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Chapter 1

Introduction

This thesis provides some new constructions for extremal polytopes and spheres. You will

find all relevant definitions in Chapter 2, but to set the stage, here are two 2-dimensional

convex polytopes (also called convex polygons, of course) and two 1-dimensional spheres:

Figure 1.1: Two 2-dimensional polytopes and two 1-dimensional spheres

The first polytope is interesting because it is regular (in just about every sense of the

word), and the second one because it is possible to traverse it from ‘bottom’ to ‘top’ along

edges in such a way that we visit every vertex of the polytope. As you can see in the next

picture, spheres arise by dropping the convexity requirement, and the last picture suggests

that in some ways, spheres may be the more interesting objects.

Of course, the story continues in dimension 3, so let’s see some examples:

Figure 1.2: Three 3-dimensional polytopes and a 2-dimensional sphere

The soccer ball [81], or truncated icosahedron, is one of the thirteen Archimedean or semi-

regular solids: all faces are regular polygons and all vertices are ‘surrounded’ in the same

way (i.e., the vertex figures are congruent), but not all faces are congruent. The second

polytope is the 3-dimensional Klee-Minty cube [54], which is combinatorially equivalent to

a regular 3-cube (i.e., it has the same vertex-facet incidences), but is realized in such a way

as to admit an ascending path along edges passing through all vertices, just like the second
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polytope in Figure 1.1. The third, a wedge over a 7-gon, can also be viewed as a polar of a

cyclic polytope; we will soon meet this polytope again. The last picture is a simplicial sphere,

consisting of triangles pasted together along edges, such that the union is homeomorphic

to S2 but not necessarily convex.

Polytopes have been around for quite a while—long before the peak of Greek geometry:

Figure 1.3: Neolithic carved stone balls from Scotland [34], dating from about 2000 bc

This thesis is mostly about polytopes and spheres in 4-dimensional space. Showing

pictures becomes a little more difficult, but is still possible: to draw a Schlegel diagram

over a base facet F of a polytope P , choose a viewpoint v just beyond F , and intersect (a

hyperplane H parallel to) F with the cones with apex v over the other faces of P (Figure 1.4):

P

H

v

F

Figure 1.4: Left: Schlegel diagrams of a triangular prism. Caution: not everything that ‘looks like’

a Schlegel diagram of a prism actually is one, as the lower right drawing shows! In any projective

image of a triangular prism P , the (images of the) carrier lines of the indicated edges intersect in

a point, possibly at infinity. Therefore, the lower right image is not a Schlegel diagram of P . Note

that taking Schlegel diagrams over different facets may result in combinatorially different images.

Right: While the dodecahedron is quite straightforward to recognize from its Schlegel diagram, the

truncated 3-cube may take a little more time. Stellar subdivisions of faces are again easy to see.
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Already before 1855, Schläfli ([85]; see the discussion in [17]) had discovered that in

addition to the five regular convex polytopes in
� 3 and the infinite series of regular d-

dimensional cubes, cross-polytopes (‘high-dimensional octahedra’) and simplices, there exist

exactly three more regular polytopes, all of them in dimension 4. They are the self-dual

24-cell, all of whose 24 facets are regular octahedra, and the dual pair of 120-cell (with

120 regular dodecahedra as facets) and 600-cell, whose facets are 600 regular tetrahedra.

Figure 1.5: Left: A Schlegel diagram the regular 24-cell. The outer octahedron is the facet that

the diagram is based on. Below are two 3-dimensional ‘analoga’ of the 24-cell [17]: The lower left

picture shows the convex hull of the midpoints of the edges of an octahedron; in other words, the

vertices of the octahedron are truncated in such a way that the truncating planes intersect in the

midpoints of the edges of the octahedron. The lower right picture shows a regular 3-cube with

6 pyramids stacked on its facets. The heights of the pyramids are the same as the distance from the

center of the cube to the facets. The volume of the resulting polytope (a rhombic dodecahedron)

is therefore exactly twice the volume of the cube. In dimension 4, both of these constructions give

the same polytope, namely the 24-cell. Right: The regular 120-cell, all of whose facets are regular

dodecahedra.

It is now time to end the commercial on polytopes and begin discussing the main results

of this thesis. Put briefly, we solve two extremal problems in polytope theory: We find

4-dimensional polytopes that admit long ascending paths along edges, and we construct far

more simplicial 3-spheres than there are combinatorial types of 4-dimensional polytopes.
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Part I of this thesis focuses on the monotone upper bound problem for polytopes. The

setting of this problem is linear programming theory, so let us quickly review the background.

In many applications (see for example [10], [88] and the references therein) it is important

to find the maximal value of a linear objective function f :
� d → �

, x 7→ cTx, where c ∈ � d,

subject to n linear constraints of the form aTx ≤ b, with a ∈ � d and b ∈ �
. One possible

canonical form for this linear programming problem is the following (see, e.g., [88]):

maximize cTx

subject to Ax ≤ b ,

where x ∈ � d is the vector of variables, c ∈ � d the objective function, and A ∈ � n×d

and b ∈ � n represent the n constraints of the problem. We may suppose that the feasible

region P defined by Ax ≤ b is nonempty and bounded, so that P is a polytope.

The simplex algorithm for linear programming was developed by Kantorovich in the

1920s [47]; however, his work did not become generally known (see [48] for an autobio-

graphical account). Around 1947, Dantzig (see [19] and [20] for the history) independently

rediscovered and implemented the method. (As an aside, the 2-dimensional case goes back

to work by Fourier in 1823; see the references in [88].)

The simplex algorithm starts at any vertex of P , and according to some pivot rule chooses

an incident edge e of P such that the neighboring vertex of P along e improves the value of

the objective function. Passing to this neighboring vertex is called making a pivot step. An

easy lemma (which uses the convexity of P in an essential way) implies that if no locally

improving vertex is found, then the current vertex is already the global optimum.

The monotone upper bound problem asks for the maximal number of pivot steps that

the simplex algorithm might execute on a particular linear program. In other words, it asks

for the maximal number of vertices in a strictly increasing path on a given polytope, where

increase is measured with respect to some linear objective function.

This problem showcases the enormous difference between our theoretical and practi-

cal understanding of the simplex algorithm: On the practitioner’s side, a recent study by

Bixby [10] informs us that the huge increase in memory capacity and processing speed over

the last decades, combined with the development of superior algorithms, makes it possible

today to routinely solve linear programs with up to several million variables and constraints.

At the same time, Bixby comes to the conclusion that the simplex algorithm is one of the

practically most viable approaches towards solving linear programs.

On the other hand, nobody has yet been able to prove a strongly polynomial upper

bound on the running time of any algorithm for linear programming at all. To elaborate this

briefly, there do exist so-called weakly polynomial algorithms (e.g., the ellipsoid method by

Khachiyan [50], the interior point method by Karmarkar [49] and their variants), whose run-

ning time is polynomial in the number d of variables, the number n of constraints, and the bit

complexity L of the input. Interior point methods perform quite well in practice [10], while

“computational experiments with the [ellipsoid] method are very discouraging” [88, p.170].

Part of the problem seems to be precisely the dependence of the number of iterations on the

length of the numbers involved in the input, and the resulting explosion in memory required

for storing ever longer numbers, respectively numerical instability in case of rounding.
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It remains a major challenge in linear programming theory to prove or disprove the

existence of a strongly polynomial algorithm, i.e., one whose number of arithmetic operations

depends only on d and n, but not on L. In particular, is the simplex algorithm strongly

polynomial with an appropriate pivot rule? See Chapter 3 for more on the state of the art.

Our approach in Chapters 4 and 5 is much more modest: we focus on bounding the

worst-case behavior of the simplex algorithm in dimension 4. A naive approach in general

dimension would be to show that there can be no long paths on a polytope, i.e., that the

maximal number of pivot steps is bounded by a polynomial in the dimension and the number

of facets of the polytope. This could be true for several reasons:

⊲ If the maximal number f0(d, n) of vertices of any d-dimensional polytope P defined by

n linear inequalities were polynomial in d and n, then obviously the simplex algorithm

would only take a polynomial number of steps. However, the existence of polar-to-

neighborly polytopes shows that f0(d, n) may in fact be exponential in d. (That polar-

to-neighborly polytopes in fact have the greatest possible number of vertices among all

polytopes with the same dimension and number of facets is the essence of McMullen’s

upper bound theorem [64] from 1971; cf. Theorem 3.6.)

⊲ Even though P may have exponentially many vertices, it could be hoped that the max-

imal length of a path along edges is bounded by a polynomial in d and n. However,

Klee [52] provides a Hamiltonian path in the graph of polar-to-cyclic polytopes (the

paradigmatic examples of polar-to-neighborly polytopes).

⊲ A third possibility is that the maximum length of a strictly ascending path along edges

could be bounded by a polynomial in d and n. Such hopes were however dashed in

1972, when Klee and Minty exhibited the first examples of ‘bad’ linear programs, the

by now classical Klee-Minty cubes [54]; see Figure 1.2 for the 3-dimensional instance.

These polytopes have the same combinatorics as a regular d-dimensional cube, so in

particular they have an exponential number 2d of vertices in terms of their number 2d

of facets, and on them (and their variants) several commonly used pivot rules are fooled

into exponential running times—in fact, they are made to visit every vertex of the cube.

To reiterate, in this thesis we investigate the worst-case behavior of the simplex algorithm

in dimension 4. Chapter 4 is devoted to a complete analysis of the smallest interesting 4-

dimensional polar-to-neighborly polytope, namely the polar-to-cyclic polytope P = C4(7)∆,

which has 7 facets and 14 vertices. We show that worst-case behavior can arise on P , in

the sense that P can be realized in such a way as to admit a strictly ascending path along

edges passing through all vertices. Moreover, we give a complete classification with respect

to realizability of all isomorphism classes (with respect to graph isomorphism) of ‘candidate

orientations’ of the graph of P ; see Definition 3.16 and Theorem 4.1 for the exact statements.

In Chapter 5, we build on this example and show that this worst possible behavior may in

fact arise in dimension 4 for polytopes on any number of facets: For all n ≥ 5, we inductively

construct a 4-dimensional polytope with n facets and maximally many vertices that admits

an ascending path along edges passing through all of the vertices. This is partly joint work

with Volker Kaibel and Günter M. Ziegler.
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Chapter 6 is devoted to secondary polytopes, an intriguing construction of polytopes from

certain triangulations of point configurations. This chapter does not contain any new re-

search results, but does try to give at least a glimpse of some of the surprisingly diverse

mathematics related to secondary polytopes. We will see polyhedral fans and rings of dif-

ferential operators, and not least some very nice pictures generated by TOPCOM [79, 77],

polymake [41, 40] and javaview [76]. This is joint work with Jörg Rambau.

In Part II of this thesis, we concentrate more on combinatorial than on geometric

properties of simplicial complexes. A central concept is the combinatorial type of a polytope

or sphere, by which we mean the equivalence class of all polytopes or spheres whose face

lattice is isomorphic to that of a given one.

Chapters 8 and 9 resolve a problem left open by Kalai in his 1988 construction of “many

triangulated d-spheres” [44]. The origin of this problem may be found in Goodman and

Pollack’s 1986 paper with the suggestive title, “There are asymptotically far fewer polytopes

than we thought” [29], [30], in which they expressed everyone’s surprise at the fact that

asymptotically, there are no more than

2 d(d + 1)n logn

combinatorial types of simplicial d-dimensional polytopes on n vertices! The surprise stems

from the fact that the only previously known upper bound on this number was the huge

expression

2 O(n⌊d/2⌋ log n) (1.1)

(for fixed d ≥ 3), derived via an easy application of McMullen’s upper bound theorem [64].

Goodman and Pollack proved their result using a theorem of Oleinik–Petrovsky–Milnor–

Thom from algebraic geometry that bounds the sum of the Betti numbers of real algebraic

varieties; still in 1986, Alon [2] extended their proof to non-simplicial polytopes.

By Stanley’s 1975 extension [94] of the upper bound theorem to spheres, the bound (1.1)

also holds for the number of combinatorial types of simplicial (d−1)-dimensional PL-spheres.

In his 1988 paper, Kalai came quite close to realizing this many spheres; in fact, he builds

2 Ω(n⌊(d−1)/2⌋)

simplicial (d− 1)-spheres, for fixed d− 1 ≥ 2. Note that for d ≥ 5, this construction implies

that asymptotically, there are indeed far more (d − 1)-spheres than d-polytopes, but for

3-spheres and 4-polytopes, the question remained undecided. (By a classical theorem of

Steinitz [98], every 2-sphere, simplicial or not, is isomorphic to the boundary complex of

some 3-polytope.) Two natural questions arise:

⊲ How many of Kalai’s 3-spheres are non-polytopal, i.e., they do not correspond to the

boundary complex of any 4-dimensional polytope?

⊲ Are there in fact more simplicial 3-spheres than 4-polytopes?
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We answer these questions in Chapters 8 and 9. For the first one, it turns out that in

fact all of Kalai’s 3-spheres are polytopal! We prove this in Theorem 8.1 by adapting yet

again Billera and Lee’s technique [8] (which had already inspired Kalai in the first place),

to realize the 3-spheres in his family as boundary complexes of simplicial 4-polytopes. We

then use the pictures constructed along the way to give a new and shorter proof for Hebble

and Lee’s result [35] that Kalai’s 3-spheres are Hamiltonian, i.e., their dual skeleton admits

a Hamiltonian path. These results were published in [74].

In our positive answer to the second question, we put together a classical construction

by Heffter from 1898 [36], who introduced very special subdivisions of a surface of genus g,

with a modern idea of Eppstein, Kuperberg & Ziegler [22] from 2002 for building interesting

polytopes. Using these, we prove in Theorem 9.1 that on sufficiently many vertices, there

do exist far more triangulated 3-spheres than simplicial 4-polytopes. This is joint work with

Günter M. Ziegler, and finally settles the last case left open by Kalai in 1988.

Chapter 10 is devoted to a rather special kind of simplicial spheres, namely centrally

symmetric star-shaped simplicial spheres. They generalize centrally symmetric polytopes (cs-

polytopes), i.e., those polytopes P that satisfy P = −P . A centrally symmetric simplicial

sphere (cs-sphere) is a simplicial sphere that admits an involution ϕ on its vertex set that

does not fix any face. (In the case of cs-polytopes, this involution is induced by x 7→ −x.)

A cs-sphere is star-shaped if there exists a centrally symmetric simplicial fan (a cs-fan) with

the same face lattice. In the simplicial case, we therefore have the following inclusions:

{
cs-polytopes

}
(

{
cs-fans

}
=

{
cs-star-shaped spheres

}
⊆

{
cs-spheres

}
(1.2)

(We will see in Chapter 10 that the first inclusion is strict.) A cs-sphere S is k-neighborly

centrally symmetric [67] or k-cs-neighborly if every subset of k vertices of S not containing

two antipodal vertices is the vertex set of a (k−1)-simplex which is a face of S. Equivalently,

fi =

(
n

i + 1

)
2i+1 for all 0 ≤ i ≤ k − 1, (1.3)

where fi counts the number of i-dimensional faces of S. A d-dimensional cs-sphere is neigh-

borly centrally symmetric or cs-neighborly if (1.3) holds for k = ⌊d/2⌋.
The interest in cs-neighborly cs-spheres stems from Grünbaum’s proof [31, Section 6.4]

that there exist no 4-dimensional cs-neighborly cs-polytopes on more than 12 vertices.

In contrast, Jockusch [39] in 1995 gave an inductive construction of 3- and 4-dimensional

cs-neighborly cs-spheres on n vertices for all even n ≥ 8 resp. n ≥ 10, and Lutz [60] in 2002

provided an explicit construction for 3-dimensional cs-neighborly cs-spheres with a transitive

cyclic group action on 4m vertices, for all m ≥ 2.

In Chapter 10, we investigate the middle set of (1.2) in the cs-neighborly case. We use

the cs-Gale transform introduced by McMullen and Shephard [67] to prove in Theorem 10.1

that there exist no cs-neighborly centrally symmetric d-dimensional fans on 2d + 4 rays for

all even d ≥ 4 and odd d ≥ 11.





Chapter 2

Definitions: Complexes, polytopes, spheres

Before we take off, a few words about terminology are in order. Much of the following

material is taken from the handbook article [11].

An (abstract) simplicial complex on a finite vertex set V is an (of course finite) family ∆

of distinct nonempty subsets of V , called simplices or faces, such that for any τ ⊆ σ ∈ ∆,

the set τ is also in ∆; we require the empty set to be a face. The dimension of a face σ

is dimσ = |σ| − 1 (where |σ| denotes the cardinality of σ), and the dimension of ∆ is

dim∆ = maxσ∈∆ dimσ. Inclusion-maximal faces of ∆ are called facets, and ∆ is pure if

all facets have the same dimension. The face poset P (∆) = (∆,⊆) of ∆ is the set of faces

ordered by inclusion. The face lattice of ∆ is P (∆) ∪ {1̂}, where x ≤ 1̂ for all x ∈ P (∆).

A polytope P ⊂ � k can be defined either as the convex hull of a finite set of points

in
� k, or equivalently [103, Theorem 1.1] as the (bounded) intersection of finitely many

linear half-spaces H≤0 = {x ∈ � k : aTx ≤ a0}, where a ∈ (
� k)∗ denotes a row vector of

length k, a0 ∈ �
, and H denotes the hyperplane H = {x ∈ � k : aTx = a0}. The dimension

of a polytope P ⊂ � d is the dimension of its affine span

aff(P ) =
{ n∑

i=1

λixi : x1, . . . , xn ∈ P,
n∑

i=1

λi = 0
}
.

We refer to d-dimensional polytopes as d-polytopes. A linear inequality aTx ≤ a0 is valid

for a polytope P if it satisfied for all points x ∈ P . A face F of P is a subset of the form

F = P ∩ {x ∈ � d : aTx ≤ a0}, where aTx ≤ a0 is a valid inequality for P . Note that again,

the empty set is a face of every polytope P , this time because the inequality 0Tx ≤ 1 is valid

for P . In addition, P is a face of itself because of the valid inequality 0Tx ≤ 0.

A polytopal complex P in
� d is a set of polytopes (called faces of P) that satisfies the

intersection property: the intersection P ∩Q of any two polytopes P, Q ∈ P is a face of both

and contained in P . Again, the dimension of P is the maximal dimension of any face of P .

A geometric simplex in
� k is the convex hull of k + 1 affinely independent points

v1, v2, . . . , vk+1 ∈ � k. This means that in any equation
∑k+1

i=1 λivi = 0 with
∑k+1

i=1 λi = 0,

there holds λi = 0 for all i = 1, 2, . . . , k + 1.

A geometric simplicial complex Γ is a polytopal complex all of whose faces are geometric

simplices. The vertex sets of faces (in the polytopal sense) of faces (in the ‘complex’ sense)

of Γ form an abstract finite simplicial complex ∆(Γ). Conversely, for any d-dimensional finite

abstract simplicial complex ∆ 6= ∅, there exist geometric simplicial complexes Γ ⊂ � 2d+1

such that ∆(Γ) ∼= ∆, in the sense that there is an inclusion-preserving bijection between the

respective face sets. The underlying space
⋃

Γ = ∪σ∈Γσ is unique up to a piecewise linear
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homeomorphism, and is called a geometric realization ‖∆‖ of ∆. Conversely, ∆ is called a

triangulation of the space ‖∆‖, and of any space homeomorphic to it. Getting a polyhedral

embedding (i.e., such that the image of any simplex is convex) of a d-simplicial complex on

n vertices is easy: simply take an appropriate subset of the d-skeleton (the set of faces of

dimension at most d) of an (n − 1)-dimensional simplex.

The boundary complex of a d-dimensional polytope P is the polytopal complex P of

all proper (i.e., non-empty) faces of P . It is homeomorphic to the (d − 1)-dimensional

sphere Sd−1. Just like for simplicial complexes, the top-dimensional faces of P are called

facets, even though they are not necessarily geometric simplices. If this does happen, then

P is called simplicial.

A simplicial d-sphere is a pure d-dimensional abstract simplicial complex S whose under-

lying space ‖S‖ is homeomorphic to the standard d-sphere Sd = {x ∈ � d+1 :
∑d+1

i=1 x2
i = 1}.

Abusing the concept slightly, we say that a simplicial d-sphere is realizable or polytopal if

there exists a convex (d + 1)-polytope whose boundary complex is isomorphic to Sd. The

important point here as compared to realizations of arbitrary simplicial complexes is that

we ask for a convex geometric realization in one dimension higher.

Note that a polytopal complex may have no convex realization at all, even allowing

for embeddings into arbitrarily high-dimensional spaces: In [24, Chapter III.5], there is an

example of a polyhedral 3-sphere on 8 vertices (!) which is not embeddable into any
� k.

A cellulation C of a manifold X is a finite CW complex whose underlying space is X . C is

regular if all closed cells are embedded, and strongly regular if in addition the intersection

of any two cells is a cell. The star of a cell σ ∈ C is the union of the closure of all cells

containing σ, and the link of σ consists of all cells of starσ not incident to σ. The entry fi

of the f -vector f(C) = (f−1, f0, f1, . . . ) of a cellulation counts the number of i-dimensional

cells, and f−1 = 1. The d-dimensional cells are called the facets, and the (d−1)-dimensional

ones the ridges.

A d-dimensional PL sphere is a simplicial sphere that is piecewise linearly homeomorphic

to the boundary of the (d + 1)-simplex. A combinatorial manifold (or PL manifold) is a

triangulation of a topological manifold such that the link of every vertex is a PL sphere. We

paraphrase [59]:

For d 6= 4, a triangulation of the d-sphere is a PL-sphere if and only if it is a PL-

manifold. For d ≤ 3 this follows from the work of Kirby and Siebenmann; namely, there

is a unique PL structure for spheres in these dimensions. For d = 4 this question is not

fully understood: Is a combinatorial manifold homeomorphic to the 4-sphere necessarily

a PL sphere? Since in dimension 4 the category of PL manifolds is equivalent to the

smooth category, the question is equivalent to: Does there exist an ‘exotic’ 4-sphere?

(We are grateful to M. Kreck for clarifying this question.)

We write [n] := {1, 2, . . . , n} and [n]0 := {0, 1, . . . , n}. For a finite subset V ⊂ � d, the

non-negative hull of V is cone(V ) = {∑v∈V λvv : λv ≥ 0 for all v ∈ V }, and cone(∅) = {0}.
Finally, for real functions f, g :

� → �
, we write

f = Ω(g) if g = O(f) (which is also expressed as ‘g ≪ f ’)

f = Θ(g) if f = O(g) and g = O(f).







Part I

Polytopes





Chapter 3

The monotone upper bound problem: Overview

A big boost for polytope theory came from the development of linear optimization in the first

half of the 20th century [88, p. 209ff]. Because of the huge success of the simplex algorithm

for linear programming on real world problems (see [89] for an important historical instance

and [10] for the state of the art in 2002), it was not fully realized that there could possibly

be a problem until Klee and Minty in 1972 exhibited their by now classic examples [54]: For

each dimension d, they produced a d-polytope (now called the Klee-Minty cube KM d) on

which the classical Dantzig pivot rule as well as various lexicographic rules are fooled into

exponential behavior. This polytope is combinatorially isomorphic to a d-dimensional cube,

but realized in such a way that with respect to the linear functional x 7→ xd, there exists

a strictly ascending (i.e., monotone) path through all 2d vertices. Moreover, the simplex

algorithm using Dantzig’s pivot rule indeed follows this path.

f

Figure 3.1: The 3-dimensional Klee-Minty cube KM3 with a linear objective function f that in-

duces a monotone Hamiltonian path. This polytope is combinatorially but not projectively equiv-

alent to a regular 3-cube (as claimed in [53]).

After this initial breakthrough, there came a whole flood (‘worstcasitis’ [70]) of additional

examples for exponential behaviour of various pivot rules. These examples were subsequently

unified via the deformed product construction by Amenta and Ziegler [3] in 1998.

As of this writing, it is still not clear whether this exponential behavior is merely produced

by inadequate pivot rules, or whether it is intrinsic to the simplex algorithm: maybe we

haven’t yet found or cannot adequately analyze the right pivot rule (see [53], [104] for the

$1000 reward offered by Zadeh for a proof of or a counterexample to the polynomiality of

the least entered rule); or perhaps we shouldn’t be using the simplex algorithm at all.

In fact, the following fundamental question is still not understood despite decades of effort:

Problem 3.1 (Complexity of linear programming) Is there a strongly polynomial (simplex)

algorithm for linear programming?
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Currently, we know of weakly polynomial algorithms for linear programming (i.e., ones in

which the number of arithmetic operations is bounded by a polynomial in the dimension d,

the number n of inequalities, and the coding length L of the problem), namely the ellipsoid

method by Khachiyan [50] from 1979 and the interior point method by Karmarkar [49]

from 1984 (and variants of these). However, we are still not aware of a (provably) strongly

polynomial algorithm, i.e., where the number of arithmetic operations is bounded by a

polynomial independent of the size of the numbers involved in the problem statement. (We

assume the uniform time model of computation, where each arithmetic operation can be

executed in constant time.) The best combinatorial bounds known as of this writing are

the following subexponential randomized running times for the simplex algorithm with a

certain pivot rule, which were independently and almost simultaneously obtained by Kalai

resp. Matoušek, Sharir and Welzl:

Theorem 3.2 (Kalai [46] and Matoušek, Sharir and Welzl [63], 1992) The running time of

the simplex algorithm with the random facet pivot rule has an expected sub-exponential

(but not polynomial) upper bound of

O
(
d2n + c

√
d log d

)
,

where d is the ambient dimension, n the number of inequalities, and c > 1 a real constant.

In this thesis, we focus on the following bound for the worst-case difficulty of solving a

linear programming problem via a simplex algorithm, irrespectively of the pivot rule used:

Definition 3.3 Let M(d, n) denote the maximal number of vertices on a monotone path

on a d-dimensional polytope with n facets. (This quantity provides an upper bound for the

running time of the simplex algorithm in the worst possible example, using the extremely

stupid pivot rule smallest increase.)

Problem 3.4 (Extremal path length problem, Klee 1965 [51]) How large can M(d, n) be

as a function of d and n?

To explain the progress we have been able to achieve on Problem 3.4, we need to first

consider another classical extremal problem on polytopes posed earlier by Motzkin:

Problem 3.5 (Upper bound problem, Motzkin 1957 [69]) What is the maximal number of

k-dimensional faces that a d-dimensional polytope on n vertices can have?

Actually, Motzkin did not state this as a question, but in his abstract [69] claimed that

this number is maximized by the cyclic polytope Cd(n), and that moreover cyclic polytopes

are unique with this property. The first statement was proved only in 1970 by McMullen [64];

see [103, Section 8.4] for some of the details of the long and involved history of the proof of

what came to be known as the upper bound theorem. However, the second part of Motzkin’s

claim was disproved by Grünbaum and Sreedharan [32], who in 1967 discovered the first

examples of non-cyclic neighborly polytopes; these will be important in the sequel.



OVERVIEW 19

Theorem 3.6 (Upper bound theorem, McMullen 1970 [64]) If P is a d-polytope with n ver-

tices, then for every 0 ≤ k ≤ d it has at most as many k-faces as a neighborly polytope with

the same number of vertices. In particular, the number of facets of P is at most

fd−1

(
Cd(n)

)
=

(
n − ⌈d/2⌉
⌊d/2⌋

)
+

(
n − 1 − ⌈(d − 1)/2⌉

⌊(d − 1)/2⌋

)
.

(Polar dual version) The maximal possible number of vertices that a d-dimensional polytope

with n facets can have is Mubt(d, n) = fd−1

(
Cd(n)

)
.

The inequality

M(d, n) ≤ Mubt(d, n) (3.1)

is clear by definition. To investigate its possible tightness, we tie together the two extremal

problems 3.4 and 3.5 by formulating the following monotone analogue of Problem 3.5, which

is central to Chapters 4 and 5 of this thesis:

Problem 3.7 (Monotone upper bound problem) Given integers n > d ≥ 2, can the max-

imal possible number of vertices on a strictly ascending path on a d-dimensional polytope

with n vertices be as large as Mubt(d, n)? In other words, do there exist

(1) a realization of a (necessarily simple) d-polytope P ⊂ � d with n facets and

Mubt(d, n) vertices,

(2) a linear objective function f ∈ (
� d)∗ in general position with respect to P ,

such that the orientation Of

(
G(P )

)
induced by f on the graph G(P ) of P admits a strictly

ascending Hamiltonian path?

