential region, as the re-expansion does not change the dif-

ferential equations, but changes the boundary conditions near the static limit. Thus, it

suffices to expand the soft master integrals to leading order in velocity in the potential

region, to obtain the boundary conditions that allow us to uniquely solve the differential

equations and determine the integrals to all orders in velocity.5

Let us now explain each of these steps in more detail.

4.2.1 Soft expansion using special variables

In order to carry out the procedure outline above, it will be useful to parametrize the

external kinematics as6

p1 = −(p̄1 − q/2) , p4 = p̄1 + q/2 , (4.5)

p2 = −(p̄2 + q/2) , p3 = p̄2 − q/2 , (4.6)

as displayed in figure 7. Note that s = (p1 + p2)2 = (p̄1 + p̄2)2, so the physical region is

still given by s > (m1 + m2)2. By construction the p̄i’s are orthogonal to the momentum

transfer q = (p1 + p4),

p2
1 − p2

4 = −2 p̄1 · q = 0 , (4.7)

p2
2 − p2

3 = 2 p̄2 · q = 0 . (4.8)

We would like expand the full topologies in the soft region, which in these variables is

characterized by the following hierarchy of scales

|`| ∼ |q| � |p̄i|,mi,
√
s , (4.9)

5The true values of the soft integrals, which will be useful for future calculations beyond conservative

classical dynamics, can be obtained by solving differential equations subject to the boundary conditions of

the “full” soft integrals near the static limit or another suitable kinematic limit.
6To our knowledge this parameterization was introduced in [100]. Notice that in our convention all

external pµi are outgoing, but p̄i can be either incoming or outgoing.
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where ` stands for any combination of graviton momenta (`1, `2, `1±`2, · · · ), or equivalently

(p̄0
i , p̄i) ∼ m(1, 1), (4.10)

(q0 , q) ∼ (|q|, |q|), (4.11)

(`0 , `) ∼ (|q|, |q|). (4.12)

The massless graviton propagators typically take the form

1

`2
,

1

(`− q)2
, (4.13)

so they have uniform power counting |q|−2 in the small-|q| limit, without further expansion

terms. Meanwhile, the momentum of each matter propagator is the sum of an external

matter momentum p̄i ± 1
2q and the momentum ` injected by gravitons (here ` is generally

some linear combination of one or more graviton momenta). We have to expand these

matter propagators in the soft region,

1(
`+ p̄i ± 1

2q
)2 −m2

i

=
1

2p̄i · `
− `2 ± ` · q

(2p̄i · `)2
+ · · · , (4.14)

so all massive propagators are replaced by “eikonal” propagators that are linear in loop

momenta. We can further define normalized external momenta,

uµ1 =
p̄µ1
m̄1

, uµ2 =
p̄µ2
m̄2

, (4.15)

with

m̄2
1 = p̄2

1 = m2
1 −

q2

4
, m̄2

2 = p̄2
2 = m2

2 −
q2

4
. (4.16)

We can then rewrite the denominators of eq. (4.14) by following eq. (4.15) and factoring

out the scale associated to p̄i from the propagators,

1

2p̄i · `
=

1

(2ui · `)
√
m2
i − q2/4

=
1

2ui · `

(
1

mi
+

q2

8m3
i

+
3q4

128m5
i

+ · · ·
)
, (4.17)

where the relevant kinematic factor is again expanded in small |q|. This choice of variables,

has the advantage that each order in the expansion is homogeneous in |q|, due to the

absence of products between external and graviton momenta in the numerators.

In summary, in the soft region the graviton propagators remain unexpanded, while the

matter propagators have the form 1/(2ui · `), generally raised to higher powers when we

look at terms beyond the leading order in the expansion. Thus, we can write down the

following power counting rules applicable at any loop order, before we actually carry out

the expansion in the soft region,

Graviton propagator: ∼ 1

|q|2 ,

Matter propagator: ∼ 1

|q| ,

Integration measure per loop: d4` ∼ |q|4.

(4.18)
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At successively higher orders in the expansion eq. (4.14), we encounter integrals with

propagators raised to higher powers as well as higher-degree polynomials in the numerators.

Fortunately, all such integrals can be reduced to a finite number of master integrals via

integration by parts [97] automated by the Laporta algorithm [101, 102], and we use the

FIRE6 software package [103] to perform the calculation. This allows the soft expansion

result to be expressed in terms of a small number of master integrals, whose values will be

calculated by the method of differential equations.

4.2.2 Velocity differential equations for soft integrals

Next we want to integrate the master integrals, which we will do by the method of differ-

ential equations. Importantly, by virtue of the normalization (4.15) we have

u2
1 = u2

2 = 1, u1 · q = u2 · q = 0. (4.19)

Hence, after the soft expansion, the only dimensionful scale of the integrals is q2. The

dependence on q2 of each integral can be easily fixed by dimensional analysis, and the

integrals only depend non-trivially on the following dimensionless parameter,

y = u1 · u2. (4.20)

Hence our differential equations will depend on this single variable, y, which is related to

the relativistic Lorentz factor in eq. (2.10),

y = σ +
σ(m2

1 +m2
2) + 2m1m2

8m2
1m

2
2

q2 +O(q4). (4.21)

We give this relation to the next-to-leading order in q2 since it will be used later to convert

amplitude results in y to results in σ.

We will construct the differential equations by taking derivatives of the master in-

tegrals. The choice of a basis master integrals is not unique; we choose a pure basis in

which each master integral has an ε expansion where each term is a generalized polyloga-

rithms [104–106] of uniform transcendentality. This is largely just a technical point, because

at the order of ε expansion needed, the integrals in this paper do not contain any functions

more complicated than logarithms (which are a special case of generalized polylogarithms).

However, this will yield simple differential equations. A possible form of the differential

operator ∂y, rewritten as derivatives against normalized external momenta uµi , is

d

dy
=

1

y2 − 1
(yuµ1 − uµ2 )

∂

∂uµ1
. (4.22)

The original form d/dy is fine for differentiating the explicit y-dependent factors in the

normalization of the master integrals, but the r.h.s. of eq. (4.22) is needed to differentiate

the propagators and numerators expressed in terms of external and internal momenta.

After differentiating any of the pure integrals with respect to y, the result can be IBP-

reduced back to the basis of master integrals. We will rationalize the square root
√
y2 − 1

using the change of variable

y =
1 + x2

2x
,
√
y2 − 1 =

1− x2

2x
, y ≥ 1, 0 < x ≤ 1, (4.23)
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under which
d

dy
=

2x2

x2 − 1

d

dx
. (4.24)

In terms of these variables, the physical region in our scattering processes is given by

1 < y <∞, i.e. 0 < x < 1.

Our differential equations will take the canonical form [77, 78]

d~f = ε
∑
i

Ai dlogαi(x)~f , (4.25)

where Ai are numerical matrices and each αi(x), called a symbol letter, is a rational func-

tions in x, and ε = (4−D)/2 is the dimensional regularization parameter.7 The set of the

αi is called the symbol alphabet, in the formalism of ref. [105] which uses “symbols” to

elucidate functional identities between generalized polylogarithms.

These differential equations can be easily solved, given appropriate boundary condi-

tions. While we could use them to calculate the full soft integrals, we will use them to

directly extract the values of the integrals evaluated in the potential region. By expanding

in the potential region and summing the expansion to all orders, we have localized the loop

integration on the poles of matter propagators. We are essentially dealing with a version of

cut integrals (see e.g. refs. [109–114]), which satisfy the same IBP relation and differential

equations as original uncut integrals. This is the reason why the only changes are in the

boundary conditions, obtained in the near-static limit y → 1 by re-expanding the master

integrals in the potential region.

4.2.3 Static boundary conditions from re-expansion in the potential region

We are ready to write down the power counting of momentum components in the potential

region, in terms of a small velocity parameter v. Since we have first expanded in the soft

region and transitioned to normalized external momenta in eq. (4.17), we will write down

the power counting for uµi instead of pµi , and for graviton momenta `µ,

uµi = (u0
i ,ui) ∼ (1, |v|), (4.26)

`µ = (ω, `) ∼ |q|(|v|, 1). (4.27)

The factor of |q| is unimportant in our two-step expansion procedure, where the integrals

are already homogeneous in q2 (i.e. proportional to a definite power of q2 without further

corrections) after the soft expansion is carried out.

Now we can expand graviton and matter propagators. Recall that graviton propagators

∼ 1/`2 are unchanged in the soft expansion. Their expansion in the potential region is

1

`2
=

1

ω2 − `2
= −

(
1

`2
+

ω2

(`2)2
+

ω4

(`2)3
+ · · ·

)
. (4.28)

On the other hand, matter propagators of the form (4.17) are homogeneous in v and the

expansion consists of a single term,

1

2ui · `
=

1

2
(
u0
i ω − ui`

) . (4.29)

7Henn’s canonical form can also be used for finite integrals without a dimensional regulator, see [107, 108].
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Figure 8. Top level topology at one-loop. Indices correspond to the propagators listed in eq. (4.34).

The power counting rules for propagators and integration measure in the potential re-

gion are

Graviton propagator: ∼ 1, (4.30)

Matter propagator: ∼ 1

|v| , (4.31)

Integration measure: d4` ∼ |v|. (4.32)

We will only need to expand to leading order in |v|, since we only wish to obtain the value

of the integrals at one point, to supply a boundary condition.

The expanded integrals can be evaluated by residues by performing contour integration

over the graviton energies ω. Such energy integrals can be ambiguous until one applies a

proper prescription [16, 20]. Such a prescription is effectively part of the definition of the

potential region which separates it from the larger soft region. Refs. [16, 20] presented the

prescription in the absence of double poles, i.e. squared matter propagators, but we will

show in our examples that when the energy integral prescription is formulated in terms

of residues, double poles can be treated in a natural manner and cause no difficulty. As

explained in ref. [20], this prescription generally implies that an integral in the potential

region with less than one massive propagators per loop is necessarily zero. Finally, the

resulting D − 1-dimensional integrals can be easily evaluated using traditional methods,

and provide the desired boundary conditions to solve our soft integrals in the potential

region.

4.3 One-loop integrals

Next we will illustrate the method above with some simple one-loop examples. We will

evaluate all the box-type integrals, which appear in the one-loop N = 8 integrand in

eq. (3.12) with scalar numerator.

4.3.1 Box integral

The box integral with two opposite masses has been evaluated in ref. [92] in dimensional

regularization up to order ε0. It has also been discussed in detail in ref. [20]. As shown in
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figure 8, a generic integral in the box topology is of the form

Ii1,i2,i3,i4 =

∫
dD`

(2π)D
1

ρ̃i11 ρ̃
i2
2 ρ̃

i3
3 ρ̃

i4
4

, (4.33)

where the propagator denominators are explicitly

ρ̃1 = (`− p1)2 −m2
1 , ρ̃2 = (`+ p2)2 −m2

2 , ρ̃3 = `2 , ρ̃4 = (`− q)2 , (4.34)

and the scalar box integral is III = I1,1,1,1. The crossed box integral topologies are related

to the box integral (X) by the replacement u1 → u1, u2 → −u2.

Integration-by-parts reduction of soft integrals. Using the soft power counting

rules explained in the previous section we see that the box integrals are O(|q|−2). Thus,

classical power counting requires expanding the integral to subleading powers. The box

propagators reduce in the soft expansion to

ρ1 = 2u1 · ` , ρ2 = −2u2 · ` , ρ3 = `2 , ρ4 = (`− q)2 , (4.35)

which upon expansion of the integral will generally appear raised to integer powers. The

numerators appearing in the expansion are polynomials in ρi, so each order in the soft

expansion is a sum of integrals of the form

Gi1,i2,i3,i4 =

∫
dD` eγEε

iπD/2
1

ρi11 ρ
i2
2 ρ

i3
3 ρ

i4
4

, (4.36)

with each such integral multiplied by a rational function of the external kinematic vari-

ables m2
i , q

2, and y. As we already mentioned, q2 is the only dimensionful scale in such

integrals. Whenever i1 or i2 is non-positive, the integral will become scaleless and vanish

in dimensional regularization.8 Here and in the following, when writing such soft integrals

we adopt the convention of ref. [115], in which we remove an overall factor of

i

(4π)2
(µ̄2)ε ≡ i

(4π)2

(
4πe−γEµ2

)ε
, (4.37)

per loop, where ε = (4 − D)/2 and µ is the dimensional regularization scale. In other

words, we write the integration measure for each loop as dD`/(iπD/2), and multiply by a

factor of eq. (4.37) per loop in the end to recover results defined with the more common

normalization dD`/(2π)D.

Using integration-by-parts reduction, all such integrals are rewritten as linear combi-

nations of the following three master integrals9

f1 = ε(−q2)G0,0,2,1 , f2 = ε2
√
−q2G1,0,1,1 , f3 = ε2

√
y2 − 1 (−q2)G1,1,1,1 . (4.38)

whose corresponding topologies are depicted in figure 9. So all integrals given by eq. (4.36)

span not an infinite-dimensional, but a three-dimensional vector space. The above integrals

are all proportional to (−q2)−ε times a q-independent function of the dimensionless param-

eter y. The basis does not involve the other triangle integral G0,1,1,1 with a (linearized)

8Physically speaking, this is because the soft expansion only captures the part of the amplitude that is

non-analytic in q2 and relevant for long-range classical physics.
9In contrast the full box system has 10 master integrals, see e.g. ref. [20].
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Figure 9. Topologies for the box master integrals.

matter propagator on the bottom — this is because with the linearized propagator denom-

inators 2ui · ` the two triangle integrals are identical and we may freely choose either one

as part of the basis of master integrals.

Starting from the original box integral eq. (4.33) with ak = 1, we expand the propaga-

tors as in eqs. (4.14) and (4.17), and perform integration-by-parts reduction to obtain the

small-q expansion of the box integral in terms of the three master integrals in eq. (4.38),

III =
i

(4π)2
(µ̄2)ε

[
1

ε2m̄1m̄2

√
y2 − 1

1

(−q2)
f3

+
(m̄1 + m̄2)

εm̄2
1m̄

2
2(y − 1)

1√
−q2

f2

− (1 + 2ε)
(
2m̄2m̄1y + m̄2

1 + m̄2
2

)
8ε2m̄3

1m̄
3
2 (y2 − 1)3/2

f3 +
(1 + 2ε)

[(
m̄2

1 + m̄2
2

)
y + 2m̄1m̄2

]
8εm̄3

1m̄
3
2(y2 − 1)

f1

]
,

(4.39)

where the 1st, 2nd, and 3rd lines are of order |q|−2, |q|−1, and |q|0, respectively.10 The

bubble integral f1 will be eventually set to zero because we will evaluate the integrals in

the potential region.

