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Extremal collision sequences of particles on a line: Optimal transmission of kinetic energy
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The transmission of kinetic energy through chains of inelastically colliding spheres is investigated for the
case of constant coefficient of restitutione5const and impact-velocity-dependent coefficiente(v) for vis-
coelastic particles. We derive a theory for the optimal distribution of particle masses which maximize the
energy transfer along the chain and check it numerically. We found that fore5const, the mass distribution is
a monotonous function which does not depend on the value ofe. In contrast, fore(v) the mass distribution
reveals a pronounced maximum, depending on the particle properties and on the chain length. The system
investigated demonstrates that even for small and simple systems, the velocity dependence of the coefficient of
restitution may lead to new effects with respect to the same systems under the simplifying approximation
e5const.
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I. INTRODUCTION

Chains of nonlinear interacting particles have long be
of large great interest, and a variety of interesting effe
occurring in those systems has been described, such as
tons, ~e.g., @1#!, energy localization~e.g., @2#!, etc. In the
context of granular materials chains of inelastically collidi
particles have been investigated as model systems for sh
granular material~e.g., @3,4#!, granular compaction@5#, and
the ‘‘inelastic collapse’’~e.g., @6,7#!. The kinetic theory of
one-dimensional granular systems has been addressed i@8#.

In this paper, we consider a linear chain of inelastica
colliding particles of massesmi and radii Ri ( i 50•••n)
with initial velocities v05v.0 and v i50 (i 51•••n) at
initial positions xi.xj for i . j with xi 112xi.Ri 111Ri

~Fig. 1!. The masses of the first and last particlesm0 andmn

are given and we address the following question: How h
the masses in between been chosen to maximize the en
transfer from the first particle of the chain to the last one?
n is a variable, how shouldn be chosen to maximize th
after-collisional velocityvn8 of the last particle.

One can easily study the chains of ideally elastic sphe
and of spheres interacting via a constant coefficient of re
tution. It is much more complicated to deal with chains
viscoelastic particles, which have an impact-veloci
dependent coefficient and which, as we show below, exh
quite unexpected behavior. It has been demonstrated rec
that the kinetic properties of ‘‘thermodynamically large
systems of viscoelastic particles differ significantly fro
those of particles interacting with a constant coefficient
restitution @9#. The system considered in this paper m
serve as an example of asmall system whose propertie
change qualitatively when the viscoelastic properties of
particles are taken into account explicitly.

In the present study, the problem of the most efficie
energy transmission in a chain of particles of variable mas
addressed. We analyze the optimal distribution for the p
ticle masses and calculate the optimal size of the system
1063-651X/2001/63~2!/021505~9!/$15.00 63 0215
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II. ELASTIC PARTICLES

The textbook problem of elastic collisions may serve us
introduce the notation. Assume particle 0 collides with t
resting particle 1. Then after the collision, the velocity
particle 1 is

v185
2m0

m01m1
v0 ~1!

~the primed variables refer to after-collisional velocities!, and
for a chain ofn11 particles of massesm0 , m1 , . . . ,mn
one has analogously@10#

vn852n)
k50

n21 S 11
mk11

mk
D 21

v0 . ~2!

For this system one finds easily that the choicemi

5Ami 21mi 11 ( i 52•••n21) maximizesvn8 . If we fix m0

andmn , obviously the mass distribution

mk5S mn

m0
D k/n

m0 ~3!

maximizesvn8 :

vn85F 2

11S mn

m0
D 1/nG n

v0 . ~4!

The functionRv5vn8/v0 always increases withn and has the
limit

Rv5Fvn8

v0
G

n→`

5Am0

mn
, ~5!

i.e., if the masses of the particles are chosen according to
~3!, the kinetic energy of the first particle is completely tran
ferred to the last one by a chain of infinite length.
©2001 The American Physical Society05-1
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For the case of dissipative collisions, an infinite cha
cannot be optimal since in each collision energy is dis
pated. Hence, we expect an optimum for the chain length
which the velocity of the last particle reaches its maximu

III. PARTICLES WITH A CONSTANT RESTITUTION
COEFFICIENT

According to our model, the particles collide pairwis
This allows us to use the restitution coefficient, which rela
the relative velocity of colliding particlesi and i 11 after
collision to that before the collision:

e5Uv i 118 2v i8

v i 112v i
U. ~6!