Given the combinatorial type of a candidate polytope P with Mubt(d, n) vertices and

some candidate orientation O of its graph (for example, one with a unique source and sink

and a directed Hamiltonian path between the two), we can formulate the following problem:

Problem 3.8 (Monotone realizability problem) Given an orientation O of the graph G(P )

of a d-dimensional polytope P , do there exist a realization of P in
� d and a linear function

f ∈ (
� d)∗ such that O = Of

(
G(P )

)
?

However, even this restricted problem is far from being solved. In particular, it is in

general still not clear what conditions an orientation O must fulfill in order to allow a

positive solution of Problem 3.8 (but see Theorems 3.13 and 3.15 in the next section).

Related realizability questions have been studied before in polytope theory:

Problem 3.9 (Combinatorial realizability or Steinitz problem) Given some lattice, is it

isomorphic to the face lattice of a polytope?

Problem 3.10 (Complexity of the combinatorial realization space) How complicated is

the realization space of a given polytope? (A loose description of the realization space of a

polytope P is ‘the set of all coordinatizations of P modulo affine coordinate transformations’.

See [82] for a precise definition.)
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3.1 Solution status of the problems

3.1.1 The combinatorial realizability problem

In dimension 3, Steinitz’ famous theorem completely solves Problems 3.9 and 3.10 by char-

acterizing the graphs (and therefore the face lattices) and realization spaces of 3-polytopes:

Theorem 3.11 (Steinitz and Rademacher, 1934 [98])

(a) For every 3-dimensional polytope P , the graph G(P ) is a simple, planar 3-connected

graph. Conversely, for every simple, planar 3-connected graph G, there is a unique

combinatorial type of 3-polytope P whose graph G(P ) is isomorphic to G.

(b) The realization space R(P ) of the combinatorial type of a 3-polytope P is homeomorphic

to
� f1(P )−6, and contains rational points. In particular, R(P ) is connected, i.e. any

two realizations of P can be continuously deformed into each other while maintaining

the same combinatorial type throughout. ¤

In higher dimensions, reconstructing a (non-simple [45]) polytope from its graph alone is

of course out of the question: For n ≥ 5, already the complete graph Kn is the graph of any

neighborly d-polytope with d < n, for example the (n − 1)-simplex or the cyclic d-polytope

on n vertices. For more on dimensional ambiguity, consult (the recent second edition of)

Grünbaum’s classic [31].

By a result of Richter-Gebert from 1996, already for dimension d = 4 the nice charac-

terization of Theorem 3.11 fails spectacularly—the realization space of a 4-polytope can be

‘arbitrarily complicated’ (see [82] and [6] for definitions of the terms not explained here):

Theorem 3.12 (Universality theorem for 4-polytopes; Richter-Gebert, 1996 [82]) For every

basic semi-algebraic set S defined over ✁ , there is a 4-polytope PS whose realization space

is stably equivalent to S. Furthermore, for every fixed d ≥ 4, the Steinitz problem for d-

dimensional polytopes is at least as hard as the existential theory of the reals (ETR-hard),

with respect to polynomial-time reductions. ¤

In particular, the Steinitz problem in fixed dimension is NP-hard. It is not yet known

whether the problem is in NP; but see [43, Problem 29] for the latest news!

3.1.2 The monotone realizability problem

Since Problems 3.7 and 3.8 ask for a realization of two objects, a polytope and a linear

function, we would expect them to be more difficult than Problems 3.9 and 3.10. Indeed,

even the 3-dimensional case of Problem 3.8 has been solved only quite recently:

Theorem 3.13 (Mihalisin and Klee, 2000 [68]) Let O be an orientation of the graph of a

3-dimensional polytope P . There exists a realization of P such that O is induced by a linear

objective function if and only if O satisfies the following conditions:
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⊲ O is acyclic with a unique source and a unique sink,

⊲ it has a unique local sink in every face cycle (the non-separating induced cycles), and

⊲ it admits three directed paths from its source to its sink with disjoint sets of interior

nodes. ¤

We conclude from Theorem 3.13 that Problem 3.7 has a positive solution in dimension d = 3

for all n ≥ 4:

Corollary 3.14 For any n ≥ 4, there exists a (simple) 3-dimensional polytope with n facets

that admits a realization with an ascending Hamiltonian path along edges.

Proof. Orient the 1-skeleton of the polar C3(n)∆ of the 3-dimensional cyclic polytope C3(n)

with n vertices as in Figure 3.2. This orientation satisfies the three criteria of Theorem 3.13

and admits a Hamiltonian path from source to sink along edges. ¤

Figure 3.2: An orientation of the graph of the 3-dimensional polytope C3(8)
∆ with 8 facets

and 12 vertices (see also Figure 1.2) that satisfies the conditions of Theorem 3.13, and admits a

Hamiltonian path from source to sink along edges (thick lines).

For general dimension d, Holt and Klee proved the necessity of the following condition

analogous to the statement of Theorem 3.13:

Theorem 3.15 (Holt and Klee, 1999 [37]) In any orientation induced on the graph of a

d-dimensional polytope by a linear objective function in general position (i.e., the function

values at vertices are distinct), there are d vertex-disjoint monotone paths from the (unique)

source to the (unique) sink. ¤

Theorems 3.13 and 3.15 motivate the following definitions.

Definition 3.16 Let O be an acyclic orientation of the graph GP of a d-dimensional poly-

tope P that has a unique source and sink.

(a) If O has a unique sink in each non-empty face of P , it is called an AOF-orientation of P ,

and O is said to satisfy the AOF condition. Any linear extension of an AOF-orientation

is called an abstract objective function on vertP . (In particular, any orientation of GP

induced by a linear objective function on
� d is an AOF orientation.)

(b) O is a Holt-Klee orientation if it admits d independent monotone paths between the

global source and the global sink. (cf. Theorem 3.15.)
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(c) O is an AOF Holt-Klee orientation if it satisfies (a) and (b), and a Hamiltonian AOF

Holt-Klee orientation if it additionally admits a directed Hamiltonian path from source

to sink.

Another case in which Problem 3.7 has recently been found to have a positive solution

is for n = d + 2 and d ≥ 2 (the case d = 2 is of course trivial).

Theorem 3.17 (Amenta & Ziegler, 1998 [3]; Gärtner, Solymosi, Tschirschnitz, Valtr &

Welzl, 2001 [27]) For all d ≥ 2, the (combinatorially unique and simple) d-polytope P ∼=
∆⌊d/2⌋×∆⌈d/2⌉ with n = d+2 facets and Mubt(d, d+2) vertices admits a geometric realization

together with a linear objective function that induces an ascending Hamiltonian path along

edges. ¤

3.2 New results in this thesis

To recapitulate, Problem 3.7 was known to have a positive solution in dimension 3, where

an n-facet polytope can have at most Mubt(3, n) = 2n− 4 vertices, and for d-polytopes with

n = d + 2 facets and Mubt(d, d + 2) = (⌊ d
2⌋ + 1)(⌈ d

2⌉ + 1) many vertices.

In Chapter 4 of this thesis, we completely analyze the first interesting case of Problem 3.7

after Corollary 3.14 and Theorem 3.17, namely the case d = 4 and n = 7.

Theorem 3.18 ([31, Theorem 6.2.3]) For all d ≥ 4, the combinatorial type of a d-dimensional

polytope with d+3 facets and Mubt(d, d+3) vertices is uniquely that of the polar Cd(d+3)∆

of the cyclic d-polytope on d + 3 vertices.

We combine combinatorial enumeration, the Gale∆-transform [27] and (an oriented ma-

troid version of) the Farkas Lemma to prove the following theorem (Theorem 4.1):

Theorem There exist 7 combinatorial equivalence classes with respect to graph isomor-

phism of Hamiltonian AOF Holt-Klee orientations of the graph of C4(7)∆. Of these, exactly

4 equivalence classes are realizable. In particular, M(4, 7) = Mubt(4, 7) = 14.

For even d ≥ 2 and all n ≥ d + 3, the symmetry group of Cd(n)∆ is the dihedral group

of order 2n. In particular,
∣∣Sym

(
C4(7)∆

)∣∣ = 14.

Chapter 5 completely solves Problem 3.7 positively in the case d = 4. More precisely, for

each m ≥ 0 we realize a 4-dimensional polytope Qm with n = m + 5 facets and Mubt(4, n)

vertices such that Qm admits an ascending Hamiltonian path (Theorem 5.1):

Theorem For d = 4, the bound given by Theorem 3.6 is sharp for monotone paths: The

maximal number M(4, n) of vertices on a strictly ascending path in the 1-skeleton of a simple

4-polytope P with n facets equals the maximal number of vertices that P can have according

to the (combinatorial) upper bound theorem. That is,

M(4, n) = Mubt(4, n) =
n(n − 3)

2
.
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Remark 3.19 Two noteworthy features of our construction are the following:

(a) Our polytopes are not deformed products in the sense of Amenta and Ziegler [3].

(b) Our polytopes are polars of neighborly ones, but they are not polar to cyclic polytopes.

Corollary 3.20 The 4-dimensional Klee-Minty cube KM 4 is not extremal for Problem 3.4.

Proof. The 4-cube has 8 facets but only 16 vertices, while f0(Q3) = Mubt(4, 8) = 20. ¤

We summarize the known status of Problem 3.7 in Figure 3.3.
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new! [P 2002]

Figure 3.3: Progress on the monotone upper bound problem. The case n = d + 2 is covered by

Theorem 3.17, while the realizations in dimension 4 are new in this thesis. For (d, n) = (5, 8) and

(d, n) = (6, 9) (marked with an ‘O’), we found Hamiltonian AOF Holt-Klee orientations on simple

polar-to-neighborly polytopes with these parameters (for (d, n) = (6, 9) this polytope is unique);

the question mark indicates a still open but hopefully accessible instance.

Theorems 4.10 and 4.22 together give the following result for d = 4 and n = 7, 8:

Theorem (a) There exist realizations of the equivalence classes R1–R4 of Hamiltonian

AOF Holt-Klee orientations of the graph of C4(7)∆ listed in Theorem 4.1.

(b) The Hamiltonian AOF Holt-Klee orientations NR1–NR3 of C4(7)∆ are not realizable.

(c) There does not exist any Hamiltonian AOF Holt-Klee orientation of the graph of C4(8)∆.

(d) There exist realizations of several equivalence classes of Hamiltonian AOF Holt-Klee

orientations of the graph of the two other combinatorial types N ′
4(8), N ′′

4 (8) of polar-

to-neighborly 4-polytopes with 8 facets [31, Section 7.2.4].

Corollary 3.21 The result of Mihalisin & Klee (Theorem 3.13) does not hold in any dimen-

sion greater than three: For all d ≥ 4, there are nonrealizable AOF Holt-Klee orientations

of the graph of a d-dimensional simple polytope.

Proof. For d = 4, this follows from Theorem 4.1. For d > 4, inductively take the prism Π(P )

over a (d − 1)-dimensional polytope P that admits a non-realizable AOF Holt-Klee orien-

tation OP . Put OP resp. its reorientation −OP on the bottom resp. top facet of Π(P ),
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and orient all ‘new’ edges of Π(P ) from bottom to top. Any realization of Π(P ) with this

orientation induces realizations of OP resp. −OP on the bottom resp. top facets of Π(P ). ¤

For finding Hamiltonian HK AOF orientations of the graph of C6(9)∆, straightforward

enumeration is hopeless because there are too many orientations to check. We therefore

adopt the strategy of Algorithm 1 to restrict the search, and prove the following theorem:

Theorem 3.22 There are exactly six equivalence classes of Hamiltonian AOF Holt-Klee

orientations (with respect to graph isomorphism and reorientation) on C6(9)∆; cf. Figure 3.4.

Algorithm 1 Enumerating all Hamiltonian AOF Holt-Klee orientations on a simple poly-

tope by using the induced orientations on smaller-dimensional faces as templates

Input: A d-dimensional simple polytope Q, represented by a polymake file

A collection F of faces of Q

Output: All Hamiltonian AOF HK orientations of G(Q)

1: Generate the collection F of equivalence classes (with respect to graph isomorphism) of

the faces in F
2: Create one file for each F ∈ F , along with the isomorphism map µF : vertF → vertF

between each F ∈ F and its representative F ∈ F
3: Enumerate all AOF HK orientations of each F ∈ F (not just the Hamiltonian ones)

4: Make one object Face for each F ∈ F of Q (not just one per representative)

5: Make one object Edge for each edge of Q

6: Enumerate all Hamiltonian paths π in G(Q) in the following way:

7: for all new edges e to be added to π do

8: check in all Faces F ∈ F containing Edge(e) if there is still some AOF HK orientation

of F compatible with this orientation of e

9: check if the orientation induced on Q so far by π is still AOF

3.3 Open problems

Conjecture 3.23 For all n ≥ 8, the graph of the polar C4(n)∆ of the cyclic 4-polytope on

n vertices does not admit a Hamiltonian AOF Holt-Klee orientation.

Question 3.24 Are any of the six equivalence classes of Hamiltonian AOF Holt-Klee ori-

entations of C6(9)∆ realizable?

Question 3.25 Does the graph of the polar C8(11)∆ of the cyclic 8-polytope on 11 vertices

admit a Hamiltonian AOF Holt-Klee orientation? We ran our program for two weeks—in

fact, using one computer for each equivalence class of edges of C8(11)∆ under its symmetry

group (see Figure 3.5)—but the problem is still too large.
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N_VERTICES

30

F_VECTOR

30 90 117 84 36 9

N_ISOMORPHIC_3_FACES

(0 54) (1 9) (2 18) (3 3)

N_ISOMORPHIC_4_FACES

(0 9) (1 9) (2 9) (3 9)

d = 3: # f0 # HK-AOFs

0 8 448 C3(8)∆

1 4 24 ∆3

2 6 120 Π(∆2)

3 8 656 C3

d = 4: # f0 # HK-AOFs

0 14 71652 C4(7)∆

1 11 21264

2 13 61064

3 12 32128

d = 5: 0 20 >450M data C5(8)∆

HAM_HK_AOF_ORIENTATION_CLASSES

0 1 2 7 8 6 3 4 5 19 16 21 25 22 24 23 12 14 15 13 9 11 10 27 29 28 26 17 18 20

4 2 17 26 23 22 24 12 8 14 19 5 16 21 25 11 13 9 10 27 28 29 20 0 3 1 18 15 7 6

4 2 26 25 21 27 28 10 11 13 9 6 7 8 14 15 17 16 18 1 3 0 29 20 24 12 23 22 19 5

4 2 26 25 21 27 28 10 11 13 9 7 6 8 14 15 17 16 18 1 3 0 29 20 24 12 23 22 19 5

4 3 1 18 28 27 29 0 20 24 22 23 12 14 19 5 16 21 25 26 11 10 13 9 8 6 7 15 17 2

5 3 0 1 18 16 15 7 6 4 2 17 23 22 24 12 8 14 19 20 29 28 26 25 11 9 10 13 21 27

Figure 3.4: A partial polymake [40] description for C6(9)
∆. Left: the line following the entry

‘N_ISOMORPHIC_3_FACES’ means that there are 54 representatives of the 3-face called ‘0’ under

graph isomorphism, 9 representatives of the 3-face ‘1’, etc. Right: The number of vertices, the total

number of HK AOF orientations, and in some cases the combinatorial type (Π stands for ‘prism’,

C3 for the 3-cube) of the equivalence classes of 3- and 4-dimensional faces of C6(9)
∆. Bottom: the

vertex labels in the six classes of Hamiltonian paths that induce HK AOF orientations on C6(9)
∆.

N_VERTICES

55

F_VECTOR

55 220 407 451 330 165 55 11

N_ISOMORPHIC_3_FACES

(0 231) (1 66) (2 132) (3 22)

N_ISOMORPHIC_4_FACES

(0 44) (1 77) (2 77) (3 77)

(4 11) (5 22) (6 11) (7 11)

SYMMETRY_CLASSES_OF_EDGES

(1 0) (2 1) (3 0) (3 1)

(6 0) (7 2) (7 6) (8 5)

(8 6) (9 6) (9 7) (9 8) (11 9)

d = 3: # f0 # HK-AOFs

0 8 448 C3(8)∆

1 4 24 ∆3

2 6 120 Π(∆2)

3 8 656 C3

d = 4: # f0 # HK-AOFs

0 14 71652 C4(7)∆

1 11 21264

2 13 61064

3 12 32128

4 5 120 ∆4

5 8 1920

6 9 3132

7 12 60216

Figure 3.5: A partial polymake [40] description of C8(11)
∆; cf. Figure 3.4.





Chapter 4

An exhaustive analysis of a small polytope

This chapter focuses on the first interesting case for the monotone upper bound problem

in dimension 4. Namely, we study the smallest 4-dimensional polytope that is not a priori

known to admit an ascending Hamiltonian path along edges, but has the maximal possible

number of vertices given its number of facets.

Of course, the 4-polytope with 5 facets (i.e., the 4-simplex) admits a realization with

an ascending Hamiltonian path. We saw in Theorem 3.17 that the same is true for the

4-polytope C4(6)∆ with 6 facets (and 9 vertices), which is combinatorially unique by [31,

Section 6.1]. The first interesting case is therefore the polytope C4(7)∆ with 7 facets and

the maximal number 14 of vertices, which is also combinatorially unique by Theorem 3.18.

Theorem 4.1 There are exactly four realizable equivalence classes (with respect to graph

isomorphism) of AOF Holt-Klee orientations of the graph of C4(7)∆ that admit a monotone

Hamiltonian path; see Figure 4.1.

Our proof of Theorem 4.1 uses three nontrivial ingredients. The first is the following

result of combinatorial enumeration first achieved by Schultz, which was independently re-

implemented and verified:

Theorem 4.2 (Schultz, 2001 [90]) Exactly seven equivalence classes of AOF Holt-Klee

orientations of the graph of C4(7)∆ admit a monotone Hamiltonian path.

For deciding realizability, we additionally use Welzl’s [27] geometric Gale∆-transform

(Algorithm 4.2) and (an oriented matroid version of) the Farkas Lemma [88] (Theorem 4.19).

4.1 A very brief introduction to the Gale transform

The Gale transform in the setting of polytope theory is due to Perles (around 1965) and

was first published in [31]. It is a powerful method for visualizing high-dimensional point

configurations, such as the vertex sets of convex polytopes, whose cardinality is only slightly

larger than the dimension of the affine span of the points. Typically, it is used for visualizing

point configurations in
� d that consist of not more than d + 5 points.

The basic idea is that (the combinatorics of) a point configuration is determined by the

signs of its affine dependencies. If the configuration consists only of few points compared

to the dimension of the ambient space, the affine space of affine dependencies will be low-

dimensional. See [103, Chapter 6] and [62, Section 5.6] for more detailed expositions, and [21]

for insights into the algebro-geometric aspects of the Gale transform.
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Figure 4.1: The seven Hamiltonian Holt-Klee AOF orientations of the graph G of C4(7)
∆. (G can

be embedded on a Möbius strip, cf. e.g. [33]). Each vertex is labeled with its incident facets; each

label thus corresponds to a facet of C4(7). The bold lines indicate Hamiltonian paths connecting

source and sink of each orientation. An arrow v → w means that the vertex v should lie lower

than w; in particular, e.g. the orientation NR1 corresponds to the following sequence of heights:

2367 < 2356 < 3456 < 3467 < 4567 < 1457 < 1245 < 2345 < 1234 < 1347 < 1237.

The version of the Gale transform considered in this thesis converts an (affinely spanning)

sequence of n points in
� d into a (linearly spanning) sequence of n vectors in

� n−d−1.

Algorithm 2 The Gale transformation

Input: An affinely spanning sequence A = (p1, p2, . . . , pn) ⊂ � d of n points.

Output: A linearly spanning sequence A∗ = (p∗
1, p

∗
2, . . . , p

∗
n) ⊂ � n−d−1 of n vectors.

1: Form the (d + 1) × n-matrix A by appending a row of ‘1’s to the column vectors pi.

2: Choose a basis for kerA, i.e., an n × (n − d − 1)-matrix B such that AB = 0.

3: The output configuration (p∗
1, p

∗
2, . . . , p

∗
n) is the sequence of rows of B, see Figure 4.2.

Definition 4.3 Let A = (p1, p2, . . . , pn) resp. B = (v1, v2, . . . , vn) be sequences of n points

in
� d resp. n vectors in

� e with dim aff{p1, p2, . . . , pn} = d and dim lin{v1, v2, . . . , vn} = e.

(a) A cocircuit of the point configuration A is a partition C∗ : [n] = (C∗)+ ∪ (C∗)− ∪ (C∗)0

such that there is an affine functional f :
� d → �

where (C∗)+ = {i ∈ [n] : f(pi) > 0},
(C∗)− = {i ∈ [n] : f(pi) < 0}, (C∗)0 = {i ∈ [n] : f(pi) = 0} ( [n], and (C∗)+ ∪ (C∗)−

is minimal with respect to inclusion. The values of C∗ are {f(pi) : i ∈ [n]}.
(b) A circuit or minimal linear dependency of the vector configuration B is a partition

C : [n] = C+ ∪ C− ∪ C0 of [n], such that C+ ∪ C− 6= ∅ is inclusion-minimal with the

property that there is a linear dependency
∑

i∈C+∪C− λivi = 0, where C+ = {i ∈ [n] :

λi > 0} and C− = {i ∈ [n] : λi < 0}. The values of C are {λi : i ∈ [n]}.



4.2. THE POLAR-GALE TRANSFORM 29

1 1 1 1 1

A

B

p1 pn

p∗
1

p∗
n

n − d − 1

d + 1 0

Figure 4.2: Calculating the Gale transform means fixing a basis of kerA.

Remark 4.4 The cocircuits of A with nonnegative values (the nonnegative cocircuits)

determine the facets of convA, and the nonnegative circuits of B determine minimal sets of

vectors in B that contain 0 in their positive span.

Proposition 4.5 [103, Corollary 6.15] If A∗ is a Gale transform of the point configura-

tion A, then C is a cocircuit of A if and only if C is a circuit of A∗. (The dual statement

also holds.) In particular, the vertex sets of facets of convA exactly correspond to the com-

plements of minimal sets of vectors in the Gale transform that contain 0 inside their convex

hull.

Observation 4.6 If A = {p1, p2, . . . , pn} is an affine point configuration in
� d and pn lies

in the relative interior of convA, then n ∈ (C∗)+ for any nonnegative cocircuit C∗ of A.

Equivalently, by Proposition 4.5, we get n ∈ C+ for any nonnegative circuit C of A∗.

4.2 The polar-Gale transform

Welzl’s Gale∆-transformation [27] takes a sequence (w1, w2, . . . , wm, g) of points in
� d and

produces a sequence (w∗
1, w

∗
2, . . . , w

∗
m, g̃∗) of vectors in

� m−d. In the standard interpre-

tation, the wi’s represent the m facet-defining hyperplanes Wi = {x ∈ � d : wT
i x = 1},

i ∈ [m], of a full-dimensional polytope P ⊂ � d such that 0 ∈ intP , and g ∈ � d encodes a

linear objective function gT ∈ (
� d)∗. Note that m counts the number of facets of P , and

not the number of vertices as in the usual Gale transform! With this interpretation of the

input, the Gale∆-transform produces m + 1 labelled vectors in
� m−d that encode both the

face lattice of P and the orientation Og of the 1-skeleton of P induced by gT .

Let v1, v2, . . . , vn be the vertices of P , and label them in such a way that

gTv1 ≤ gTv2 ≤ . . . ≤ gTvk < 0 < gTvk+1 ≤ . . . ≤ gTvn (4.1)

holds for some k ∈ ✂ with 1 < k < n, where we may assume that gTvi 6= 0 for all i.
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Algorithm 3 The Gale∆-transformation

Input: A sequence (w1, w2, . . . , wm, g =: w0) of points in
� d such that P = {x ∈ � d :

wT
i x ≤ 1, i ∈ [m]} is bounded, i.e., a polytope, and the wi define facets of P . (This

implies that dimP = d and 0 ∈ intP .)

Output: A sequence (w∗
1, w∗

2, . . . , w∗
m, g̃∗ =: w∗

0) of vectors in
� m−d.

1: Replace g by some positive scalar multiple g̃ = cg such that g̃ ∈ intP∆, where P∆ =

conv{w1, w2, . . . , wm} is P ’s polar dual.

2: Output the Gale transform Gale∆(P, g̃) := (w∗
1, w

∗
2, . . . , w

∗
m, g̃∗) of the point sequence

(w1, w2, . . . , wm, g̃).

The point ti of intersection between the line g =
�

g and the i-th facet Vi = {x ∈ � d :

vT
i x = 1} of P∆ is given by ti = (1/gTvi)g. Thus, the ordering of the vertices of P by gT

induces an ordering of the facets of P ∆ by g via

tk ≤ tk−1 ≤ . . . ≤ t1 < 0 < tn ≤ tn−1 ≤ . . . ≤ tk+1. (4.2)

If g is in general position with respect to P , which for our purposes means that the values

{gT v : v ∈ vertP} are all distinct, we have strict inequalities in (4.1) and (4.2), and the

ordering (4.2) is a Bruggesser-Mani line shelling [14], [103, Section 8.2] of the facets of P ∆.

Conversely, every line shelling of the boundary of P ∆ gives rise to a linear objective function

in general position on P . See also [103, Exercise 8.10].

Step 1 of Algorithm 4.2 works because by construction the origin 0 is contained in the

interior of P∆. In Step 2, having chosen g̃ in the interior of P∆ implies by Observation 4.6

that for any facet F of P∆, the set C = {i ∈ [m] : wi /∈ F} ∪ {0} is a positive cocircuit

of P∆. (This means that there is a nonnegative cocircuit C∗ of P∆ such that C = (C∗)+).

By Proposition 4.5, C indexes a positive linear combination of {w∗
1, w

∗
2, . . . , w

∗
n, g̃∗ = w∗

0}
summing to zero, so we conclude that conv{w∗

i : wi /∈ F} ∩ �
g̃∗ 6= ∅.

Definition 4.7 Let A∗
g

= (w∗
1, w

∗
2, . . . , w

∗
m, g̃∗) ⊂ � m−d be the Gale∆-transform of a point

sequence Ag = (w1, w2, . . . , wm, g) ⊂ � d, let p be a vertex of P = {x ∈ � d : wix ≤ 1},
and let Ip ⊂ [m] index the wi that correspond to the facets of P intersecting in p. The

intersection height zp of p is zp = −(g̃∗)Tzp, where zp =
�

g̃∗ ∩ conv{w∗
i : i /∈ Ip} is the

intersection point of the line
�

g̃∗ with the convex hull of the w∗’s indexed by the complement

of Ip. (See Figure 4.3.)

Example 4.8 Let P be a triangular prism in
� 3 (see Figure 4.3, left); in particular, the

number of facets of P is m = 5, and the number of vertices is n = 6. The polar P ∆ is the

polytope of Figure 4.3 (middle) with n = 6 facets and m = 5 vertices, and the Gale transform

of P∆ (the Gale∆-transform of P ) consists of m = 5 points in
� 5−3−1 =

� 1 (Figure 4.3,

right, horizontal line). If we additionally encode a linear objective function g by a point in

the relative interior of P and P ∆, the dimension of the Gale∆-transform increases by 1, and

Proposition 4.9 below tells us that the intersection points of affine spans of complements of

facets of P∆ encode the values of the objective function.
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Figure 4.3: An instance of the Gale∆-transform: “Gale∆(P, g̃) = Gale(P ∆, g̃)”. Left: A simple

polytope P whose vertices are labeled with the facets they are not incident to, and the ordering of

the vertices induced by the linear objective function g̃. Middle: The simplicial polar polytope P ∆,

whose vertices are labeled like the corresponding facets of P . Right: On the bottom line, a Gale

transform of the vertices of P ∆. As in Proposition 4.5, complements of facets of P ∆ correspond

to positive circuits (minimal linear dependencies) in (vertP ∆)∗. Taking into account g̃ results in

a lifting of the Gale transform such that the sequence of intersection heights of facet complements

encodes the ordering of the vertices of the original polytope by the objective function.