Differential equations for soft integrals. Now we will construct differential equations

for the three pure master integrals in eq. (4.38). The original form of the differential

operator d/dy is used for differentiating the explicit y-dependent factors in eq. (4.38),

such as
√
y2 − 1, and the r.h.s. of eq. (4.22) is used to differentiate the propagators in

eqs. (4.35) and (4.36). After differentiating any of the three pure integrals with respect

to y, the result is a sum of integrals of the form eq. (4.36), and can be IBP-reduced back

to the basis eq. (4.38). After IBP-reduction we use the change of variables from y to x in

eq. (4.23), to rationalize the square roots. The resulting differential equation is

d~f

dx
= ε

A

x
~f, (4.40)

where the matrix A is explicitly given by

A =

0 0 0

0 0 0

1 0 0

 . (4.41)

10This is true up to the factors of |q| hidden in the definition of y and m̄i.

– 19 –



J
H
E
P
1
1
(
2
0
2
0
)
0
2
3

This can be written in the form (4.25)

d~f = εA1 dlog(x)~f , (4.42)

so we recognize x as the only symbol letter for the integrals relevant at one loop.

Static boundary conditions from re-expansion in the potential region. Finally,

we need to obtain the appropriate boundary conditions to solve the differential equa-

tion (4.42) in the potential region. As explained above, we proceed by expanding the pure

basis of master integrals eq. (4.38) in the near-static limit |v| � 1, using the rules in sec-

tion 4.2.3. After expanding in |v|, each order in the series consists of a sum of integrals of

the form∫
dD−1`

∫ ∞
−∞

dω
N (ω, `, u0

i ,ui)

(`2 − i0)i1
[
(`−q)2−i0

]i2 (
2u1`−2u0

1 ω−i0
)i3 (−2u2`+2u0

2 ω−i0
)i4 ,
(4.43)

with some polynomial numerator N .

These integrals can be evaluated by performing integration over energy ω by residues.

We work in a frame where the momentum transfer qµ has no energy component, so the

energy of the two graviton lines are ω and −ω, respectively. For convenience, we can further

boost our frame so that particle 1 is at rest11 and u2 moves in z-direction

u1 = (1, 0, 0, 0) , u2 = (
√

1 + v2, 0, 0, v ) . (4.44)

The y variable defined in eq. (4.20) is related to the above parametrization by v =
√
y2 − 1.

We symmetrize over the energy components of the two graviton lines, and rewrite

eq. (4.43) using the transformation∫ ∞
−∞

dω I(ω)→
∫ ∞
−∞

dω
1

2
[I(ω) + I(−ω)] . (4.45)

Then we perform the ω integral by closing the contour either in the upper half plane or

the lower half plane, and pick up contributions from poles at finite values of ω, discarding

poles at infinity, i.e. neglecting possible non-zero contributions from the arc of a semi-circle

contour whose radius tends to infinity. After the ω integral in eq. (4.43) is carried out in

this way, we are left with the spatial integral dD−1`, and the only denominators left are

massless quadratic propagators in three dimensions and linear propagators

1

`2 − i0
,

1

(`− q)2 − i0
,

1

−2`z − i0
. (4.46)

The resulting spatial integrals only depend on a single scale q 2, and are related to standard

propagator integrals.

The bubble integral f1 in eq. (4.38) trivially vanishes in the potential region, because

there are no poles at finite values of ω and poles at infinity are discarded in our integration

11To be precise, particle 1 is only at rest up to O(q2), as u1 only coincides with the four-velocity of

particle 1 at leading order in q.
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prescription. Using the power counting rules in the potential region, eqs. (4.30) to (4.32), we

can see that f2 and f3, i.e. triangle and box integrals with appropriate prefactors that ensure

a canonical form of differential equations, both start at O(v0) in the velocity expansion.

For example, f3 has a prefactor
√
y2 − 1 = v, two matter propagators giving O(1/v2),

and an integration measure of O(v), so overall f3 is of O(v0). This is not surprising, since

it is well known that integrals of unit leading singularity can have at most logarithmic

singularities in any kinematic limit. To obtain f2 and f3 evaluated in the potential region

at the leading order in v, we keep only the leading term in eq. (4.28) for each graviton

propagator, and then use eq. (4.45) to perform the energy integral, leaving spatial integrals

f
(p)
1

∣∣
y=1
≡ 0 , (4.47)

f
(p)
2

∣∣
y=1

= −
√
π

2
ε2
√
−q2

∫
dD−1` eγEε

π(D−1)/2

1

(`2 − i0) [(`− q)2 − i0]
, (4.48)

f
(p)
3

∣∣
y=1

=
√
πε2(−q2)

∫
dD−1` eγEε

π(D−1)/2

1

(`2 − i0)[(`− q)2 − i0]

1

(−2`z − i0)
. (4.49)

The bubble integral vanishes as the propagator does not have any energy dependence in

the potential limit. The (D − 1)-dimensional integrals are calculated in appendix A and

given in eqs. (A.4) and (A.5). The result for the static limit is then

f
(p)
1

∣∣
y=1

= 0, (4.50)

f
(p)
2

∣∣
y=1

= −ε2(−q2)−εeγEε
√
π Γ
(

1
2 − ε

)2
Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

, (4.51)

f
(p)
3

∣∣
y=1

= ε2(−q2)−εeγEε
iπ

2

Γ(−ε)2Γ(1 + ε)

Γ(−2ε)
. (4.52)

Solving the differential equation (4.42) shows that eqs. (4.50)–(4.52) in fact are correct to

all orders in v, i.e. for any values of y ≥ 1, so they are the final expressions for the pure

basis eq. (4.38) as evaluated in the potential regions to all orders in velocity,

f
(p)
1 = f

(p)
1

∣∣
y=1

, f
(p)
2 = f

(p)
2

∣∣
y=1

, f
(p)
3 = f

(p)
3

∣∣
y=1

. (4.53)

Looking forward to the next sections, we will find the solutions to differential equations to

be more non-trivial for two-loop integrals.

Result. Substituting the results eqs. (4.50)–(4.52) into eq. (4.39) and taking into account

eqs. (4.16) and (4.21), we obtain the box integral evaluated in the potential region to all

order in velocity, given as a small-|q| expansion,

I
(p)
II =

i

(4π)2

(−q2

µ̄2

)−ε{
1

(−q2)

iπ

2m1m2

√
σ2 − 1

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

− 1√
−q2

ε(m1 +m2)

m2
1m

2
2(σ − 1)

√
π eεγEΓ

(
1
2 − ε

)2
Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

− iπε
(
m2

1 +m2
2 + 2m1m2σ

)
8m3

1m
3
2 (σ2 − 1)3/2

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)
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+O
(√
−q2

)}
, σ > 1 . (4.54)

4.3.2 Crossed box integral

We end with a discussion of the crossed box integrals. As mentioned above, the unexpanded

crossed integral is related to the box integral by the crossing replacement u1 → u1, u2 →
−u2. Therefore, the same soft differential equations (4.42) are satisfied by these integrals,

and one only needs to be careful about the boundary conditions.

The specific choice of reference frame eq. (4.44) is changed by crossing into

u1 = (1, 0, 0, 0) , u2 = (−
√

1 + v2, 0, 0,−v ) . (4.55)

In terms of Lorentz invariants, this is y → −y. However, our results for the box integral at

y > 1 cannot be analytically continued to negative values of y, because the energy integra-

tion prescription produces non-analytic behavior in y. For example, when performing the

energy integration for f3 in eq. (4.38) in the potential region, the two poles lie on the same

side of the contour when y < 0, and the contour integration gives zero. The correct result

for crossed integrals in the static limit (analogous to eqs. (4.50)–(4.52) for the box) is

f
(p)
1

∣∣
y=−1

= 0, (4.56)

f
(p)
2

∣∣
y=−1

= −ε2(−q2)−εeγEε
√
π Γ
(

1
2 − ε

)2
Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

, (4.57)

f
(p)
3

∣∣
y=−1

= 0 . (4.58)

Again, the above equations are derived from the static limit but are actually valid to

all orders in velocity, because the velocity differential equations have trivial solutions at

one loop.

Result. To obtain the small-|q| expansion of the crossed box, we also need to make the

y → −y replacement in the coefficients of fi master integrals in eq. (4.39). The end result

for the small-|q| expansion of the crossed box integral is

I
(p)
X =

i

(4π)2

(−q2

µ̄2

)−ε{
1√
−q2

ε(m1 +m2)

m2
1m

2
2(σ + 1)

√
π eεγEΓ

(
1
2 − ε

)2
Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

+O
(√
−q2

)}
, σ > 1 . (4.59)

4.4 Two-loop integrals

Next we will evaluate the two-loop integrals needed for the two-loop integrand in eq. (3.16).

A simple application of the soft power-counting rules in eq. (4.18) reveals that all the

double-box-type integrals in the second line of eq. (3.16) contribute in the classical limit

with leading power O(q−2) so they need to be expanded to subleading powers. On the other

hand, of the integrals in the third line of eq. (3.16), only the H and H integrals at leading
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Figure 10. III topology. Indices correspond to the propagators listed in eq. (4.61).

power survive the (q2)2 suppression of the numerator, and the rest do not contribute in

the classical limit.12

We will describe in detail the computation of the double-box (III) and H-type integrals,

and present results for the rest of the integrals. As usual we will strip from our integrals a

factor of (4.37) per loop in intermediate steps, to be restored at the end.

4.4.1 Double-box (III)

We first consider generic integrals of the form

Ii1,i2,...,i9 =

∫
dD`1
(2π)D

∫
dD`2
(2π)D

1

ρ̃i11 ρ̃
i2
2 · · · ρ̃i99

. (4.60)

Where the propagators are

ρ̃1 = (`1 − p1)2 −m2
1 , ρ̃2 = (`1 + p2)2 −m2

2 , ρ̃3 = (`2 − p4)2 −m2
1 ,

ρ̃4 = (`2 + p3)2 −m2
2 , ρ̃5 = `21 , ρ̃6 = `22 ,

ρ̃7 = (`1 + `2 − q)2 , ρ̃8 = (`1 − q)2 , ρ̃9 = (`2 − q)2 . (4.61)

The double-box (III) topology can be embedded in this family of integrals, as shown in

figure 10, so that the scalar box integral is given by IIII = I1,1,1,1,1,1,1,0,0. Later we will see

that the H topology can also be embedded in the same family. We note that the equal-mass

double-box integral has been evaluated in refs. [116, 117] without expansion in the soft or

potential region, but the case of generic masses has not been discussed in the literature.

Soft expansion and differential equations. In the soft region, we construct an ex-

pansion of the integrand around small |`i| ∼ |q|. In the expansion, only the leading order

parts of ρ̃i, denoted by ρi and given by

ρ1 = 2 `1 · u1 , ρ2 = −2 `1 · u2 , ρ3 = −2 `2 · u1 ,

ρ4 = 2 `2 · u2 , ρ5 = `21 , ρ6 = `22 ,

ρ7 = (`1 + `2 − q)2 , ρ8 = (`1 − q)2 , ρ9 = (`2 − q)2 . (4.62)

12The “mushroom” integrals I and I vanish identically when evaluated in the potential region [19, 20],

so cannot contribute even without the (q2)2 suppression from the integrand numerator.
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Figure 11. Even-|q| topologies relevant for the double-box master integrals.

appear in the denominators (possibly with raised powers), and subleading corrections all

appear in numerators. Such numerators are in turn written as linear combinations ρi. The

small-|q| expansion consists of integrals of the form

Gi1, i2,...,i9 =

∫
dD`1 e

γEε

iπD/2

∫
dD`2 e

γEε

iπD/2
1

ρi11 ρ
i2
2 . . . ρ

i9
9

, (4.63)

where negative indices represent numerators rather than denominators. Note that, as in

the previous subsection, we have removed a factor of (4.37) per loop in the soft integrals.

There are a total of 10 master integrals for the III topology13 as shown in figures 11 and 12.

A pure basis is given by

fIII,1 = ε2(−q2)G0,0,0,0,1,2,2,0,0 , (4.64)

fIII,2 = ε4
√
y2 − 1G0,1,1,0,1,1,1,0,0 , (4.65)

fIII,3 = ε3(−q2)
√
y2 − 1G0,1,1,0,2,1,1,0,0 , (4.66)

fIII,4 = − ε2(−q2)G0,2,2,0,1,1,1,0,0 + ε3y (−q2)G0,1,1,0,2,1,1,0,0 , (4.67)

fIII,5 = ε3
√
y2 − 1 (−q2)G1,1,0,0,1,1,2,0,0 , (4.68)

fIII,6 = ε3(1− 6ε)G1,0,1,0,1,1,1,0,0 , (4.69)

fIII,7 = ε4
(
y2 − 1

)
(−q2)G1,1,1,1,1,1,1,0,0 , (4.70)

fIII,8 = ε3
√
−q2G1,0,0,0,1,1,2,0,0 , (4.71)

fIII,9 = ε3
√
−q2G0,2,1,0,1,1,1,0,0 , (4.72)

fIII,10 = ε4
√
y2 − 1

√
−q2G1,1,1,0,1,1,1,0,0 , (4.73)

where all the master integrals are normalized to be proportional to (−q2)−2ε. The corre-

sponding topologies are depicted in figures 11 and 12, where we have separated the integrals

which are even and odd in |q|.
13For reference, in the full equal-mass problem there are 23 master integrals [117].
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Figure 12. Odd-|q| topologies relevant for the double-box master integrals.