Equation~1! turns then into

v185
11e

11~m1 /m0!
v0 , ~7!

where we again assume that the particle with velocityv0 and
massm0 hits a particle of massm1 at rest, which starts mov
ing with the velocityv18 . Straightforward generalization o
the previous analysis for the case of the dissipative collisi
with a constant coefficient of restitutione shows that the
optimal mass distribution is identical to that for the elas
case~3!. This means that the optimal mass distribution do
not depend on the dissipation ife5const. The velocity of the
last particle in the chain reads for this case

vn85F 11e

11S mn

m0
D 1/nG n

v0 . ~8!

FIG. 1. Sketch.

FIG. 2. Optimal mass distributionmi , i 51•••n, for the case
of a constant restitution coefficiente. Each of the lines shows th
massmi over the indexi for a specified chain lengthn. The masses
of the first and last particles are fixed atm051 andmn50.1.
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i-
r

.

s

s

s

Figure 2 shows the optimal mass distribution for differe
chain lengthsn. The mass of the first particle ism051 and
of the last particle ismn50.1.

In the next section, we will consider particles which i
teract via a velocity-dependent coefficient of restitutio
Since the velocity of the particles varies for the particles
the chain, we characterize the dissipation of the collid
spheres not by the coefficient of restitution itself but rath
we define a dissipative constantb. For the case of a constan
coefficiente, it is defined asb5(12e).

In contrast to the mass distribution, the corresponding
locity distributions do depend on the value of the restituti
coefficiente. Figures 3 and 4 show the velocity distributio
for two different values of the dissipative constant,b55
31024 andb50.032.

For the case of dissipative collisions, the ratioRv
5vn8/v0 does not monotonously increase withn, but rather it
has an extremum which shifts to smaller chain lengths w
increasing dissipative parameterb. The optimal value ofn,
which maximizesRv , reads

FIG. 3. Velocity distribution of particles in chains with the op
timal mass distribution~given in Fig. 2! according to Eq.~3!. Each
of the lines shows the velocityv i over the indexi for a specified
chain lengthn. The dissipative constant isb5(12e)5531024.
The last particle reaches its maximal velocity for chain lengthn*
544 ~bold drawn!. The velocity of the first particle of the chain i
v051.

FIG. 4. Same as Fig. 3 but forb50.032. The optimal chain
length isn* 512.
5-2
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n* 5
ln~mn /m0!

ln~x0!
, ~9!

wherex0 is the solution of the equation

~11x0!5~11e!x0
x0 /(11x0) . ~10!

Correspondingly, the extremal value of theRv reads

Rv* 5F 11e

11x0
Gn*

. ~11!

In Fig. 5 the dependence of the extremaln* on the restitution
coefficient is shown.

IV. VISCOELASTIC PARTICLES

A. Collisional law for the viscoelastic particles

It has been shown that for colliding viscoelastic spher
the restitution coefficient depends on the masses of the
liding particles and also on their relative velocityv i j @11#.
An explicit expression for the coefficient of restitution
given by the series@12,13#

e512C1S 3A

2 Da2/5v i j
1/51C2S 3A

2 D 2

a4/5v i j
2/57••• ~12!

with

a5
2YAReff

3meff~12n2!
, ~13!

whereY is the Young modulus andn is the Poisson ratio
The effective mass and effective radius are defined asReff

5RiRj /(Ri1Rj ) andmeff5mimj /(mi1mj ), whereRi / j and
mi / j are radii and masses of the colliding particles. The c
stant A describing the dissipative properties of the sphe
depends on material parameters~for details, see@11#!. The

FIG. 5. The optimal chain lengthn* , which gives the maximal
transmission of energy along the chain with the fixed first and
masses, as a function of the dissipative parameterb5(12e). The
line shows the prediction of Eq.~9!, with x0 found numerically.
Points refer to the results of a direct numerical optimization of
masses in the chain.
02150
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constantsC151.153 44 andC250.798 26 were obtained
analytically in Ref.@12# and then confirmed by numerica
simulations.