Proposition 4.9 We have p, q ∈ vertP with gTp < gTq, if and only if zp < zq.

Proof. Let Fp = {x ∈ � d : pTx = 1} resp. Fq = {x ∈ � d : qTx = 1} be the supporting

hyperplanes of the facets of P ∆ = conv{wi : i ∈ [m]} corresponding to p resp. q, and

let w0 := g̃ = cg ∈ intP∆ for c > 0. For i, j ∈ [m]0, set λi = pTwi − 1 ≥ 0 and

µj = qTwj − 1 ≥ 0. Then λi > 0 resp. µj > 0 if and only if i ∈ [m]0 \ Ip resp. j ∈ [m]0 \ Iq,

where Ip resp. Iq index the vertices of P∆ in Fp resp. Fq. By Proposition 4.5, in the Gale∆-

transform there holds

∑

i∈[m]0\Ip

λi w∗
i = 0 and

∑

j∈[m]0\Iq

µj w∗
j = 0,

so that
∑

i∈[m]\Ip

λi w∗
i = −λ0 g̃∗ and

∑

j∈[m]\Iq

µj w∗
j = −µ0 g̃∗, (4.3)

and therefore zp = −λ0g̃
∗ and zq = −µ0g̃

∗. Since by assumption λ0 = pTw0 − 1 =

gTp − 1 < gTq − 1 = µ0, so that λ0 < µ0, and on the other hand zp = −(g̃∗)Tzp = λ0‖g̃∗‖2

and zq = µ0‖g̃∗‖2, the claim follows. ¤



32 CHAPTER 4. AN EXHAUSTIVE ANALYSIS OF A SMALL POLYTOPE

4.3 Three nonrealizable Hamiltonian AOF Holt-Klee orientations

Theorem 4.10 The three Hamiltonian AOF Holt-Klee orientations NR1, NR2, NR3 of the

graph of C4(7)∆ in Figure 4.1 are not realizable.

Before proving Theorem 4.10, we assemble some notation for vector configurations in
� 2.

Convention 4.11 For i ∈ [7], we will write i for a vector (xi, yi)
T ∈ � 2, and i⊥ for the

vector (yi,−xi)
T orthogonal to i that is obtained by rotating i in the clockwise direction.

With this convention, the following relations hold for the scalar product of two vectors:

ij⊥ = xiyj − xjyi = det(ij) = − det(ji) = −ji⊥ = −i⊥j. (4.4)

We further abbreviate

ij⊥ := sign(ij⊥), [ijk] := det

(
i j k

1 1 1

)
, [ijk] := sign([ijk]), (4.5)

so that [ijk] = + if and only if i, j, k come in anti-clockwise order around 0.

Lemma 4.12 (a) If i, i+ j, j ∈ � 2 come in anti-clockwise order around 0, then ij⊥ = +.

(b) If in a configuration of 4 vectors i, j, k, ℓ ∈ � 2 \ {0} the vectors i, j, k are ordered

clockwise around 0, j ∈ relint cone(i, k), [ijk] = +, and ℓ ∈ relint cone(−i,−k), then

[iℓj] = [jℓk] = +.

i

j

i⊥

j⊥

i

j

k

ℓ

Figure 4.4: Deducing sign patterns. Left: If i, j ∈ ✄ 2 come in clockwise order around 0, then

ij⊥ = +. Right: If [ijk] = +, then [iℓj] = [jℓk] = +.

Proof. (a) The first condition is equivalent to i⊥j < 0 by Figure 4.4 (left), and to ij⊥ > 0

by (4.4). For (b), the affine point ℓ lies to the right of the directed affine lines ij and jk, so

the triangles iℓj and jℓk are positively oriented. The statement follows. ¤

Our strategy for proving Theorem 4.10 is the following. For each of the three orientations

NR1, NR2, NR3, we assume a realization of P = C4(7)∆ and a corresponding objective

function g in
� 4. Applying the Gale∆-transformation yields a configuration of 8 vectors
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w∗
1, w

∗
2, . . . , w

∗
7, w

∗
8 = g̃∗ in

� 8−4−1 =
� 3 with w∗

i = (iT , hi)
T = (xi, yi, hi)

T for i ∈ [8]. We

then use a Farkas Lemma argument to show that assuming certain signs [ijk] to be positive

resp. negative leads to a contradiction to realizability, but that choosing all signs in a locally

consistent way also leads to a contradiction.

Observation 4.13 [31, Exercise 7.3.7] Any Gale transform of C4(7) is balanced : exactly 3

vectors lie on each side of the linear span of any one; cf. Figure 4.5. ¤

Convention 4.14 We label the vertices v = vI of C4(7)∆ with the 4-element sets I of

(indices of) the vertices whose convex hull is the facet of C4(7) polar to v. In the same way,

the affine hyperplanes πĪ = aff{w∗
j : j /∈ I} in

� 7−4 =
� 3 spanned by points corresponding

to complements of facets of C4(7) receive the 3-element labels Ī = [7] \ I. Furthermore, we

assume the Gale transform of C4(7)∆ labeled in such a way that (cf. Figure 4.5)

1,3,5,7,2,4,6 come in clockwise order around the origin. (4.6)

1

3

5

7

2

4

6

Figure 4.5: How to label a Gale transform of C4(7). With this labeling, the natural ordering of

the complement of a facet of C4(7) induces the anti-clockwise orientation of some triangle enclosing

the origin: for example, the complement of the facet {1, 2, 4, 5} of C4(7) is {3, 6, 7}, and 3 < 6 < 7

is an anti-clockwise orientation.

Observation 4.15 For any facet Fp of P∆, we may assume via an affine transformation

that g̃∗ = (0, 0, . . . , 0,−g̃∗
n−d) with g̃∗n−d > 0, and that (w∗

i )n−d = zp for all i ∈ Ip = [n] \ Ip,

where Ip indexes Fp (cf. Definition 4.7).

Proof. We will find an orientation-preserving linear transformation of
� n−d such that

(a) The ‘g̃∗-coordinates’ of the transform of Fp are all equal: (g̃∗)Tw∗
i = zp for all i ∈ Ip,

(b) g̃∗ = (0, 0, . . . , 0,−g̃∗
n−d).

Indeed, the positive cocircuit corresponding to Fp yields a circuit as in (4.3), so that

dimaff〈w∗
i : i ∈ Ip〉 = n−d−1. Now we can achieve (a) by appropriately choosing n−d−1

vectors of a linear basis of
� n−d, leaving one degree of freedom for choosing g∗. ¤

Remark 4.16 After applying Observation 4.15 and a translation x 7→ x − c(0, 0, 1)T , we

may assume in any Gale transform of (C4(7), g) that hi = hj = hk = 0 for some facet
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Figure 4.6: Intersection heights encode values of the objective function. Suppose that the objective

function g̃ orders four vertices of C4(7) as follows: 1237 < 2367 < 3467 < 3456 (we assume the

labeling of Convention 4.14). Then the intersection points between ✄ g̃∗ and the lifted triangles

corresponding to the complements of these labels are ordered z456 < z145 < z125 < z127.

complement {i, j, k}. The resulting configuration is not a Gale∆-transform of C4(7)∆ and

an objective function, but projecting along the 3-axis does yield a Gale-transform of C4(7).

Lemma 4.17 The intersection height zp = z{i,j,k} where the line g = {(0, 0, h)T : h ∈ � }
meets the affine plane π{i,j,k} through the points w∗

i , w∗
j , w∗

k ∈ � 3 (corresponding to the

vertex p = [7] \ {i, j, k} of P ) is given by

z{i,j,k} =
ij⊥hk + ki⊥hj + jk⊥hi

[ijk]
. (4.7)

As a consistency check, note that (4.7) is symmetric under any permutation of the indices.

Proof. Expand the third row of the determinant in the equation

∣∣∣∣∣∣∣∣∣∣

0 xi xj xk

0 yi yj yk

z{i,j,k} hi hj hk

1 1 1 1

∣∣∣∣∣∣∣∣∣∣

= 0. ¤

By Proposition 4.9, the total ordering of the vertices vI of C4(7)∆ induced by the lin-

ear objective function g induces a total ordering of the intersection heights zĪ of the affine

hyperplanes HĪ in
� 3 with the 3-axis. If two vertices of C4(7)∆ span an edge, then the cor-

responding facets of C4(7) share a ridge, which in turn means that the complementary affine

hyperplanes have two points w∗
i , w∗

j in common. This permits us to relate the intersection

heights of two adjacent vertices in the graph of C4(7)∆ in the following way:
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Lemma 4.18 For any {i, j, k, ℓ} ∈
(
[7]
4

)
, we have the following relation between intersection

heights of adjacent vertices of C4(7)∆:

z{i,j,k} − z{i,j,ℓ} =
(ij⊥)[jkℓ]

[ijk][ijℓ]
hi +

(ij⊥)[kiℓ]

[ijk][ijℓ]
hj +

ij⊥

[ijk]
hk +

−ij⊥

[ijℓ]
hℓ. (4.8)

If [ijk] = [ijl], then the signs of the coefficients of the h’s are, in this order,

(ij⊥)[jkℓ], (ij⊥)[kiℓ], +, −. (4.9)

Proof. From Equation (4.7), we obtain

z{i,j,k} − z{i,j,ℓ} =
ij⊥hk + ki⊥hj + jk

⊥hi

[ijk]
− ij⊥hℓ + ℓi⊥hj + jℓ

⊥hi

[ijℓ]

= hi

(
jk⊥

[ijk]
− jℓ⊥

[ijl]

)
+ hj

(
ki⊥

[ijk]
− ℓi⊥

[ijl]

)
+ hk

ij⊥

[ijk]
− hℓ

ij⊥

[ijℓ]
,

so that it only remains to evaluate the numerators Ni and Nj of the coefficients of hi and hj .

Now

Ni = (jk⊥)[ijℓ] − (jℓ⊥)[ijk]

= (jk⊥)(ij⊥ + jℓ⊥ + ℓi⊥) − (jℓ⊥)(ij⊥ + jk⊥ + ki⊥)

= (jk⊥)(ij⊥) + (jk⊥)(ℓi⊥) − (jℓ⊥)(ij⊥) − (jℓ⊥)(ki⊥),

while the straightforward identity

(ij⊥)(kℓ⊥) = (ℓi⊥)(jk⊥) + (jℓ⊥)(ik⊥)

tells us that we can expand the second term in the preceding expression to

(jk⊥)(ℓi⊥) = (ij⊥)(kℓ⊥) + (ki⊥)(jℓ⊥),

arriving at

Ni = (ij⊥)(jk⊥ + kℓ⊥ + ℓj⊥) = (ij⊥)[jkℓ].

The coefficient of hj is calculated in a similar way. The statement about the signs of the

coefficients follows from Convention 4.14 and Lemma 4.12. ¤

Our strategy for proving nonrealizability of a certain orientation of C4(7)∆ is to consider

certain relations between intersection heights that are induced by this orientation, and to

show that assuming certain signs to be positive resp. negative forces a contradiction by a

Farkas Lemma. Specifically, we will write the sign pattern of the coefficients of hi, hj , hk,

hℓ in the inequality z{i,j,k} < z{i,j,ℓ} in the form

(
(ij⊥)[jkℓ], (ij⊥)[kiℓ], +, −

)




hi

hj

hk

hℓ




< 0, (4.10)

and use the following version of the Farkas Lemma to show infeasibility:
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Theorem 4.19 cf. [88, Section 7.8] For A ∈ � m×d, exactly one of the following is true:

⊲ There exists an h ∈ � d such that Ah < 0.

⊲ There exists a row vector c ∈ (
� m)∗ such that c ≥ 0, cA = 0, and c 6= 0. ¤

However, the only information about our assumed realization we can use are sign patterns

of determinants. Therefore, in order to show that a system of inequalities Ah < 0 is

infeasible, we must produce a Farkas certificate c that shows already at the level of signs

that some positive combination of the rows of A sums to zero. Stated in the language of

oriented matroids, we must prove infeasibility of the OM program Ah < 0 using only partial

knowledge of the circuits; in particular, we can in general perform no circuit elimination,

and by extension, no general pivoting.

Nevertheless, for each of the orientations NR1, NR2, NR3 we will find enough linear in-

equalities to conclude via Theorem 4.19 that the system Ah < 0 is infeasible in any re-

alization of C4(7)∆ and g giving rise to these orientations. Theorem 4.10 follows from

Propositions 4.20 and 4.21 below.

Proposition 4.20 The orientation

NR1 : z145 < z147 < z127 < z125 < z123 < z236 < z234

< z345 < z347 < z367 < z167 < z567 < z256 < z456

is not realizable.

Proof. We abbreviate ‘z{i,j,k} < z{i,j,ℓ}’ by ‘ijk < ijℓ’.

Step 1. Assume that [726] = + in a realization of NR1 labeled as in Convention 4.14. By

Lemma 4.12 (b), we also know that [752] = +. Lemma 4.18 tells us the sign patterns

of the coefficients of the h’s in the following inequalities:

h1 h2 h3 h4 h5 h6 h7 i j k ℓ

567 < 562: 0 − 0 0 [726] −[572] + 5 6 7 2

127 < 125: −[572] [157] 0 0 − 0 + 1 2 7 5

172 < 176: −[726] + 0 0 0 − [126] 1 7 2 6

By setting h1 = h2 = h7 = 0 via Remark 4.16, we obtain the sign pattern

h3 h4 h5 h6

567 < 562: 0 0 [726] = + −[572] = +

127 < 125: 0 0 − 0

172 < 176: 0 0 0 − ,

which contradicts realizability by Theorem 4.19: regardless of the actual values of the

entries in this matrix, we can find a positive combination of the rows that sums to

zero. Therefore, in any realization of NR1, we have [726] = −.

Step 2. Let us suppose that [157] = +. However, the inequalities
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h1 h2 h3 h4 h5 h6 h7 i j k ℓ

145 < 147: [574] 0 0 −[157] + 0 − 1 4 5 7

154 < 152: [524] − 0 + −[124] 0 0 1 5 4 2

127 < 125: −[572] [157] 0 0 − 0 + 1 2 7 5

prove that [157] = −, if we specialize to h1 = h2 = h5 = 0:

h3 h4 h6 h7

145 < 147: 0 −[157] = − 0 −
154 < 152: 0 + 0 0

127 < 125: 0 0 0 + .

Step 3. Consider the inequalities

h1 h2 h3 h4 h5 h6 h7 i j k ℓ

127 < 125: −[572] [157] 0 0 − 0 + 1 2 7 5

451 < 453: + 0 − [135] −[134] 0 0 4 5 1 3

342 < 345: 0 + −[524] [352] − 0 0 3 4 2 5

345 < 347: 0 0 [574] −[357] + 0 − 3 4 5 7 ,

and specialize to h3 = h4 = h5 = 0:

h1 h2 h6 h7

127 < 125: −[572] [157] = − 0 +

451 < 453: + 0 0 0

342 < 345: 0 + 0 0

345 < 347: 0 0 0 − .

If [572] = +, we have a contradiction; therefore [572] = −. But now consider

h1 h2 h3 h4 h5 h6 h7 i j k ℓ

567 < 562: 0 − 0 0 [726] −[572] + 5 6 7 2

342 < 347: 0 + −[724] [372] 0 0 − 3 4 2 7

345 < 347: 0 0 [574] −[357] + 0 − 3 4 5 7

374 < 376: 0 0 −[746] + 0 − [346] 3 7 4 6

under h3 = h4 = h7 = 0:

h1 h2 h5 h6

567 < 562: 0 − [726] = − −[572] = +

342 < 347: 0 + 0 0

345 < 347: 0 0 + 0

374 < 376: 0 0 0 − ,

which finally contradicts the realizability of NR1. ¤
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Proposition 4.21 The Hamiltonian Holt-Klee AOF orientations NR2 and NR3 are not

realizable.

Proof. We prove the nonrealizability of NR2 in the following way.

Step 1. Suppose that in a realization of NR2, there holds [137] = +. By Lemma 4.12 (b),

this implies [163] = +, and we are led to consider the following table of signs:

h1 h2 h3 h4 h5 h6 h7 i j k ℓ

763 < 761: − 0 + 0 0 −[137] [136] 7 6 3 1

125 < 123: −[352] [135] − 0 + 0 0 1 2 5 3

256 < 251: − [156] 0 0 −[126] + 0 2 5 6 1

127 < 125: −[572] [157] 0 0 − 0 + 1 2 7 5 ,

which using h1 = h2 = h5 = 0 becomes

h3 h4 h6 h7

763 < 761: + 0 −[137] = − [136] = −
125 < 123: − 0 0 0

256 < 251: 0 0 + 0

127 < 125: 0 0 0 + ,

and thus proves that [137] = −.

Step 2. The inequalities

h1 h2 h3 h4 h5 h6 h7 i j k ℓ

763 < 761: − 0 + 0 0 −[137] [136] 7 6 3 1

231 < 236: + −[136] [126] 0 0 − 0 2 3 1 6

127 < 123: −[372] [137] − 0 0 0 + 1 2 7 3

with the choice of h1 = h2 = h3 = 0 become

h4 h5 h6 h7

763 < 761: 0 0 −[137] = + [136]

231 < 236: 0 0 − 0

127 < 123: 0 0 0 + .

If [136] = −, we arrive at a contradiction; therefore, [136] = +.

Step 3. Finally, consider

h1 h2 h3 h4 h5 h6 h7 i j k ℓ

763 < 761: − 0 + 0 0 −[137] [136] 7 6 3 1

451 < 453: + 0 − [135] −[134] 0 0 4 5 1 3

451 < 456: + 0 0 −[156] [146] − 0 4 5 1 6

145 < 147: [574] 0 0 −[157] + 0 − 1 4 5 7
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and set h1 = h4 = h5 = 0, to obtain

h2 h3 h6 h7

763 < 761: 0 + −[137] = + [136] = +

145 < 345: 0 − 0 0

451 < 456: 0 0 − 0

145 < 147: 0 0 0 − ,

and a proof of the nonrealizability of NR2.

The same argument proves that NR3 is nonrealizable. The only difference between this

orientation and NR2 is that 345 < 347 in NR3, whereas 347 < 345 in NR2, but the proof of

the nonrealizability of NR2 did not use this inequality. ¤

The proof of Theorem 4.10 is now complete. ¤

4.4 Realizing ascending Hamiltonian paths

Using the techniques of Section 4.3, we prove the following theorem.

Theorem 4.22 (a) There exist realizations of the equivalence classes R1–R4 of Hamilto-

nian AOF Holt-Klee orientations of the graph of C4(7)∆ listed in Theorem 4.1.

(b) There does not exist any Hamiltonian AOF Holt-Klee orientation of the graph of C4(8)∆.

(c) There exist realizations of several equivalence classes of Hamiltonian AOF Holt-Klee

orientations of the graph of the two other combinatorial types N ′
4(8), N ′′

4 (8) of polar-

to-neighborly 4-polytopes with 8 facets [31, Section 7.2.4].

Our strategy for proving Theorem 4.22 (and therefore completing the proof of Theo-

rem 4.1) is summarized in the following pseudo-code.

1: Enumerate (all or all equivalence classes of) Hamiltonian AOF Holt-Klee orientations of

the graph of P , where P is one of the polytopes of Theorem 4.22. In the case P = C4(8)∆,

this step already shows that no such orientations exist.

2: Using Figure 4.7 below, create ‘random’ instances G of a Gale diagram of P using (exact)

rational arithmetic and the CGAL library [16]. (The distribution from which they were

drawn is not at all uniform.)

3: For each Hamiltonian AOF Holt-Klee orientation O of the graph of P , determine if there

exists a lifting G̃ of G compatible with O. This is done by generating one instance of

the linear inequality (4.10) for each edge of the Hamiltonian path in O, and checking

the resulting system for feasibility in (approximate) real arithmetic using CPLEX [18].

In case CPLEX returns a solution, this is checked in rational arithmetic using the PTL

library [40]. Repeat this step until a solution is found or too many attempts were made.

4: Using rational arithmetic and the PTL library, calculate the Gale diagram G̃∗ of the

found realization, check that the convex hull of G̃∗ contains exactly one point in its

interior, and output the polar polytope (G̃∗)∆.
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Remark 4.23 For Step 2 of the preceding pseudo-code, the combinatorial type of a Gale

diagram of C4(7)∆ is given by Figure 4.5, and (affine) Gale diagrams of the three polytopes

C4(8)∆, N ′
4(8) and N ′′

4 (8) are given in Figure 4.7 below.

Figure 4.7: Affine Gale diagrams of the three combinatorial types of polar-to-neighborly 4-

polytopes on 8 vertices. That these Gale diagrams represent different polytopes follows because

their inseparability graphs (join two vertices by an edge if none or all lines through different vertices

separate them [12, Section 7.8]) are non-isomorphic (solid lines). By [32], there are only three com-

binatorial types of (polar-to-)neighborly 4-polytopes with 8 vertices. See [55] for generalizations of

the third diagram.

In the near future, source code and data files for these polytopes will be made available.







Chapter 5

Long ascending paths in dimension 4

5.1 Introduction

For each integer m ≥ 0, we construct a simple polar-to-neighborly 4-dimensional polytope

Qm with n = m+5 facets and a linear objective function f ∈ (
� 4)∗, such that the orientation

induced by f on the 1-skeleton of Qm admits an ascending Hamiltonian path.

Arguably, the best-known polar-to-neighborly polytopes are the polars Cd(n)∆ of cyclic

polytopes Cd(n), which will also make an appearance in Chapter 8. (Here, d denotes the

dimension and n the number of vertices of Cd(n), hence n counts the number of facets

of Cd(n)∆). However, exhaustive enumeration shows that already C4(8)∆ does not admit

a Hamiltonian AOF Holt-Klee orientation, even at the combinatorial level. We are quite

convinced that the same is true for C4(n)∆ for all n ≥ 8, but as yet have no proof.

Our family {Qm = Q̃4
m : m ≥ 0} is a special case of a family {Q̃d

m : d = 2k ≥ 4, m ≥ 0}
(cf. Section 5.2), and a slight variation of polar-to-cyclic polytopes. The polytopes Qm have

n = m + d + 1 facets and do allow at least one Hamiltonian AOF Holt-Klee orientation

(Corollary 5.14). Section 5.4 is devoted to realizing this orientation in
� 4.

To build the Qm’s, we make explicit a special case of Barnette’s technique of facet

splitting [5]. We start with the 4-simplex Q0, and for m ≥ 0 intersect the polytope Qm

with a suitable affine half-space H≥0
m+1 in general position with respect to the vertices of Qm

such that the resulting polytope is also polar-to-neighborly. For this, Qm∩H≥0
m+1 has to have

maximally many vertices, so we must maximize |{intersected edges}|−|{removed vertices}|.
As an aside, Barnette’s facet splitting is a special case of Shemer’s sewing construc-

tion [91]. To locate the new half-space, Barnette uses a flag of faces with exactly one face

of each dimension, while Shemer’s flags may be more sparse. This additional freedom

allows Shemer to construct the asymptotically optimal number (in fixed dimension d)

of 2Ω(n log n) neighborly d-dimensional polytopes on n vertices, for fixed d ≥ 4.

In Corollary 5.8, we give an explicit description of the combinatorial structure of the Qm’s

reminiscent of Gale’s Evenness Criterion for (polar-to-)cyclic polytopes, and use it to specify

a Hamiltonian path on each Qm (Proposition 5.9). In Section 5.4, we then apply a projective

transformation ψ to
� 4 such that the image of this path on Qm+1 := ψ(Qm ∩ H≥0

m+1) is

strictly ascending with respect to the objective function f :
� 4 → �

, x 7→ x4:

Theorem 5.1 For d = 4, the (combinatorial) upper bound theorem is sharp for monotone

paths: The maximal number M(4, n) of vertices on a strictly ascending path in the 1-skeleton

of a 4-polytope P with n facets equals the maximal number of vertices that such a polytope

can have according to Theorem 3.6. That is, M(4, n) = Mubt(4, n) = n(n − 3)/2.
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5.2 A family of polar-to-neighborly d-polytopes

For even d ≥ 4, we follow Barnette [5] and equip the d-simplex ∆d = Q̃d
0 on the vertex set

{v1, v2, . . . , vd+1} with an ascending flag F0 : ∅ = F−1
0 ⊂ F 0

0 ⊂ F 1
0 ⊂ · · · ⊂ F d

0 = Q̃d
0 of faces

such that dimF i
0 = i for i = 0, 1, . . . , d. This flag is defined by setting, for i = 0, 1, . . . , d,

F i
0 := conv

{
v1, v2, . . . , vi+1

}
and T i

0 := vert
(
F i

0

)
\ vert

(
F i−1

0

)
= {vi+1}. (5.1)

Algorithm 4 below inductively produces for each m > 0 a simple polar-to-neighborly d-

dimensional polytope Q̃d
m with m + d + 1 facets that comes equipped with an ascending

flag Fm : ∅ = F−1
m ⊂ F 0

m ⊂ F 1
m ⊂ · · · ⊂ F d

m = Q̃d
m of faces of Q̃d

m. For each m > 0, this

is done by using Fm to find a ‘good’ oriented hyperplane Hm+1 in general position with

respect to the vertices of Q̃d
m, and setting Q̃d

m+1 = Q̃d
m ∩ H≥0

m+1.

Definition 5.2 For i = 0, 1, . . . , d and m ≥ 0, we partition the vertex set of the facet F i
m

along the flag Fm by setting T i
m = vertF i

m \ vertF i−1
m , the i-th tip of the flag Fm. We say

that the tip T i
m is even resp. odd according to the parity of i. Moreover, for 0 ≤ k ≤ d we set

T even
m (k) =

⋃

0≤e≤k

e even

T e
m and T odd

m (k) =
⋃

1≤o≤k

o odd

T o
m.

Algorithm 4 A special procedure for facet splitting

Input: An even integer d ≥ 4, a pair (Q̃d
m,Fm) consisting of a simple polar-to-neighborly

d-dimensional polytope Q̃d
m with m + d + 1 facets, and a flag Fm : ∅ = F−1

m ⊂ F 0
m ⊂

F 1
m ⊂ · · · ⊂ F d

m = Q̃d
m of faces of Q̃d

m.

Output: A pair (Q̃d
m+1,Fm+1), consisting of a simple polar-to-neighborly d-dimensional

polytope Q̃d
m+1 with m + d + 2 facets and a flag Fm+1 of faces of Q̃d

m+1.

1: Use Proposition 5.4(a) below to find an oriented hyperplane Hm+1 in general position

with respect to Q̃d
m, such that the vertices of Q̃d

m contained in odd resp. even tips lie

in H−
m+1 resp. H+

m+1.

2: Set Q̃d
m+1 = Q̃d

i ∩ H≥0
m+1.

3: Choose the new tips in the following way, cf. Figure 5.1:

T j
m+1 = vert






conv
⋃

0≤k≤d/2 T 2k
m for j = d

conv
(
T j+1

m ∪
⋃

0≤k<j

k+j=0 mod 2

T k
m

)
∩ Hm+1 for j = 2, 3, . . . , d − 1,

conv(T 0
m ∪ T 1

m) ∩ Hm+1 for j = 1,

conv(T 1
m ∪ T 2

m) ∩ Hm+1 for j = 0.

(5.2)

Remark 5.3 (1) The polytopes Cd(n)∆ arise by exchanging T 0
m+1 and T 1

m+1 in (5.2).
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T 1
m

T d−3
m

T d−2
m+1

T d−1
m

T d
m

T 2
m

T d−4
m+1

T d−1
m+1

T d−3
m+1

Hm+1

T 0
m

T d−2
m

T 0
m+1

T d
m+1

T 1
m+1

Figure 5.1: New tips.

(2) General position of Hm+1 implies that Q̃d
m+1 is a simple d-polytope with n = m+d+1

facets. All new vertices arise as the intersection of Hm+1 with some edge conv{v, w}
of Q̃d

m, where v and w lie in tips of different parity. Furthermore, all vertices of Q̃d
m

belonging to even tips are also vertices of Q̃d
m+1, and vertices in odd tips disappear.

Proposition 5.4 For each m ≥ 0, the following statements hold for the polytope Q̃d
m:

(a) There exists an affine oriented hyperplane Hm+1 in general position with respect to Q̃d
m

such that the vertices in odd resp. even tips lie in H−
m+1 resp. H+

m+1.