We perform soft expansion and use IBP-reduction to write the results in terms of the

master integrals. The double-box integral is given as the following small-|q| expansion,

IIII = −(µ̄2)2ε

(4π)4

{
1

(−q2)

1

m̄2
1m̄

2
2 (y2 − 1) ε4

fIII,7

+
1√
−q2

2(m̄1 + m̄2)

ε3(y − 1)
√
y2 − 1 m̄3

1m̄
3
2

fIII,10

− m̄2
1

(
3
(
y2 + 1

)
ε+ 1

)
+ m̄2

2

(
3
(
y2 + 1

)
ε+ 1

)
+ 2y(6ε+ 1)m̄2m̄1

24 (y2 − 1)2 ε3m̄4
1m̄

4
2

fIII,1

− y
(
m̄2

1 + m̄2
2

)
+ 2m̄1m̄2

(y2 − 1)3/2 ε2m̄4
1m̄

4
2

fIII,2

− y
(
m̄2

1 + m̄2
2

)
+ 2m̄1m̄2

8 (y2 − 1)3/2 ε3m̄4
1m̄

4
2

fIII,3

− m̄2
1

(
3
(
y2 + 1

)
ε+ 1

)
+ m̄2

2

(
3
(
y2 + 1

)
ε+ 1

)
+ 2y(6ε+ 1)m̄2m̄1

12 (y2 − 1)2 ε3m̄4
1m̄

4
2

fIII,4

+
(2ε+ 3)

(
y
(
m̄2

1 + m̄2
2

)
+ 2m̄1m̄2

)
12 (y2 − 1)3/2 ε3m̄4

1m̄
4
2

fIII,5

− m̄2
1

(
3
(
y2 + 1

)
ε+ 1

)
+ m̄2

2

(
3
(
y2 + 1

)
ε+ 1

)
+ 2y(6ε+ 1)m̄2m̄1

12 (y2 − 1)2 ε3m̄4
1m̄

4
2

fIII,6

− (4ε+ 3)
(
2ym̄2m̄1 + m̄2

1 + m̄2
2

)
12 (y2 − 1)2 ε4m̄4

1m̄
4
2

fIII,7

}
, (4.74)

where the first line is of order 1/q2, the second line is of order 1/|q|, and the remaining

lines are of order |q|0, Since integration-by-parts will only produce analytic coefficients for

master integrals, e.g. polynomials in q2 but not
√
−q2, the master integrals fIII,1 to fIII,7

appear in terms that are even in |q| in the small-|q| expansion of the amplitude, while fIII,8

to fIII,10 appear in expansion terms that are odd in |q|.
The differential equations for the master integrals are

d~fIII = ε [AIII,0 dlog(x) +AIII,+1 dlog(x− 1) +AIII,−1 dlog(x+ 1)] ~fIII . (4.75)

The even- and odd-|q| systems decouple and we can write

AIII,i =

(
A

(e)
III,i 0

0 A
(o)
III,i

)
, (4.76)
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where the matrices are given by

A
(e)
III,0 =



0 0 0 0 0 0 0

−1
2 −6 0 −1 0 0 0

−3
2 0 2 −2 0 0 0

0 12 2 0 0 0 0

−3
4 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 −2 0 0


, A

(e)
III,±1 =



0 0 0 0 0 0 0

0 6 0 0 0 0 0

0 0 −2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (4.77)

A
(o)
III,0 =

 0 0 0

0 −2 0

0 1 0

 , A
(o)
III,−1 =

 0 0 0

3 6 0

0 0 0

 , A
(o)
III,+1 =

 0 0 0

−3 −2 0

0 0 0

 . (4.78)

We make a technical observation here. Previously we found that at one loop x, is the only

symbol letter. As a consequence only powers of log x will appear in the solutions to the

differential equations. In contrast, at two loops, there are multiple symbol letters appearing

in the differential equations in eq. (4.75): {x, 1 ± x}, so the symbol alphabet is larger.

This generically results in the solution of the differential equations being (harmonic [118,

119]) polylogarithms, but we will see that at leading order in ε all two-loop integrals only

contain logarithms.

Re-expansion in the potential region. As described in section 4, we obtain boundary

conditions for the pure basis of soft integrals by re-expanding the integrals in the potential

region following eqs. (4.28) and (4.29), and then integrate over energy components of loop

momenta using an appropriate prescription [20]. The energy components of `1 and `2 are

written as ω1 and ω2, while the spatial components are written as `1 and `2.

For the double-box integral and non-planar variants with exactly three graviton prop-

agators, we follow the prescription of ref. [20], but with slight modifications to simplify the

presentation. First, we symmetrize over 3! permutations of the energy components of the

three gravitons, in a way that directly extends the one-loop prescription eq. (4.45),∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 I(ω1, ω2)→
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

3!

∑
η∈S3

I(ωη(1), ωη(2)) , (4.79)

with the definition ω3 = −(ω1 + ω2), and then proceed as usual, i.e. perform the ω1

and ω2 contour integrals one by one, closing the contour either above or below the real

axis and always neglecting poles at infinity. As an example, we calculate the static limit of

G1,0,1,0,1,1,1,0,0, which appears in fIII,6 in eq. (4.69) and is shown in figure 11(d). In the y = 1

i.e. static limit, the graviton propagators are turned into (D− 1)-dimensional propagators,

G1,0,1,0,1,1,1,0,0

∣∣
y=1

= −
∫

dD−1`1 e
γEε

iπD/2

∫
dD−1`2 e

γEε

iπD/2
1

`2
1−i0

1

`2
2−i0

1

(`1+`2+`3)2 − i0

×
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

(2`1 · u1−2ω1u0
1−i0)

1

(−2`2 · u1+2ω2u0
1−i0)

.

(4.80)
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Again adopting the frame choice eq. (4.44) with u1 = (ω1,u1) = (1,0), the second line of

the above equation becomes

1

4

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

−ω1 − i0

1

ω2 − i0
. (4.81)

By the prescription eq. (4.79), this divergent integral is turned into

1

4
· 1

3!

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

(
1

−ω1 − i0

1

ω2 − i0
+

1

−ω1 − i0

1

−ω1 − ω2 − i0

+
1

−ω2 − i0

1

−ω1 − ω2 − i0
+

1

−ω2 − i0

1

ω1 − i0
+

1

ω1 + ω2 − i0

1

ω1 − i0

+
1

ω1 + ω2 − i0

1

ω2 − i0

)
. (4.82)

Now let us perform the ω1 integral by picking up residues in the upper half plane. Only the

4th, 5th, and 6th terms in the bracket of eq. (4.82) have ω1 poles in the upper half plane,

and in fact the 5th term contributes two poles whose residues add to zero. The result of

ω1 integration is
1

4
· 1

3!
(2πi)

∫ ∞
−∞

dω2

(
1

−ω2 − i0
+

1

ω2 − i0

)
. (4.83)

Now we integrate over ω2 by picking up residues in either the upper or lower half plane,

obtaining the same result
1

4
· 1

3!
(2πi)2 = −π

2

6
. (4.84)

Putting it back into eq. (4.80), we obtain

G1,0,1,0,1,1,1,0,0

∣∣
y=1

=
π

6

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2

1

`2
1 − i0

1

`2
2 − i0

1

(`1 + `2 + `3)2 − i0
.

(4.85)

Now we check that the final result is also independent of the contour choice for ω1. If

instead we perform the ω1 integral in eq. (4.82) by picking up residues in the lower half

plane, we obtain a result identical to eq. (4.83), so the subsequent ω2 integration also gives

the same result as eq. (4.84). In conclusion, we have verified in this example that once the

S3 symmetrization over graviton energies are performed, the subsequent energy integration

has no dependence on contour choice (in the sense of closing above or below the real axis).

Adopting the frame choice eq. (4.44), and following this prescription, we find that in

the static limit, the only non-vanishing master integrals are equal f
(p)
III,4, f

(p)
III,6, f

(p)
III,7 and

f
(p)
III,10. The computation of these integrals can be carried out by ordinary methods and

is explained in appendix A. By expanding up to O(ε4) they yield the following vector of

boundary conditions

~f
(p)

III

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,

1

3
− 7π2ε2

18
, 0,−1

6
+

7π2ε2

36
,
1

2
− π2ε2

12
,

0, 0,
iπε

4
− iπ log(2)ε2

2

)T
+O(ε5) . (4.86)
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Figure 13. H topology. Indices correspond to the propagators listed in eq. (4.61).

Result. The solution of the differential equations (4.75) with the boundary condi-

tions (4.86) and (4.110) is presented in eqs. (B.1)–(B.6) in appendix B. Here we just note

that all functions have an overall factor of π2ε2 and therefore the transcendental weight of

the solutions is effectively reduced by two. Consequently at the order considered, the only

polylogarithmic function relevant is log(x) related to the arcsinh function characteristic of

3PM scattering [19, 20] by the change of variable eq. (4.23),

log(x) = − log
(
y +

√
y2 − 1

)
= −2 arcsinh

(√
y − 1

2

)
= −2 arcsinh

(√
σ − 1

2

)
+O(q2) .

(4.87)

Going to O(ε4) we find an additional weight-two function

Li2(1− x2) (4.88)

which has no singularity in the entire range 0 < x < 1, so has no singularity in either the

static limit y → 1 or the high-energy limit y → ∞. Barring cancellations, it is natural to

expect that this function will be relevant at O(G4) (i.e. at the 4PM order).

Finally, inserting in eq. (4.74) the values of the master integrals evaluated in the po-

tential region, eqs. (B.1)–(B.6), and changing variables according to eqs. (4.16) and (4.21),

the end result for the double-box integrals is

I
(p)
III = − 1

(4π)4

(−q2

µ̄2

)−2ε
{

1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
1

ε2
− π2

6
+

2

3
log2(x) +O(ε)

]

+
1√
−q2

[
iπ3 (m1 +m2)

2m3
1m

3
2(σ − 1)

√
σ2 − 1

+O(ε)

]

+

[
− π2

(
2m2m1σ +m2

1 +m2
2

)
8m4

1m
4
2 (σ2 − 1)2

1

ε
+O(ε0)

]}
. (4.89)

4.4.2 H and crossed H (H)

Next we will consider the H topology, which can also be embedded in the family of indices

in eqs. (4.61) and (4.62) as shown in figure 13, so that the scalar H integral is IH =
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I0,1,1,0,1,1,1,1,1. We note that the case of equal masses has been evaluated in ref. [120]

without expansion in the soft or potential region. For this topology we only need the

leading contribution in |q|, which is even in |q|. Therefore we only give the pure basis of

ten master integrals needed to express the even-|q| terms,14

fH,1 = ε2(−q2)G0,0,0,0,0,0,1,2,2 , (4.90)

fH,2 = ε2(1− 4ε)G0,0,2,0,1,0,1,1,0 , (4.91)

fH,3 = ε2(−q2)2G0,0,0,0,2,1,0,1,2 , (4.92)

fH,4 = ε4(−q2)G0,1,1,0,1,1,0,1,1 , (4.93)

fH,5 = ε4
√
y2 − 1G0,1,1,0,0,0,1,1,1 , (4.94)

fH,6 = ε3
√
y2 − 1 (−q2)G0,1,1,0,0,0,2,1,1 , (4.95)

fH,7 = − ε2(−q2)G0,2,2,0,0,0,1,1,1 + ε3y (−q2)G0,1,1,0,0,0,2,1,1 , (4.96)

fH,8 =
ε2(4ε− 1)√
y2 − 1

[(2ε− 1)G0,1,1,0,0,1,1,0,1 + y G0,2,0,0,0,1,1,0,1] , (4.97)

fH,9 = ε4
√
y2 − 1 (−q2)2G0,1,1,0,1,1,1,1,1 , (4.98)

fH,10 = − ε4(−q2)G−1,1,1,−1,1,1,1,1,1 +
1

2
ε2(2ε− 1)G0,0,0,0,1,1,0,1,1

+ 2ε4y (−q2)G0,1,1,0,1,1,0,1,1 + ε(3ε− 2)(3ε− 1) (−q2)−1G0,0,0,0,1,1,1,0,0 . (4.99)

The corresponding topologies are shown in figure 14. In terms of these the soft expansion

of the H integral is simply given by

IH = − 1

(4π)4

(
1

µ̄2

)−2ε
{

1

(−q2)2

1

ε4m̄1m̄2

√
y2 − 1

fH,9 +O
(

(−q2)−3/2−2ε
)}

. (4.100)

The differential equations for these master integrals are

d~fH = ε
[
A

(e)
H,0 dlog(x) +A

(e)
H,+1 dlog(x− 1) +A

(e)
H,−1 dlog(x+ 1)

]
~fH , (4.101)

where we have only kept the even-|q| sector and the matrices are given by

A
(e)
H,0 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1
2 0 0 0 −6 0 −1 0 0 0

−3
2 0 0 0 0 2 −2 0 0 0

0 0 0 0 12 2 0 0 0 0

0 2 0 0 0 0 0 2 0 0

2 −4 0 0 0 4 2 4 2 −2

−1 0 −1 0 12 8 0 8 2 −2



, A
(e)
H,±1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 6 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 −4 0 −4 −2 0

1 0 1 ±4 0 0 0 0 0 2



.

(4.102)

14For reference, in the full equal-mass problem there are 25 master integrals [120].
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(a) fH,1
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(b) fH,2
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(c) fH,3

1 4
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(d) fH,4

1 4

32

(e) fH,5, fH,6, fH,7

1 4

32

(f) fH,8

1 4

32

(g) fH,9, fH,10

Figure 14. Topologies relevant for the H master integrals.