For the following calculation we neglect termsO(v2/5)
and of higher orders. Moreover, we also assume for simp
ity that all particles are of the same radiusR, but have dif-
ferent masses@14#. We abbreviate

e512b
v i j

1/5

~meff!2/5
~14!

with

b5C1S 3A

2 D S 2

3

YAR/2

12n2 D 2/5

. ~15!

Thus, the collision withe5const and given dissipative con
stant b, as introduced above, corresponds~i.e., has equal
value ofe) to the viscoelastic collision with the sameb, with
unit effective massmeff51 and unit relative velocityv i j .

Hence, for viscoelastic particles the velocity of th
k11st particle after colliding with thekth particle reads

vk118 5

22bS mk111mk

mk11mk
D 2/5

vk
1/5

11
mk11

mk

vk . ~16!

The massesmk , k51•••n21, which maximizevn8 can be
determined numerically and the results are shown in Fig
and 7 for two different values of the dissipative constantb.

For small chain length or smallb, respectively, the opti-
mal mass distribution is very close to that for the elas
chain as shown in Fig. 2. Again, we find a monotonou
decaying function for the masses. For larger chain lengtn
or larger dissipationb, however, the mass distribution is
nonmonotonous function. The according velocities of t
particles in chains of spheres of optimal masses are draw

st

e

FIG. 6. Optimal mass distributionmi , i 51•••n, for the case
of viscoelastic particles with the restitution coefficient given by E
~14! with b5531024. Each of the lines shows the massmi over
the indexi for a specified chain lengthn. The masses of the first an
last particles arem051 andmn50.1.
5-3
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Figs. 8 and 9. Note that the mass distribution and velo
distribution are related by Eq.~16!.

B. Variational approach to the optimal mass distribution

In the following, we describe an approximative theory
the optimal collision chain of viscoelastic particles. To th
end we first evaluate the loss of kinetic energy in the cha
which we divide into two parts and term as ‘‘inertial’’ an
‘‘viscous’’ losses. In our approach, we treat the part of t
energy which is not transformed from the first particle of t
chain to the last one as a ‘‘lost’’ energy. In this sense,
energy is ‘‘lost’’ according to two mechanisms. The first
due to a mismatch of subsequent masses, which cause
complete transfer of momentum even for an elastic collis
when the masses differ~this part of the energy loss is calle
‘‘inertial’’ !. The second refers to the dissipative nature
collisions and, therefore, this loss is called ‘‘viscous’’ belo
The inertial loss in the collision, attributed to the ener
transfer to thei th particle, is thus given by the energy whic
remains in the (i 21)st particle after the collision:

FIG. 7. The same plot as Fig. 6 but forb5231023.

FIG. 8. Velocity distribution for viscoelastic particles in chain
with the optimal mass distribution given in Fig. 6. Each of the lin
shows the velocityv i over the indexi for a specified chain lengthn.
The dissipative constant isb5531024. The last particle reaches it
maximal velocity for the chain lengthn* 536 ~bold drawn!. The
velocity of the first particle of the chain isv051.
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DEin
( i )5

mi 21

2
~v i 218 !25

mi 21

2 S mi2mi 21

mi1mi 21
D 2

v i 21
2 . ~17!

For long enough chains, we approximate the discrete m
distribution by a continuous one,m(x). This, with the as-
sumption of small mass gradients, givesmi'mi 21
1@dm(x)/dx#1, where we assume that particles are se
rated on a line by a unit distance. Within the continuu
pictureDEin

( i )→(dEin /dx)1, and we write for the ‘‘line den-
sity’’ of the inertial loss, discarding high-order mass grad
ents,

dEin

dx
'

S dm~x!

dx D 2

8m~x!
v~x!2. ~18!