(b) For all i, j ∈ ✂ with 0 ≤ i < j ≤ d and i + j = 1 mod 2 and all v ∈ T i
m, there is

exactly one w ∈ T j
m such that conv{v, w} ∈ sk1(Q̃d

m). This gives rise to bijections

T even
m (k) ∼= T k

m+1 for odd 0 < k < d resp. T odd
m (k) ∼= T k

m+1 for even 0 ≤ k ≤ d.

(c) |T e
m| = |T e+1

m | =
(
e/2+m

m

)
for e = 0, 2, . . . , d − 2, and |T d

m| =
(
d/2+m

m

)
. In particular,

Q̃d
m is polar-to-neighborly.
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Proof. (a) Pick an oriented point v = H0 ∈ relintF 1
m such that T 0

m ∈ (H0)+. Inductively, for

1 ≤ k ≤ d−1, if we have already chosen an oriented (k−1)-dimensional affine subspace Hk−1

in aff F k
m such that

T odd
m (k − 1) ⊂ (Hk−1)− and T even

m (k − 1) ⊂ (Hk−1)+, (∗)

we construct a k-plane Hk that initially coincides with aff F k
m, and rotate it slightly around

Hk−1 such that T even
m (k) ⊂ (Hk)+. We do this until Hk separates T even

m (k) ∪ T k+1 from

T odd
m (k) if k + 1 is even, resp. T even

m (k) from T odd
m (k) ∪ T k+1 if k + 1 is odd. Then (∗) even

holds with k replaced by k + 1. By construction, Hm+1 = Hd−1 is in general position with

respect to Q̃d
m.

(b) This follows because v lies in F j−1
m =

⋃j−1
i=0 T i

m, and conv(F j−1
m ) is a (j − 1)-dimensional

face of the simple polytope conv(F j
m) = conv(F j−1

m ∪ T j
m).

(c) We proceed by induction, and can assume that the assertion holds for m ≥ 0. From the

bijections in part (b), we conclude for all even 0 ≤ e ≤ d − 2 that

|T e+1
m+1| = |T e

m+1| =

e∑

i=0
i even

|T i
m| =

e/2∑

k=0

|T 2k
m | =

e/2∑

k=0

(
k + m

m

)
=

(
e/2 + m + 1

m + 1

)
.

Here we used the identity
∑

k≤r

(
k+m

m

)
=

(
r+m+1

m+1

)
. For |T d

m+1|, a similar calculation holds.

The fact that Q̃d
m is polar-to-neighborly follows, since

f0(Q̃
d
m) =

d/2∑

k=0

(
k + m

m

)
+

⌊(d−1)/2⌋∑

k=0

(
k + m

m

)

=

(
m + d/2 + 1

d/2

)
+

(
m + ⌊(d − 1)/2⌋ + 1

⌊(d − 1)/2⌋

)

=

(
n − d/2

d/2

)
+

(
n − ⌈(d − 1)/2⌉ − 1

⌊(d − 1)/2⌋

)

= f0

(
Nd(n)∆

)
,

where n = m + d + 1 and f0

(
Nd(n)∆

)
denotes the number of vertices of a simple polar-

to-neighborly d-dimensional polytope with n facets and even d; by [103, Chapter 8], any

polytope with that many vertices is polar-to-neighborly. ¤

We introduce labelings to make explicit the combinatorics of these polytopes:

Convention 5.5 (a) Let the facets of a simple d-polytope P be labeled in some way with

labels in [n], and let λ : vertP →
(
[n]
d

)
assign to each vertex v of P the set of labels of

all facets that v is incident to. We identify a vertex v with its label λ(v).

(b) The facets of the d-simplex Q̃d
0 on the vertex set {v1, v2, . . . , vd+1} are labeled in such

a way that v1 ≡ λ(v1) = [d + 1] \ {2}, v2 = [d + 1] \ {1}, and vj = [d + 1] \ {j}
for j = 3, 4, . . . , d + 1 (cf. Figure 5.2).

(c) The ‘new’ facet Q̃d
m ∩ Hm+1 ⊂ Q̃d

m+1 is labelled m + d + 2.
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T 6
0 2b 12|34|56

123|45|7 2a T 5
0

{v5} = T 4
0 2b 12|34|67

123|56|7 2a T 3
0 = {v4}

{v3} = T 2
0 2b 12|45|67

234|56|7 2a T 1
0 = {v2}

{v1} = T 0
0 1 13|45|67

Figure 5.2: The labeling of the vertices of the 6-simplex eQ6
0 according to Convention 5.5(b). Also

shown is the classification of the vertices into types 1, 2a, 2b as in Proposition 5.6.

Proposition 5.6 Let m ≥ 0 and n = m + d + 1. (a) A vertex v of Q̃d
m lies in T i

m exactly if

maxn v := max
{
[n] \ v

}
=






m + 2 for i = 0,

m + 1 for i = 1,

m + i + 1 for 2 ≤ i ≤ d.

(b) Moreover, the vertices of Q̃d
m are all d-subsets of the following types (cf. Convention 5.5):

j1

j1

j1

j2

j2 jd/2

jd/2−1

jd/2−1

1 n

Type 1

Type 2a

Type 2b

Figure 5.3: The vertex-facet incidences of the polytopes eQd
m are obtained from these patterns by

fixing the dark boxes, and sliding the lighter boxes between 1 and n without overlap. For Type 1,

the box {j1, j1 + 2} must be regarded as one rigid unit.

⊲ Type 1. The union of one ‘triplet with a hole’ and d/2 − 1 pairs of indices

{j1, j1 + 2} ∪ {j2, j2 + 1} ∪ · · · ∪ {jd/2, jd/2 + 1},

where 1 ≤ j1 < n − d + 1, j1 + 3 ≤ j2, jk + 2 ≤ jk+1 for 2 ≤ k ≤ d/2 − 1, and jd/2 < n.

⊲ Type 2a. The union of one triplet, the singleton {n}, and d/2 − 2 pairs of indices

{j1, j1 + 1, j1 + 2} ∪ {j2, j2 + 1} ∪ · · · ∪ {jd/2−1, jd/2−1 + 1} ∪ {n},

where 1 ≤ j1 < n − d + 1, j1 + 3 ≤ j2, jk + 2 ≤ jk+1 for 2 ≤ k ≤ d/2 − 2, and

jd/2−1 < n − 1.

⊲ Type 2b. The union of d/2 pairs of indices

{1, 2} ∪ {j1, j1 + 1} ∪ · · · ∪ {jd/2−1, jd/2−1 + 1},

where 3 ≤ j1, jk + 2 ≤ jk+1 for 2 ≤ k ≤ d/2 − 2, and jd/2−1 < n.
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More specifically, all vertices of T even
m (d) are of type 1 or 2b, and T odd

m (d− 1) is made up

entirely of vertices of type 2a, cf. Figure 5.4.

T 6
1

2b 12|34|56

2b 12|34|67

2b 12|45|67

1 13|45|67

8

7

123|45|8 2a

123|56|8 2a

234|56|8 2a

T 5
1

T 4
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5
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| {z }
eQ6

1

| {z }
eQ6

2

Figure 5.4: Vertex labels in the polytopes eQ6
1 (left) and eQ6

2 (right). Also shown are the type

(outside) of each vertex v and the value of maxn v̄ (inside).

Proof. (a) This is true for m = 0 by (5.1) and Convention 5.5, see also Figure 5.2. For m > 0

and 2 ≤ i < d, the statement follows because any vertex ṽ ∈ T i
m is of the form ṽ =

conv{v, w} ∩ Hm ≡ (v ∩ w) ∪ {n} for some v ∈ T k
m−1 and w ∈ T i+1

m−1 with k ≤ i. But then

by induction,

maxn−1 v < maxn−1 w = (m − 1) + (i + 1) + 1 = m + i + 1,

so max
{
[n] \ ṽ

}
= m + i + 1 as required. The case i = d follows directly from Algorithm 4,

and i = 0, 1 are checked similarly.
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(b) The last statement is checked to hold for m = 0 and by induction for m > 0 and T d
m.

We first show that all vertices of T even
m (d) are of type 1 or 2b. For 2 ≤ e ≤ d − 2, all

vertices ṽ of T e
m(d) are of the form ṽ = (v ∩ w) ∪ {n}, for some v ∈ T e′

m−1, w ∈ T e+1
m−1, and

even 0 ≤ e′ ≤ e. By (a), we know that maxn−1 v̄ < maxn−1 w̄, so by induction, we need to

check what happens if maxn−1 v < maxn−1 w, w is of type 2a, and v of type 1 or 2b. If v is

of type 1, then ṽ is also of type 1:

v

w

ṽ Type 1

Type 1

Type 2a

If v is of type 2b, then again because maxn−1 v < maxn−1 w, the new vertex ṽ is of type 2b:

v

w

ṽ Type 2b

Type 2b

Type 2a

For e = e′ = 0, i.e., {v} = T 0
m−1 and {w} = T 1

m−1, we have {ṽ} = T 1
m by (5.2) and

maxn−1 v̄ > maxn−1 w̄ by (a), so ṽ is of type 2a.

Finally, we prove that all remaining vertices ṽ ∈ T odd
m (d− 1) are of type 2a. For 3 ≤ o ≤

d − 1, a vertex ṽ ∈ T o
m is of the form ṽ = (v ∩ w) ∪ {n} for some v ∈ T o+1

m−1, w ∈ T o′

m−1, and

odd 1 ≤ o′ ≤ o. By (a), we have maxn−1 v̄ > maxn−1 w̄, and by induction, w is of type 2a.

If v is of type 1, then necessarily maxn−1 v̄ = maxn−1 w̄ + 1, and there are two cases:

maxn−1 v̄ could attain the minimal possible value (m − 1) + 2; but then {v} = T 0
m−1 and

o = −1, a contradiction. The other possibility is that ṽ is again of type 1:

v

w

ṽ

Type 1

Type 2a

Type 2a

If on the other hand v is of type 2b, we again obtain a vertex of type 2a:

v

w

ṽ

Type 2b

Type 2a

Type 2a
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We are left with the case o = o′ = 1, so that v ∈ T 2
m−1, {w} = T 1

m−1, and maxn−1 v̄ =

m + 2 > maxn−1 w̄ = m. The reader may check that if v is assumed of type 2b, then

necessarily m = 1 and ṽ ∈ T 0
1 is of type 1. If v is of type 1, then so is ṽ; we omit the

corresponding diagram. This concludes the proof of Proposition 5.6. ¤

Remark 5.7 Proposition 5.6 is reminiscent of Gale’s Evenness Criterion, and permits us

to check that the polytope Q̃d
n−d−1 with n vertices really is polar-to-neighborly. In fact, we

can count the number of vertices of each type using Figure 5.3:

f0(Q̃
d
n−d−1) =

(
n − 2 − (d/2 − 1)

d/2

)

︸ ︷︷ ︸
Type 1

+

(
n − 2 − (d/2 − 2) − 1

d/2 − 1

)

︸ ︷︷ ︸
Type 2a

+

(
n − 2 − (d/2 − 1)

d/2 − 1

)

︸ ︷︷ ︸
Type 2b

=

(
n − 1 − d/2

d/2

)
+ 2

(
n − 1 − d/2

d/2 − 1

)

=

(
n − d/2

d/2

)
+

(
n − 1 − d/2

d/2 − 1

)
= f0

(
Nd(n)∆

)
, since d is assumed even.

5.3 A Hamiltonian path in dimension 4

Corollary 5.8 By Proposition 5.6, the vertices of Q̃4
m are incident to the following facets:

⊲ Type 1. {i, i + 2} ∪ {j, j + 1} where 1 ≤ i < n − 3 and i + 3 ≤ j < n;

⊲ Type 2a. {i, i + 1, i + 2} ∪ {n} where 1 ≤ i < n − 3;

⊲ Type 2b. {1, 2} ∪ {j, j + 1} where 3 ≤ j < n.
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4678 5789 6789
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5679

2349

1239

1234

1356

356724561345
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1367

1267

4689

2489

13891278

3578

 

Figure 5.5: Graph of the 4-polytope eQ4
4 with n = 9 facets. Vertices of type 1, 2a, and 2b are drawn

in gray, white, and black, respectively. Each vertex is labelled with the facets it is incident to.

Using this explicit description, we now specify a Hamiltonian path in the graph of Q̃4
m.

Proposition 5.9 The output of the following algorithm is a Hamiltonian path π̃m in the

graph of Q̃4
m:

(1) “Odd stage”. for i from n − 3 to 1 do

visit {i, i + 1, i + 2, n};
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T 0
4 = {β4} T 1

4 = {α4}

T 2
4

T 3
4

T 4
4

τ4

ω4
 

1389
3589

34591239

2349 4569

5679

46892489

1289

6789

5789

T 0
4 = {β4}

T 1
4 = {α4}

T 2
4

T 3
4

ω4

Figure 5.6: Left: Graph of eQ4
4. The partition of the vertices into the tips T 0, T 1, . . . , T 4 is shown,

along with the Hamiltonian path eπ4 (bold). The source αm is labeled {n−3, n−2, n−1, n}, and the

sink ωm = {n − 5, n − 3, n − 1, n}. See Convention 5.12 for the labels of the other marked vertices.

Right: The facet F 3
4 with the restriction of eπ4 to it.

(2) “Even stage”. for j from 3 to n − 1 do

i := j − 3;

while i ≥ 1 do “down” phase

visit {i, i + 2, j, j + 1};
i := i − 2;

visit {1, 2, j, j + 1};
if j is even then i := 2; else i := 1;

while i ≤ j − 4 do “up” phase

visit {i, i + 2, j, j + 1};
i := i + 2;

Proof. By inspection of Figures 5.5 and 5.6. ¤

Remark 5.10 The Hamiltonian path π̃m passes through the tips T 1
m, T 3

m, T 4
m, T 0

m, and T 2
m,

in this order, and thus begins and ends in the facet F 3
m. This is the crucial property we

exploit in our realization construction.

Corollary 5.11 (to Proposition 5.6) The vertices of Q̃4
m lie in the following tips:

Tip consists of vertices of type

T 0
m βm := {n − 4, n − 2, n − 1, n} 1

T 1
m αm := {n − 3, n − 2, n − 1, n} 2a

T 2
m {1, 2, n − 1, n} and {i, i + 2, n − 1, n} for 1 ≤ i ≤ n − 5 1, 2b

T 3
m {i, i + 1, i + 2, n} for 1 ≤ i ≤ n − 4 2a

Notation 5.12 We use the following names for some special vertices of Q̃4
m: the source

{n − 3, n − 2, n − 1, n} is called αm (so that T 1
m = {αm}), the sink is ωm = {n − 5, n −

3, n − 1, n} ∈ T 2
m; moreover, βm = {n − 4, n − 2, n − 1, n} (so that T 0

m = {βm}) and

τm = {n − 5, n − 3, n− 2, n − 1} ∈ T 4
m.
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T 0

T 1

T 2

T 3

T 4

τ

Figure 5.7: Another representation of eQ4
4 and eπ4. Not all edges are drawn!

Let P be a simple d-polytope, and recall from Definition 3.16 the concepts of AOF-

orientation and abstract objective function on P . For every 0 ≤ k ≤ d, let hk(O) denote the

number of vertices in the graph of P of in-degree k with respect to an orientation O.

Proposition 5.13 (see e.g. [103, Chap. 8.3] and [42]) An acyclic orientation O of the graph

of a simple d-polytope P is an AOF-orientation if and only if the h-vector of P coincides

with the vector
(
h0(O), h1(O), . . . , hd(O)

)
. ¤

Corollary 5.14 The orientation induced on the 1-skeleton of Q̃4
m by the Hamiltonian

path π̃m is an AOF-orientation.

Proof. The h-vector of a simple polar-to-neighborly d-polytope with n = m + d + 1 facets is

given by hk =
(
n−d−1+k

k

)
=

(
m+k

k

)
for k = 0, 1, . . . , d. Proposition 5.4 therefore tells us that

(
|T 1

m|, |T 3
m|, |T 4

m|, |T 2
m|, |T 0

m|
)

= (h0, h1, h2, h3, h4).

By Proposition 5.13, it suffices to check using Figure 5.6 that if the orientation of each edge

of the graph of Q̃4
m is consistent with the total ordering induced by π̃m, then the vertices of

T 1, T 3, resp. T 4 all have in-degree 0, 1 resp. 2, furthermore T 0 and all but one vertex of T 2

have in-degree 3, and this vertex, the sink, has in-degree 4. ¤

5.4 Realizing the ascending Hamiltonian paths

The following theorem implies Theorem 5.1.

Theorem 5.15 For all m ≥ 0, there exists a special realization of a simple, polar-to-

neighborly 4-polytope Qm with n = m+5 facets and the same combinatorial type as Q̃4
m (via

an isomorphism ϕ : F
(
Q̃4

m

)
→ F(Qm) of face lattices). In this realization, the Hamiltonian

path πm := ϕ(π̃m) visits the vertices of Qm in the order given by the x4-coordinate.

Moreover, the family {Qm : m ≥ 0} may be realized inductively starting from the 4-

simplex Q0 in such a way that for all m ≥ 0, a realization of Qm+1 with an ascending

Hamiltonian path πm+1 may be obtained from any realization of Qm with such a path πm.
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Our strategy for proving Theorem 5.15 exploits the fact (Remark 5.10) that the Hamil-

tonian path πm begins in the facet F 3
m, traverses the rest of the polytope Qm, and then

returns to F 3
m, as in Figures 5.6 and 5.7. We call T odd

m (3) = T 1
m ∪ T 3

m the odd part, and the

remaining vertices the even part of πm.

5.4.1 Outline of the inductive construction

For all m ≥ 0, we first find an oriented hyperplane Hm+1 that separates the odd and even

parts of the path. We then create an intermediate pair (Q′
m+1,F ′

m+1) as in Proposition 5.4:

Q′
m+1 = Qm∩H≥0

m+1 is a simple polar-to-neighborly polytope of the same combinatorial type

as Q̃4
m+1, and the flag F ′

m+1 of faces is defined by F i
m+1 = conv

⋃i
k=0 T k

m+1 for i = 0, 1, . . . , 4,

where we find the new tips as follows:

T 4
m+1 = T 0

m ∪ T 2
m ∪ T 4

m,

T 3
m+1 = vert

(
conv{T 4

m ∪ T 1
m ∪ T 3

m} ∩ Hm+1

)
,

T 2
m+1 = vert

(
conv{T 3

m ∪ T 0
m ∪ T 2

m} ∩ Hm+1

)
,

T 1
m+1 = vert

(
conv{T 0

m ∪ T 1
m} ∩ Hm+1

)
,

T 0
m+1 = vert

(
conv{T 1

m ∪ T 2
m} ∩ Hm+1

)
.

T 0
m T 1

m

T 2
m

T 3
m

T 4
m

T 0
m+1 T 1

m+1

T 2
m+1

T 3
m+1

T 4
m+1

αm

τm

ωm

αm+1

τm+1

ωm+1

Hm

Figure 5.8: Passing from eπm to eπm+1 (in the case m = 3). Note that in the left picture, the

hyperplane Hm (dashed) cuts through 12 edges. Each intersection corresponds to a new vertex.

Our combinatorial model Q̃4
m+1 provides us with a Hamiltonian path πm+1 = ϕ(π̃m+1)

on Q′
m+1, which is not yet ascending with respect to the objective function f : x 7→ x4.

However, we will choose Hm+1 in such a way that there exists a family H = {Ht : t ∈ ☎ 1(
�

)}
of hyperplanes in

� 4 that ‘sorts the vertices of Q′
m+1 correctly’: If p, q are vertices of Q′

m+1

that lie in Hr resp. Hs with r, s 6= ∞ and p precedes q in πm+1, then r < s (here we abuse

notation and write ☎ 1(
�

) =
� ∪ {∞}). Additionally, all planes in H will intersect in a

common 2-flat R =
⋂

t∈ ✆ 1( ✝ ) Ht, the axis of H.

We then apply a projective transformation ψ that sends H∞ to infinity. Because the com-

mon intersection R of the Ht’s is also mapped to infinity, the images {ψ(Ht) : t ∈ � } form a
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family of parallel affine hyperplanes, the level planes of a new objective function fm+1. The

fact that the original Ht’s sorted the vertices of Q′
m+1 ‘angle-wise’ in the order given by πm+1

implies that the Hamiltonian path ψ(πm+1) on Qm+1 = ψ(Q′
m+1) is strictly ascending with

respect to fm+1.

5.4.2 Properties of the family of polytopes

Proposition 5.16 (Some aspects of the combinatorics of the Qm’s)

(a) The induced subgraph of sk1(Qm) on T 1
m ∪ T 3

m is a path of length m + 1 on the

m + 2 vertices vm
0 = αm, vm

1 , . . . , vm
m+1, and the induced subgraph on T 2

m is a path

wm
1 , wm

2 , . . . , wm
m+1.

(b) For 0 ≤ i ≤ m, the edge ei = conv{vm
i , vm

i+1} in T 3
m is incident to a 2-face Gi of Qm

such that the vertices of Gi \ ei are consecutive in πm ∩ T 4
m.

(c) For 1 ≤ i ≤ m, the edge fi of Qm that connects wm
i and wm

i+1 in T 2
m ∩ πm is incident

to a quadrilateral Ri whose other two vertices are consecutive in T 4
m ∩ πm.

(d) Set G(m) = vert
⋃m

i=0 Gi \ ei and R(m) = vert
⋃m

i=1 Ri \ fi. Then G(m)∪R(m) = T 4
m,

and G(m) ∩ R(m) = τ .

Proof. (a) All vertices of T 3
m are of the form {i, i + 1, i + 2, n} for 1 ≤ i ≤ n − 3 and the

only way for two such vertices vm
i and vm

j to be adjacent for i < j is to have j = i + 1. The

statement about the wm
i follows in a similar way. (b) For 1 ≤ i ≤ m + 1, the 2-face incident

to vm+2−i = {i, i + 1, i + 2, n} and vm+1−i = {i + 1, i + 2, i + 3, n} that is the intersection of

the facets i+1 and i+2 consists of the vertices of Figure 5.9. The claim (b) follows because

these vertices form a contiguous segment of πm, and (c) and (d) from Figure 5.10 (left). ¤

i0 n

vi

vi+1

Figure 5.9: Vertices of a 2-face incident to vi = {i, i + 1, i + 2, n} and vi+1 = {i + 1, i + 2, i + 3, n}

(dark) in T 1
m ∪ T 3

m. The light vertices lie in T 4
m and form a subpath of πm.

Observation 5.17 The new start vertex αm+1 of π̃m+1 lies on conv{αm, βm}, the new end

vertex ωm+1 on conv{vm
1 , βm}, and βm+1 on conv{αm, ωm}; see Figure 5.10 (right).
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Figure 5.10: Left: More details about the graph of Qm. We have highlighted the graphs of the

2-faces G0 and G1 that correspond to the edges e0 and e1 by Proposition 5.16 (b), and the 2-face R1

that corresponds to the edge f1 according to Proposition 5.16 (c). Right: The portion of the new

Hamiltonian path eπm+1 in the facet F 3
m.

5.4.3 Start of the induction and inductive invariant

We work in
� 4 with standard coordinate vectors e1, e2, e3, e4, and abbreviate a linear sub-

space ✝ 〈ei : i ∈ I〉 by 〈i : i ∈ I〉 for all I ⊂ {1, 2, 3, 4}. An essential tool will be shear

transformations : these are linear maps σa
i,j :

� 4 → � 4 for i 6= j ∈ {1, 2, 3, 4} and a ∈ �

whose matrix is I4 + aδi,j with respect to the standard basis of
� 4. Here I4 is the 4 × 4

unit matrix and δi,j is the 4× 4 matrix whose only nonzero entry is a 1 in position (i, j). In

particular, σa
i,j maps ei to ei + aej, and the standard basis vectors ek, k 6= i, to themselves.

The start of the induction is the pair (Q0,F0), where Q0 is the 4-simplex whose vertices

v1, v2, v3, v4, v5 are given by the columns of the matrix




0 0 1 0 0

0 1 0 0 0

−3 −1 3 2 1

−2 −1/2 0 1/4 2




, (5.3)

and F is the ascending flag F0 : F 0
0 ⊂ F 1

0 ⊂ · · · ⊂ F 4
0 = Q4

0 of faces labeled as in Algorithm 4.

In particular, the vertices vi lie in the following tips,

v1 v2 v3 v4 v5

T 1
0 T 3

0 T 4
0 T 0

0 T 2
0

,

F 2
0 = conv{v1, v4, v5}, F 3

0 = conv{v1, v2, v4, v5}, and π0 = (v1, v2, v3, v4, v5). For all m ≥ 0

our polytopes Qm will maintain the following property:

(1) The Hamiltonian path πm in the 1-skeleton of Qm is strictly ascending with respect to

the objective function f :
� 4 → �

, x 7→ x4.
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5.4.4 Induction step I: Positioning the polytope

In this and the following section, we will position our polytope Qm in such a way that the

coordinate subspaces of
� 4 are compatible with the flag Fm. More precisely,

⊲ F 3
m = Qm ∩ {x ∈ � 4 : x1 = 0}, and T 4

m ⊂ {x ∈ � 4 : x1 > 0}; and

⊲ the hyperplane HS = {x ∈ � 4 : x3 = 0} will separate the even from the odd part of Fm.

Lemma 5.18 Let π be the linear projection π :
� 4 → 〈3, 4〉, and use the notation of

Convention 5.12 and Proposition 5.16 (a). There exists a non-singular affine transformation σ

of
� 4 such that the image of Qm under σ meets the following additional requirements, while

πm still satisfies (1), i.e., it is strictly ascending with respect to the x4-coordinate:

(2) F 2
m ⊂ {x ∈ � 4 : x1 = 0}.

(3) aff F 3
m = {x ∈ � 4 : x1 = 0} and Qm ⊂ {x ∈ � 4 : x1 ≥ 0}.

(4) (αm)2 = 0, q2 < 0 for all q ∈ F 2
m \ {αm}, and (βm)2 < (vm

1 )2.

(5) The image of F 2
m under π is full-dimensional: dim aff

(
π(F 2

m)
)

= 2.

(6) The 3-flat HS = {x ∈ � 4 : x3 = 0} strictly separates the odd from the even part of πm

(i.e., the vertices in odd resp. even tips). Moreover, we may choose the point of HS∩F 3
m

of lowest 4-coordinate to be αm+1 = conv{αm, βm} ∩ HS , where (αm+1)4 = τ4.

Proof. Properties (2) and (3) are a matter of trivial affine transforms that can be chosen

to leave the 4-coordinate values invariant, thereby maintaining (1), and property (4) can be

achieved via a translation and a shear σa
2,4 : x2 7→ x2 + ax4.

For (5), choose t ∈ F 2
m with t4 = q4 for some q ∈ T 3

m; such a point exists, since αm ∈ F 2
m,

and by (1) and Remark 5.10 there holds (αm)4 < q′4 < max{s4 : s ∈ F 2
m} for all q′ ∈ T 3

m.

Translate t to the origin of
� 4, and apply a shear transform σb

3,2 : x3 7→ x3+bx2 to
� 4, where

b ∈ �
is chosen such that π

(
σb

3,2(q)
)

= π
(
σb

3,2(t)
)
. This can be done because π(t) − π(q) ∈�

e3. Then (5) is fulfilled because dimaff F 3
m = 3: supposing that dimaff

(
π(F 2

m)
)

= 1 would

imply via t ∈ F 2
m and q ∈ F 3

m that q ∈ aff F 2
m; however, this is absurd by the choice q ∈ T 3

m.

Note that none of the translations we used affects properties (2) and (3).

For (6), define b̃ to be the point of greatest 3-coordinate of F 2
m ∩ {x ∈ � 4 : x4 = τ4}.

In particular, b̃4 > maxz∈T 3 z4, and b̃ lies either on the edge conv{αm, βm} or on the edge

conv{αm, ωm} of F 2
m ⊂ Qm (cf. Figure 5.11).