We also need to consider the crossed H, or H, integral, in figure 5(b), which is just a

crossing of the H integral by p2 ↔ −p3. We note, however, that the H and H integrals

appear together in the amplitude, with the same coefficient.15 Thus we can directly evaluate

their sum. Since the crossing p1 ↔ −p4 is equivalent to p2 ↔ −p3, this can be written in

the symmetrized form

IH + IH =
1

2

(
IH + IH

∣∣
p2↔−p3 + IH

∣∣
p1↔−p4 + IH

∣∣
p2↔−p3, p1↔−p4

)
. (4.103)

As mentioned above, we only need to perform the soft expansion of H and H to the leading

order, due to the suppression by t2 = q4 factor in the numerator, and subleading corrections

are not relevant classically. The leading soft expansion of eq. (4.103) can be obtained from

that of the H integral itself by the replacements

1

ρ2 + i0
→ 1

ρ2 + i0
+

1

−ρ2 + i0
= (−2πi)δ(ρ2), (4.104)

1

ρ3 + i0
→ 1

ρ3 + i0
+

1

−ρ3 + i0
= (−2πi)δ(ρ3), (4.105)

followed by multiplying the resulting expression by 1/2. Effectively we have “cut” the

matter propagators and turned them into delta functions. However, we still need to define

how to “cut” matter propagators raised to higher powers, because integrals with squared

15This is even true for the pure gravity amplitude [19, 20] with an appropriate alignment of loop momen-

tum labels across the two different diagrams, up to differences that only give quantum corrections.
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matter propagators appear when we construct differential equations, and also appear in our

choice of a pure basis of master integrals eqs. (4.90)–(4.99). An appropriate prescription is

Gi1,i2,i3...,i9 → Gi1, /i2, /i3,i4,...,i9 , (4.106)

with the definition

Gi1, /i2, /i3,i4,...,i9 =
1

2

∫
dD`1

iπD/2

∫
dD`2

iπD/2
1

ρi11 ρ
i4
4 · · · ρi99

×
[

1

(−ρ2 + i0)i2
− 1

(−ρ2 − i0)i2

] [
1

(−ρ3 + i0)i3
− 1

(−ρ3 − i0)i3

]
. (4.107)

Here Gi1, /i2, /i3,i4,...,i9 vanishes whenever the integer i2 or i3 is non-positive, because the

i0 prescription is of no relevance in the numerator, and the terms in one of the square

brackets of eq. (4.107) add to zero. The advantage of this prescription is that it preserves

IBP relations and the differential equations eq. (4.101). In particular, the pure basis of

master integrals for the H topology, eqs. (4.90)–(4.99) can be mapped to the “cut” version

fH,n → fcH,n, 1 ≤ n ≤ 10, (4.108)

using eqs. (4.106) and (4.107), and the resulting integrals satisfy differential equations

d~fcH = ε [AcH,0 dlog(x) +AcH,+1 dlog(x− 1) +AcH,−1 dlog(x+ 1)] ~fcH , (4.109)

where the matrices, Ai,cH, are identical to the ones in eqs. (4.101) and (4.102) for the

differential equations of the original uncut H topology. Hence the solution of the “cut H”

differential equations will only differ from the full H in the boundary conditions.

In order to obtain the boundary conditions for the “cut H” integrals, we follow a

prescription for performing the energy integrals similar to that in the previous section.

In this case, the prescription is simply to carry out the ω1 integral by residues, and then

performing the ω2 integral by residues too. Each of the two integration steps is done by

closing the contour either above or below the real axis, picking up residues from poles at

finite values and discarding poles at infinity. We find that the only non-vanishing master

integrals in the static limit are f
(p)
cH,4, f

(p)
cH,7 and f

(p)
cH,10. The computation of these integrals

is explained in appendix A. By expanding up to O(ε4) they yield the following vector of

boundary condition

~f
(p)

cH

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,

π2ε2

2
, 0, 0,−1

2
+

7π2ε2

12
, 0, 0, π2ε2

)T
+O(ε5) . (4.110)

The result of solving the differential equation in eq. (4.109) with the boundary con-

ditions in eq. (4.110) is given in eqs. (B.7)–(B.12) in appendix B. The sum of H and H is

given by eq. (4.100) with the replacement fH,9 → fcH,9, which using the solution of the

differential equation yields

IH + IH = − 1

(4π)4

(−q2

µ̄2

)−2ε
 1

(−q2)2

2π2

ε

arcsinh
√

σ−1
2

m1m2

√
σ2 − 1

+O(ε0)

+O((−q)−3/2)

 .

(4.111)
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(a) Non-planar double-box topology.

Figure 15. Top-level topologies at two-loops. Indices correspond to the propagators listed in

eq. (4.113).

The part of eq. (4.111), proportional to log(−q2), which due to the q4 suppression in the

numerator is the only piece relevant for the classical dynamics, agrees with the result in

refs. [19, 20].

4.4.3 Non-planar double-box (IX)

Next we discuss the non-planar double-box topology. We only consider the IX topology,

noting that the integral XI is identical. The full integral has been discussed in the equal

mass case in ref. [121]. We first consider generic integrals of the form

Ii1,i2,...,i9 =

∫
dD`1
(2π)D

∫
dD`2
(2π)D

1

ρi11 ρ
i2
2 · · · ρi99

. (4.112)

Where the propagators are, as depicted in figure 15

ρ̃1 = (`1 − p1)2 −m2
1 , ρ̃2 = (`1 + p2)2 −m2

2 , ρ̃3 = (`2 − p4)2 −m2
1 ,

ρ̃4 = (`1 + `2 − q − p3)2 −m2
2 , ρ̃5 = `21 , ρ̃6 = `22 , (4.113)

ρ̃7 = (`1 + `2 − q)2 , ρ̃8 = (`1 − q)2 , ρ̃9 = (`2 − q)2 ,

and the scalar non-planar double-box integral is IIX = I1,1,1,1,1,1,1,0,0. The small-|q| expan-

sion consists of integrals of the form

Gi1, i2,...,i9 =

∫
dD`1 e

γEε

iπD/2

∫
dD`2 e

γEε

iπD/2
1

ρi11 ρ
i2
2 . . . ρ

i9
9

, (4.114)

where the leading order parts of the propagators are

ρ1 = 2 `1 · u1 , ρ2 = −2 `1 · u2 , ρ3 = −2 `2 · u1 ,

ρ4 = −2 (`1 + `2) · u2 , ρ5 = `21 , ρ6 = `22 ,

ρ7 = (`1 + `2 − q)2 , ρ8 = (`1 − q)2 , ρ9 = (`2 − q)2 . (4.115)

A pure basis of master integrals is given by

fIX,1 = ε2(−q2)G0,0,0,0,2,2,1,0,0 , (4.116)

fIX,2 = ε4
√
y2 − 1G0,0,1,1,1,1,1,0,0 , (4.117)
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fIX,3 = ε3(−q2)
√
y2 − 1G0,0,1,1,2,1,1,0,0 , (4.118)

fIX,4 = ε2(−q2)G0,0,2,2,1,1,1,0,0 + ε3(−q2)yG0,0,1,1,2,1,1,0,0 , (4.119)

fIX,5 = ε4
√
y2 − 1G0,1,1,0,1,1,1,0,0 , (4.120)

fIX,6 = ε3(−q2)
√
y2 − 1G0,1,1,0,1,1,2,0,0 , (4.121)

fIX,7 = ε2(−q2)G0,2,2,0,1,1,1,0,0 − ε3(−q2)y G0,1,1,0,1,1,2,0,0 , (4.122)

fIX,8 = ε3(1− 6ε)G1,0,1,0,1,1,1,0,0 , (4.123)

fIX,9 = ε3(−q2)
√
y2 − 1G1,1,0,0,1,1,2,0,0 , (4.124)

fIX,10 = ε4(−q2)(y2 − 1)G1,1,1,1,1,1,1,0,0 , (4.125)

fIX,11 = ε3
√
−q2G1,0,0,0,1,1,2,0,0 , (4.126)

fIX,12 = ε3
√
−q2G0,2,1,0,1,1,1,0,0 , (4.127)

fIX,13 = ε3
√
−q2G0,0,2,1,1,1,1,0,0 , (4.128)

fIX,14 = ε4
√
−q2

√
y2 − 1G1,0,1,1,1,1,1,0,0 , (4.129)

fIX,15 = ε4
√
−q2

√
y2 − 1G1,1,1,0,1,1,1,0,0 , (4.130)

where the corresponding topologies are shown in figure 16 and figure 17. The functions

fIX,1 to fIX,10 are even in |q|, while fIX,11 to fIX,15 are odd. The soft expansion of the IX

integral and subsequent IBP reduction gives

IIX = −(µ̄2)2ε

(4π)4

{
1

−q2

1

(y2 − 1) ε4m̄2
1m̄

2
2

fIX,10

+
1√
−q2

[ −m̄1 − m̄2

2 (y2 − 1) ε3m̄3
1m̄

3
2

fIX,12

+
m̄1 + m̄2

2 (y2 − 1) ε3m̄3
1m̄

3
2

fIX,13

+
(m̄1 + m̄2) (4yε+ y + 2ε)

2 (y2 − 1)3/2 ε4m̄3
1m̄

3
2

fIX,14

+
−m̄1 − m̄2

(y + 1)
√
y2 − 1ε3m̄3

1m̄
3
2

fIX,15

]
+
εm̄2

1

(
3
(
y2 + 1

)
ε+ 1

)
+ εm̄2

2

(
3
(
y2 + 1

)
ε+ 1

)
+ 4y

(
6ε2 + 7ε+ 1

)
m̄2m̄1

48 (y2 − 1)2 ε4m̄4
1m̄

4
2

fIX,1

+
−yεm̄2

1 − yεm̄2
2 − 4(ε+ 1)m̄2m̄1

4 (y2 − 1)3/2 ε3m̄4
1m̄

4
2

fIX,2

+
y
(
12ε2 + 4ε− 1

)
m̄2

1 + y
(
12ε2 + 4ε− 1

)
m̄2

2 + 2(2ε− 1)m̄2m̄1

16 (y2 − 1)3/2 ε3(2ε− 1)m̄4
1m̄

4
2

fIX,3

+
1

48 (y2 − 1)2 ε4(2ε− 1)m̄4
1m̄

4
2

(
εm̄2

2

((
12− 24y2

)
ε2 + 4ε+ 1

)
+ m̄2

1

((
12−24y2

)
ε3+4ε2+ε

)
−4y

(
12ε3+8ε2−5ε−1

)
m̄2m̄1

)
fIX,4

+
yεm̄2

1 + yεm̄2
2 + 4(ε+ 1)m̄2m̄1

4 (y2 − 1)3/2 ε3m̄4
1m̄

4
2

fIX,5
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Figure 16. Even |q| master integrals relevant for the non-planar double-box topology.

1 4

32

(a) fIX,11

1 4

32

(b) fIX,12

1 4

32

(c) fIX,13

1 4

32

(d) fIX,14

1 4

32

(e) fIX,15

Figure 17. Odd |q| master integrals relevant for the non-planar double-box topology.

+
y
(
6ε2 + 3ε− 1

)
m̄2

1 + y
(
6ε2 + 3ε− 1

)
m̄2

2 + 2
(
4ε2 − 1

)
m̄2m̄1

8 (y2 − 1)3/2 ε3(2ε− 1)m̄4
1m̄

4
2

fIX,6

+
1

48 (y2 − 1)2 ε4(2ε− 1)m̄4
1m̄

4
2

(
εm̄2

1

(
12
(
y2 − 2

)
ε2 +

(
6y2 − 2

)
ε+ 1

)
+ εm̄2

2

(
12
(
y2−2

)
ε2+

(
6y2−2

)
ε+1

)
−4y

(
12ε3+8ε2−5ε−1

)
m̄2m̄1

)
fIX,7

+
εm̄2

1

(
6
(
y2 − 2

)
ε− 1

)
+ εm̄2

2

(
6
(
y2 − 2

)
ε− 1

)
− 4y

(
6ε2 + 7ε+ 1

)
m̄2m̄1

48 (y2 − 1)2 ε4m̄4
1m̄

4
2

fIX,8

+
−y(2ε+ 3)m̄2

1 − y(2ε+ 3)m̄2
2 + 2(2ε− 1)m̄2m̄1

24 (y2 − 1)3/2 ε3m̄4
1m̄

4
2

fIX,9

− 4y(ε+ 1)m̄2m̄1 + (4ε+ 3)m̄2
1 + (4ε+ 3)m̄2

2

12 (y2 − 1)2 ε4m̄4
1m̄

4
2

fIX,10

}
. (4.131)

The differential equations are

d~fIX = ε [AIX,0 dlog(x) +AIX,+1 dlog(x− 1) +AIX,−1 dlog(x+ 1)] ~fIX. (4.132)

The even- and odd-|q| systems decouple and we can write

AIX,i =

(
A

(e)
IX,i 0

0 A
(o)
IX,i

)
, (4.133)
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where the matrices for the even integrals are given by

A
(e)
IX,0 =



0 0 0 0 0 0 0 0 0 0
1
2 −6 0 −1 0 0 0 0 0 0
3
2 0 2 −2 0 0 0 0 0 0

0 12 2 0 0 0 0 0 0 0

−1
2 0 0 0 −6 0 1 0 0 0

−3
2 0 0 0 0 2 2 0 0 0

0 0 0 0 −12 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−3
4 0 0 0 0 0 0 0 0 0

0 0 −1
2 0 0 −1 0 0 1 0



, A
(e)
IX,±1 =



0 0 0 0 0 0 0 0 0 0

0 6 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 6 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



.

(4.134)

The matrices for the odd integrals are

A
(o)
IX,0 =


0 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 −1 1 0 0

0 1 0 0 0

 , A
(o)
IX,−1 =


0 0 0 0 0

3 6 0 0 0

−3 0 −2 0 0

0 0 0 0 0

0 0 0 0 0

 , A
(o)
IX,+1 =


0 0 0 0 0

−3 −2 0 0 0

3 0 6 0 0

0 0 0 0 0

0 0 0 0 0

 .