Viscous losses describe the energy losses according to
inelastic properties of the material, therefore they are eq
to the difference of the kinetic energy of a particle after
elastic collision ~with no dissipation! and that after adissi-
pativecollision,

DEvis
( i )5

miv i
2

2
U

e51

2
miv i

2

2
U

e5e(v i )

5
mi

2 S 2

11
mi

mi 21

D 2

v i 21
2 2

mi

2 S 11e~v i 21!

11
mi

mi 21

D 2

v i 21
2

5
2miv i 21

2

S 11
mi

mi 21
D 2 H 12F12

b

2 S mi1mi 21

mimi 21
D 2/5

v i 21
1/5 G2J .

~19!

Now we assume that the dissipative parameterb is small, so
that one can keep only the linear term, expandingDEvis

( i ) with
respect tob. Transforming then to continuous variables a

FIG. 9. The same plot as Fig. 8 but for the mass distribut
according to Fig. 7 (b5231023). The optimal chain length is
n* 520.
5-4
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EXTREMAL COLLISION SEQUENCES OF PARTICLES . . . PHYSICAL REVIEW E 63 021505
discarding terms which are products ofb and mass gradient
~which are also supposed to be small! yields

dEvis

dx
'

b

23/5
m3/5v11/5. ~20!

Thus, the total energy loss in the entire chain reads

Etot5E
0

nF mx
2

8m
v21

b

23/5
m3/5v11/5Gdx, ~21!

wheremx[dm/dx. As it follows from Eq.~21!, to evaluate
Etot one needs the velocity distributionv(x). As a zero-order
approximation we use an ‘‘ideal chain ansatz.’’ This refers
a velocity distributionv(x) in an idealized chain, where th
kinetic energy completely transforms through the chain, i
where 1

2 m(x)v2(x)5const5 1
2 m0v0

2. With m051, v051,
so thatv(x)51/Am(x), this ansatz yields

Etot5E
0

nF mx
2

8m2
1

b

23/5

1

m1/2Gdx. ~22!

The mass distribution which minimizesEtot satisfies the Eu-
ler equation applied to the integrand in Eq.~22!:

d

dx

2mx

8m2
2

]

]mF mx
2

8m2
1

b

23/5

1

m1/2G50. ~23!

Equation~23! leads to an equation for the mass distributi
of the optimal chain, written fory(x)[1/m(x):

d2y

dx2
2

1

y S dy

dxD
2

222/5by3/250. ~24!

Multiplying Eq. ~24! by 2(y8/y2) (y is always positive!, we
recast Eq.~24! into the form

d

dx
@~y8/y!224322/5by1/2#50 ~25!

which implies the first integral of this equation:

~y8/y!224322/5by1/252c, ~26!

where the constantc depends on parameterb, the chain
lengthn, and initial and final masses,m0 andmn . The form
of the solution depends on the sign of this constant. If
mass distribution has an extremum atx5x* , such that
m8(x* )50 andy8(x* )50, the constantc is positive. This
follows from Eq. ~26!, i.e., c54322/5by1/2(x* ).0, since
y1/2(x* ) is positive.

The solution of thefirst-orderequation~26! may be found
straightforwardly. The general solution is somewhat lengt
but for the case ofm051 ~one can always use the approp
ate mass unit!, this reads~for c.0)

y~x!5m~x!215
c2

24/5b2
cos24S xAc

2
1w D , ~27!
02150
o

.,

e

,

where

cosw5A c

22/5b
. ~28!

The value of the constantc may be found from the secon
boundary conditiony(n)51/mn , which yields a transcen
dental equation forc:

cosS nAc

2
D 2sinS n

Ac

2
DA22/5b

c
215

22/5b

c
mn

21/4.

~29!

The last equation has to be solved numerically. Instead, h
ever, we solved numerically directly the initial differentia
Eq. ~24!.

Note that some scaling properties of the solution may
deduced just from the form of Eq.~24!. Namely, as it follows
from this equation, the solution should depend on the
duced length variablexAb. Thus, the distribution of masse
for chains with different chain lengthn and different dissi-
pative constantb should coincide after rescaling the partic
numbers asi→Abi, provided the massesm0 andmn are the
same for these chains. We will consider the scaling prop
ties of the mass distribution in more detail later.