Possibly using the transform x3 7→ −x3, we can achieve b̃ = αm+1 ∈ conv{αm, βm}. Now

choose a non-horizontal line ℓ through αm+1 such that π(ℓ) separates π(T 1
m ∪ T 3

m) from

π(F 2
m\T 1

m) (for example, perturb ℓ = αm+1+
�

e3), translate Qm again such that αm+1 = 0,

and apply a shear σc
3,4 : x3 7→ x3 + cx4 to

� 4 such that ℓ′ := σc
3,4(ℓ) = {x ∈ � 4 : x1 =

x3 = 0} ∩ aff F 2
m is vertical, and y3 > 0 > x3 for all y ∈ F 2

m \ T 1
m and x ∈ T 1

m ∪ T 3
m

(cf. Figure 5.11). If the hyperplane π−1
(
π(ℓ′)

)
does not yet separate T 1

m from T 4
m, apply

another shear σd
3,1 : x3 7→ x3 +dx1 with d > 0 until it does (note that (3) already holds), and

then define HS := π−1
(
π(ℓ′)

)
. This hyperplane then separates the odd and even parts of πm

by construction, and (αm+1)4 = τ4 also by construction and because the shears σc
3,4 and σd

3,1

do not affect 4-coordinates. Neither do they affect conditions (1)–(5), so we can define the

transform σ as the composition of all these maps. ¤
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αm+1
αm+1

αm = T 1
m

ωm

βm
ω′

ℓ

ℓ′ = σ(ℓ)

βm = T 0
m

T 3
m

F 2
m

σb
3,4

βm+1

e3

e4

Figure 5.11: Positioning the polytope, step (6). The map σb
3,4 shears the polytope until (the

preimage under π of) a vertical line ℓ′ separates the odd from the even tips. On the right, you can

see the approximate position of ω′; this point will become important shortly.

Remark 5.19 The conditions (1)–(6) are satisfied by the coordinates (5.3) for Q0.

5.4.5 Induction step II: Finding the cutting plane

In this section, we find a hyperplane Hm+1 giving rise to a polytope Q′
m+1 = Qm ∩ H≥0

m+1

of the same combinatorial type as Q̃4
m+1. Namely, assume that the conditions (1)–(6) hold,

define Hm+1 = {x ∈ � 4 : nTx = 0} with n = (0,−δ, 1, ε)T for some small ε ≫ δ > 0, and

assign the label n + 1 = m + d + 2 to Hm+1. Note that Hm+1 converges to HS for ε, δ → 0.

Convention 5.20 We retain the names αm+1, βm+1, ωm+1 for points of intersection of Qm

and HS , and additionally define α′ := α′
m+1 = conv{αm, βm} ∩ Hm+1 and ω′ := ω′

m+1 =

conv{βm, vm
1 } ∩ Hm+1; see Figure 5.10 (right). We also use the abbreviations v := vm

1 ,

u := (vm+1
1 )′ = conv{αm, τm} ∩ Hm+1 and τ := τm. In this way, we can use e.g. α′

3 to refer

to the 3-coordinate of α′
m+1.

Up to now, we have put the facet F 3
m of Qm into its own 3-plane {x ∈ ✄ 4 : x1 = 0}

and the tip T 4 into the half-space {x ∈ ✄ 4 : x1 > 0}. This allows us to move almost

all of the vertices of the Hamiltonian path (namely, the portion inside T 4
m) ‘out of the

way’, via a shear σa
3,1 that only affects 3-coordinates. These ‘old’ vertices will then be

dealt with in Lemma 5.22 below.

We still need to arrange for the first and last part of πm+1 to be traversed in the right

order. We achieve this by adjusting the position of Hm+1 via the parameters ε and δ in

the definition of n (note that we chose n1 = 0, because we are already done with T 4
m).

If δ = 0, then π(Hm+1) is a line whose slope is determined by ε. We choose ε > 0 to

‘push out’ the first part T 1
m+1 ∪ T 3

m+1 of the new path πm+1. However, if we left δ = 0

we would not appropriately sweep the last portion T 0
m+1 ∪T 2

m+1. Items (8)–(10) of the

following Lemma 5.21 guarantee that by appropriately choosing 0 < δ ≪ ε, the sweep

of Lemma 5.22 will proceed smoothly.
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Lemma 5.21 Assume conditions (1)–(6) and (αm+1)3 = (αm+1)4 = 0, and fix vertices

q ∈ T odd
m and s ∈ T even

m . Let q′ = conv{q, s} ∩ Hm+1 be the intersection with Hm+1 of the

line through q and s (which is not necessarily an edge of Qm). Then, if a > 0 is sufficiently

large and 0 < δ ≪ ε are sufficiently small, the image σa
3,1(Qm) of Qm under the shear σa

3,1

satisfies the conditions (7)–(10) on the next page (cf. also Figure 5.13).

(7) q′3 > 0 for 0 < δ ≪ ε, and q′3 → 0 as δ, ε → 0. In other words, all points in σa
3,1(Qm) ∩

Hm+1 can be chosen to have positive 3-coordinate, but to lie arbitrarily close to HS .

(8) The image π
(
aff{u, q′}

)
⊂ 〈3, 4〉 of the line through u and q′ under π comes arbitrarily

close to being vertical as a → ∞ and ε, δ → 0.

(9) If q, q̄ ∈ T 3
m and q4 < q̄4, then the slope of the line π

(
aff{α′, q̄′}

)
is greater than that

of the line π
(
aff{α′, q′}

)
.

(10) The slope σω′α′ of π
(
aff{ω′, α′}

)
is less than the slope σω′u of π

(
aff{ω′, u}

)
.

Proof. We abbreviate σ = σa
3,1. For (7), we have conv{q, s} ∩ Hm+1 6= ∅ since q and s

are separated by Hm+1 for small enough δ, ε. We calculate the intersection point q′ =

conv{q, s} ∩ Hm+1 by solving nTq + µ nT(s − q) = 0 for µ, obtaining

q′ = q +
nTq

nT(q − s)
(s − q).

By (2), the map σ leaves the points α′, q, and ω′ invariant, and maps s to σ(s) = s+as1e3;

as a consequence, nTσ(s) = nTs + as1. Using nTq = −δq2 + q3 + εq4, we obtain

σ(q′) = q +
nTq

nT (q − s) − as1
(s − q + as1e3)

−−−−→
a→∞

q + (0, 0, −nTq, 0)T = (0, q2, δq2 − εq4, q4)
T . (5.4)

Because q4 < (αm+1)4 = 0 and ε, δ > 0, we can choose δ ≪ ε so small that σ(q′)3 > 0 (note

that by (4), there holds q2 ≤ 0). In particular, we obtain σ(q′)3 → 0 as ε, δ → 0.

Statement (8) follows from (5.4) and the fact that

lim
a→∞

σ(q′)4 − σ(u)4
σ(q′)3 − σ(u)3

=
q4 − u4

δ(q2 − u2) − ε(q4 − u4)
.

For (9), note that

σ(q′)4 − α′
4

σ(q′)3 − α′
3

−−−−→
a→∞

q4 − α′
4

δq2 − α′
3 − εq4

−−−−−→
ε,δ→0

−q4 − α′
4

α′
3

,

and similarly for q̄; the statement now follows from q4 < q̄4.

To prove part (10), set α := αm and β := βm. Then by Convention 5.20, u = conv{α, τ}∩
Hm+1, α′ = conv{α, β} ∩ Hm+1, and ω′ = conv{v, β} ∩ Hm+1. We need to verify that

σω′α′ :=
α′

4 − ω′
4

α′
3 − ω′

3

<
u4 − ω′

4

u3 − ω′
3

=: σω′u.
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From equation (5.4) and condition (4), we deduce that lima→∞ u = (0, 0,−εα4, α4)
T . For

α′ and ω′ we get the following expressions:

α′ = α +
nTα

nT(α − β)
(β − α) =




0

0

α3

α4




+
α3 + εα4

δβ2 + α3 − β3 + ε(α4 − β4)




0

β2

β3 − α3

β4 − α4




,

ω′ = v +
nTv

nT(v − β)
(β − v) =




0

v2

v3

v4




+
−δv2 + v3 + εv4

−δ(v2 − β2) + v3 − β3 + ε(v4 − β4)




0

β2 − v2

β3 − v3

β4 − v4




.

For convenience, we will verify that 1/σω′α′ > 1/σω′u. Indeed, expanding these expressions

in terms of δ, ε, we obtain

1

σω′α′

=
β3v2 − β2v3 +

t1︷ ︸︸ ︷
α3(β2 − v2)

v3(α4 − β4) + β3(v4 − α4) + α3(β4 − v4)︸ ︷︷ ︸
t2

δ − ε + p1(δ, ε),

1

σω′u
=

β3v2 − β2v3

v3(α4 − β4) + β3(v4 − α4)
δ − ε + p2(δ, ε),

where p1 and p2 are power series in δ, ε with min-degree at least 2. Notice that up to terms

of degree at least 2 in δ, ε, the two formulas are equal except for the expressions t1 resp. t2 in

the numerator resp. denominator of 1/σω′α′ . Therefore, we can write the difference between

the inverses of the slopes as

1

σω′α′

− 1

σω′u
=

(
A + t1
B + t2

− A

B

)
δ + p3(δ, ε).

Since α3 < (αm+1)3 < 0 by assumption and β2 < v2 by (4), we obtain t1 > 0; and the

inductive assumption (1) implies that β4 > v4 and therefore t2 < 0. The claim follows. ¤

5.4.6 Induction step III: The projective transformation

Finally, we construct a 1-parameter family H = {Ht : t ∈ ☎ 1(
�

)} of hyperplanes that

contains a 2-plane R as their common ‘axis’. The family H will sort the vertices of Q′
m+1

in the order given by πm+1 = ϕ(π̃m+1), in the following sense: If p, q are vertices of Q′
m+1

that lie in Hr resp. Hs with r, s 6= ∞ and p precedes q in πm+1, then r < s. (Recall our

abuse of notation in writing ☎ 1(
�

) =
� ∪ {∞}.) Let O = π

(
b + ε1(ω − α)− ε3e3

)
for some

small ε1, ε3 > 0, so that O lies outside but very close to the edge conv{α, ω} of π(F 2
m+1),

and define the 2-plane R ⊂ � 4 to be R = π−1(O).
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Lemma 5.22 Define H as the pencil of hyperplanes in
� 4 sharing the 2-plane R, and such

that π(H∞) is the line through O parallel to conv{α, ω}, and the slope of π(Hr) is smaller

than the slope of π(Hs) exactly if r < s. Then H sorts the vertices of Qm+1 in the order

given by π̃m+1.

Proof. We examine the pieces of πm+1 in order; cf. Figure 5.13.

⊲ T 1
m+1 = {α} is the start of πm+1: This follows for small enough ε3 by (10).

⊲ T 3
m+1 is traversed next, in the right order, and before T 4

m+1: The first two statements

follow from (7), (8) and (9), and the last one because z3 → ∞ as a → ∞ for any z ∈ T 4
m,

while the 3-coordinates of T 3
m+1 remain bounded by (7).

⊲ The correct order in T 4
m ⊂ T 4

m+1. By Proposition 5.16(b), each edge ei = conv{vm
i , vm

i+1},
0 ≤ i ≤ m of T 1

m∪T 3
m is incident to an (m+1)-gonal 2-face Gi (see Figure 5.10), and the

edges Ei of Gi not incident to ei form a monotone subpath of πm+1. This implies that

for each ei ∈ T 3
m, the slopes of the projection of each Ei to 〈3, 4〉 are strictly positive

(and, by convexity, monotonically decreasing; see Figure 5.12). Therefore, π
( ⋃m

i=0 Ei

)

is a strictly increasing chain of edges, and this remains true after applying the linear

map σ = σa
3,1 by invariance of the ei’s and all 4-coordinates under σ, and the convexity

of the projections of 2-faces. The correct order up to τ in T 4
m ⊂ T 4

m+1 follows from

condition (6): α4 ≥ s4 for all s ∈ ⋃m
i=0 vertGi \ vert ei. Similarly, the 4-gonal 2-faces

incident to T 2
m of Proposition 5.16(c) enforce the right order between τ and T 0

m.

α τ

O

ei

Gi

Ei

Figure 5.12: Convexity of the (m + 1)-gonal faces enforces the correct order in T 4
m ⊂ T 4

m+1.

⊲ T 2
m+1 is traversed after T 4

m+1: Since β, the first vertex of πm+1 to come after T 4
m+1, lies

on conv{αm, ωm}, this can be achieved by choosing ε and ε1 suitably small.

⊲ Correct order in T 2
m+1 and T 0

m+1. This follows because the convex polygon π(F 2
m+1) is

star-shaped with respect to any point on its boundary, and the choice of O close to an

edge of π(F 2
m+1).

This concludes the proof of Lemma 5.22. ¤

Finally, we apply the projective transform ψ :
� 4 → � 4, x 7→ x/(ax−a0) that sends the

3-plane H∞ = {x ∈ � 4 : ax = a0} to infinity, and set Qm+1 = ψ(Q′
m+1). Lemma 5.22 then

implies the inductive condition (1), namely that Qm+1 admits an ascending Hamiltonian

path πm+1. The proof of Theorem 5.15, and so of Theorem 5.1, is concluded. ¤
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Figure 5.13: The inductive step: We show the projection of the polytope Q4 to the 〈3, 4〉-plane, and the vertices obtained by intersecting

Q4 with H5. The arrows next to the labels (9) and (10) point to the lines about whose slope the corresponding condition in Lemma 5.21

makes an assertion. The line through O is the projection of the 3-plane H∞. A sweep around O encounters all vertices of Qm ∩ Hm+1

in the correct order πm prescribed by eπm+1.





Chapter 6

Secondary Polytopes: An Invitation

This chapter [75] does not contain any new research results; instead, its excuse for being

included in this thesis are the pictures you find at the end, and the perhaps surprisingly

large variety of different flavors of mathematics tied together by the concept of ‘secondary

polytopes’. The pace will accordingly be somewhat faster than in other chapters of this

thesis, and we will not always pause to rigorously define every concept.

We will speak chiefly about triangulations of point sets and flips—the best known way

of passing from one triangulation to another. Just in case you have never seen a flip before,

here is one between two triangulations of a 3-dimensional point set:

←→

Figure 6.1: A flip between two triangulations of a point set in ✄ 3. Note that the number of

tetrahedra is different in the two triangulations (unlike in the 2-dimensional case).

To define flips more rigorously, we need some definitions. Let A = {a1, a2, . . . , an} be a

configuration of n points in
� d, which affinely spans

� d. A triangulation of A is a simplicial

complex T on the index set [n] such that T̃ =
{
{ai : i ∈ σ} : σ ∈ T

}
is a geometric simplicial

complex (see Chapter 2) on the vertex set A with the property that ‖T ‖ = convA. Let

C = C+∪C− ⊆ [n] index a non-trivial minimal affine dependency on A. This means that for

each i ∈ C+ and j ∈ C−, there exist λi > 0 and µj > 0 such that
∑

i∈C+ λiai =
∑

j∈C− µjaj ,∑
i∈C+ λi =

∑
j∈C− µj , and C+, C− are minimal with respect to inclusion, as long as C 6= ∅.

Then there are exactly two triangulations of {ai : i ∈ C}, namely

T +(C) =
{
C \ {c−} : c− ∈ C−

}
,

T −(C) =
{
C \ {c+} : c+ ∈ C+

}
.

In Figure 6.1, one could e.g. choose C+ to index the vertices of the base triangle and C− to

index the apexes of the bipyramid. The left triangulation would then correspond to T +(C),

and the right one to T −(C).
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We will build on this concept to present one of the most striking and beautiful construc-

tions of the theory of polyhedral subdivisions, which shows that the regular triangulations

(see below) of a point configuration carry quite a lot of structure. Namely, we outline the con-

struction of the secondary polytope of a point configuration, briefly sketch one situation where

it can be useful, and calculate some examples obtained by integrating TOPCOM [77], [79]

into the polymake [40], [41] framework.

6.1 The convex hull of triangulations: Secondary polytopes

It is known that any point configuration A in
� d can be triangulated, for example via a

placing triangulation [57]. A triangulation of A is regular or coherent if it arises by projecting

the ‘lower’ facets (with respect to some fixed direction) of a (d + 1)-dimensional polytope P̃

to
� d, in such a way that the ‘lower’ vertices of P̃ project exactly to the points in A. Another

way of stating this condition is to ask for a convex lifting function from
� d to

� d+1 that

is linear on the simplices of the triangulation. More generally, we will also consider regular

subdivisions of A, i.e., polytopal complexes whose underlying space subdivides convA and

that satisfy the regularity property. See Figure 6.2 for an example.

Figure 6.2: A regular subdivision of a planar point set, and an associated convex lifting function.

The coordinates were taken from [80].

Regular triangulations correspond in a one-to-one fashion to the vertices of a convex

polytope Σ(A) that only depends on the point configuration, the so-called secondary polytope
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of A. Moreover, this correspondence is not just bijective, but structural: Two regular

triangulations T and T ′ are connected by a flip if and only if the corresponding vertices

vT and vT ′ lie on an edge of the convex hull of Σ(A). It turns out that this correspondence

extends to the whole face lattice of the secondary polytope, so that to each face F of Σ(A)

there corresponds some regular subdivision σ(F ) of A. Furthermore, if F ⊂ G are two faces

of Σ(A), then σ(F ) is a refinement of σ(G), which means that any cell of σ(G) is the union

of cells of σ(F ).

As an example, let us construct the secondary polytope of the point configuration A
formed by the vertices of a prism P over a triangle. The homogeneous coordinates of P are

given by the columns of the following matrix.

A =




0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

1 1 1 1 1 1




3

2

5

6

4

1

Any triangulation of P must contain one of the tetrahedra formed by the base {1, 2, 3}
and one vertex i in the set {4, 5, 6}, where the point labels correspond to the column indices

of A. This leaves two choices for the apex of the tetrahedron with base {4, 5, 6}, and each

one determines the last tetrahedron of the triangulation uniquely. We see that there are six

distinct triangulations of P in total, namely,

{
{1,2,3,4},{2,3,4,5},{3,4,5,6}

}
,

{
{1,2,3,4},{2,3,4,6},{2,4,5,6}

}
,

{
{1,2,3,5},{1,3,4,5},{3,4,5,6}

}
,

{
{1,2,3,5},{1,3,5,6},{1,4,5,6}

}
,

{
{1,2,3,6},{1,2,4,6},{2,4,5,6}

}
,

{
{1,2,3,6},{1,2,5,6},{1,4,5,6}

}
.

These triangulations all turn out to be regular, and therefore correspond to vertices of Σ(A).

One way to construct the secondary polytope is to start by calculating a basis for the

(right) kernel of A, i.e., a matrix B with AB = 0. Since A has full rank, its kernel has

dimension 2, and one possible basis is given by the rows of the following matrix B:

B =

(
1 −1 0 −1 1 0

1 0 −1 −1 0 1

)
.

By interpreting the columns of B as six points b1, b2, . . . , b6 in
� 2, we arrive at the Gale

transform A∗ of A (see also the discussion in Section 4.1, where we used BT instead of B).

In general, if A consists of n points in d-space (and A does not lie in any lower-dimensional

subspace), then A∗ is made up of n points in (n − d − 1)-space. Now consider the set C(A)
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of all full-dimensional positive cones spanned by the points in A∗ with apex in 0, together

with the set R of all their facets. The chamber complex C̃(A) of C(A) is the union of all full-

dimensional polyhedral cones whose facets are facets of cones in C(A), but whose relative

interior is not crossed by any member of R. In our two-dimensional example, the set R

consists of the six rays cone(bi), 1 ≤ i ≤ 6, so C̃(A) is given by the following list of cones.

See Figure 6.3 (left).

C̃(A) =
{
cone(b1, b6), cone(b6, b2), cone(b2, b4), cone(b4, b3), cone(b3, b5), cone(b5, b1)

}
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Figure 6.3: The hexagon as the secondary polytope of the prism P . Left: One maximal cone of

the secondary fan is highlighted. Pairs of digits inside such a cone σ index vertices bi in whose

positive span σ lies, and the complementary 4-tuples label the simplices of the triangulation of A

that σ corresponds to. Right: Triangulations corresponding to vertices of Σ(P ). The edges of Σ(P )

represent flips between triangulations.

We now consider each cone σ ∈ C̃(A) in turn, and write down the generators of all cones in

C(A) that contain σ. For instance, σ = cone(b1, b6) lies in the cones cone(b5, b6), cone(b1, b6),

and cone(b1, b2) of C(A), and the complements {1, 2, 3, 4}, {2, 3, 4, 5}, and {3, 4, 5, 6} of these

index sets correspond precisely to a triangulation of P ! Since there are six maximal cones

in C̃(A), we expect each one to correspond to one of the six regular triangulations of P .

In fact this is true, and even more: The set C̃(A) is a complete polyhedral fan, which

means that the cones in C̃(A) intersect precisely in common faces, and together span all

of
� n−d−1. This fan is called the secondary fan of A. It has the additional property that

it is the normal fan of a certain polytope in
� n−d−1, which says that the vectors contained

in a fixed cone of C̃(A) are just the normal vectors of hyperplanes supporting exactly one

face of this polytope. It now comes as no surprise that one defines this polytope to be

the secondary polytope Σ(A) of A. Of course, this construction only determines Σ(A) up to
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normal equivalence, i.e., any polytope with the same normal fan is also a secondary polytope

of A. In any case, passing from one maximal cone of C̃(A) to an adjacent one corresponds to

going from one vertex of the secondary polytope to the next, and therefore to a flip between

these triangulations. This is illustrated in Figure 6.3 (right). We summarize our discussion

in the following theorem.

Theorem 6.1 (Gel’fand, Kapranov, and Zelevinsky [28])

(1) The dimension of the secondary polytope Σ(A) of a full-dimensional configuration of n

points in
� d is n − d − 1.

(2) The faces of Σ(A) correspond to the regular subdivisions of A.

(3) If F ⊂ G are faces of Σ(A), then the subdivision of A corresponding to F refines the

subdivision corresponding to G. In particular, the vertices of Σ(A) encode the regular

triangulations of A.

6.2 Hypergeometric Differential Equations

In this section, we briefly present the connection between secondary polytopes and certain

systems of partial differential equations. This material is largely taken from [84].

To the matrix A from the preceding section we can associate the following ideal in the

(commutative) polynomial ring of differential operators k[∂] = k[∂1, ∂2, . . . , ∂n] with n = 6:

IA = 〈∂u − ∂v : Au = Av, u, v ∈ ✂ 6〉
= 〈∂1∂5 − ∂2∂4, ∂1∂6 − ∂3∂4, ∂3∂5 − ∂2∂6〉,

which corresponds to the system of differential equations

∂2

∂x1 ∂x5
f(x1, x2, . . . , x6) =

∂2

∂x2 ∂x4
f(x1, x2, . . . , x6),

∂2

∂x1 ∂x6
f(x1, x2, . . . , x6) =

∂2

∂x3 ∂x4
f(x1, x2, . . . , x6),

∂2

∂x3 ∂x5
f(x1, x2, . . . , x6) =

∂2

∂x2 ∂x6
f(x1, x2, . . . , x6)

(6.2)

for a (formal) power series f in six variables. Notice how the differential operators that

generate IA correspond to elements of the kernel of A. The general theory developed in [84]

tells us that a first step in constructing a series solution of (6.2) is to calculate the initial

ideals inω(IA) for all term orders ≺ω on k[∂] induced by weight vectors ω ∈ ✁ n. The positive

hull of the weight vectors that select a given initial ideal of IA is a polyhedral cone in
� n,

and it is readily seen that the set of all such cones forms a polyhedral fan, the Gröbner fan

of IA. It is then also clear that the weight vectors in the maximal cones of the Gröbner fan
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select monomial initial ideals, while those in lower-dimensional cones lead to initial ideals

whose generators have more than one term.

Just as for the secondary fan, there exists an equivalence class of polytopes whose normal

fan coincides with the Gröbner fan. Any representative from this class is called a state

polytope [101, Chapter 2] of A. By the preceding paragraph, the vertices of the state polytope

exactly correspond to the monomial initial ideals of IA.

In general [101, Prop. 8.15], the Gröbner fan refines the secondary fan; an equivalent

way of putting this is to say that the secondary polytope is a Minkowski summand of the

state polytope. However, for a certain subclass of point configurations it is known that the

Gröbner fan coincides with the secondary fan, and that therefore also the state polytope and

the secondary polytope are the same (up to normal equivalence). These are the unimodular

point configurations: those configurations all of whose triangulations are unimodular, i.e.,

entirely made up of simplices of unit volume (appropriately normalized for the dimension of

the ambient space).

Therefore, for differential ideals coming from unimodular point configurations A, we

can calculate the Gröbner fan via geometrical techniques. We only need to enumerate all

triangulations T of A, and for each of them construct the following ideal, called the Stanley-

Reisner ideal of T :
〈

∏

j∈J

∂j : J does not index a face of T

〉
=

⋂

σ∈T

〈∂j : j /∈ σ〉 ⊂ k[∂].

By unraveling definitions, this is exactly the initial ideal of IA selected by any weight vector

in the cone of the secondary fan which is dual to the vertex vT of Σ(A); see Figure 6.4. Note

that this initial ideal is square-free by construction.

If the point configuration is not unimodular, i.e., if it admits some triangulation with

at least one simplex of non-unit volume, then as we saw above the Gröbner fan is a proper

refinement of the secondary fan. The Stanley-Reisner ideal of such a triangulation T is then

only the radical of the initial ideals selected by weight vectors in those Gröbner cones that

refine the cone corresponding to T . However, knowing the number of regular triangulations

of A at least gives a lower bound for the number of monomial initial ideals of IA.

6.3 The GKZ vectors

The original construction of the secondary polytope—presented by Gelfand and Zelevinsky

in 1989—was somewhat mysterious; as we will see, it gives rise to a straightforward recipe for

calculating secondary polytopes, but it is not at all so straightforward to understand what

is happening geometrically. In 1992, Billera and Sturmfels [9] finally presented secondary

polytopes as the fiber polytopes of the projection of the (n − 1)-dimensional simplex to a

configuration A of n points. We will not develop this theory here, but instead refer the

interested reader to [9], where also the formulation in terms of Gale transforms was first

given, and especially to Chapter 9 of [103].



6.4. IMPLEMENTATION: HOW TO FIND THE FACE LATTICE OF THE SECONDARY 69

3

5

2

6

1

1

6

2

5

3

6

2

4

5

5

6

5

1
2

1

3

6
1

2

4

4

4

4

5

1

4

2

6

3

3

3

〈∂1∂6, ∂2∂4, ∂2∂6〉 〈∂1∂5, ∂1∂6, ∂2∂6〉

〈∂1∂5, ∂1∂6, ∂3∂5〉

〈∂1∂5, ∂3∂4, ∂3∂5〉

〈∂2∂4, ∂3∂4, ∂3∂5〉

〈∂2∂4, ∂3∂4, ∂2∂6〉

Figure 6.4: How to construct geometrically the six initial ideals of the unimodular ideal IA =

〈∂1∂5 − ∂2∂4, ∂1∂6 − ∂3∂4, ∂3∂5 − ∂2∂6〉: The generators of each initial ideal are precisely the

minimal non-faces of the corresponding regular triangulation of A.

The GKZ construction proceeds as follows. We associate an n-dimensional vector vT to

any given triangulation T of A, in such a way that the i-th coordinate of vT is the sum of

the volumes of all simplices in T incident to the point i.

(vT )i =
∑

σ: σ∈T, i∈σ

vol conv σ

This gives us one n-dimensional vector for each triangulation of A. The secondary polytope

Σ(A) ⊂ � n of A is then defined as the convex hull of all such vectors obtained by considering

every possible triangulation of A.

Σ(A) = conv
{
vT : T triangulation of A

}

It turns out that the secondary polytope defined in this way is not full-dimensional, but

resides in an (n − d − 1)-dimensional subspace. However, the fact that this polytope coin-

cides, up to scaling and normal equivalence, with the secondary polytope as defined earlier

definitely comes as a surprise!

6.4 Implementation: How to find the face lattice of the secondary

We briefly describe our apprach to calculate an embedding and the face lattice of the sec-

ondary polytope of a point configuration in
� d. We are not claiming that this is a particularly

efficient strategy!
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First, we calculate a placing triangulation T of A (which is known to be regular), and

generate the connected component of the flip graph that contains T . Since flips correspond

to edges of the secondary polytope, and the 1-skeleton of any convex polytope of dimension at

least 2 is connected, we know that this component contains at least all regular triangulations

of A—possibly along with some non-regular ones.