(4.135)

We proceed by computing the boundary condition in the static limit analogously to the

planar double-box discussed above. As before the integrals in this limit are evaluated using

the residue method, yielding three-dimensional integrals tabulated in appendix A. Only the

functions f4, f7, f8 and f15 are non-vanishing on the boundary and we have

~f
(p)

IX

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,−1

6
+

7π2ε2

36
, 0, 0,

1

3
− 7π2ε2

18
,−1

6
+

7π2ε2

36
, 0, 0, (4.136)

0, 0, 0, 0,
iπε

4
− iπ log(2)ε2

2

)T
+O(ε5) . (4.137)

Solving the differential equation (4.132) with the boundary conditions (4.137) up to O(ε4)

gives the results in eqs. (B.13)–(B.21) in appendix B. Using these results in eq. (4.131)

yields the following result for the non-planar double-box integral IIX,

I
(p)
IX = I

(p)
XI = − 1

(4π)4

(−q2

µ̄2

)−2ε{
1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
−5

6
log2(x) +O(ε)

]
+

1√
−q2

[
− iπ3 (m1 +m2)

2m3
1m

3
2(σ + 1)

√
σ2 − 1

+O(ε)

]

+ (−q2)0

[
0 +O(ε0)

]}
. (4.138)
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4.4.4 Crossed integrals

In order to evaluate the integrand (3.16) we also need the integrals that are obtained from

III and IX by p2 → p3 crossing (denoted III and IX). Since the energy integration step

produces non-analytic behavior, these integrals cannot be directly obtained from analytic

continuation, and we have to solve the differential equations again. From eq. (4.23), we can

see that x → −x corresponds to the change y → −y,
√
y2 − 1 → −

√
y2 − 1. The differ-

ential equations for the crossed integrals are thus obtained from the differential equations

for the original integrals, eqs. (4.75) and (4.132), when we change the l.h.s. by

~fT → ~fT̄, uµ1 → uµ1 , u
µ
2 → −uµ2 , y → −y,

√
y2 − 1→ −

√
y2 − 1, (4.139)

where T ∈ III, IX denotes the topology, and change the r.h.s. by

log(x)→ log(x) , log(1− x)→ log(1 + x) , log(1 + x)→ log(1− x) . (4.140)

The static boundary conditions for III and IX integrals are obtained by the same energy

integration method covered before, and are explicitly given by

~f
(p)

III

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,−1

6
+

7π2ε2

36
, 0,−1

6
+

7π2ε2

36
, 0, 0, 0, 0

)T
+O(ε5) ,

(4.141)

~f
(p)

IX

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,

1

3
− 7π2ε2

18
, 0, 0,−1

6
+

7π2ε2

36
,−1

6
+

7π2ε2

36
, 0, 0,

0, 0, 0, 0, 0

)T
+O(ε5) . (4.142)

Solving the differential equations obtained by crossing of eqs. (4.75) and (4.132) with the

boundary conditions (4.141) and (4.142) gives the result in eqs. (B.22)–(B.26) and (B.22)–

(B.26) in appendix B. These can be used in the soft expansion of the crossed double-box

and non-planar double-box integrals provided in the supplementary material, which gives

especially simple final results,

I
(p)

III
= − 1

(4π)4

(−q2

µ̄2

)−2ε{
1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
−1

3
log2(x) +O(ε)

]
+

1√
−q2

[0 +O(ε)]

+ (−q2)0

[
0 +O(ε0)

]}
, (4.143)

and

I
(p)

IX
= I

(p)

XI
= − 1

(4π)4

(−q2

µ̄2

)−2ε{
1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
2

3
log2(x) +O(ε)

]
+

1√
−q2

[0 +O(ε)]

+ (−q2)0

[
0 +O(ε0)

]}
. (4.144)
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5 Scattering amplitudes in the potential region

In the previous section we calculated the integrals necessary to evaluate the one- and two-

loop conservative amplitudes in the potential region, which we will denote by M4,(p). In

this section we will put together the integrals to construct such scattering amplitudes.

5.1 Tree-level amplitude

For completeness, let us start by considering the tree-level amplitude in eq. (3.8). In this

case the restriction to the potential region is trivial and we simply have

M tree
4,(p) = 32πGm2

1m
2
2(σ − cosφ)2 1

−q2
, (5.1)

which we have written in a form which will be convenient later.

5.2 One-loop amplitude

The one-loop integrand for the conservative black-hole amplitude in N = 8 supergravity is

given in terms of the sum of the box and crossed box integrals in the potential region,

M1-loop
4,(p) = −i(8πG)2 (s− |m1 +m2e

iφ|2)4
(
I

(p)
II + I

(p)
X ) . (5.2)

From the results in eqs. (4.54) and (4.59) we find

I
(p)
II + I

(p)
X =

i

(4π)2

(−q2

µ̄2

)−ε{
1

(−q2)

iπ

2m1m2

√
σ2 − 1

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

− ε 1√
−q2

√
π(m1 +m2)

m2
1m

2
2(σ2 − 1)

eεγEΓ
(

1
2 − ε

)2
Γ
(
ε+ 1

2

)
Γ(1− 2ε)

− ε iπ
(
m2

1 +m2
2 + 2m1m2σ

)
8m3

1m
3
2 (σ2 − 1)3/2

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

+O
(√
−q2

)}
. (5.3)

Note that this formula is valid in arbitrary dimension. In particular it agrees with the

soft-integrals in eqs. (B.36) and (B.40) of ref. [23]. This reference also calculated the

contribution in the potential region at leading order in velocity, which, as expected, did

not match the full soft integrals away from the static limit. It is well known that the

contributions of soft and potential region coincide at one loop in D = 4, up to differences

that are suppressed in the classical limit. Our result shows that this is also true in arbitrary

dimensions. As a cross-check we have also calculated the result directly in the soft region,

by solving the differential equations for the soft integrals subject to their full boundary

conditions without restricting to the potential region, and found agreement to O(ε0) for

both the 1/(−q2) coefficient and the 1/
√
−q2 coefficient. Details will be given elsewhere.
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With the sum of the boxes at hand we can evaluate the one-loop amplitude (3.12) with

the result

M1-loop
4,(p) = 64G2m3

1m
3
2(σ − cosφ)4

(−q2

µ̄2

)−ε{
1

(−q2)

iπ

2
√
σ2 − 1

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

− ε 1√
−q2

√
π(m1 +m2)

m1m2(σ2 − 1)

eεγEΓ
(

1
2 − ε

)2
Γ
(
ε+ 1

2

)
Γ(1− 2ε)

− ε iπ
(
m2

1 +m2
2 + 2m1m2σ

)
8m2

1m
2
2 (σ2 − 1)3/2

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)
+O

(√
−q2

)}
. (5.4)

5.3 Two-loop amplitude

Next we use the integrals in section 4.4 to assemble the two-loop amplitude. The two-loop

amplitude in the potential region is given by

M2-loop
4,(p) = (8πG)3(s− |m1 +m2e

iφ|2)4 (5.5)

×
[
(s− |m1 +m2e

iφ|2)2(I
(p)
III + I

(p)
XI + I

(p)
IX + I

(p)

III
+ I

(p)

XI
+ I

(p)

IX
)

+ (−q2)2(I
(p)
H + I

(p)

H
)
]
.

where the remaining integrals are suppressed in the classical limit. Naively, the double-

boxes and crossed double-boxes appear with different prefactor in (3.16). We have

u− |m1 −m2e
iφ|2 = −s+ |m1 +m2e

iφ|2 − q2 , (5.6)

so the O(|q|2) mismatch could in principle combine with the leading order of the

crossed double-boxes which are of O(|q|−2). The explicit results for this integrals in

eqs. (4.143) and (4.144) shows however that these do not contribute to the classical part

of the amplitude and all the double-boxes contribute with the same coefficient. Using

eqs. (4.89), (4.138), (4.143), and (4.144) the relevant combination of double-box integrals

is then

I
(p)
III + I

(p)
XI + I

(p)
IX + I

(p)

III
+ I

(p)

XI
+ I

(p)

IX

= − 1

(4π)4

(−q2

µ̄2

)−2ε{
1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
1

ε2
− π2

6
+O(ε1)

]
+

1√
−q2

iπ3(m1 +m2)

m3
1m

3
2(σ2 − 1)3/2

[
1 +O(ε1)

]
− π2(m2

1 +m2
2 + 2σm1m2)

8m4
1m

4
2(σ2 − 1)2

[
1

ε
+O(ε0)

]
+O

(√
−q2

)}
+ analytic terms , (5.7)

where “analytic terms” stand for terms with polynomial (including constant) dependence

on q2, with or without poles in ε. Such analytic terms give contact terms after Fourier

transform to impact parameter space, and are irrelevant for long-range classical physics.
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Note that the classical log(−q2) arises from the Taylor expansion of (−q2)−2ε. With these,

together with the H-type integrals in eq. (4.111), we can evaluate the conservative two-loop

amplitude

M2-loop
4,(p) = − 32πG3m4

1m
4
2(σ − cosφ)4

(−q2

µ̄2

)−2ε
{

1

(−q2)

2(σ − cosφ)2

(σ2 − 1)

[
1

ε2
− π2

6

]
+

1√
−q2

4iπ(m1 +m2)(σ − cosφ)2

m1m2(σ2 − 1)3/2

− 1

ε

[
(m2

1 +m2
2 + 2σm1m2)(σ − cosφ)2

2m2
1m

2
2(σ2 − 1)2

− 2
arcsinh

(√
σ−1

2

)
m1m2

√
σ2 − 1

]

+O
(√
−q2

)}
+ analytic terms . (5.8)

6 Eikonal phase, scattering angle and graviton dominance

In this section we will study eikonal exponentiation of the conservative amplitudes directly

in momentum space. We will check the exponentiation of the leading and subleading

eikonal in the two-loop amplitude. Then we will use the eikonal phase to evaluate the

scattering angle in N = 8 supergravity. Finally we will compare the high-energy limit of

our result to that of Einstein gravity.

6.1 The eikonal phase in N = 8 supergravity

In traditional treatments of eikonal exponentiation, it is customary to Fourier transform

the scattering amplitudes to impact parameter space in order to extract the eikonal phase.

Here we will take a slightly different approach and study eikonal exponentiation directly

in momentum space. There is a simple reason why we prefer this approach: first, in the

presence of a Coulomb-like tree-level interaction, such as graviton exchange, the Fourier

transform has the side effect of introducing an additional infrared divergence, which in di-

mensional regularization gives the appearance that one needs to carefully analyze the scat-

tering amplitude at O(ε) and keep track of ε/ε contributions to extract the eikonal phase

at a fixed order. The momentum space approach has the advantage that the Coulomb-like

singularities directly cancel, making clear that the O(ε) pieces of the L-loop amplitude

cannot contribute to the L-loop phase.16 Working in momentum space comes at a cost

nevertheless: simple products in impact parameter space become convolutions in momen-

tum space. However, all convolutions can be easily evaluated as they are equivalent to

iterated bubble integrals.

As usual in the eikonal approach, we will consider the amplitude as a function of a D−2-

dimensional vector, q⊥, transverse to the scattering plane, which has the same magnitude

as the four-momentum exchange, i.e., q2
⊥ = −q2 (see e.g. ref. [32]). The conservative

amplitude only depends on powers of q, so this poses no problem. The statement of eikonal

16Unfortunately, one still needs to calculate O(ε) parts of the lower loop amplitudes to extract the phase

at a given order.
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exponentiation is that one can write the scattering amplitude in the potential region as a

convolutional exponential of the eikonal phase

iM(p)(σ, q⊥) = cexp (iδ(σ, q⊥))− 1 (6.1)

:= iδ(σ, q⊥)− 1

2!
δ(σ, q⊥)⊗ δ(σ, q⊥)− i

1

3!
δ(σ, q⊥)⊗ δ(s, q⊥)⊗ δ(σ, q⊥) + · · ·

where we defined the convolution as integral over the D − 2 dimensional transverse space

f1(q⊥)⊗ f2(q⊥) =
1

N

∫
dD−2`⊥
(2π)D−2

f1(`⊥) f2(q⊥ − `⊥) , (6.2)

with a normalization factor N = 4m1m2

√
σ2 − 1. Equivalently, one can write the inverse

relation,

δ(σ, q⊥) = −i clog(1 + iM(p)(σ, q⊥))

= M(p)(σ, q⊥)− i

2
M(p)(σ, q⊥)⊗M(p)(σ, q⊥) (6.3)

− 1

3
M(p)(σ, q⊥)⊗M(p)(σ, q⊥)⊗M(p)(σ, q⊥) + · · ·

We expand δ perturbatively

δ = δ(0) + δ(1) + δ(2) + · · · (6.4)

where δ(L) is O(GL+1). Then, from the discussion above we can write the phase in terms

of the amplitudes

δ(0) = M tree
4,(p) , (6.5)

δ(1) = M1-loop
4,(p) −

i

2
M tree

4,(p) ⊗M tree
4,(p) , (6.6)

δ(2) = M2-loop
4,(p) − iM tree

4,(p) ⊗M
1-loop
4,(p) −

1

3
M tree

4,(p) ⊗M tree
4,(p) ⊗M tree

4,(p) . (6.7)

Looking at eqs. (5.1)–(5.8), we see that to calculate the right-hand side of these equations

we need the following convolutions

1

q2
⊥
⊗ 1

q2
⊥

=
1

N

1

4πq2
⊥

(
q2
⊥
µ̄2

)−ε
eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)
, (6.8)

1

q2
⊥
⊗ 1

(q2
⊥)1+ε

=
1

N

(
q2
⊥
µ̄2

)−2ε(
eγE

4π

)ε [
−1

ε

3

8πq2
⊥

+O(ε)

]
, (6.9)

1

q2
⊥
⊗ 1

q2
⊥
⊗ 1

q2
⊥

=
1

N2

(
q2
⊥
µ̄2

)−2ε [
1

ε2
3

16π2q2
⊥
− 1

32q2
⊥

+O(ε)

]
, (6.10)

1

q2
⊥
⊗ 1

(q2
⊥)

1
2

+ε
=

1

N

(
q2
⊥
µ̄2

)−2ε(
eγE

4π

)ε [
−1

ε

1

4π|q⊥|
+

log(2)

π|q⊥|
+O(ε)

]
, (6.11)

1

q2
⊥
⊗ 1

(q2
⊥)ε

=
1

N

(
q2
⊥
µ̄2

)−2ε(
eγE

4π

)ε [
−1

ε

1

8π
+O(ε)

]
, (6.12)
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which can all be evaluated by using eq. (A.2) in appendix A with c = 0 and ε → ε − 1/2.

Using the first convolution, eq. (6.8), we find

− i

2
M tree

4,(p)⊗M tree
4,(p) = −i32πG2m3

1m
3
2

(
q2
⊥
µ̄2

)−ε
1

q2
⊥

(σ − cosφ)4

√
σ2 − 1

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)
, (6.13)

which exactly cancels the O(|q|−2) of the one-loop amplitude in eq. (5.4) to all orders in ε.

Similarly, using eqs. (6.9) and (6.10) we find17

− iM tree
4,(p) ⊗M

1-loop
4,(p)

∣∣∣
O(|q|−2)

− 1

3
M tree

4,(p) ⊗M tree
4,(p) ⊗M tree

4,(p) (6.14)

= 64πG3m4
1m

4
2

(σ − cosφ)4

σ2 − 1

(
q2
⊥
µ̄2

)−2ε
1

q2
⊥

[
1

ε2
− π2

6
+O(ε)

]
.

Using eq. (6.11), we find

−iM tree
4,(p) ⊗M

1-loop
4,(p)

∣∣∣
O(|q|−1)

= − 128iπ2G3m3
1m

3
2(m1 +m2) (6.15)

× (σ − cosφ)6

(σ2 − 1)3/2

(
q2
⊥
µ̄2

)−2ε
1

|q⊥|

[
1 +O(ε)

]
.