Figure 10 shows the optimal mass distribution for a ch
of length n540 for different damping parametersb. The
lines display the~numerical! solution of the variation Eq.
~24!, whereas the points show the results of a numerical
timization of the chain problem. For small dissipationb, both
results agree.

For larger values ofb, the solution of the variational equa
tion ~24! deviates from the results of the numerical optim
zation. This follows from the fact that for largerb, the gra-
dients of the mass distribution are not small and o
variational approach loses its accuracy. Note, however,

FIG. 10. Mass distribution in chains of viscoelastic particles
lengthn540 with optimal mass distribution for different values o
the dissipative parameterb. Lines, results of the variational theory
according to Eq.~24!; points, numerical optimization~from top to
bottom: d, b50.128; j, b50.064; l, b50.032; m, b
50.016; b, b50.008; ., b50.004; c, b50.002; etc.!. As
previously,mi is the mass of thei th particle along the chain.
5-5
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THORSTEN PÖSCHEL AND NIKOLAI V. BRILLIANTOV PHYSICAL REVIEW E 63 021505
while the absolute values of the masses in the mass dist
tion deviate from that given by the variational approach, t
still predicts well the position of the maximum of the distr
bution. Figure 11 shows the same data as Fig. 10 but
larger dissipation parameterb.

Figure 12 displays the velocity distribution for the optim
chain with the mass distribution shown in Fig. 11. The d
given in Fig. 12 refer to the numerical optimization, whe
Eq. ~16!, which relates velocity and mass distribution,
used. According to the maximum in the mass distributi
the velocity distribution reveals for largerb a pronounced
minimum.

One can give a simple physical explanation of the appe
ance of a maximum in the mass distribution~and correspond-
ingly a minimum in the velocity distribution!: As it is seen
from Eq. ~14!, the restitution coefficient increases with d
creasing impact velocity and increasing masses of collid
particles this reduces the viscous losses. Thus slowing d
particles, by increasing their masses in the inner part of

FIG. 11. Same data and symbols as in Fig. 10 but plotted
larger scale.

FIG. 12. The velocity distribution in chains of viscoelastic pa
ticles of lengthn540 with the optimal mass distribution accordin
to Fig. 11 for different values of the dissipative constantb. Lines
from top to bottom:b52.531024, 531024, 0.001, 0.002, 0.004,
0.008, 0.016, 0.032, 0.064, and 0.128. The velocity distributio
obtained from the mass distribution~given in Fig. 11! according to
Eq. ~16!. As previously,v i is the velocity of thei th particle along
the chain.
02150
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chain leads to a decrease of the viscous losses of the en
transfer. The larger the masses in the middle and the sm
their velocities, the less energy is lost due to dissipation.
the other hand, since massesm0 andmn are fixed, very large
masses in the middle of the chain will cause a large m
mismatch of the subsequent masses and thus large ine
losses@see Eq.~17!#. The optimal mass distribution minimiz
ing the total losses compromises~dictated byb) between
these two opposite tendencies. For the case of a cons
coefficient of restitution, the relative part of the kinetic e
ergy, which is lost due to dissipation, does not depend on
impact velocity. This means that only minimization of th
inertial losses, caused by mass gradient, may play a rol
the optimization of the mass distribution. Thus only a m
notonous mass distribution with minimal mass gradie
along the chain may be observed as an optimal one for
case of the constant restitution coefficient.

As in the case of the constant restitution coefficient,
velocity of the last particlevn8 of an optimal chain depends
on n. For short chains~with m0 ,mn fixed!, the mass gradien
of adjacent particles is large, hence inertia losses are larg
well. For very long chains, viscous losses become lar
Hence, we expect that among the optimal chains there ex
a chain with a certain lengthn* which allows for an optimal
transmission of kinetic energy from the first particle to t
last one. Figure 13 shows the velocity of the last particle
chains with optimal mass distribution as a function of t
chain lengthn for different values of the dissipative param
eter b. Naturally, as for the case of the constant restitut
coefficient, the optimal chain lengthn* shifts to smaller val-
ues with increasing dissipative constantb.