Next, we embed the nodes of the flip graph in
� n via their GKZ coordinates, project the

resulting point configuration to
� n−d−1, and calculate (the vertex-facet incidence matrix of)

the convex hull of the result. Because we now have an embedding of the regular component of

the flip graph, we can investigate, for example, the flip distance of a non-regular triangulation

to the nearest regular one. Of course, this procedure misses all connected components of the

flip graph that do not contain any regular triangulation.

We implemented this procedure using the polymake rule base and client programs

to convert between the data structures of TOPCOM and polymake. To calculate the

secondary polytope of a configuration A of n points in
� d, the polymake client requests

from TOPCOM a list of all triangulations of A, and for each one calculates the coordinates of

its GKZ embedding in
� n. Next, the client asks for these points to be projected to

� n−d−1,

and then to calculate the convex hull of these projected points. These requests are all

answered by the polymake server, which in turn calls the appropriate clients for each task

as specified in the rule base. Finally, the secondary client outputs the flip graph of A
both with its embedding and as an abstract (.gml-)graph, and marks points corresponding

to non-regular triangulations. If dimension permits, this embedded flip graph can then be

visualized, e.g. with Javaview [76].

Figure 6.5: Left: Secondary polytope of the cyclic 4-polytope with 8 vertices. All 40 triangulations

are regular. Right: Secondary of a different neighborly 4-polytope with 8 vertices [31, Ch. 7], which

has one nonregular triangulation (circled; in the interior of the convex hull) among 41.
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Figure 6.6: Left: Schlegel diagram of the secondary polytope of the 3-cube [73]. All 74 trian-

gulations are regular. Right: Secondary of the cyclic 8-polytope with 12 vertices, realized on the

Carathéodory curve [72]. There are 42 nonregular triangulations among 244 in all. Note that this

polytope is not a zonotope, since it has facets with an odd number of vertices.

In Figures 6.5 and 6.6, we present the results of four such calls to secondary. All running

times, excluding the computation of the convex hull, remained well under one minute on a

Sun Blade. The bottleneck is calculating the convex hull: The longest such computation

with cdd [25] for the secondary of the cyclic 8-polytope with 12 vertices realized on the

Carathéodory curve took 2 minutes.

With a view towards future developments, we remark that the computation of the entire

vertex-facet incidence matrix of the secondary polytope seems wasteful if all one is interested

in is the information which edges of the embedded flip graph actually lie on the convex hull

of the secondary polytope. Moreover, while TOPCOM is fine-tuned to exploit symmetries

of a point configuration, at this moment there is no convex hull code available that could do

likewise. However, implementing an algorithm that simultaneously inserts all points of an

orbit under a given symmetry group may well prove to be a non-trivial task. In the future,

perhaps it will be possible to exploit the fact that TOPCOM not only provides a list of

points corresponding to triangulations, but in fact a connected component of the flip-graph

that includes the entire 1-skeleton of the polytope.

Let us note that there have been other approaches to computing the edge graph of the

secondary polyope by reverse search [61]. Unfortunately, we do not have access to any code

based on these algorithms. If memory limitations dominate then reverse search is certainly

the method of choice.
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Spheres





Chapter 7

Overview

7.1 Many triangulated 3-spheres

Chapters 8 and 9 of this thesis focus on convex realizability of simplicial spheres. In general,

we expect that a ‘generic’ pure d-dimensional simplicial complex will be ‘too complicated’

to permit a convex embedding in
� d+1, but the question gains interest if we only consider

‘nice’ complexes such as simplicial spheres.

Nonrealizability of spheres can happen from dimension 3 onward: 1-dimensional spheres

are trivial to realize, and Steinitz’ famous theorem [97], [98] from the beginnning of the 20th

century asserts that all 2-spheres, including the non-simplicial ones, are polytopal (i.e., they

arise as boundary complexes of 3-dimensional polytopes). However, it is well known that

this is not at all the case in higher dimensions.

The first example—the so-called Brückner sphere—of a 3-dimensional simplicial sphere

that is not the boundary complex of any 4-polytope was inadvertedly found by Brückner [13]

in 1910 in an attempt to enumerate all combinatorial types of 4-polytopes with 8 facets.

As noted in 1967 by Grünbaum and Sreedharan [32], one of the complexes that Brückner

thought to represent a polytope is in fact not realizable in a convex way in
� 4. As the

(polytopal) complex Brückner considered (cf. Chapter 2) is simple (any vertex is contained

in exactly 4 facets), its combinatorial dual is a simplicial 3-sphere. Incidentally, in their new

enumeration Grünbaum and Sreedharan also discovered the first examples of polytopes that

are neighborly but not cyclic; this phenomenon was important in Chapter 5.

Another known ‘sporadic’ example of a non-polytopal simplicial sphere is Barnette’s

sphere [4], which is nicely explained in [24, Chapter III.4]. From these two examples one

can build infinite series, but apart from such sporadic families, no substantial number of

non-polytopal spheres on a fixed number of vertices was known until 1988.

In that year, Kalai [44] adapted a construction by Billera and Lee [8] to show that for

d ≥ 4, there exist far more simplicial d-spheres than simplicial (d+1)-polytopes on n vertices.

(Asymptotically optimal upper bounds for the number of such polytopes had been derived

in 1986 by Goodman and Pollack [29], [30].) This proves that in a very strong sense, most

simplicial spheres are not realizable. However, Kalai’s argument is by sheer number: given

any concrete d-sphere his construction produces, we have (as yet) no way of telling whether

it is actually polytopal or not.

Since Billera and Lee’s idea underlies Kalai’s construction and will also be important for

our purposes, we briefly digress to present its context.
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7.1.1 The g-Theorem

In 1971, McMullen [64] boldly conjectured a characterization of the f -vectors of d-dimensional

simplicial spheres S arising as boundary complexes of (d + 1)-dimensional simplicial poly-

topes in terms of the so-called g-vector of S. To understand this encoding, first define the

h-vector h(S) = (h0, h1, . . . , hd+1) of S by

hk =

k∑

i=0

(−1)k−i

(
d + 1 − i

d + 1 − k

)
fi−1, for k = 0, 1, . . . , d + 1.

The h-vector of any simplicial sphere satisfies the Dehn-Sommerville equations hk = hd+1−k

for k = 0, 1, . . . , ⌊d/2⌋. Now the g-vector of S is g(S) = (g0, g1, . . . , g⌊(d+1)/2⌋), where

g0 := h0 = 1 and gk := hk − hk−1 for k = 1, 2, . . . , ⌊(d + 1)/2⌋. We say that g(S) forms an

M-sequence if g0 = 1 and gk−1 ≥ ∂k(gk) for k = 1, . . . , ⌊(d + 1)/2⌋, where

∂k(gk) =

(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ · · · +

(
a2 − 1

1

)
+

(
a1 − 1

0

)
,

and the integers ak > ak−1 > · · · > a2 > a1 ≥ 0 are determined by the binomial expansion

gk − 1 =

(
ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
a2

2

)
+

(
a1

1

)

of gk − 1 with respect to k. See [103, Chapter 8] for more details. We can now state

McMullen’s conjecture [64]:

Theorem (g-Conjecture/Theorem) [64, 95, 8] An integer vector g = (g0, g1, . . . , g⌊(d+1)/2⌋)

is the g-vector of the boundary complex of a simplicial (d+1)-dimensional polytope P if and

only if it is an M-sequence.

In the same year, 1979, Stanley [95] proved the necessity and Billera and Lee [8] the

sufficiency of McMullen’s conditions. Stanley’s proof that the g-vector of any simplicial

polytope is an M-sequence used the Hard Lefschetz Theorem for the cohomology of pro-

jective toric varieties, but in the meantime a simpler proof by McMullen using his polytope

algebra [65, 66] is available.

Billera and Lee invented an ingenious construction to produce, for every M-sequence g,

a simplicial d-polytope with this g-vector. Very briefly, they first find a shellable ball B

as a collection of facets of a cyclic polytope C, such that the g-vector of ∂B is the given

M-sequence. Then they construct a realization of C and a point z that sees exactly the

facets in B, and obtain a realization of ∂B as a simplicial polytope by taking the vertex

figure at z of conv({z} ∪ C); see Figure 7.1.

7.1.2 Many triangulated d-spheres

Next, we outline Kalai’s 1988 extension of Billera and Lee’s construction, by which he built

so many simplicial spheres that most of them (in a sense to be made precise below) fail to

be polytopal.
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z

C

Figure 7.1: Billera and Lee’s construction [8] in the case of a 3-dimensional cyclic polytope C =

C3(6) on 6 vertices. C is realized on the moment curve (with one vertex in the origin) and seen

from two different viewpoints, together with the coordinate axes, an ‘observation’ point z and the

facets of C that z sees.

Kalai built “many triangulated d-spheres” [44] by giving a rule to produce many lists I

of (d + 2)-tuples of vertices, which span pure simplicial complexes B(I). The underlying

space of every such complex turns out to be a simplicial, shellable (d + 1)-ball, which he

called a squeezed ball, and therefore the boundary S(I) of B(I) is a simplicial PL d-sphere,

a squeezed sphere. (It was shown by Lee [58] that Kalai’s squeezed spheres are shellable.)

To see what Kalai’s construction implies about the relative number of simplicial spheres

vs. simplicial polytopes, let s(d, n) denote the number of simplicial d-spheres, sq(d, n) the

number of squeezed d-spheres, and c(d, n) the number of combinatorial types of simplicial

d-polytopes with n labeled vertices. In 1987, Goodman and Pollack [29, 30] derived the

upper bound

log c(d, n) ≤ d(d + 1)n logn (7.1)

using a theorem of Milnor that bounds the sum of the Betti numbers of real algebraic

varieties. Note that in 1982, Shemer [91] had already constructed 2Ω(n log n) neighborly d-

polytopes for fixed d ≥ 4.

In contrast, Kalai’s squeezed spheres provide the following lower bound for s(d, n):

log s(d, n) ≥ log sq(d, n) ≥ 1

(n − d − 1)(d + 2)

(
n − ⌊(d + 1)/2⌋ − 1

⌊d/2⌋+ 1

)

= Ω
(
n⌊d/2⌋

)
for fixed d.

These bounds reveal that limn→∞ c(d + 1, n)/sq(d, n) = 0 for d ≥ 4, which means that for

d ≥ 4 most of Kalai’s d-spheres are not polytopal—there are simply too many of them!
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Remark 7.1 (1) For d ≥ 4, we cannot (yet) make any assertion about the polytopality

of any concrete d-sphere of Kalai’s family.

(2) Up to now, we have learned nothing for d ≤ 3: We will prove in Proposition 8.3 that

sq(3, n) ≤ 2n−5n! for n ≥ 5, which by (7.1) is strictly less than the upper bound for

c(4, n) for all n ≥ 5. That in fact the number of simplicial 3-spheres is far greater than

the number of 4-polytopes is the content of Chapter 9 of this thesis.

7.2 New results in this thesis

In dimension 3, Kalai’s construction is not as successful as in higher dimensions: We prove

in Theorem 8.1 that all of his 3-spheres do arise as boundary complexes of simplicial 4-

polytopes. As an added bonus, we use the insight gained to provide a shorter proof (Theo-

rem 8.8 in Section 8.5) for Hebble and Lee’s result [35] that Kalai’s 3-spheres are Hamiltonian,

i.e. their dual skeleton admits a Hamiltonian path. These results were published in [74].

In Chapter 9, we put together a venerable construction from the dawn of topology by

Heffter [36] from 1898 with a modern idea of Eppstein [22] from 2002, and finally prove in

Theorem 9.1 that on sufficiently many vertices, there do exist far more triangulated 3-spheres

than simplicial 4-polytopes. This is joint work with Günter M. Ziegler.

Finally, we prove in Theorem 10.1 of Chapter 10 that there exist no neighborly centrally

symmetric star-shaped simplicial d-spheres with 2d + 4 vertices, for even d ≥ 4 and odd

d ≥ 11. See Chapters 1 and 10 for more details.

7.3 Open problems

Question 7.2 Can the method used in Theorem 8.1 to prove the polytopality of Kalai’s

3-spheres be extended to prove the polytopality of a ‘substantial number’ of his d-spheres,

for d ≥ 4?

Question 7.3 Can one prove directly the non-polytopality of the ‘many triangulated 3-

spheres’ arising from Heffter’s and Eppstein’s constructions? Is it true that ‘many’ of them

are not shellable?

Question 7.4 Do there exist neighborly centrally symmetric star-shaped simplicial d-

spheres with 2d + 4 vertices for d = 5, 7, 9? These are the cases left open in Theorem 10.1.







Chapter 8

Kalai’s squeezed 3-spheres are polytopal

This chapter is devoted to proving that all 3-spheres arising from Kalai’s construction can be

realized as polytopes. We first introduce some notation; for the poset terminology, cf. [96].

Define a partial order ¹ on
( ✞

d+2

)
by {i1, i2, . . . , id+2}< ¹ {j1, j2, . . . , jd+2}< if ik ≤ jk

for every k = 1, . . . , d + 2. Here the notation A = {a1, . . . , ar}< means that the elements of

the set A are listed in increasing order.

For an even integer d ≥ 0 and n ∈ ✂ , let Fd(n) be the collection of (d + 2)-subsets of

[n] := {1, 2, . . . , n} of the form {i1, i1+1}∪{i2, i2+1}∪· · ·∪{ie, ie+1}, where e = (d+2)/2,

i1 ≥ 1, ie < n, and ij+1 ≥ ij + 2 for all relevant j. Let I ′ be an initial set (order ideal) of

Fd(n) with respect to the partial order ¹ on
( ✞

d+2

)
. Informally, f ′ ¹ g′ for f ′, g′ ∈ Fd(n) if

f ′ arises from g′ by pushing some elements in g′ to the left. For odd d ≥ 1, put Fd(n) ={
{0}∪ f ′ : f ′ ∈ Fd−1(n)

}
=: 0 ∗ Fd−1(n) with the induced partial order, and set I := 0 ∗ I ′.

(Our notation differs from that in [44], but it is consistent with Chapter 9.)

Finally, let B(I) resp. B(I ′) denote the simplicial complex spanned by I resp. I ′ (i.e.,

given by the sets in I resp. I ′ and their subsets), and denote the boundaries of these com-

plexes by S(I) resp. S(I ′). By [44], B(I) resp. B(I ′) are shellable (d + 1)-dimensional balls

(Kalai calls them squeezed (d + 1)-balls), and therefore S(I) resp. S(I ′) are simplicial PL

d-spheres (squeezed d-spheres). We can now state the main theorem of this chapter:

Theorem 8.1 (Squeezed 3-spheres are polytopal) [74] Every squeezed 3-sphere S(I) given

by an order ideal I in the poset (F3(n),¹) with n ≥ max
⋃

I can be realized as the boundary

complex of a simplicial convex 4-polytope.

Remark 8.2 The construction shows the stronger result that every squeezed 4-ball B(I)

can be realized as a regular triangulation of a convex 4-polytope.

We first collect some facts about Kalai’s 3-spheres and cyclic polytopes, an essential

ingredient of our proof. After proving Theorem 8.1 in Section 8.4, we use the pictures made

along the way to give a shorter proof of Hebble and Lee’s result [35] that the dual graphs of

squeezed 3-spheres are Hamiltonian.

8.1 Kalai’s 3-spheres

To specialize Kalai’s construction to d = 3, we first study squeezed 3-balls. Take n ≥ 4

in ✂ , write (i, j) for an element {i, i + 1, j, j + 1} ⊂ [n] of F2(n), and define the gap of

(i, j) ∈ F2(n) to be the number j − i − 2 of integers between i + 1 and j. From the fact
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that any two elements of F2(n) with the same gap are translates of each other and therefore

comparable with respect to the partial order ¹, we conclude that any ¹-antichain in F2(n)

can be linearly ordered by increasing gap, and denote this order by ⊏. We remark that

the difference between the gaps of any two elements in a ¹-antichain must be at least 2, as

otherwise the two elements would be ¹-comparable. In particular, the maximal number of

elements of a ¹-antichain in F2(n) is ⌈(n − 3)/2⌉.
Any order ideal I ′ ⊂ F2(n) for n ∈ ✂ is generated by the set G′ = {g′1, g′2, . . . , g′r}⊏ of

its maximal elements, for some r ≤ ⌈(n − 3)/2⌉. By our discussion, the g′
k = (ik, jk) satisfy

(1) jk ≥ ik + 2 for k = 1, . . . , r, and

(2) ik > ik+1 and jk < jk+1 for k = 1, . . . , r − 1.

As an example, let I ′ be the ideal generated by

G′ = {(9, 11), (8, 12), (5, 14), (2, 17)}⊏ :

1 181713 151412111032 65 8 9

Note that if g′ ⊏ h′ ∈ G′, then g′ is nested inside h′ (possibly with overlap). From

Figure 8.1 below, we will read off the structure of the 3-ball B(I ′) generated by G′, and its

boundary S(I ′).

Now put F3(n) = 0 ∗ F2(n) with the induced partial order, and I = 0 ∗ I ′. The 4-

ball B(I) spanned by I is a cone over the 3-ball B(I ′), whose boundary complex is the

squeezed 3-sphere S(I).

Proposition 8.3 There are at most 2n−4(n+1)! squeezed 3-spheres with n+1 ≥ 5 labeled

vertices. In particular, log sq(4, n) = Θ(n log n).

Proof. By [44, Proposition 3.3], distinct 4-balls B(I) whose vertices are labeled according to

their construction give rise to distinct 3-spheres S(I) labeled in this way, and distinct initial

sets I ⊂ F3(n) obviously induce distinct such 4-balls. Every initial set I is of the form 0 ∗ I ′

for a unique order ideal I ′ ⊂ F2(n). Therefore, by relabeling vertices, sq(4, n+1) is at most

(n + 1)! times the number of distinct order ideals in F2(n), depending on the combinatorial

symmetries of S(I). By Figure 8.1, every such order ideal can be represented by a lattice

path of length n−4 taking steps only in the positive i- or negative j-directions, and starting

at (i, j) = (1, n − 1). There are 2n−4 of these, and they all give rise to distinct ideals. ¤

8.2 Interlude: Some facts on cyclic polytopes

The convex hull of n distinct points on the image of the moment curve µd : t 7→ (t, t2, . . . , td)

in
� d is called a d-dimensional cyclic polytope with n vertices. The combinatorial type of

this polytope is independent of the choice of the n points on µd [103, Chapter 0], and so

one can talk about the cyclic polytope Cd(n). In fact, any d-dimensional order d curve also

gives rise to the same combinatorial types of polytopes [100].
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Figure 8.1: The Kalai poset F2(18). The shaded circles are the facets of the 3-ball B(I ′) with

generators G′ = {(9, 11), (8, 12), (5, 14), (2, 17)}⊏ . The minimal elements H ′ of F2(18) \ I ′ are

marked by ∇’s, and ⊏ orders the elements of E ′ = G′ ∪H ′ from left to right (see Observation 8.4).

Straight lines between facets correspond to ≺-covering relations between elements of I ′, and straight

and curved lines together to inner ridges of B(I ′). The small circles are the facets of S(I ′) = ∂B(I ′).

The set of facets of the Kalai sphere S(I) is the union of B(I ′) and 0 ∗ S(I ′).



86 CHAPTER 8. KALAI’S SQUEEZED 3-SPHERES ARE POLYTOPAL

In the following, we switch from d and n to d + 1 and n + 1. Consider a set X = {x0 =

µ(t0), . . . , xn = µ(tn)} of n + 1 distinct points on the moment curve µd+1 =: µ, ordered

by their first coordinates. For any f ⊂ {0, 1, . . . , n}, write Ff for the subset of X indexed

by f , and i(F ) for the indices of a subset F of X . The supporting hyperplane H(F ) of

a (d + 1)-subset F ⊂ X is given by H(F ) = {x ∈ � d+1 : γ(F ) · x = −γ0(F )}, where

γ(F ) =
(
γ1(F ), . . . , γd+1(F )

)
∈ � d+1 and γ0(F ) ∈ �

are defined by

0 =
∏

i∈i(F )

(t − ti) =

d+1∑

j=0

γj(F )tj = γ0(F ) + γ(F ) · µ(t). (8.1)

Observe that γd+1(F ) = 1; we say that γ(F ) points upwards.

Gale’s evenness criterion [26], [103, Chapter 0] tells us which (d + 1)-subsets F of X are

vertex sets of facets of the cyclic polytope C = conv(X): For any i, j ∈ {0, 1, . . . , n} \ i(F ),

the number of elements of i(F ) between i and j must be even.

We also need to know whether a given facet F of a cyclic polytope whose vertices lie

on a moment curve is an “upper” or “lower” facet with respect to the “up” direction given

by the positive coordinate axis ed+1. For this, we define the end set Wend of Ff ⊂ X as

the right-most contiguous block {rf + 1, . . . , max f} of the indices f of F , where we have

used the notation rf = max{i ∈ ✂ : i < max f, i /∈ f}. Let F be a facet of C and take

xj = µ(tj) ∈ X \F . If the cardinality of the end set of F is odd, we get
∏

i∈i(F )(tj − ti) < 0

because j /∈ i(F ), and therefore γ(F ) · xj < −γ0(F ). Since γd+1(F ) = 1, we conclude

that the whole cyclic polytope C is below F , and call F an upper facet of C. If #Wend

is even, we analogously call F a lower facet of C. Finally, we define the outer normal

vector α(F ) of a facet F of C to be α(F ) = γ(F ) resp. α(F ) = −γ(F ) if F is an upper

resp. lower facet of C, and set α0(F ) = −γ0(F ) resp. α0(F ) = γ0(F ). In this way, we obtain

C ⊂
{
x ∈ � d+1 : α(F ) · x ≤ α0(F )

}
for all facets F of C.

8.3 A bird’s-eye view of the realization construction

By Gale’s Evenness Criterion, every f ∈ I indexes a lower facet Ff of a cyclic polytope.

Adapting the ideas of Billera and Lee, we will realize any S(I) as boundary complex of a

4-dimensional polytope P by appropriately realizing a cyclic 5-polytope C, and choosing a

viewpoint v close to the negative e5-axis that sees exactly the facets of C in B(I). The

convex 4-polytope P is then the vertex figure at v of conv(C ∪ {v}), and S(I) its boundary.

Specifically, let µ = µ5 :
� → � 5, t 7→ (t, t2, . . . , t5) be the moment curve in dimension 5.

Given an order ideal I = 0 ∗ I ′ in F3(n) where n = max
⋃

I, we execute the following steps:

(1) Choose N ′ > 0 and place 0 = t0 < t1 < · · · < tn ∈ �
≥0 such that

∏

i∈f\{0}

ti < N ′ for all f ∈ I, and

∏

i∈f\{0}

ti > N ′ for all f ∈ F3(n) \ I.
(S1)
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Figure 8.2: We first find the simplicial complex underlying each Kalai sphere as the boundary

of a shellable 4-ball in the boundary of a 5-dimensional cyclic polytope C, and obtain a convex

realization by intersecting the cone over this 4-ball with a hyperplane.

Solutions of (S1) exist with t1 > 0 arbitrarily small. We will find one by processing

the elements of E′ = G′ ∪H ′ in ⊏-order, where G′ is the set of ¹-maximal elements of

I ′, and H ′ is the set of ¹-minimal elements of F2(n) \ I ′.

(2) Make sure that the viewpoint to be defined will not see any upper facets of C =

C5(n+1) = conv{0, µ(t1), µ(t2), . . . , µ(tn)} that contain 0, by choosing t1 > 0 so small

that

t1tn−2tn−1tn < N ′. (S2)

(3) Choose ε, with 0 < ε < t1, so small that for all e, f ∈ F3(n),

e ≺ f =⇒ γ(Fe) · µ(ε) < γ(Ff ) · µ(ε). (S3)

(4) Choose ε > 0 even smaller, if necessary, such that the viewpoint v := µ(ε) − εN ′e5

satisfies

α(F ) · v > α0(F ) for fF ∈ I,

α(F ) · v < α0(F ) for all lower facets F of C s.t. fF /∈ I, (S4)

α(F ) · v < α0(F ) for all upper facets F of C,

where α(F ) is the outer normal vector of F we defined at the end of Section 8.2.

We conclude that v sees exactly the facets of C in B(I), and obtain S(I) as above.

8.4 How to realize Kalai’s 3-spheres

We now give the details of the construction and prove Theorem 8.1.

Given an ideal I ⊂ F3(n), we may assume that n = max
⋃

I since F3(n) ⊆ F3(n
′) for

all n ≤ n′. Moreover, by definition every order ideal I ⊂ F3(n) is of the form I = 0 ∗ I ′,
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where I ′ = 〈G′〉 ⊂ F2(n) is generated by its maximal elements G′ = {g′1, g′2, . . . , g′r} with

g′k = (ik, jk). Choose N ′ > 0, introduce n variable points 0 < t1 < t2 < · · · < tn in
�

>0,

and consider the set H ′ of ¹-minimal elements of F2(n) \ I ′.

Observation 8.4 Consider any two consecutive elements e′ = (i, j) ⊏· f ′ = (k, ℓ) of a

⊏-ordered ¹-antichain G′ of F2(n). Then the unique ≺-minimal element m′ in F2(n) \ 〈G′〉
with gap(e′) < gap(m′) < gap(f ′) exists and is m′ = (k+1, j+1). In particular, the number

of ≺-minimal elements in F2(n) \ 〈G′〉 is no greater than ⌊(n − 3)/2⌋. ¤

Sketch of proof. The first statement follows from Figure 8.1. For the second assertion, note

that the set H ′ has maximal cardinality if G′ =
{
(i, n − i) : i = 1, 2, . . . , ⌈(n − 3)/2⌉

}
. ¤

Using Observation 8.4, we linearly order E′ = G′ ∪ H ′ by ⊏, see Figure 8.1. To carry

out Step 1, first choose some small δ > 0. Our goal is to place the t’s in
�

>0 such that
∏

i∈g′

ti = N ′ − δ for g′ ∈ G′ and
∏

i∈h′

ti = N ′ + δ for h′ ∈ H ′. (S1′)

Observation 8.5 The cardinality of E ′ = G′ ∪· H ′ is at most n − 3. In particular, there

are fewer equalities in (S1′) than there are variables.

Proof. Because n = max
⋃

I, the largest element of (E′, ⊏) is in G′. By Observation 8.4,

#E′ = #G′ + #H ′ ≤
⌈

n − 3

2

⌉
+

⌊
n − 3

2

⌋
= n − 3,

which proves Observation 8.5. ¤

We now begin the construction by placing the t’s corresponding to the ⊏-smallest element

of E′ in such a way in
�

>0 that (S1′) is satisfied. This is clearly possible. The general step

of constructing a solution to (S1′) is based on the following lemma.

Lemma 8.6 Let e′ = (i, j) ⊏· f ′ = (k, ℓ) be two consecutive elements of E ′.

(a) If e′ ∈ G′ and f ′ ∈ H ′, then 0 < k ≤ i and ℓ = j + 1. If e′ ∈ H ′ and f ′ ∈ G′, then

k = i − 1 and j ≤ ℓ < n. (See Figure 8.1.)

(b) Suppose that the points {ti, ti+1, tj, tj+1} have been placed already, but not all of the

points {tk, tk+1, tℓ, tℓ+1}. Then these latter t’s may be placed in such a way in
�

>0 that

0 < tk < tk+1 < tℓ < tℓ+1, and the equality

tktk+1tℓtℓ+1 = M (8.2)

is satisfied, where M := N ′ − δ if f ′ ∈ G′ and M := N ′ + δ if f ′ ∈ H ′.

Sketch of proof for (b). Suppose that e′ ∈ G′ and f ′ ∈ H ′. We then have the following

situation:

a b cb0 c0

tk tk+1 ti ti+1 tj tj+1 = tℓ tℓ+1
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It is straightforward to verify that for any 0 < k ≤ i, the points a, b, c may be placed in such

a way that 0 < a < b < b0 < c0 < c and abc0c = N ′ + δ. Similarly, if e′ ∈ H ′ and f ′ ∈ G′,

a b ca0 b0

tk tk+1 = ti ti+1 tj tj+1 tℓ tℓ+1

for any j ≤ ℓ < n we may place a, b, c with 0 < a < a0 < b0 < b < c and aa0bc = N ′ − δ. ¤

We complete Step 1 by applying Lemma 8.6 to all members of E′ in ⊏-order. The

definition of ¹ tells us that because the f ′ ∈ E′ satisfy (S1′), in fact all f ∈ F3(n) satisfy (S1).