Using eq. (6.12), we find

−iM tree
4,(p) ⊗M

1-loop
4,(p)

∣∣∣
O(|q|0)

= − 16πG3m2
1m

2
2(2m1m2σ +m2

1 +m2
2) (6.16)

× (σ − cosφ)6

(σ2 − 1)2

(
q2
⊥
µ̄2

)−2ε [
1

ε
+O(ε)

]
.

These expressions respectively cancel the O(|q|−2), the O(|q|−1) and the O(|q|0) contribu-

tions to the two-loop amplitude eq. (5.8), which arise from the double-box-type diagrams.

Therefore, the double-box-type diagrams at two loops give exactly zero contribution to

the eikonal exponent, up to the order of q relevant for classical dynamics at O(G3). This

cancellation is a check of the exponentiation of the leading and subleading eikonal phase in

the two-loop amplitude. Henceforth we will assume exponentiation of the two-loop phase

and leave a proof for further work. We note that this zero result relies on delicate can-

cellations between all six double-box diagrams which leave only the contributions of the

H-type diagrams to the two-loop eikonal phase.

In summary, putting together eqs. (5.1)–(5.8) and (6.13)–(6.16) in (6.5)–(6.7) the result

of calculation our of the eikonal phase is

δ(0)(σ, q⊥) = 32πGm2
1m

2
2(σ − cosφ)2 1

q2
⊥
, (6.17)

δ(1)(σ, q⊥) = 0 +O(ε|q⊥|0) , (6.18)

δ(2)(σ, q⊥) = −64π(Gm1m2)3 (σ − cosφ)4

√
σ2 − 1

arcsinh

√
σ − 1

2

1

ε

(
q2
⊥
µ̄2

)−2ε

+O(ε0|q⊥|) .

(6.19)

17Note that exponentiation at one loop implies M1-loop
4,(p)

∣∣∣
O(|q|−2)

= i
2
M tree

4,(p) ⊗M tree
4,(p), so the first line can

also be written as 1
3!
M tree

4,(p) ⊗M tree
4,(p) ⊗M tree

4,(p).
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Note that δ(2) includes an O(ε0|q⊥|) which we have not calculated. This however goes

beyond the classical power counting and so is a quantum correction to the phase. Finally,

we can readily perform the Fourier transform to obtain the more familiar eikonal phase in

impact parameter space

δ(σ, be) =
1

N

∫
dD−2q⊥
(2π)D−2

eibe·q⊥ δ(σ, q⊥) , (6.20)

with the result

δ(0)(σ, be) = −2Gm1m2
(σ − cosφ)2

√
σ2 − 1

(
1

ε
+ log b2

e

)
, (6.21)

δ(1)(σ, be) = 0 , (6.22)

δ(2)(σ, be) = −32G3m2
1m

2
2

(σ − cosφ)4

σ2 − 1
arcsinh

√
σ − 1

2

1

b2
e

, (6.23)

where we have dropped O(ε) and quantum parts. As a cross-check we have verified that

the same result is obtained by using the more common approach in which one directly

transforms the amplitudes to impact parameter space.

Soft vs. potential and exponentiation. Let us stress that it was very important that

we evaluated the amplitude in the potential region to extract the conservative piece. For

the one-loop amplitude, the expansion in the soft region differs from that of the potential

region at O(ε |q|0), which, in addition to the ε suppression, is a quantum correction since

the classical dynamics arises from O(1/|q|) terms. For the two-loop amplitude, however,

the two expansions still differ from each other at O(|q|0), which is at the same order

as the terms responsible for the classical dynamics at two loops, and the difference is

also no longer suppressed by ε. In fact, when we directly evaluate the integrals in the soft

region at two loops we find non-exponentiating effects which cause infrared divergences that

are not canceled by either matching to non-relativistic EFT or by extracting the eikonal

exponent, signaling the appearance of contributions that cannot be interpreted as arising

from a conservative potential.18 The evaluation of the soft integrals using the differential

equations above and a detailed discussion of this point will be presented elsewhere.

6.2 Scattering angle from eikonal phase

Let us now calculate the gravitational scattering angle from the eikonal phase. The formula

relating the two can be derived from the stationary phase approximation of the Fourier

transform of the exponentiated impact-parameter amplitude back to momentum space [30],

which yields the relation

q = − ∂

∂be
δ(σ, be) . (6.24)

18This is reminiscent of the situation in the EFT formulation of the Regge limit of massless scatter-

ing [122], where contributions from the Glauber region exponentiate while the full soft regions contain

non-exponentiating effects.
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The magnitude of q is related to the scattering angle χ and the magnitude of the three-

momentum p in the center of mass by

|q| = 2|p| sin χ
2
, (6.25)

where in terms of the center of mass energy E =
√
s and/or σ

|p| = m1m2

√
σ2 − 1

E
=

m1m2

√
σ2 − 1√

m2
1 +m2

2 + 2m1m2σ
. (6.26)

From eqs. (6.24) and (6.25) we can derive the formula for the scattering angle

sin
χ

2
= − 1

2|p|
∂

∂|be|
δ(σ, be) . (6.27)

Using this formula we find the following result for the scattering angle

sin
χ

2
=
Gm1m2

|p||be|
2(σ − cosφ)2

√
σ2 − 1

− G3m3
1m

3
2

|p|3|be|3
32m1m2(σ − cosφ)4

m2
1 +m2

2 + 2m1m2σ
arcsinh

√
σ − 1

2
. (6.28)

or separating the different orders

χ1PM
eik =

Gm1m2

|p||be|
4(σ − cosφ)2

√
σ2 − 1

, (6.29)

χ2PM
eik = 0 , (6.30)

χ3PM
eik = −G

3m3
1m

3
2

|p|3|be|3
16

[
− (σ − cosφ)6

6(σ2 − 1)3/2
+

4m1m2(σ − cosφ)4

m2
1 +m2

2 + 2m1m2σ
arcsinh

√
σ − 1

2

]
. (6.31)

Looking ahead, in order to more easily to compare with the results from EFT in the next

section, we will write the formula in terms of the angular momentum, J . The angular

momentum is defined as

J = |b× p| = |b||p| , (6.32)

where b is an impact parameter perpendicular the incoming center of mass momentum

p. This is however not the impact parameter, be, which arises naturally from the eikonal

phase. Eq. (6.24) shows that be points in the direction of the momentum transfer. The

magnitude of b and be are then related by

|b| = |be| cos
χ

2
, (6.33)

so that the angular momentum is

J = |be||p| cos
χ

2
. (6.34)

For small angle scattering |b| ∼ |be|, and the difference is unimportant at leading order.

Our results, however, go beyond the leading order and the difference matters. Using the
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relation (6.34) we find the scattering angle in terms of the angular momentum

χ1PM
eik =

Gm1m2

J

4(σ − cosφ)2

√
σ2 − 1

, (6.35)

χ2PM
eik = 0 , (6.36)

χ3PM
eik = −G

3m3
1m

3
2

J3
16

[
(σ − cosφ)6

3(σ2 − 1)3/2
+

4m1m2(σ − cosφ)4

m2
1 +m2

2 + 2m1m2σ
arcsinh

√
σ − 1

2

]
. (6.37)

For later convenience we can rewrite this in terms of the total mass, m, and symmetric

mass ratio, ν,

m = m1 +m2 , ν =
m1m2

(m1 +m2)2
, (6.38)

as follows,

χ1PM
eik =

Gm2ν

J

4(σ − cosφ)2

√
σ2 − 1

, (6.39)

χ2PM
eik = 0 , (6.40)

χ3PM
eik = −G

3m6ν3

J3
16

[
(σ − cosφ)6

3(σ2 − 1)3/2
+ ν

4(σ − cosφ)4

2(σ − 1)ν + 1
arcsinh

√
σ − 1

2

]
. (6.41)

Probe limit. As a cross-check we can compare the probe limit ν → 0 of our result with

the scattering angle of a particle of mass µ moving along geodesics in the background of the

half-BPS black hole of mass M [88, 89]. Ref. [52] studied the precession of the periastron,

which is given by
1

2
∆Φ =

∫ rmax

rmin

dr
dχ

dr
= J

∫ rmax

rmin

dr

r2
√
pr(r)2

, (6.42)

where pr is the radial momentum of the probe particle, related to its three-momentum by

p2
p = p2

r + J2/r2. The scattering angle is given by the same integral with different limits

1

2
(χ+ π) = J

∫ ∞
rmin

dr

r2
√
pr(r)2

, (6.43)

so their calculation can be easily adapted to obtain this quantity. Let us spare the details

to the reader and just give the result

1

2
χp = arctan

[
GM2νp

J

2(σp − cosφp)2

(σ2
p − 1)1/2

]
(6.44)

=
GM2νp

J

4(σp − cosφp)2

(σ2
p − 1)1/2

−
G3M6ν3

p

J3

16(σp − cosφp)6

3(σ2
p − 1)3/2

,

where σp and φp are the relativistic factor and charge misalignment of the probe particle

respectively, and νp = µ/M . Interestingly the structure of the result is the same of that for
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a Newtonian potential (see e.g ref. [86], eq. (4.34)), which could be expected from the fact

that ref. [52] found no precession. Finally, it is easy to check that with the identifications

σ ↔ σp , φ↔ φp , M ↔ m, ν ↔ νp , (6.45)

this matches eqs. (6.39)–(6.41) in the limit ν → 0, in which the term with the arcsinh is

suppressed by its coefficient, thus providing a check of our result.

6.3 High-energy limit and graviton dominance

At this point we would like to compare our result for the scattering angle with that of

Einstein gravity obtained in refs. [19, 20]. Famously, the high-energy limit of scattering

amplitudes in a theory with gravity is dominated by the exchange of gravitons [28]. This is

proven at leading order in Gm1m2/J but not beyond that. Recently, in ref. [24], a similar

result was found by explicit calculation at order G3 for the case of massless scattering.

Although a general proof of graviton dominance at this order is lacking, this reference

calculated from first principles the scattering angle for N ≤ 4 supergravity and Einstein

gravity using eikonal and partial wave techniques, and found that it coincides in all such

theories.19 In addition, the result for Einstein gravity was found to agree with an earlier

result by Amati, Ciafaloni and Veneziano [32] and contradicts a modified proposal by

Damour [47].

Motivated by the universality in the massless case, we will study the high-energy limit

of our result by taking σ →∞ in our result for the scattering angle at order G3, which yields

χ3PM
N=8

σ→∞
= −16G3m6ν3σ3 log(σ)

J3
+ · · · . (6.46)

This can be compared with the high-energy limit of the Einstein gravity result in eq. (11.32)

of ref. [20],

χ3PM
EG

σ→∞
= −16G3m6ν3σ3 log(σ)

J3
+ · · · , (6.47)

finding perfect agreement. This strongly suggests that the coefficient of the arcsinh term

features graviton dominance, and universality also holds in the case of massive scattering.

Note that this result does not trivially follow from the massless one since here we impose

the limits J � 1 and then σ � 1 in this order (or equivalently |q| � m). The limits do

not commute, so the high energy limit of classical massive scattering is distinct from the

Regge limit of massless scattering. Admittedly, our calculation provides is only one point

of comparison with Einstein gravity, so the question of graviton dominance merits further

investigation, either by calculating the scattering angle in other supergravity theories or

by directly proving universality. We leave this for future work.

7 Consistency check from effective field theory

In this section we will calculate the conservative amplitudes using the non-relativistic in-

tegration method of refs. [16, 19, 20], which is optimized for EFT matching. This method

19In massless theories the classical limit and the high-energy limit are not distinct, so the full classical

angle agrees.
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avoids explicit computation of infrared divergent integrals in dimensional regularization,

by canceling such integrals between the full theory and the effective field theory using a

four-dimensional matching procedure. We will use the EFT Hamiltonian to calculate the

scattering angle solving the classical dynamics. Finally, we will compare to our predictions

for the amplitude and the angle from the previous section.

The EFT is defined in the center of mass frame

p1 = (−E1,p) , p2 = (−E2,−p) , p3 = (E2,p
′) , p4 = (E1,−p′) , (7.1)

where the magnitude of the three-momenta, |p| = |p′|, is unchanged in the scattering and

the energies are Ei =
√
m2
i + p2. In this frame the momentum transfer is purely spatial

and given by q = p− p′, and the usual Mandelstam invariants are

s = (p1 + p2)2 = (E1 + E2)2 = E2 , (7.2)

t = (p1 + p4)2 = −(p− p′)2 = −q2 = −4p2 1− cosχ

2
= −4p2 sin2 χ

2
, (7.3)

u = (p1 + p3)2 = (E1 − E2)2 − (p + p′)2 = E2(1− 4ξ)− 4p2 cos2 χ

2
, (7.4)

where χ is the scattering angle and we introduced the total center of mass energy, E, and

the symmetric energy ratio, ξ, defined as

E = E1 + E2, ξ =
E1E2

(E1 + E2)2
. (7.5)

We will use these variables throughout this section.

7.1 Scattering amplitude with IR subtractions optimized for EFT matching

Here we will use the method of refs. [19, 20], which first expand in the small-velocity limit

in the potential region to produce three-dimensional integrals, and then expand in the

limit of small q. Divergent integrals will be kept unevaluated, to be canceled against EFT

amplitudes in the matching procedure.