Having the mass distribution and the velocity distributi
obtained from the numerical optimization one can check
rectly the validity of the ‘‘ideal chain ansatz,’’v(x)
51/Am(x), used in the variational approach. In Fig. 14, w

a

is

FIG. 13. Velocity of the last particlevn for chains of viscoelas-
tic particles with optimal mass distribution over the chain lengthn
for different values ofb. As in Fig. 12, the velocity distribution was
obtained from the mass distribution according to Eq.~16!, and lines
from top to bottom correspond tob52.531024, 531024, 0.001,
0.002, 0.004, 0.008, 0.016, 0.032, 0.064, and 0.128. Note that
increasing dissipative constantb the maximum ofvn(n), which
corresponds to the optimal chain lengthn* , shifts to smaller values
of n, which means naturally that optimal chains are shorter
larger dissipation.
5-6
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EXTREMAL COLLISION SEQUENCES OF PARTICLES . . . PHYSICAL REVIEW E 63 021505
comparev(x) obtained by optimization with that from th
ansatz. As it is seen from the figure, the ideal chain an
turns out to be rather accurate for small dissipation param
b and for the initial part of the chain. It demonstrates, ho
ever, noticeable deviations from the optimization data
largerb, especially at the end of the chain, i.e., fori'n. This
is not surprising since it uses an assumption of comp
transmission of energy, which is definitely poor for the ve
end of the chain. On the other hand, as it follows from Fi
10 and 11, this ansatz yields rather accurate results w
applied to the mass distribution problem. The possible ex
nation for this follows from the boundary condition for th
mass distribution at the end of the chain,m( i 5n)5mn . This
imposes the correct behavior of the mass distribution at
part of the chain and partly compensates for the inaccur
of the velocity distribution, which develops mainly at th
chain end~see Fig. 14!.

C. Scaling laws for the optimal mass distribution

Now we analyze how the maximal massm* [m(x* ) ~the
mass of the heaviest sphere located atx5x* ) in the optimal
mass distribution depends on the chain lengthn and the dis-
sipative parameterb. We show that there exists a simp
scaling relation between these values.

We start from Eq.~27! for the optimal mass distribution

m~x!5
24/5b2

c2
cos4S xAc

2
1w D , ~30!

with c andw defined by Eqs.~28! and~29!. The condition for
the optimal mass

mx~x* !52
29/5b2

c3/2
cos3S x* Ac

2
1w D sinS x* Ac

2
1w D 50

~31!

FIG. 14. The velocity distribution in chains of viscoelastic pa
ticles of lengthn540 with the optimal mass distribution accordin
to Fig. 10. Lines give the velocity distribution for the ideal cha
ansatz,v i51/Ami ~with masses taken from the optimization data!;
points show the numerical optimization data forb50.001~top! and
b50.008 ~bottom!. Note that for these values of the dissipati
parameterb, the variational theory gives a very accurate descript
for the optimal mass distribution~see Fig. 10!.
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implies sin@(x*Ac/2)1w#50 and thus the relation betwee
the maximal massm* and the constantc,

m* 5
24/5b2

c2
cos4S x* Ac

2
1w D 5

24/5b2

c2
, ~32!

i.e.,

c522/5b/Am* . ~33!

This allows us to write the boundary condition form(x) at
x5n:

mn5m* cos4S nAc

2
1w D ~34!

or equivalently

nAc

2
5arccosF S mn

m*
D 1/4G2w. ~35!

Simple analysis shows thatw,0 if the optimal distribution
has a maximum@this follows from the form of the solution
~30! and the requirement thatm(x) increases atx50#. Thus,
one obtains from Eqs.~28! and ~33!

w52arccosF S m0

m*
D 1/4G . ~36!

Using again Eq.~33! for the constantc, we recast Eq.~35!
into the final form

nAb524/5~m* !1/4H arccosF S mn

m*
D 1/4G1arccosF S m0

m*
D 1/4G J .

~37!