If in Step 1 there was some e′ ∈ E′ with 1 ∈ e′, then necessarily e′ = {1, 2, n−1, n} ∈ G′,

which imposed the inequality t1t2tn−1tn < N ′. This inequality in turn remains satisfied if

we choose t1 even small enough to verify (S2). If 1 /∈ e′ for all e′ ∈ E′, we are free to do

the same. We have completed Step 2, and place any remaining unassigned t’s such that

0 = t0 < t1 < · · · < tn.

Observation 8.7 (a) γ0(Ff ) = 0 for any 5-element subset f ⊂ {0, 1, . . . , n} containing 0.

(b) For all choices of t1 < · · · < tn, one can find ε > 0 small enough such that the implica-

tion (S3) holds for all f, g ∈ F3(n).

Proof of (b). The definition (8.1) of the γ’s implies that for f = {0, s1, . . . , s4},

γ(Ff ) · µ(ε) = ε(ε − s1) · · · (ε − s4) = εs1s2s3s4 ± o(ε). (8.3)

This means that γ(Ff ) · µ(ε) < γ(Fg) · µ(ε) by definition of ≺, for ε small enough. ¤

Take 0 < ε < t1 as in Observation 8.7(b), tentatively set z := µ(ε), and let f ∈ F3(n).

If f ∈ I, there exists some g ∈ G := 0 ∗ G′ with f ¹ g, and by (8.3), we have

γ(Ff ) · z ≤ γ(Fg) · z = ε
∏

i∈g\{0}

ti + O(ε2) = ε(N ′ − δ) ± o(ε).

If f /∈ I, then there is some h ∈ H := 0∗H ′ with f º h, and we obtain in a similar way that

γ(Ff ) · z ≥ ε(N ′ + δ) ± o(ε).

Thus, we finally choose 0 < ε < t1 so small that with z := µ(ε) and N := εN ′, we have

γ(Ff ) · z < N for f ∈ I, and γ(Ff ) · z > N for f /∈ I. Step 3 is now complete.

We proceed to verify that v := µ(ε) − εN ′e5 = z − Ne5 satisfies the inequalities (S4).

For this, recall that all Ff with f ∈ F3(n) satisfy Gale’s Evenness Criterion, which means

that F3(n) is exactly the set of lower facets of the cyclic polytope C = conv(X) that contain

x0 = 0. However, any F ⊂ X of odd cardinality satisfying Gale’s Evenness Criterion with

even end-set must contain 0, and therefore F3(n) is in fact the set of all lower facets of C.

Recall from Section 8.2 that α(F ) = γ(F ) and α0(F ) = −γ0(F ) if F is an upper facet

of C, and that α(F ) = −γ(F ) and α0(F ) = γ0(F ) if F is a lower facet of C. We discuss all

facets Ff of C in turn.
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⊲ Lower facets of C:

⊲ If f ∈ I ⊂ F3(n), then by construction γ(Ff ) · z < N , and this implies γ(Ff ) · v < 0

(remember that γ5(F ) = 1 for all F ) and α(Ff ) · v > 0 = α0(Ff ), which means that

Ff is visible from v.

⊲ If f ∈ F3(n) \ I, we conclude from γ(Ff ) · z > N that α(Ff ) · v < 0 = α0(Ff ), which

says that Ff is not visible from v.

⊲ Upper facets of C:

⊲ If 0 6∈ f = {s1, . . . , s5}, then it follows from (8.1) and ε < t1 that

γ(Ff ) · z + γ0(Ff ) =

5∏

i=1

(ε − si) < 0,

which in turn implies that

α(Ff ) · v = γ(Ff ) · v = γ(Ff ) · z − N < −γ0(Ff ) − N < −γ0(Ff ) = α0(Ff ).

⊲ If 0 ∈ f , then γ0(Ff ) = 0 and f = {0, 1} ∪ {i, i + 1} ∪ {n} with 2 ≤ i ≤ n − 2. By

inequality (S2) and the definition of ≺, we conclude that necessarily γ(Ff ) · z < N

and

α(Ff ) · v = γ(Ff ) · z − N < 0 = α0(Ff ).

We have verified the inequalities (S4) and completed the proof of Theorem 8.1. ¤

8.5 A shorter proof that squeezed 3-spheres are Hamiltonian

In 1973, Barnette [83] conjectured that all simple 4-polytopes admit a Hamiltonian circuit.

In [35], Hebble and Lee prove that squeezed 3-spheres are (dual) Hamiltonian by explicitly

constructing a Hamiltonian circuit in the dual graph; however, their proof goes through

extensive case analysis. A referee of [74] suggested that it might be possible to obtain a

simpler proof of this result. We followed his or her suggestion and obtained a “proof by

picture” with fewer case distinctions, which moreover only depend on parity conditions.

Theorem 8.8 (Hebble and Lee, 2000 [35]) The dual graphs of Kalai’s 4-polytopes admit a

Hamiltonian circuit. In particular, the (simple) duals of these 4-polytopes satisfy Barnette’s

conjecture.

New proof. Recall from Section 8.1 that the set of facets of S(I) is B(I ′) ∪
(
0 ∗ S(I ′)

)
. We

continue to write (i, j) = {i, i + 1, j, j + 1} for facets of S(I) in B(I ′), and introduce the

notation (i + 1
2 , j) := {0, i + 1, j, j + 1} and (i, j + 1

2 ) := {0, i, i + 1, j + 1} for facets of S(I)

in 0 ∗ S(I ′). Also, recall from Section 8.1 the definition of the order relations ¹ and ⊏, and

number the set G′ of ¹-maximal elements (ik, jk) of B(I ′) in ascending ⊏-order, starting

with k = 1. Finally, define the difference operators ∆jk = jk+1 − jk and ∆ik = ik+1 − ik.

We start our Hamiltonian circuit in the dual graph of S(I) at the facet (i0, j0) = (1, 3) =

{1, 2, 3, 4} ∈ B(I ′). While walking through the other facets of B(I ′), we will also pick up
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the facets of the form (i + 1
2 , j) and (i, j + 1

2 ) with i, j ≥ 1 of S(I ′), and then return to (1, 3)

via the set of facets {(0, j) : 2 ≤ j ≤ n−1}. In our circuit, we repeatedly go through certain

steps, and in the figures we will mark the end of one step and the beginning of the next by a

square. In all steps, if all facets in G′ are processed, go to step Down (and then to Finish).

(1) Over the top: Start at (i0, j0) = (1, 3). If j1 − j0 is odd, continue as in Figure 8.3(a).

If j1 − j0 is even, proceed as in Figure 8.3(b). In both cases, go on until (i1 + 1
2 , j1).

Set k = 1, and go to step Down.

T

i

jj

i1

i1

i2 i2

j1

j1

(i0, j0)

(a) j1 − j0 odd (b) j1 − j0 even

Figure 8.3: Steps Over the top and Down. The circled facet is (i1, j1), the upper ¤ represents

(i1 + 1
2
, j1), and the lower ¤ is (i2 + 1

2
, j1 + 1).

(2) Down: If there are no more generators to be processed, go down along the facets

{(iℓ, jk + 1
2 ) : ℓ = k, k− 1, . . . , 1} and continue with step Finish. Otherwise, if ∆ik > 0,

continue downwards as in Figure 8.3 until (ik+1 + 1
2 , jk + 1). If ik+1 = ik, do nothing.

In both cases, increment k by 1, and continue to step Across.

(3) Across: If ∆jk is even, continue as in Figure 8.4(a). If ∆jk is odd and not 1 and

ik+1 − i0 is even, continue as in Figure 8.4(b); if ∆jk 6= 1 and ik+1 − i0 are both odd,

as in Figure 8.4(c).

If ∆jk = 1 and ∆ik+1 is even, proceed as in Figure 8.5(a), if ∆ik+1 is odd, as in

Figure 8.5(b). In any case, increment k by one, and repeat from step Down or Across

as necessary, depending on whether the facet surrounded by a dashed circle in Figure 8.5

is in G or not.

(4) Finish: Now the only thing left to do is to return to (1, 3) via the set of facets {(0, j) :

n − 1 ≥ j ≥ 2}, as in Figure 8.6.

This completes the proof of Theorem 8.8. ¤
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i0

i0i0

ik+1ik+1 ik+1

jkjkjk jk+1jk+1jk+1

(a) ∆jk even (b) ∆jk odd, ik+1 − i0 odd (c) ∆jk odd, ik+1 − i0 even

Figure 8.4: Step Across in case ∆jk is even. The circled facet is (ik+1, jk+1).

ik+1ik+1

ik+2

ik+2

jkjk jk+1jk+1

(a) ∆ik+1 even (b) ∆ik+1 odd

Figure 8.5: Step Across in case ∆jk = 1. The circled facet is (ik+1, jk+1). Depending on whether

the facet surrounded by a dashed circle in Figure 8.5 is in G or not, the next step will be Down or

Across, respectively.

Figure 8.6: Step Finish.







Chapter 9

Many triangulated 3-spheres

In Chapter 7, we saw that Kalai’s idea [44] for building “many triangulated d-spheres”works

just admirably for d ≥ 4, producing far more combinatorial types of spheres than there can

possibly be types of polytopes. However, it was the content of Theorem 8.1 that for d = 3,

his construction only yields polytopal spheres.

In this chapter we show that there do exist far more combinatorial types of triangulated 3-

spheres than the 2Θ(n log n) types of 4-polytopes guaranteed by (7.1) and [91]. More precisely,

we prove the following theorem:

Theorem 9.1 There are at least

s(3, n) ≥ 2Ω(n5/4)

combinatorially non-isomorphic simplicial 3-spheres on n vertices.

In brief, we prove Theorem 9.1 by producing a cellulation S of S3 with n vertices and

Θ(n5/4) octahedral facets, and triangulating each octahedron independently. The cellula-

tion S is constructed from a Heegaard splitting S3 = H1 ∪ H2 of S3 of high genus (see Sec-

tion 9.3 below) by appropriately subdividing the thickened boundary surface (H1∩H2)×[0, 1].

Remark 9.2 (a) The fact that most of our spheres are combinatorially distinct follows

from their sheer number: There can be at most n! spheres combinatorially isomorphic

to any given one, where n! < nn = 2n log n ≪ 2nc

holds for c > 1.

(b) The only known upper bound for s(3, n) is the rather crude estimate log s(3, n) =

O(n2 log n) obtained from Stanley’s proof of the upper bound theorem for spheres [94].

We assemble the ingredients for our construction in Sections 9.1–9.3, and devote Sec-

tion 9.4 to the proof of Theorem 9.1.

9.1 Heffter’s embedding of the complete graph

In 1898, Heffter [36] constructed remarkable cellulations of closed orientable surfaces:

Proposition 9.3 Let q = 4k + 1 be a prime power, and α be any generator of the cyclic

group ✟ ∗
q of invertible elements of the finite field ✟ q on q elements. Then there exists a

regular but not strongly regular cellulation Cα
q of the closed orientable surface Sg of genus

g = q(q − 5)/4 + 1 with f -vector
(
q,

(
q
2

)
, q

)
, all of whose 2-cells are (q − 1)-gons. Cα

q can be

refined to a strongly regular triangulation T α
q of Sg with f -vector

(
2q,

(
q
2

)
+q(q−1), q(q−1)

)
.
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Proof: There exist infinitely many prime numbers q of the form q = 4k + 1; see [23]. For

any prime power q of this form, take as vertices of the cellulation Cα
q the elements of ✟ q,

and as 2-cells the (q − 1)-gons (compare Figure 9.1, left)

Fα(s) =
{

vα(s, k) = s +
αk − 1

α − 1
: 0 ≤ k ≤ q − 2

}
for s ∈ ✟ q.
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0
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1

4

7
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4
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4

0

Cα
9 : T α

9 :

Figure 9.1: Left: The Heffter cellulation Cα
9 of a surface Sg of genus g = 10 for α = 2x +2 ∈ ✠ 9

∼=
✠ 3[x]/〈x2 + x + 2〉. The vertex z corresponds to 0 ∈ ✠ 9, and vertices labeled i to the element αi.

Note that any two of the q = 9 vertices are adjacent, and that all vertices in any given one of the

9 polygons are distinct. However, the link of every vertex contains identified vertices, and so the

vertex stars are not embedded. Right: After subdividing the surface to the triangulation T α
q using

q new vertices, all stars are embedded disks.

It is straightforward to check (see [36] and [22, Lemma 12]) that this cellulation is regular

(all vertices in each F (s) are distinct), neighborly (any two vertices are connected by an

edge), and closed (any edge is shared by exactly two polygons), but not strongly regular

(any two polygons share q− 2 vertices). An Euler characteristic calculation yields the genus

of the underlying surface Sg of Cα
q . By subdividing each polygon as in Figure 9.1 (right),

the cellulation becomes strongly regular with the stated f -vector. ¤

Remark 9.4 This cellulation was independently obtained in [22] as an abelian covering of

the canonical one-vertex cellulation of Sg.

Remark 9.5 Heffter’s original construction involved only prime numbers. As it turns out,

allowing prime powers becomes necessary for symmetric embeddings: According to Biggs [7],

if the complete graph Kn embeds into a closed orientable surface in a symmetric way (i.e.,

there exists a “rotary” or “chiral” combinatorial automorphism, see [102]), then n is the

power of a prime number, and James & Jones [38] showed that any such embedding of Kn

is actually one from Heffter’s family.
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Remark 9.6 Two cellulations Cα
q and Cβ

q are combinatorially distinct for β 6= α, 1/α ∈ ✟ q:

By [36], the only automorphisms of Cα
q are induced by affine maps ϕ : ✟ q → ✟ q, x 7→ ax+ b

with a ∈ ✟ ∗
q , b ∈ ✟ q. An easy calculation shows that requiring ϕ(vα(s, k + i)) = vβ(t, ℓ + i)

resp. ϕ(vα(s, k + i)) = vβ(t, ℓ − i) for t ∈ ✟ q, 0 ≤ ℓ ≤ q − 2 and i = 0, 1, 2 already implies

β = α resp. β = 1/α.

9.2 The E-construction

Proposition 9.7 [22] Given a cellulation C of a d-dimensional manifold M with boundary

with f -vector (f0, f1, . . . , fd) and f in
d−1 interior ridges, there exists a cellulation E(C) of M

with f0 + fd vertices consisting of f in
d−1 bipyramids and fd−1 − f in

d−1 pyramids.

Proof: Cone a new vertex to the inside of each d-cell F of M to create fd−1 +f in
d−1 pyramids,

then combine each pair of pyramids over the same interior ridge to a bipyramid. ¤

Example 9.8 Let C be a cellulation of a closed orientable surface S with f -vector (f0, f1, f2).

Then applying Proposition 9.7 to C × [0, 1] yields a cellulation of the prism S × [0, 1] with

2f0 + f2 vertices consisting of f1 octahedra and 2f2 pyramids; see Figure 9.2.

−→

Figure 9.2: The E-construction applied to Π = Cα
9 × [0, 1]. Left: Three of the nine prisms of Π.

Right: Three of the 18 octagonal pyramids and two out of
`
9
2

´
octahedra of E(Π).

9.3 Heegaard splittings

Proposition 9.9 (see [99, Section 8.3.2]) For any g ≥ 1, the 3-sphere may be decomposed

into two solid handlebodies S3 = H1∪H2 that are identified along a surface Sg = H1∩H2 of

genus g. Conversely, any 3-manifold can be split into handlebodies H1, H2 and is determined

up to homeomorphism by the images h(m1), . . . , h(m2g) on H2 of the canonical meridians

m1, . . . , m2g of H1 under the identification map h : ∂H1 → ∂H2. ¤

Theorem 9.10 (Lazarus et al. [56, Theorem 1]) Any triangulation T of a closed orientable

surface of genus g with a total of f = f0 + f1 + f2 cells can be refined to a triangulation T̃
with O(fg) vertices that contains representatives of the canonical homology generators in its

1-skeleton. These representatives only intersect in a single vertex, and each one uses O(f)

vertices and edges. ¤
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Figure 9.3: Heegaard splitting of S3 of genus g = 4. The complement of one solid handlebody

in the 3-sphere is the other solid handlebody of the same genus. One copy of each doubled solid

(resp. dashed) homology generator on the upper handlebody H1 is identified with one copy of the

solid (resp. dashed) one on the lower handlebody H2 as indicated by the arrows, and the union of all

copies of the generators induces a cellulation of H1 (resp. H2) into one 3-ball and g solid cylinders.

9.4 Many triangulated 3-spheres

Proof of Theorem 9.1: We build a cellular decomposition S of S3 with n vertices and Θ(n5/4)

octahedral facets from two triangulated handlebodies and a stack of prisms over a Heffter

surface. The theorem then follows by independently triangulating the octahedra.

We begin with a Heegaard splitting S3 = H1 ∪ H2 of S3 of genus g = q(q − 5)/4 + 1 as

in Proposition 9.9, for any prime power q of the form q = 4k + 1 for k ≥ 1. We replace the

boundary Sg = H1∩H2 of the handlebodies by the prism Πg = Sg× [0, 1], pick a generator α

of ✟ ∗
q , and embed a copy of the Heffter triangulation T α

q on Sg × {0} and Sg × {1}.
⊲ The triangulated handlebodies. Use Theorem 9.10 to refine each copy of T α

q to a tri-

angulation of Sg that contains representatives of the canonical homology generators

{ai, bi : 1 ≤ i ≤ g} in its 1-skeleton, such that the ai’s span meridian disks in H1 and the

bi’s do the same in H2. This introduces O(q2g) = O(q4) new vertices. Double all genera-

tors as in Figure 9.3 using another O(q4) vertices to obtain a triangulation T ′ of Sg, and

in each handlebody triangulate the meridian disks spanned by all these polygonal curves

(using a total of O(q2g) triangles, but no new vertices). Then cone the boundary of each

of the 2g solid cylinders bounded by the meridian disks to a new vertex (introducing a

total of O(q2g) tetrahedra), and cone the triangulated boundary of each of the remaining

two 3-balls to another new vertex. This last step uses 2g + 2 new vertices and O(q4)

tetrahedra. The total f -vector of this triangulation T ′′ of H1 ∪ H2 is

f(T ′′) =
(
O(q4), O(q4), O(q4), O(q4)

)
.

⊲ The stack of prisms. Let Cα
q × Im cellulate the manifold with boundary Πg = Sg × [0, 1],

where Im is the subdivision of [0, 1] into m = Θ(q3) closed intervals, and refine each of

Cα
q ×{0} and Cα

q ×{1} into the triangulation T ′. This refined cellulation C is composed of

Θ(q4) prisms over (q−1)-gons and 2q 3-cells whose boundary consists of q−1 4-gons, one

(q−1)-gon, and on average O(q3) triangles that together triangulate another (q−1)-gon.
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H1

H2

C′ Πg

T ′

T ′

T ′

T ′

T ′′

T ′′

Cα
q

Cα
q

... f(C′) =
(
Θ(q4), Θ(q5), Θ(q5), Θ(q5)

)

f(H1) =
(
O(q4), O(q4), O(q4), O(q4)

)

f(H2) =
(
O(q4), O(q4), O(q4), O(q4)

)

Figure 9.4: The thickened Heegaard splitting S3 = H1 ∪ C′ ∪ H2 of S3. Not shown is the triangu-

lation of the handlebodies H1 and H2. Independently triangulating the Θ(n5/4) octahedral 3-cells

of C′ in different ways yields “many triangulated 3-spheres”.

The boundary of C consists of the union of these O(q4) triangles, and the f -vector of C is

f(C) = Θ(q3) ·
(
Θ(q), Θ(q2), Θ(q2), Θ(q)

)
+

(
O(q4), O(q4), O(q4), 0

)

=
(
Θ(q4), Θ(q5), Θ(q5), Θ(q4)

)
.

Apply the E-construction (Proposition 9.7) to C, using Θ(q4) new vertices, to arrive at a

cellulation E(C) of Πg into Θ(q4) simplices (pyramids over the boundary triangles), Θ(q4)

bipyramids over (q − 1)-gons, and Θ(q5) octahedra. Now triangulate the bipyramids by

joining each main diagonal to each edge of the base (q−1)-gon. This cellulation C ′ of Πg

consists of Θ(q5) simplices and Θ(q5) octahedra (Figure 9.4). Its total f -vector is

f(C′) =
(
Θ(q4), Θ(q5), Θ(q5), Θ(q5)

)
.

The desired cellulation of S3 is S = T ′′ ∪ C′. ¤





Chapter 10

Neighborly centrally symmetric fans

10.1 Introduction

A polytope P ⊂ � d is centrally symmetric or a cs-polytope if, after a suitable translation,

P = −P . In view of the existence of neighborly polytopes, a natural question is to ask for the

maximal number of k-faces that a cs-polytope with 2n vertices can have. By convexity, no

face of a d-dimensional cs-polytope with d > 1 can contain two antipodal vertices (i.e., two

vertices v, w with w = −v). Therefore, one modifies the usual definition of neighborliness

and defines a cs-polytope P on n vertices to be k-neighborly centrally symmetric [67] or

k-cs-neighborly if every subset of k vertices of P not containing two antipodal vertices is the

vertex set of a (k−1)-simplex which is a face of P . Equivalently, P = −P is k-cs-neighborly if

fi =

(
n

i + 1

)
2i+1 for all 0 ≤ i ≤ k − 1, (10.1)

where fi counts the number of i-dimensional faces of P . A d-dimensional cs-polytope is

called neighborly centrally symmetric or cs-neighborly if (10.1) holds for k = ⌊d/2⌋.
The d-dimensional cross-polytope with n = 2d vertices is cs-neighborly for all d ≥ 2,

and Grünbaum gave an example for a d-dimensional cs-neighborly cs-polytope P with n =

2d + 2 vertices for all d ≥ 2, namely P = conv{±ei,±1}, where 1 denotes the all-1 vector.

In sharp contrast to these examples, Grünbaum proved in Section 6.4 of his 1967 clas-

sic [31] that there is no convex 4-dimensional cs-neighborly cs-polytope with 12 = 2·4+4 ver-

tices. By reverse induction on the number of vertices, this implies that there exists no

4-dimensional cs-neighborly cs-polytope on n vertices, for all n ≥ 12.

In 1968, McMullen and Shephard [67] gave an analogue of the Gale transform for cen-

trally symmetric point sets. Namely, if P = conv{±x1,±x2, . . . ,±xn} ⊂ � d, take the Gale

transform G∗ = {x∗
1, x

∗
2, . . . , x

∗
n} ⊂ � n−d of {x1, x2, . . . , xn}, and define the cs-Gale trans-

form of P as P ⋄ := G∗∪−G∗. Much as in the usual Gale transform, the combinatorics of P

is encoded via cs-circuits and cs-cocircuits; see Definition 10.6 and Proposition 10.12 below.

Using the cs-Gale transform, McMullen and Shephard investigated cs-polytopes on few

vertices, and proved that a d-dimensional cs-polytope on 2(d+ℓ) vertices can be cs-neighborly

only for ℓ = 0, 1, and is at most ⌊(d + 1)/3⌋-cs-neighborly for ℓ ≥ 2. (Grünbaum’s result is

the case d = 4.)

In 1975, Schneider [86] provided an asymptotic lower bound for the possible cs-neighborli-

ness of cs-polytopes by constructing a family of cs-Gale transforms of k-cs-neighborly cs-
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polytopes. More specifically, he proved that

lim inf
d→∞

k(d, ℓ)

d + ℓ
> 0.239 for all ℓ ≥ 2,

where k(d, ℓ) is the greatest integer k such that there exists a d-dimensional k-cs-neighborly

cs-polytope with 2(d + ℓ) vertices. Compare this with McMullen and Shephard’s result,

which states that k(d, ℓ)/(d + ℓ) < 1/3 for ℓ ≥ 2.

For fixed dimension d, cs-neighborliness is an even more restrictive property: In 1991,

Burton provided a half-page proof [15] that for all dimensions d ≥ 2, there exists an inte-

ger N(d) such that any d-dimensional cs-polytope with more than N(d) vertices is not even

2-cs-neighborly!

We now pass to the larger class of spheres. A centrally symmetric simplicial sphere or cs-

sphere is defined via a combinatorial abstraction of the non-antipodality property, namely,

the vertex set must admit an involution that does not fix any face.

Stanley observed (cf. [39]) that just as the upper bound theorem is valid for spheres [94],

the maximal number of faces of a d-dimensional cs-sphere is the same as that of a (d + 1)-

dimensional cs-polytope. In 1993, Jockusch [39] gave an inductive construction of 3- and

4-dimensional cs-neighborly cs-spheres on n vertices for all even n ≥ 8 resp. n ≥ 10, and

Lutz [60] in 2002 provided an explicit construction for 3-dimensional cs-neighborly cs-spheres

with a transitive cyclic group action on 4m vertices, for all m ≥ 2.

In this chapter, we focus on an intermediate class of objects, namely neighborly centrally

symmetric star-shaped spheres, also called cs-neighborly fans. For this, define a simplicial

cone σ in
� d to be the non-negative hull

σ = cone(v1, v2, . . . , vk) =
{ k∑

i=1

λivi : λi ≥ 0, i = 1, 2, . . . , k
}

of k affinely independent points in
� d, for 0 ≤ k ≤ d. (We set cone(∅) = {0}.) A simplicial

fan is a finite collection Σ = {σj : j ∈ J} of simplicial cones such that the intersection

between any two is contained in Σ, where we can assume that dim lin Σ = d. Cones of

maximal dimension are called facets. A simplicial fan Σ is complete if
⋃

Σ =
� d. By

intersecting a complete simplicial fan with Sd−1, we get a simplicial cell decomposition

of Sd−1, and any simplicial sphere that arises in this way is called a star-shaped simplicial

sphere. The definition of a centrally symmetric star-shaped sphere should now be clear: we

require the defining complete simplicial fan Σ to be centrally symmetric (a cs-fan), i.e., to

satisfy the condition Σ = −Σ. We observe the following hierarchy:

{
cs-polytopes

}
(

{
cs-fans

}
=

{
cs-star-shaped spheres

}
⊆

{
cs-spheres

}

Without the prefix “cs-”, both inclusions are strict in all dimensions d ≥ 3. An example

for the first one is Schönhardt’s polyhedron [87], a well-known non-regular subdivision of a

triangular prism, and to get a non-star-shaped sphere glue together two copies of Barnette’s

sphere [24, Theorem III.5.5].
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In the centrally symmetric case, the first inclusion is seen to be strict by taking the cone C

over some non-regular triangulation of a point set, and completing C ∪ (−C) to a cs-fan.

When we add the adjective“cs-neighborly”, we have seen that the first set is ‘quite small’,

while there exist infinite families in the last one. We take a step towards investigating the

middle set by proving the following theorem.

Theorem 10.1 For all even d ≥ 4 and for all odd d ≥ 11, there are no cs-neighborly

centrally symmetric d-dimensional fans on 2d + 4 rays.

In sharp contrast to polytopes, the combinatorics of a fan is not at all specified by giving

generators for the 1-dimensional rays. Our strategy for proving Theorem 10.1 is to first

calculate the number of facets of a cs-neighborly simplicial sphere (Proposition 10.4); here

we use the fact that the Dehn-Sommerville equations hold for simplicial spheres, so the

number n of vertices already determines the number fS
d−1(d, n) of facets of a cs-neighborly

(d − 1)-dimensional sphere S.

We then use McMullen and Shephard’s [67] technique of centrally symmetric Gale dia-

grams (Section 10.3) to bound from above the number fΣ
d (d, d + 2) of facets of a centrally

symmetric neighborly d-dimensional fan on 2(d+2) rays, and conclude that fS
d−1(d, d+2) >

fΣ
d (d, d + 2) for even d ≥ 4 and odd d ≥ 11.

10.2 The number of facets of a cs-neighborly cs-fan

Proposition 10.2 The number of facets of a (d−1)-dimensional simplicial sphere S whose

f -vector f(S) = (f0, f1, . . . , f⌊d/2⌋, . . . , fd−1) is known up to dimension ⌊d/2⌋ is

fd−1 =





d/2∑

i=0

(−1)d/2+i i

d − i

(
d − i

d/2

)
fi−1 if d is even,

(d−1)/2∑

i=0

(−1)(d−1)/2+i

(
d − i − 1

(d − 1)/2

)
fi−1 if d is odd.