First let us calculate the scattering amplitudes optimized for EFT matching. At tree

level the relevant piece comes from the 1/t pole

M1 =
8πGm2

1m
2
2

E1E2

(σ − cosφ)2

q2
, (7.6)

where we have divided by the non-relativistic normalization 4E1E2. We will use the nota-

tion in refs. [19, 20] and denote the conservative amplitudes in this section with calligraphic

M to distinguish them from those evaluated in dimensional regularization in previous sec-

tions. The one-loop amplitude can be easily obtained from the one-loop integrand in

eq. (3.12). As explained in ref. [20], section 7.2.2 and 7.3.3, the scalar crossed box gives

a vanishing contribution in the potential region (in strictly four dimensions), and the box

yields the following three dimensional integral

I
(p)
II =

∫
dD−1`

(2π)D−1

1

2E`2(` + q)2(`2 + 2p`)
+ evanescent terms. (7.7)
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Here evanescent terms refer to two classes of terms: (1) terms that are suppressed in ε or

|q| after loop integration, (2) terms that arise from EFT diagrams with insertions of EFT

operators suppressed by ε or |q| omitted from eq. (7.17). Due to divergences associated

with loop integration, terms of class (2) may be naively of the same order of ε and |q|
as terms that directly correspond to four-dimensional classical dynamics, but nevertheless

such evanescent terms cancel in the EFT matching procedure and do not contribute to the

final results. The one-loop amplitude optimized for EFT matching is then

M2 =
(16πG)2m4

1m
4
2

2E1E2(E1 + E2)
(σ − cosφ)4

∫
dD−1`

(2π)D−1

1

`2(` + q)2(`2 + 2p`)

+ evanescent terms. (7.8)

Finally, we extract the two-loop conservative amplitude optimized for EFT matching

from the two-loop integrand in eq. (3.16). Let us first consider the integrals in the first line

of such an equation. As explained in ref. [20], when using the non-relativistic integration

method all the non-planar scalar double-boxes vanish. Intuitively this is because the energy

flow would require the propagation of an antiparticle, which is not allowed, so only the

planar double-box contributes in the potential region as [20]

I
(p)
III =

1

4E2

∫
dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

+ evanescent terms . (7.9)

We must note that the vanishing of the non-planar integrals is a consequence of the loop-

by-loop integration procedure used in ref. [20], which at every stage drops evanescent

contributions. In a two-loop integral these can hit at 1/ε or 1/|q| pole coming from a

different loop and generate finite contributions with classical power-counting such as those

calculated in section 4.4. These contributions arising from evanescent terms are scheme

dependent, and, as mentioned above, their ultimate fate is to cancel in the EFT matching

procedure. In particular, they will not affect any physical quantity. Thus, as long as the

integration in full theory and EFT is done consistently one might drop such evanescent

terms. This effectively gives us a four-dimensional regularization method which, in contrast

to our eikonal calculation based on dimensional regularization, does not need quantum

corrections of O(|q|0), and O(ε) contributions at one-loop in order to extract the classical

dynamics at two loops.

Next we consider the integrals in the second line of eq. (3.16). As explained in previous

sections only IH and IH contribute with value given by eq. (4.111), which we reprint here

I
(p)

H
+ I

(p)

H
=

log q2

64π2m1m2q4

arcsinh
√

σ−1
2√

σ2 − 1
+ evanescent terms , (7.10)

where we dropped 1/ε pole terms that do not generate non-analytic dependence on q2.
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Putting the pieces together we find the full two-loop amplitude optimized for EFT matching

M3 =
32πG3m3

1m
3
2 (σ − cosφ)4

E1E2

log q2
arcsinh

√
σ−1

2√
σ2 − 1

+
64π2m3

1m
3
2(σ − cosφ)2

(E1 + E2)2

×
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

]
+ evanescent terms. (7.11)

For later convenience we rewrite the conservative amplitudes in terms of the total

energy, mass and cross ratios as

M1 =
8πGν2m4

E2ξ

(σ − cosφ)2

q2
, (7.12)

M2 =
(16πG)2ν4m8

2E3ξ
(σ − cosφ)4

∫
dD−1`

(2π)D−1

1

`2(` + q)2(`2 + 2p`)
+ evanescent terms ,

(7.13)

M3 =
32πG3ν3m6 (σ − cosφ)4

ξE2

[
log q2

arcsinh
√

σ−1
2√

σ2 − 1
+

64π2ν3m6(σ − cosφ)2

E2

×
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

]
+ evanescent terms. (7.14)

7.2 EFT matching and classical Hamiltonian

Following ref. [16], we want to match the amplitudes above to an EFT with an ordinary

Hamiltonian with a potential, which we later will use to solve for the classical dynamics.

The EFT describes two massive scalars interacting with momentum space Lagrangian

given by

L =

∫
dD−1p

(2π)D−1
φ†1(−p)

(
i∂t −

√
p2 +m2

1

)
φ1(p)

+

∫
dD−1p

(2π)D−1
φ†2(−p)

(
i∂t −

√
p2 +m2

2

)
φ2(p)

−
∫

dD−1p

(2π)D−1

dD−1p′

(2π)D−1
V (p,p′)φ†1(p′)φ1(p)φ†2(−p′)φ2(−p) , (7.15)

where the form of the kinetic term manifests the absence of anti-particles. The potential

is given by

V (p,p− q) =

∞∑
n=1

(G/2)n(4π)(D−1)/2

|q|D−1−n
Γ [(D − 1− n)/2]

Γ [n/2]
cn
(
p2
)

(7.16)

=
4πG

q2
c1

(
p2
)

+
2π2G2

|q| c2

(
p2
)
− 2πG3 log q2 c3

(
p2
)

+ · · · , (7.17)
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where for conciseness we have put the external legs on-shell. As in the full theory, here we

have also dropped evanescent terms suppressed by ε or q2 at each order in G, which can

affect the scattering amplitudes but do not have physical effects. If we Fourier transform q

back to position space this yields the more familiar potential with an expansion in G/|r|.
The EFT amplitudes calculated with the Lagrangian above are very simple. Due to

the absence of anti-particles they are given by iterated bubble diagrams. The results up to

order G3 are given by ref. [20],

MEFT
1 = − 4πGc1

q2
,

MEFT
2 = − 2π2G2c2

|q| +
π2G2

Eξ|q|
[
(1− 3ξ)c2

1 + 4ξ2E2c1c
′
1

]
+

∫
dD−1`

(2π)D−1

32Eξπ2G2c2
1

`2(` + q)2(`2 + 2p`)
,

MEFT
3 = 2πG3 log q2c3 −

πG3 log q2

E2ξ

[
(1− 4ξ)c3

1 − 8ξ3E4c1c
′
1

2 − 4ξ3E4c2
1c
′′
1

+ 4ξ2E3c2c
′
1 + 4ξ2E3c1c

′
2 − 2(3− 9ξ)ξE2c2

1c
′
1 + 2E(1− 3ξ)c1c2

]
+

∫
dD−1`

(2π)D−1

16π3G3c1

[
2Eξc2 − (1− 3ξ)c2

1 − 4ξ2E2c1c
′
1

]
`2|` + q|(`2 + 2p`)

−
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

256E2ξ2π3G3c3
1

`2
1(`1 + `2)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

, (7.18)

where ci = ci(p
2) and the primes denote derivatives. The EFT matching is performed by

requiring Mn =MEFT
n , which yields the following coefficients for the potential

c1(p2) = −m
4ν2

E2ξ
2(σ − cosφ)2 , (7.19)

c2(p2) =
m6ν3

E3ξ2

[
−8(σ − cosφ)3 +

2ν(σ − cosφ)4

E2ξ

]
, (7.20)

c3(p2) =
m6ν3

E2ξ

[
16(σ − cosφ)4arcsinh

√
σ−1

2√
σ2 − 1

− 40m2ν(σ − cosφ)4

E2ξ2

+
8m4ν2(3− 4ξ)(σ − cosφ)5

E4ξ3
− 4m6ν3(1− 2ξ)(σ − cosφ)6

E6ξ4

]
. (7.21)

A simple check is that for φ = 0 the potential should vanish in the static limit, σ → 1

because the black holes are extremal. At higher loops this will continue to hold because

the amplitude is proportional stuM tree, which vanishes as (1 − cosφ)4. Note that at one

loop there are no triangles so the result is pure iteration

c2(p2) =

[
(1− 3ξ)

2Eξ
+ Eξ∂p2

]
c1(p2)2 . (7.22)

We note that in the high-energy limit σ → ∞, the potential also matches the result from

Einstein gravity in refs. [19, 20].
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7.3 Scattering angle from the classical Hamiltonian

The scattering angle can be calculated from the Hamiltonian

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r) , (7.23)

by solving the classical equations of motion. As shown in ref. [19], this yields a formula that

expresses the scattering angle directly in terms the IR finite part of the PM amplitudes,

M′i, which are defined by dropping the unevaluated integrals in the expressions above

2πχ =
d1

J
+
d2

J2
+

1

J3

(
−4d3 +

d1d2

π2
− d3

1

48π2

)
, (7.24)

where di are defined in terms of M′i as

d1 = Eξq2M′1/|p| , d2 = Eξ|q|M′2 , d3 = Eξ|p|M′3/ log q2 . (7.25)

Using our results for N = 8 supergravity we find

d1 = 8πGm2ν
(σ − cosφ)2

√
σ2 − 1

, d2 = 0 , (7.26)

d3 =
32πG3m6ν4(σ − cosφ)4

2(σ − 1)ν + 1
arcsinh

√
σ − 1

2
, (7.27)

so the scattering angle calculated from the EFT is

χ1PM =
Gm2ν

J

4(σ − cosφ)2

√
σ2 − 1

, (7.28)

χ2PM = 0 , (7.29)

χ3PM = −G
3m6ν3

J3
16

[
(σ − cosφ)6

3(σ2 − 1)3/2
+ ν

4(σ − cosφ)4

2(σ − 1)ν + 1
arcsinh

√
σ − 1

2

]
, (7.30)

which precisely matches our results in eqs. (6.39)–(6.41) from the eikonal analysis.

One might be tempted to use the Hamiltonian to also calculate the precession of the

periastron, ∆Φ, but as explained in refs. [86, 87], there is a simple relation between this

quantity and the scattering angle

∆Φ = χ(J) + χ(−J) , (7.31)

which implies that odd orders in G (i.e. odd PM orders), which are also odd in J , do not

produce a precession, which can be confirmed by explicit calculation using the Hamiltonian.

This means that the absence of precession observed in ref. [52] extends to O(G3), although

for trivial reasons, and a calculation at the next order will be needed to test their conjecture

of no precession to all orders. The precise statement of the conjecture in ref. [52] is that

the quantum energy levels of the bound system, which we have not explored in this work,

remain exactly degenerate. However, the fact that there is a correction to the classical

scattering angle at O(G3), although suppressed in the probe limit, makes us less optimistic

about the possibility of the orbits remaining integrable at this and higher orders.
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8 Conclusion

In this paper we computed the conservative classical dynamics of scattering of two spinless

extremal black holes in N = 8 supergravity at O(G3). In refs. [19, 20] the O(G3) (or

3rd-post-Minkowskian) conservative potential in Einstein gravity was calculated using an

EFT matching procedure that avoids evaluation of infrared divergent integrals and pro-

vides a velocity expansion to high orders. Here, in contrast, we have directly calculated

the IR-divergent scattering amplitude in dimensional regularization, and have directly ob-

tained exact velocity dependence using differential equations, without the need to resum a

series expansion.

This has allowed us to probe the delicate IR structure of eikonal exponentiation, where

terms that vanish in four dimensions or vanish in the classical limit have to be evaluated

explicitly at one loop, in order to construct IR subtraction terms at two loops to isolate

genuine classical contributions at O(G3). Our novel integration method paves the way to a

rigorous verification of the velocity resummation of refs. [19, 20], and to streamline further

calculations. The ability to evaluate the divergent two-loop amplitudes in dimensional

regularization also opens the door to applying the method of refs. [17, 18] which computes

classical observables directly from appropriate phase space integrations of the S-matrix.

Our differential equations method is highly flexible as the only difference between the

soft region and the potential region is in the boundary conditions. The evaluation of the

amplitude in the soft region at two loops and the emergence of non-exponentiating terms

will be discussed elsewhere.

By computing the classical gravitational scattering angle in both the eikonal approxi-

mation and EFT formalism, we have explicitly established their equivalence at O(G3) for

the scattering of massive particles for the first time. While the EFT formalism gives a

more direct connection to the classical Hamiltonian, the eikonal approximation provides a

more direct relation between two gauge-invariant quantities, the scattering amplitude and

the scattering angle. It would be interesting to prove the all-order eikonal exponentiation

structure for massive scattering from first principles beyond the one-loop case [13], perhaps

by generalizing the partially massive case studied at two loops in ref. [93], and to prove the

validity of the eikonal angle formula beyond two loops.

Remarkably, we found that the classical scattering angle of two extremal black holes

in N = 8 supergravity coincides in the limit of high energy with that of two Schwarzschild

black holes in Einstein gravity [19, 20]. Since the classical limit satisfies |q| �M and does

not commute with the massless limit M → 0, our result is reminiscent of, but not a direct

consequence of, the universality of massless gravitational scattering in the Regge limit

recently unveiled in ref. [24], and strongly suggests graviton dominance, whose mechanism

still needs to be understood, is generic at this order.

Beyond universality, several aspects of the scattering of black holes in N = 8 super-

gravity deserve further study. For instance, it would be very interesting to re-analyze the

two-loop calculation for dyonic black holes with generic charge misalignments. This might

require an improved understanding of the structure of the S-matrix for mutually non-local

particles. Furthermore, it would be interesting to calculate the exact quantum energy levels
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of the bound system and their decay rates to explore the precise integrability conjecture of

ref. [52]. More generally, this conjecture should be investigated at the next order, where

precession can arise. Given the simplicity of loop integrands in N = 8 supergravity, we ex-

pect this highly symmetric theory to be an excellent theoretical laboratory for other aspects

of black hole binary dynamics, such as spin-dependent scattering at O(G3) and spinless

scattering at O(G4), both of which are unexplored frontiers in post-Minkowskian expansion

of black hole binary dynamics, but are amenable to treatment by our techniques.20 We

hope to explore some of these questions in the near future.
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A Dimensionally regularized integrals for the potential region

In this appendix we present results for dimensionally regularized Feynman integrals in

D − 1 = 3 − 2ε spatial dimensions, needed for re-expanding the “soft integrals” in the

potential region. All of these integrals are the result of evaluating the energy integrals

using the residue prescriptions explained in the main text.

Following widely used conventions in the literature on Feynman integrals, the integrals

are presented with the following normalization,

dD−1`

π(D−1)/2
= 8π3/2 (4π)−ε

dD−1`

(2π)(D−1)
. (A.1)

In the frame chosen the external three-momentum transfer q is in the transverse (x, y)

direction, while some integrals have linear propagators of the form 1/`z = 1/(` ·nz), where

nz is the unit vector in the z-direction. The final results are fully relativistic and functions

of q2 = −q2. Unless otherwise shown, we will consider the −i0 prescription to be implicitly

present in every propagator.