This scaling relation expresses the productnAb in terms of
the maximal massm* . For the case of a strongly pronounce
maximum in the optimal mass distribution, i.e., whe
m0 /m* !1 andmn /m* !1, one can expand the arccos(x) in
Eq. ~37! to obtain a linear scaling relation between (m* )1/4

andnAb:

nAb5p~m* !1/42q, ~38!

with

p524/5p, ~39!

q524/5~m0
1/41mn

1/4!. ~40!

In Fig. 15 we compare the analytical relation~37! and its
linear approximation~38! with the results form* , following
from the numerical optimization for the mass distribution f
different chain lengths and different dissipative constants.
one can see from Fig. 15, the results of the analytical the
and of the numerical optimization agree well, except
large dissipation values. We would like to stress that th
are no fitting parameters used.

n
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Using the optimal mass distribution, Eq.~30!, one can
compute the total energy loss in the chain, as given by
~22!:

Etot5
nc

2
12AcHA12cos2wn

coswn
2

A12cos2w

cosw J
12Ac$arcsin@coswn#2arcsin@cosw#%, ~41!

wherewn5nAc/21w. According to Eq.~30!, one obtains

m05
24/5b2

c2
cos4w, ~42!

mn5
24/5b2

c2
cos4wn , ~43!

which allows us to express all trigonometric functions in E
~41! in terms ofm0 andmn , yielding

Etot52HA22/5b

mn
1/2

2c2A22/5b

m0
1/2

2cJ 2
cn

2
, ~44!

and finally, taking into account Eq.~33! for c, we arrive at
the relation for the total losses

Etot~n,b!526/5AbHA 1

Amn

2
1

Am*
2A 1

Am0

2
1

Am*

2
nAb

29/5Am*
J . ~45!

Using the approximation for the maximal mass,

FIG. 15. nAb as a function ofm* for the chain of viscoelastic
particles with the optimal mass distribution. Herem* is the mass of
the heaviest particle in the chain,n is a chain length, andb is the
dissipative parameter. In the figure we plottednAb over m* for
about 3000 different combinations ofb and n (n52•••300, b
50.0001•••0.256) including all data presented in Figs. 6, 7, 1
and 11. Without any adjustable parameters, the data from the
merical optimization of chains agree well with the analytical e
pressions Eq.~37!, given by the dashed line. The linear approxim
tion for the scaling relation, Eq.~38!, is shown by the dotted line.
02150
q.

.

m* '~nAb/p1q/p!4, ~46!

which follows from Eq. ~38!, one obtains an explicitap-
proximaterelation for the total losses and, thus, for the fin
velocity

v8n
25

m0v0
2

mn
2

2

mn
Etot~n,b! ~47!

in terms of the chain length and the dissipation constanb.
Unfortunately, due to the fact that chains with optim
lengths obviously do not have a maximum in their ma
distribution, one cannot use the previous relations to estim
the optimal chain length for a given dissipation constantb,
since these relations hold true only for chains which do h
a maximum.

Note that since the maximal massm* depends only on the
productnAb, the expression in curled brackets on the rig
hand side of Eq.~45! also depends only on this combinatio
This suggests the following scaling relations for the fin
velocity for the chains with fixednAb:

vn8
25mn

212dAb,

vn8
25mn

212d8/n, ~48!

where we take into account thatm051, v051, and where
d and d8 are some constants which are defined by the p
ticular value ofnAb.

V. CONCLUSION

We investigated analytically and numerically the tran
mission of kinetic energy through one-dimensional chains
inelastically colliding spheres, where the first and the l
mass are fixed. For the case of a constant coefficient of
titution, we found that in the chain with optimal energ
transmission, the mass of each particle is given by the g
metric average of its neighbors, i.e., the distribution of t
masses of the spheres is a monotonous, exponentially
creasing function. This function is independent of the co
ficient of restitutione, where the special case of elastical
colliding particles (e51) is included. We derived an expres
sion for the chain lengthn* which leads for a givene to the
optimal energy transfer~provided the masses in between t
first and last mass have been chosen properly!.

The situation changes qualitatively if we assume that
chain consists of viscoelastic spheres for which the coe
cient of restitution depends on the impact velocity. Here,
optimal mass distribution which leads to maximum ener
transfer is not necessarily a monotonous function. Depend
on the chain lengthn and on the material parameters of th
spheres, it may reveal a pronounced maximum. We cons
the part of the kinetic energy of the first particle, which h
not been transfered to the last one, as losses of energy. T
losses have been characterized as losses according to in
plete transfer of momentum due to mass mismatch of
particles~inertia losses! and losses due to the dissipative n
ture of particle collisions~viscous losses!. We develop a

,
u-

-
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theory which describes the total energy losses along
chain, so that the optimal mass distribution, minimizing t
losses, may be obtained as a solution of a variational eq
tion. We find a general solution to this nonlinear secon
order differential equation. Implication of the boundary co
ditions yields, however, a transcendental equation, wh
one needs to solve numerically~in practice, we solve nu-
merically the initial differential equation!. We observed tha
our variational theory agrees well with the results of the n
merical optimization for the mass distribution, provided t
dissipative material parameter is not too large. We also p
formed a direct verification of the basic approximation us
in our variational approach.

From the exact solution of the variational equation,
obtained an analytical expression which relates the heav
mass in the mass distribution to the chain length and
dissipation constant. We found that this analytical expr
sion, having no fitting parameters, is in good agreement w
the numerical data. Using the exact solution for the optim
mass distribution, we also found an expression for the t
energy losses. This allowed us to obtain scaling relati
J.

S

n

02150
e

a-
-
-
h

-

r-
d

st
e
-
h
l

al
s

which show how the velocity of the last particle in the cha
scales with the length of the chainn and with the dissipation
constantb, for the chain with the value ofnAb fixed.

It has been demonstrated before that for the case of ‘‘th
modynamically large’’ granular systems the impact-veloc
dependence of the restitution coefficient, as it is given
viscoelastic particles, may lead to qualitatively different b
havior as compared to systems with a constant restitu
coefficient, e.g.,@3,9,15#. The system investigated here ma
serve as an example of the major influence of the velo
dependence of the restitution coefficient even for relativ
small ~‘‘lab scale’’! and simple systems. Therefore, in ge
eral, the assumption of a constant coefficient of restitution
an approximation whose justification cannot be assumea
priori but has to be checked for each particular applicatio
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C. Vamoş, N. Suciu, and A. Georgescu, Phys. Rev. E55, 6277
~1997!; D. A. Kurtze and D. C. Hong, Physica A256, 57
~1998!; R. Ramı´rez and P. Cordero, Phys. Rev. E59, 656
~1999!.

@9# N. V. Brilliantov and T. Po¨schel, Phys. Rev. E61, 1716
~2000!.

@10# In what follows, we will consider the optimal mass distributio
.

for the case when the energy is transmitted from the first to
last particle only by subsequent left-to-right collisions, i.e., w
will not analyze the case when energy is transmitted by m
tiple collisions between subsequent particles. It may be sho
that the condition for such transmission of energy may alw
be satisfied by choosing appropriate distances~depending on
initial velocity v0) between the successive particles in t
chain.

@11# N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Po¨schel,
Phys. Rev. E53, 5382~1996!.

@12# T. Schwager and T. Po¨schel, Phys. Rev. E57, 650 ~1998!.
@13# R. Ramı´rez, T. Po¨schel, N. V. Brilliantov, and T. Schwager

Phys. Rev. E60, 4465~1999!.
@14# If we require the densityr ~and not radii! to be constant for all

spheres, Eq.~14! reads for particlesi and j

e512221/5bS 4

pr D 1/15S mi
1/3mj

1/3

mi
1/31mj

1/3D 1/5S mi1mj

mimj
D 1/5

v i j
1/5.

Numerical calculations show that the assumption of equal p
ticle density does not change the results qualitatively, howe
the analysis will be much more complicated if not impossib

@15# H. Salo, J. Lukkari, and J. Hanninen, Earth, Moon, Planets43,
33 ~1988!; J. O. Petzschmann, U. Schwarz, F. Spahn, C. G
bogi, and J. Kurths, Phys. Rev. Lett.82, 4819 ~1999!; F.
Spahn, U. Schwarz, and J. Kurths,ibid. 78, 1596 ~1997!; T.
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