A.1 One-loop integrals

At one loop we need to evaluate the linearized triangle and bubble integrals in eqs. (4.49)

and (4.48). These can evaluated using traditional methods. Concrete the general linearized

20See refs. [49, 123, 124] for some related recent results in the post-Newtonian expansion. Also see

refs. [18, 43, 125–133] for spin-dependence in the post-Minkowskian expansion up to O(G2).
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triangle integral is given by [115]∫
dD−1`

π(D−1)/2

1

(`2 − i0)a[(`− q)2 − i0]b(2`z − i0)c
(A.2)

= e
iπc
2 (q2)

3
2
−a−b− c

2
−εΓ

(
c
2

)
Γ
(

3
2 − a− c

2 − ε
)

Γ
(

3
2 − b− c

2 − ε
)

Γ
(
a+ b+ c

2 + ε− 3
2

)
2Γ(a)Γ(b)Γ(c)Γ(3− a− b− c− 2ε)

.

The usual bubble integrals with c = 0 can be recovered by

lim
c→0

Γ(c/2)

2Γ(c)
= 1 . (A.3)

In particular, for a = b = 1, c→ 0, eq. (A.2) gives

∫
dD−1`

π(D−1)/2

1

`2(`− q)2
=
(
−q2

)−ε 1√
−q2

Γ
(

1
2 − ε

)2
Γ
(

1
2 + ε

)
Γ(1− 2ε)

. (A.4)

Setting a = b = c = 1 in eq. (A.2) gives∫
dD−1`

π(D−1)/2

1

`2(`− q)2(2`z)
=
(
−q2

)−ε 1

−q2

i
√
π Γ(−ε)2Γ(1 + ε)

2Γ(−2ε)
. (A.5)

Another way to evaluate this integral is by using symmetrization over the possible assign-

ments of loop momenta∫
dD−1`

π(D−1)/2

1

`2(`− q)2(2`z1 − i0)
(A.6)

=

∫
dD−1`1

π(D−1)/2
dD−1`2

1

(2`z1 − i0)
∏
i `

2
i

δ
(∑

`zi

)
δ(D−2)

(∑
`⊥i − q⊥

)
.

Where the `⊥i and q⊥ are the components of `i and q in the plane orthogonal to nz,

respectively. Now we symmetrize over the two loop momenta, using

1

2!

[
1

2`z1 − i0
+

1

2`z2 − i0

]
δ
(∑

`zi

)
=

iπ

2
δ(`z1)δ(`z2) . (A.7)

Using qz = 0, we can trivially preform the z-integration to obtain a (D − 2)-dimensional

bubble integral∫
dD−1`

π(D−1)/2

1

`2(`− q)2(2`z1 − i0)
=

i
√
π

2

∫
dD−2`1

π(D−2)/2

1

`2(`− q)2

=
(
−q2

)−ε 1

−q2

i
√
πΓ(−ε)2Γ(ε+ 1)

2Γ(−2ε)
, (A.8)

in agreement with eq. (A.5).
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A.2 Two-loop integrals

Double box (III). Adopting the frame choice eq. (4.44), and after energy integration,

we find that in the static limit, the pure basis of master integrals, eqs. (4.64)–(4.73), for

the double-box family are equal to

f
(p)
III,4

∣∣
y=1

=
π

6
ε2(1 + 2ε)(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 (` 2
1 )2` 2

2 (`1 + `2 − q)2
, (A.9)

f
(p)
III,6

∣∣
y=1

=
π

6
ε3(1− 6ε)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 ` 2
1 `

2
2 (`1 + `2 − q)2

, (A.10)

f
(p)
III,7

∣∣
y=1

= πε4(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 ` 2
1 `

2
2 (`1 + `2 − q)2(2`z1)(−2`z2)

, (A.11)

f
(p)
III,10

∣∣
y=1

= − ε4

8

√
−q2

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 ` 2
1 `

2
2 (`1 + `2 − q)2(2`z1)

, (A.12)

where we have omitted the other integrals in the basis which vanish in the static limit. The

first, second and fourth of these integrals can be evaluated by first performing a sub-loop

integral over `2 using eq. (A.2), and then evaluating the resulting `1 integral again using

eq. (A.2) with non-integer propagator powers,∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

(` 2
1 )2` 2

2 (`1 + `2 − q)2

=
(
−q2

)−2ε 1

(−q2)

Γ
(
−ε− 1

2

)
Γ
(

1
2 − ε

)2
Γ(2ε+ 1)

Γ
(

1
2 − 3ε

) , (A.13)∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2

=
(
−q2

)−2ε Γ
(

1
2 − ε

)3
Γ(2ε)

Γ
(

3
2 − 3ε

) , (A.14)∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2(2`z1)

=
(
−q2

)−2ε 1√
−q2

i
√
πΓ
(

1
2 − 2ε

)
Γ
(

1
2 − ε

)2
Γ(−ε)Γ

(
2ε+ 1

2

)
2Γ
(

1
2 − 3ε

)
Γ(1− 2ε)

. (A.15)

The evaluation of the remaining integral follows closely the evaluation of the one-loop

triangle integral by symmetrization. We first rewrite∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2(2`z1 − i0)(−2`z2 − i0)

(A.16)

=

∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2
dD−1`3

1

(2`z1 − i0)(−2`z2 − i0)
∏
i `

2
i

× δ
(∑

`zi

)
δ(D−2)

(∑
`⊥i − q⊥

)
.

Symmetrizing over all loop momenta, results in the identity similar to eq. (A.7),

1

3!

[
1

(2`z1 − i0)(−2`z2 − i0)
+ perms.

]
δ
(∑

`zi

)
= −π

2

6
δ(`z1)δ(`z2)δ(`z3) . (A.17)
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Using qz = 0, we can trivially preform the z-integration to obtain a (D − 2)-dimensional

integral ∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2(2`z1 − i0)(−2`z2 − i0)

(A.18)

= −π
6

∫
dD−2`1

π(D−2)/2

dD−2`2

π(D−2)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2

= −π
6

(
−q2

)−2ε 1

(−q2)

Γ(−ε)3Γ(2ε+ 1)

Γ(−3ε)
.

Therefore, the integrals with nonzero values in the static limit are

f
(p)
III,4

∣∣
y=1

= − 2f
(p)
III,6

∣∣
y=1

=
2π

3
ε3(−q2)−2εe2γEε

Γ
(

1
2 − ε

)3
Γ(2ε)

Γ
(

1
2 − 3ε

) , (A.19)

f
(p)
III,7

∣∣
y=1

=
π2

6
ε4(−q2)−2εe2γEε

Γ(−ε)3Γ(2ε+ 1)

Γ(−3ε)
, (A.20)

f
(p)
III,10

∣∣
y=1

= − iε4π3/2

4
(−q2)−2εe2γEε

Γ
(

1
2 − 2ε

)
Γ
(

1
2 − ε

)2
Γ(−ε)Γ

(
1
2 + 2ε

)
Γ
(

1
2 − 3ε

)
Γ(1− 2ε)

. (A.21)

By expanding in ε one can check that such boundary conditions (A.27)–(A.20) are of

uniform transcendental weight, and yield the boundary vector (4.86) used in the text.

H and H. The integrals for the sum of H and H topologies with non-vanishing static

limits are

f
(p)
cH,4

∣∣
y=1

= − π

2
ε4(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2` 2
1 `

2
2 (`1 − q)2(`2 − q)2

, (A.22)

f
(p)
cH,7

∣∣
y=1

= − π

4
ε2(1 + 2ε)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2(` 2
1 )2` 2

2 (`1 + `2 − q)2
, (A.23)

f
(p)
cH,10

∣∣
y=1

= − πε4(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2`2
1`

2
2(`1 − q)2(`2 − q)2

. (A.24)

The second integral has already been evaluated, and equals to

f
(p)
cH,7

∣∣
y=1

= − 3

2
f

(p)
III,4

∣∣
y=1

. (A.25)

The remaining integrals are proportional to a two-loop double-bubble integral which fac-

torizes and is trivially the square of the one-loop bubble integral (A.4)∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

`2
1`

2
2(`1 − q)2(`2 − q)2

=
(
−q2

)−2ε 1

(−q2)

Γ
(

1
2 − ε

)4
Γ
(

1
2 + ε

)2
Γ(1− 2ε)2

.

(A.26)

In summary we find the following result for the static integrals

f
(p)
cH,4

∣∣
y=1

=
1

2
f

(p)
cH,10

∣∣
y=1

=
π

2
ε4(−q2)−2εe2γEε

[
Γ
(

1
2 − ε

)2
Γ
(
ε+ 1

2

)
Γ(1− 2ε)

]2

, (A.27)

f
(p)
cH,7

∣∣
y=1

= − πε3(−q2)−2εe2γEε
Γ
(

1
2 − ε

)3
Γ(2ε)

Γ
(

1
2 − 3ε

) , (A.28)

which yields the boundary vector in eq. (4.110).
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IX and crossed integrals. The evaluation of the boundary vector for the IX and crossed

integrals proceeds analogously to the computations in the previous subsections.21 In par-

ticular all three-dimensional integrals necessary have already been computed therein.

B Solution of the differential equations

Having the canonical form of the differential equations at hand the systems can be straight-

forwardly solved order-by-order in ε, yielding harmonic polylogarithms. In this appendix

we present the solution of the differential equations for two-loop master integrals in the

potential region up to O(ε4). All the functions not shown vanish. The solution of the dif-

ferential equations in eq. (4.75) with the matrices in eqs. (4.77) and (4.78) and boundary

conditions in eq. (4.86) is

f
(p)
III,2 = (−q2)−2εε2π2

[
−1

3
ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (B.1)

f
(p)
III,3 = (−q2)−2εε2π2

[
−2

3
ε log(x)− 2

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.2)

f
(p)
III,4 = (−q2)−2εε2π2

[
1

3
+

1

18
ε2
(
−7π2 − 48 log2(x)

)]
, (B.3)

f
(p)
III,6 = (−q2)−2εε2π2

[
−1

6
+

7ε2π2

36

]
, (B.4)

f
(p)
III,7 = (−q2)−2εε2π2

[
1

2
− 1

12
ε2
(
4 log2(x) + π2

)]
, (B.5)

f
(p)
III,10 = (−q2)−2εε2π2

[
iπε

4
− iπ log(2)ε2

2

]
. . (B.6)

The solution of the differential equations in eq. (4.101) with the matrices in eq. (4.102) and

boundary conditions in eq. (4.110) is

f
(p)
cH,4 = (−q2)−2εε2π2

[
ε2π2

2

]
, (B.7)

f
(p)
cH,5 = (−q2)−2εε2π2

[
1

2
ε log(x)− 3

2
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.8)

f
(p)
cH,6 = (−q2)−2εε2π2

[
ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (B.9)

f
(p)
cH,7 = (−q2)−2εε2π2

[
−1

2
+ ε2

(
7π2

12
+ 4 log2(x)

)]
, (B.10)

f
(p)
cH,9 = (−q2)−2εε2π2

[
−ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (B.11)

f
(p)
cH,10 = (−q2)−2εε2π2

[
ε2
(
π2 + 6 log2(x)

)]
. (B.12)

21The explicit values for the boundary conditions can be obtained from the solutions inside the supple-

mentary material accompanying this paper.
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The solution of the differential equations in eq. (4.132) with the matrices in eqs. (4.134)

and (4.135) boundary conditions in eq. (4.137) is

f
(p)
IX,2 = (−q2)−2εε2π2

[
1

6
ε log(x)− 1

2
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.13)

f
(p)
IX,3 = (−q2)−2εε2π2

[
1

3
ε log(x) +

1

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.14)

f
(p)
IX,4 = (−q2)−2εε2π2

[
−1

6
+

1

36
ε2
(
7π2 + 48 log2(x)

)]
, (B.15)

f
(p)
IX,5 = (−q2)−2εε2π2

[
1

3
ε log(x)− ε2

(
Li2(1− x2) + log2(x)

)]
, (B.16)

f
(p)
IX,6 = (−q2)−2εε2π2

[
2

3
ε log(x) +

2

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.17)

f
(p)
IX,7 = (−q2)−2εε2π2

[
1

3
− 1

18
ε2
(
7π2 + 48 log2(x)

)]
, (B.18)

f
(p)
IX,8 = (−q2)−2εε2π2

[
−1

6
+

7π2ε2

36

]
, (B.19)

f
(p)
IX,10 = (−q2)−2εε2π2

[
− 5

12
ε2 log2(x)

]
, (B.20)

f
(p)
IX,15 = (−q2)−2εε2π2

[
iπε

4
− iπ log(2)ε2

2

]
. (B.21)

The differential equation for the III topology is obtained by crossing from the differential

equation for the III topology in eq. (4.75) with the matrices in eqs. (4.77) and (4.78). Using

the boundary conditions in eq. (4.141), we find the solutions

f
(p)

III,3
= (−q2)−2εε2π2

[
−1

6
ε log(x) +

1

2
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.22)

f
(p)

III,4
= (−q2)−2εε2π2

[
−1

3
ε log(x)− 1

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.23)

f
(p)

III,5
= (−q2)−2εε2π2

[
−1

6
+

1

36
ε2
(
7π2 + 48 log2(x)

)]
, (B.24)

f
(p)

III,6
= (−q2)−2εε2π2

[
−1

6
+

7ε2π2

36

]
, (B.25)

f
(p)

III,7
= (−q2)−2εε2π2

[
−1

6
ε2 log2(x)

]
. (B.26)

The differential equation for the IX topology is obtained by crossing from the differential

equation for the IX topology in eq. (4.75) with the matrices in eqs. (4.134) and (4.135).

Using the boundary conditions in eq. (4.142), we find the solutions

f
(p)

IX,2
= (−q2)−2εε2π2

[
−1

3
ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (B.27)

f
(p)

IX,3
= (−q2)−2εε2π2

[
−2

3
ε log(x)− 2

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.28)
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f
(p)

IX,4
= (−q2)−2εε2π2

[
1

3
− 1

18
ε2
(
7π2 + 48 log2(x)

)]
, (B.29)

f
(p)

IX,5
= (−q2)−2εε2π2

[
−1

6
ε log(x) +

1

2
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.30)

f
(p)

IX,6
= (−q2)−2εε2π2

[
−1

3
ε log(x)− 1

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (B.31)

f
(p)

IX,7
= (−q2)−2εε2π2

[
−1

6
+

1

36
ε2
(
7π2 + 48 log2(x)

)]
, (B.32)

f
(p)

IX,8
= (−q2)−2εε2π2

[
−1

6
+

7π2ε2

36

]
, (B.33)

f
(p)

IX,10
= (−q2)−2εε2π2

[
1

3
ε2 log2(x)

]
. (B.34)
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