Proof. The h-vector h(S) = (h0, h1, . . . , hd) of S satisfies the Dehn-Sommerville equations

hk = hd−k for k = 0, 1, . . . , d, where

hk =

k∑

i=0

(−1)k+i

(
d − i

d − k

)
fi−1.

We use d − ⌈(d + 1)/2⌉ = ⌊(d − 1)/2⌋, ⌈(d + 1)/2⌉ − 1 = ⌈(d − 1)/2⌉ = ⌊d/2⌋ and Iverson’s
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notation [p], which stands for 1 if the statement p is true and for 0 otherwise. Now

fd−1 = 2

⌊(d−1)/2⌋∑

k=0

hk + hd/2 [d is even]

= 2

⌊(d−1)/2⌋∑

k=0

k∑

i=0

(−1)k+i

(
d − i

d − k

)
fi−1 + hd/2 [d is even]

= 2

⌊(d−1)/2⌋∑

k=0

(−1)ifi−1

⌊(d−1)/2⌋∑

k=i

(−1)k

(
d − i

d − k

)
+ hd/2 [d is even]

= 2

⌊(d−1)/2⌋∑

k=0

(−1)ifi−1

d−i∑

k=⌈(d+1)/2⌉

(−1)d−k

(
d − i

k

)
+ hd/2 [d is even]

We use the identity
∑

k≤m(−1)k
(

r
k

)
= (−1)m

(
r−1
m

)
to simplify the inner sum to

d−i∑

k=⌈(d+1)/2⌉

(−1)d+k

(
d − i

k

)
= 0 − (−1)d

∑

k≤⌈(d+1)/2⌉−1

(−1)k

(
d − i

k

)

= (−1)d−1(−1)⌈(d+1)/2⌉−1

(
d − i − 1

⌈(d + 1)/2⌉ − 1

)

= (−1)⌊(d−1)/2⌋

(
d − i − 1

⌈(d − 1)/2⌉

)
,

and obtain

fd−1 = 2

⌊(d−1)/2⌋∑

k=0

(−1)⌊(d−1)/2⌋+i

(
d − i − 1

⌊d/2⌋

)
fi−1 + hd/2 [d is even],

so the formula for odd d follows. For even d, we finish by calculating

fd−1 = 2

d/2−1∑

k=0

(−1)d/2−1+i

(
d − i − 1

d/2

)
fi−1 +

d/2∑

i=0

(−1)d/2+i

(
d − i

d/2

)
fi−1

=

d/2−1∑

i=0

(−1)d/2+i

[(
d − i

d/2

)
− 2

(
d − i − 1

d/2

)]

︸ ︷︷ ︸
(d−i)!

(d/2)! (d/2−i)!

(
1 − 2 d/2−i

d−i

)

fi−1 + fd/2 (10.2)

=

d/2∑

i=0

(−1)d/2+i i

d − i

(
d − i

d/2

)
fi−1. ¤

To calculate the number of facets of a centrally symmetric neighborly simplicial (d− 1)-

dimensional sphere S on 2n vertices, we need the following identity.
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Lemma 10.3 (Eric Sparla, 1997 [93, Lemma 2.4])

ℓ∑

i=0

(−1)ℓ+i

(
2ℓ − i

ℓ

)(
m

i

)
2i =

(
(m − 1)/2

ℓ

)
22ℓ. (10.3)

Method of Proof. This can be proved either using Zeilberger’s algorithm [71] or by regarding

both sides of the identity as polynomials in m, noting that both have degree ℓ and their

leading coefficients agree, and using the Residue Theorem to check that the left-hand side

vanishes on all ℓ zeros {2j + 1 : j = 0, 1, . . . , ℓ − 1} of the right-hand side. ¤

Proposition 10.4 The number of facets of a centrally symmetric neighborly simplicial

(d − 1)-dimensional sphere S on 2(d + k) vertices is

fS
d−1(d, d + k) =

(⌊d/2⌋+ k/2

⌊d/2⌋

)
2d.

Proof. Since S is neighborly centrally symmetric, fi =
(

d+k
i+1

)
2i+1 for i = −1, 0, . . . , ⌊d/2⌋.

For odd d, substitute (10.3) with ℓ = (d − 1)/2 into the formula of Proposition 10.2. For

even d, we continue the calculation from (10.2):

fd−1 =

d/2∑

i=0

(−1)d/2+i

[(
d − i

d/2

)
− 2

(
d − i − 1

d/2

)] (
d + k

i

)
2i

=

d/2∑

i=0

(−1)d/2+i

(
d − i

d/2

)(
d + k

i

)
2i +

d/2∑

i=0

(−1)d/2+i+1

(
d − i − 1

d/2

)(
d + k

i

)
2i+1.

Using the identity
(
d+k
i−1

)
+

(
d+k

i

)
=

(
d+k+1

i

)
, the second sum equals

d/2+1∑

i=1

(−1)d/2+i

(
d − i

d/2

)(
d + k

i − 1

)
2i =

d/2∑

i=1

(−1)d/2+i

(
d − i

d/2

)(
d + k + 1

i

)
2i −

d/2∑

i=1

(−1)d/2+i

(
d − i

d/2

)(
d + k

i

)
2i,

so by using (10.3) with ℓ = d/2, we obtain

fd−1 = (−1)d/2

(
d

d/2

)
+

(
(d + k)/2

d/2

)
2d − (−1)d/2

(
d

d/2

)
. ¤

10.3 Centrally symmetric Gale diagrams

Definition 10.5 Write [±n] := {±1,±2, . . . ,±n}, and let X = {±x1,±x2, . . . ,±xn} ⊂ � d

be a spanning centrally symmetric point configuration in
� d. Also, set x−i := −xi for i ∈ [n].
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(a) Let [±n] = C+ ∪C0 ∪ (−C+) be a partition of [±n] such that C+ 6= ∅ and C0 = −C0.

Then C = (C+, C0) is a cs-vector of X if there exist λi > 0 for all i ∈ C+ such that∑
i∈C+ λixi = 0. A cs-vector C = (C+, C0) is a cs-circuit of X if C+ 6= ∅ is minimal

with respect to inclusion. In this case, C+ is a minimal positively dependent set of

vectors for some non-trivial linear subspace.

(b) Let [±n] = H+∪H0∪(−H+) be a partition of [±n] such that H+ 6= ∅ and H0 = −H0.

We call H = (H+, H0) a cs-covector of X if there exists an a ∈ � d \ {0} such that

aTxj > 0 resp. aTxk = 0 for all j ∈ H+ resp. k ∈ H0. Equivalently, there is a

linear hyperplane L ⊂ � d such that {xj : j ∈ H+} ⊂ L≥0 and {xk : k ∈ H0} ⊂ L. If

H+ 6= ∅ is minimal with respect to inclusion, then H = (H+, H0) is a cs-cocircuit of X .

In this case, H0 spans a hyperplane.

Definition 10.6 Let X = {±x1,±x2, . . . ,±xn} ⊂ � d be a centrally symmetric point

configuration in
� d, and let X∗

+ = {x∗
1, x

∗
2, . . . , x

∗
n} ⊂ � n−d be the Gale transform of X+ :=

{x1, x2, . . . , xn}. The cs-Gale transform X⋄ of X is X⋄ = X∗
+ ∪ (−X∗

+).

Remark 10.7 (a) The cs-Gale transform of X is well-defined: replacing xi by −xi in the

definition of X+ above amounts to applying a linear transform to X (extend xi to a

basis of
� d), and Gale transforms are only defined up to linear transformations.

(b) The set X+ is in general linear position (i.e., no d vectors of X+ are linearly dependent)

if and only if X∗
+ is in general linear position [67]. Indeed, any non-trivial linear relation

on d or fewer members of X+ could be extended to a basis of
� n. But then at least

n− d elements of X∗
+ would have a zero entry in the same coordinate, a contradiction.

Example 10.8 Let X+ be given by the columns of the matrix
( 1 0 2/3 2/3

0 1 2/3 −2/3

)
. One possible

choice of X∗
+ is then given by the columns of

( 2/3 2/3 −1 0
2/3 −2/3 0 −1

)
, so that we arrive at the

representations of X = ±X+ and X⋄ shown in Figure 10.1.

Proposition 10.9 C = (C+, C0) is a cs-circuit of a centrally symmetric point configura-

tion X if and only if C is a cs-cocircuit of X⋄.

Proof. Choose Y 0 ⊂ [±n] such that C0 = Y 0 ∪ (−Y 0), and set Y := Y 0 ∪C+. Then, in the

notation of Definition 4.3, C′ = (C+, ∅, Y 0) is a non-negative circuit of Y , so by Gale duality

C′ is a non-negative cocircuit of Y ∗. But X⋄ is linearly equivalent to Y ∗ ∪ (−Y ∗), so C is a

cs-cocircuit of X⋄. ¤

Observation 10.10 If a centrally symmetric point configuration X is in linearly general

position and C = (C+, C0) is a cs-circuit of X , then |C+| = d + 1, and |C0| = 2(n − d − 1).

For cs-cocircuits, we have |H+| = n − d + 1, and |H0| = 2(d − 1).

Proof. Each second observation follows by general position; the first is then clear. ¤

Definition 10.11 A subset I ⊂ [±n] is antipode-free if I ∩ (−I) = ∅.
Proposition 10.12 Let X = {±x1,±x2, . . . ,±xn} ⊂ � d be a centrally symmetric set of

points in
� d such that X+ is in linearly general position, let I ⊂ 2[±n] be a collection of

antipode-free index sets such that I is closed under taking subsets, and let Σ = {σI : I ∈ I}
be the family of cones σI = cone(xi : i ∈ I).
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4 2
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−3

−1

1

2−2

1

−1

−3

−2

−4

4

−4 3

Figure 10.1: Left: A centrally symmetric point configuration X of 2 ·4 points in ✄ 2, along with the

cs-vector ({1, 2,−3,−4}, ∅) (dotted) and the cs-circuit ({1, 2,−3}, {4,−4}) (dashed). Right: The

cs-Gale transform X⋄ of X in ✄ 4−2 = ✄ 2, along with the corresponding covector (dotted) and

cocircuit (dashed).

(1) The family Σ is a fan if and only if for all I, J ∈ I with I ∩J = ∅, there exists no linear

hyperplane in
� n−d that strictly separates {xi : i ∈ I} and {xj : j ∈ J}. In other

words,
(
I ∪ (−J)

)
\ H+ 6= ∅ for all I 6= J ∈ I and all cs-cocircuits H⋄ = (H+, H0) of

X⋄.

(2) If there is a cocircuit H⋄ = (H+, H0) of X⋄ and an I ∈ I such that |I| = ⌈d/2⌉ + 1

and I ⊂ H+, then Σ is not cs-neighborly.

(3) If Σ is cs-neighborly, then for all cs-cocircuits H⋄ = (H+, H0) of X⋄ and all I ∈ I with

|I| = ⌈d/2⌉+ 1, we have I \ H+ 6= ∅.
Proof. (1) By [78, Proposition 3.2.2] and our assumption of linearly general position, the

intersection between any two cones in Σ is again contained in Σ if and only the following

condition holds:

relintσI ∩ relintσJ = ∅ for all I, J ∈ I with I ∩ J = ∅. (IP)

The statement follows from the following chain of equivalences:

relintσI ∩ relintσJ 6= ∅ for some I, J ∈ I with I ∩ J = ∅

⇐⇒ there exist λi > 0, µj > 0 such that
∑

i∈I

λixi −
∑

j∈J

µjxj = 0

⇐⇒ C =
(
I ∪ (−J), [±n] \ (±I ∪ ±J)

)
is a cs-circuit of X

⇐⇒ C =: (H+, H0) is a cs-cocircuit of X⋄ with H+ = I ∪ (−J).

(2) Set J := −(H+ \ I). Since |H+| = d + 1 by general position and Observation 10.10,

we know that |J | = ⌊d/2⌋. If Σ is cs-neighborly, then this means that σJ is a face of Σ. Now

I ∪ (−J) = H+ contradicts (IP) via (1).

(3) By (2), for all such H⋄ and I one has G := I \ H+ 6= ∅. ¤
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10.3.1 Centrally symmetric Gale diagrams on few vertices

From now on, let X = {±x1,±x2, . . . ,±xn} be a centrally symmetric 2n-set in
� d such that

X+ is in linearly general position, and take n = d + 2 ≥ 4. The cs-Gale transform X⋄ =

{±x∗
1,±x∗

2, . . . ,±x∗
n} of X then lies in

� 2. As is easily checked (see also [92]), the cs-Gale

transform of the set Xµ = {±µ1x1,±µ2x2, . . . ,±µnxn} is X⋄
µ = {±x∗

1/µ1,±x∗
2/µ2, . . . ,±x∗

n/µn},
so we may suppose that X⋄ ⊂ S1. By our assumptions d ≥ 2 and general position of X+,

we may take X⋄ to be a centrally symmetric set of 2n distinct points on the unit circle.

Definition 10.13 Take X as above. An almost antipodal pair (or aa-pair) is a pair {i, j} ⊂
[±n] such that −x∗

i is the (clockwise) neighbor of x∗
j in X .

Proposition 10.14 (1) P \H+ 6= ∅ for any aa-pair P and any cs-cocircuit H = (H+, H0)

of X .

(2) An antipode-free d-element set F ⊂ [±n] satisfies I \ H+ 6= ∅ for all cs-cocircuits H⋄

of X and all (⌈d/2⌉ + 1)-subsets I of F if and only if F =
⋃d/2

i=1 Pi is the disjoint

union of d/2 aa-pairs Pi in case d is even, or the disjoint union F =
⋃⌊d/2⌋

i=1 Pi ∪ {m} of

⌊d/2⌋ aa-pairs and one additional index m ∈ [±n] if d is odd.

Proof. We again use Iverson’s notation [p]. (1) is clear: If P ∩ H0 = ∅, then |P ∩ H+| =

|P ∩ (−H+)| = 1, otherwise P \ H+ ⊇ P ∩ H0 6= ∅.
For the ‘if’-part of (2), let I ⊂ F be some subset of cardinality ⌈d/2⌉+1. Since ⌈d/2⌉+1 >

⌊d/2⌋+ [d odd], I contains at least one pair Pj , so the assertion follows from (1).

The idea for the other direction is to remove a maximal set of aa-pairs from F , and

find a ‘bad’ cocircuit under the assumption that some points of F are still left over. More

precisely, we prove that if F =
⋃k

i=0 Pi ∪ R such that k is maximum and |R| = 2ℓ + [d odd]

for some ℓ > 0, then we can find a cs-cocircuit H = (H+, H0) and a (⌈d/2⌉ + 1)-subset I

of F such that I ⊂ H+. For this, let XR = {xi ∈ X : i ∈ R} be the points of X indexed

by R, so that ⌊d/2⌋ = k + ℓ. By a standard sweeping argument, XR can be bisected by a

line H passing through the origin. Turn H counter-clockwise around the origin until it hits

a vertex in XR. (If d is odd, H already passes through a vertex in XR; turn H nevertheless.)

Call this position 1, its antipode −1, and the line through them H1, and do the same for all

2 ≤ i ≤ n in counter-clockwise order; cf. Figure 10.2 (left).

The three vertices opposite 1 are not in XR by maximality of k and antipode-freeness,

so one open half-space H−
1 of H1 contains exactly ℓ − 1 points from XR, and the other

ℓ + [d odd] points. We turn H1 one step further to H2, and distinguish the following cases:

(a) If 2,−2 /∈ F , then |H+
2 ∩ F | = k + ℓ + [d odd] + 1 = ⌈d/2⌉ + 1, and we are done by

setting H+ := H+
2 and I := H+

2 ∩ F .

(b) If 2 ∈ F , then −2 /∈ F by non-antipodality, and the same reasoning applies.

(c) If −2 ∈ F , then −2, 3 ∈ F \ R by maximality of k, cf. Figure 10.2 (right). In this

case, we turn H2 two steps further to H4. If −4 /∈ F , we are done as in (a) by

using H4 instead of H2. If −4 ∈ F , we continue this process until for some 5 ≤ i ≤ n

there holds ±i /∈ F . This must happen at some point, since |F | = n − 2, and then

|H+
i ∩ F | = k + ℓ + 1 + [d odd] = ⌈d/2⌉+ 1. ¤
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Figure 10.2: Left: The vertices between the halving line H and the line H1 are empty. If 2,−2 /∈ F ,

then |H+
2 ∩ F | = ⌈d/2⌉ + 1. Right: If −2 ∈ F , proceed until ±i /∈ F for some i.

10.4 No cs-neighborly cs-fans on few rays

This section is devoted to the proof of Theorem 10.1. For d ≥ 2, we model a cs-Gale

diagram X⋄ of the set X of generators of a d-dimensional cs-fan Σ on 2d + 4 rays in the

following way. As in the previous section, we may suppose without loss of generality that

X⋄ ⊂ S1, and draw a diameter δ through S1 that does not pass through any point in X⋄.

We fix a face F of Σ, and color the points of X⋄ corresponding to the generators of F . This

colored subset F ⋄ ⊂ X⋄ is antipode-free because F is antipode-free by assumption, and

therefore at most one point of any centrally symmetric pair ±x∗
i in X⋄ is colored. Note that

if F is a facet of Σ, then |F ⋄| = d, so by antipode-freeness and |X⋄| = 2(d + 2) we conclude

that exactly two antipodal pairs of X⋄ remain uncolored.

We model this situation in the following way, cf. Figure 10.3: There are n = d+2 ‘boxes’

that can be filled either in the ‘high shelf’ or the ‘low shelf’ with a ‘ball’.

1

1
2

2

n

n

−1
−1−2 −2

−n

−n

δ

Figure 10.3: Modeling a cs-Gale transform of a d-dimensional cs-fan Σ on 2d+4 rays by d+2 boxes

that may be filled in the high or low shelf with a ball. If the colored points on the left correspond

to a facet of Σ, then on the right there are two empty boxes.
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Definition 10.15 (a) A box with a ball in the high shelf is called a high box and abbre-

viated by h, one with a ball in the low shelf a low box ℓ. High and low boxes together

comprise filled boxes, a box without a ball is an empty box e. An aa-pair p is an ordered

pair hℓ or ℓh of boxes.

(b) For d ≥ 2, a d-configuration of boxes is an ordered sequence of ⌊d/2⌋ aa-pairs (and one

filled box if d is odd) and 2 empty boxes. Transforming a d-configuration via hσ ↔ σℓ,

ℓσ ↔ σh and eσ ↔ σe, for some ordered sequence σ of boxes, corresponds to different

choices of the diameter δ.

10.4.1 Even dimension

Proposition 10.16 Let d ≥ 2 be even. Then there are exactly

Geven(d) = 2d/2 fd−1

(
Cd(d + 2)

)
= 2d/2

(d

2
+ 1

)2

d-configurations of boxes.

Proof. A d-configuration fulfills Gale’s Evenness Criterion (there is en even number of filled

boxes between the two empty boxes), and there are two choices for filling each of the d/2

aa-boxes. ¤

1 n

−1 −n

Figure 10.4: The partition of X into d/2 aa-boxes and two empty boxes.

Corollary 10.17 By the cs-Gale transform and Proposition 10.14,

fΣ
d−1(d, d + 2) ≤ Geven(d),

where fΣ
d−1(d, d + 2) is the number of facets of a d-dimensional cs-neighborly cs-fan on

2d + 4 rays. ¤

Proof of Theorem 10.1 for even d ≥ 4. Observe that in this case,

fΣ
d−1(d, d + 2) =

(d

2
+ 1

)
2d > Geven(d) for d ≥ 4,

so we are done by Corollary 10.17. Note that fΣ
d−1(2, 4) = 8 = Geven(2). ¤



10.4. NO CS-NEIGHBORLY CS-FANS ON FEW RAYS 111

10.4.2 Odd dimension

In odd dimension d ≥ 3, we have to work a little harder, as not every d-configuration

corresponds to a possible facet of a cs-neighborly cs-fan. Denote by t(C) resp. b(C) the

number of balls on high resp. low shelves of a d-configuration C. Then

|t(C) − b(C)| ∈ {1, 3}, (10.4)

where |t(C) − b(C)| = 3 implies that the diameter δ separates an aa-pair.

Definition 10.18 For odd d ≥ 3, the set Cd
axb consists of the representatives of the following

d-configurations:

f2i e ℓ h f (d−5)/2−2i h h ℓ e, for 0 ≤ i ≤ (d − 5)/2,

where ‘f ’ denotes a filled box. The last ‘ℓ’-box is called the v-box, cf. Figure 10.5.

. . .. . .

a x be1 e2

veven even

Figure 10.5: A typical element of Cd
axb. The letters below the figure will be explained shortly.

Lemma 10.19 No configuration in Cd
axb corresponds to a facet of a d-dimensional cs-

neighborly cs-fan.

Proof. Suppose that C ∈ Cd
axb does correspond to a facet F of such a fan, and denote by Cv

the sequence of boxes obtained from C by replacing the v-box with an empty box. Then the

ridge τ of F that corresponds to Cv must be contained in exactly one other facet. We try

to complete Cv to a different d-configuration C ′ by placing a ball into one of the two empty

boxes e1, e2 different from v. But note the following:

⊲ If we add the new ball to the high shelf of any empty box, then C ′ violates (10.4).

⊲ If e1 remains empty, C ′ is not a d-configuration because it does not contain ⌊d/2⌋ aa-

pairs, and thus violates condition (b) of Definition 10.15.

⊲ If the new ball goes to the bottom of the box e1, this condition is also violated.

This completes the proof. ¤

Definition 10.20 (a) A d-configuration C is called valid if it does not belong to Caxb.

(b) For ℓ ≥ 3, let Wℓ be the set of words of length ℓ in the alphabet A = {a, b, e, x, y},
such that

(1) each w ∈ Wℓ contains exactly two letters e

(2) each w ∈ Wℓ contains exactly one x or exactly one y
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(3) the following words in Wℓ are considered equivalent:

σ xa τ ∼̇ σ bx τ and (10.5)

σ yb τ ∼̇ σ ay τ,

where σ and τ are words in Wi for 0 ≤ i ≤ ℓ − 2. (We define W0 = ∅.)

Proposition 10.21 For odd d ≥ 3, set ℓ := (d − 1)/2 + 3. Then there is a bijection

between the set Cd of d-configurations and Wℓ. Only those words in Wℓ correspond to a

valid d-configuration (and are called valid) that do not contain a σ xb as a subword.

Proof. The dictionary from Cd to Wℓ is given by Figure 10.6.

a xb ey

Figure 10.6: The dictionary between Cd and Wℓ.

The two letters e correspond to the two empty boxes in Cd, the letters a and b to the

possible matchings between balls on adjacent high and low shelves, and the single x or y

to the remaining box. The rules for equivalence are due to the difficulties in translation

depicted in Figure 10.7. For the last statement, cf. Figure 10.5. ¤

a

a

x

xb

by

y

Figure 10.7: The reason for identifying the words σ xa τ ∼̇ σ bx τ and σ yb τ ∼̇ σ ay τ .

Lemma 10.22 (a) There are Iab(k) = 2k words of length k ≥ 0 on the alphabet {a, b}.
(b) The number of equivalence classes of words of length k ≥ 1 on the alphabet A′ :=

{a, b, x} that contain exactly one letter x but no subsequence axb, and such that two

words are equivalent under the rule (10.5), is IA′ (k) = 2k − 1.

Proof. (a) is clear. Given a word w as in (b), we use (10.5) to commute the letter x to

the right as far as possible, so that w is transformed to w′ = x if k = 1, or w′ = σ xb τ if

k > 1, where σ and τ are possibly empty words in A′. Suppose that k > 1 and that the

letter x is at position i counting from the left, with 1 ≤ i ≤ k − 1; then there is a letter b

at position i + 1. Because w contains no subsequence axb, we see that a /∈ σ and therefore

σ = bi−1. This leaves 2k−1−i possible choices for w′, see Figure 10.8 (top).
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x

x

b b b b b b

ki

Figure 10.8: Top: Possible choices for w′. Bottom: One remaining case. In each picture, a shaded

box may be filled with either a or b.

If we can commute x all the way to the end, we may choose either a or b to fill each of

the positions before x, see Figure 10.8 (bottom). The number we are looking for is therefore

IA′(k) =
k−1∑

i=1

2k−1−i + 2k−1 = 2k − 1. ¤

Proposition 10.23 For odd d ≥ 3, there are

Godd(d) = (d − 1)(d + 2) 2(d+1)/2 + 2(d + 2)

d-configurations of boxes.

Proof. We use the bijection from Proposition 10.21, and count the number of valid d-

configurations by counting the number of words in Wℓ, for ℓ = (d − 1)/2 + 3. We will

first count the number Nx(d) of words in Wℓ beginning with e and containing one letter x.

The number of words beginning with e and containing y is the same by symmetry. Then

Godd(d) = 1
2 2 (d + 2)Nx(d) = (d + 2)Nx(d), because by Figure 10.9 there are d + 2 choices

for the position of the first empty box e, and every word is counted twice that way.

e
e

e
e

ee
ee

e
e
e
e

1 d + 2

Figure 10.9: Possible positions of the empty boxes in a sequence of boxes of length d + 2. The

shaded subsequences of odd length k can be filled in IA′(k) ways, and the white ones in Iab(k) ways.

For m ∈ {2, 3, . . . , d + 2}, build a valid sequence of boxes of length d by fixing the first

empty box e in position 1, placing the second empty box in position m, and filling in the

remaining positions with one letter x and (d + 1)/2 letters a, b to create a valid word. Now
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by Figure 10.9,

Nx(d) = 2
∑

1≤k≤d
k odd

IA′

(k + 1

2

)
Iab

(d − k

2

)
= 2

∑

1≤k≤d
k odd

(
2(k+1)/2 − 1

)
2(d−k)/2

= 2
d + 1

2
2(d+1)/2 − 2

(d−1)/2∑

j=0

2j = (d + 1) 2(d+1)/2 − 2
(
2(d+1)/2 − 1

)

= (d − 1) 2(d+1)/2 + 2. ¤

Proof of Theorem 10.1 for odd d. For odd d ≥ 11,

fS
d−1(d, d + 2) =

d − 1

2
2d > Godd(d). ¤

Remark 10.24 The values of fS
d−1(d, d+2), Godd(d) and Geven(d) for small values of d are

d 1 2 3 4 5 6 7 8 9 10 11

fΣ
d−1(d, d + 2) 2 8 16 48 96 256 512 1280 2560 6144 12288

Godd(d) 6 50 238 882 2838 8346

Geven(d) 8 36 128 400 1152 .







Bibliography

Numbers at the end of the entries refer to the page(s) on which these are cited

[1] Manuel Abellanas, Always in first place. vii

[2] Noga Alon, The number of polytopes, configurations and real matroids, Mathematika, 33

(1986), 62–71. Zbl. 0591.05014. 8

[3] Nina Amenta and Günter M. Ziegler, Deformed products and maximal shadows of poly-

topes, in Advances in Discrete and Computational Geometry. Proceedings of the 1996 AMS-

IMS-SIAM joint summer research conference on discrete and computational geometry: ten

years later, South Hadley, MA, USA, July 14–18, 1996, Bernard Chazelle, Jacob E. Good-

man, and Richard Pollack, eds., vol. 223 of Contemporary Mathematics, Amer. Math. Soc.,

Providence, RI, 1999, 57–90. Zbl. 0916.90205. 17, 22, 23

[4] David W. Barnette, Diagrams and Schlegel diagrams, in Combinatorial Structures and

Their Applications, Proc. Calgary Internat. Conference 1969, New York, 1970, Gordon and

Breach, 1–4. Zbl. 0245.52005. 77

[5] , A family of neighborly polytopes, Isr. J. Math., 39 (1981), 127–140. Zbl. 0471.52004.

43, 44

[6] Alexander Below, Complexity of Triangulation, PhD thesis, No. 14672, ETH Zürich, 2002.
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[27] Bernd Gärtner, Jozsef Solymosi, Falk Tschirschnitz, Pavel Valtr, and Emo

Welzl, One line and n points, in Proc. 33rd Ann. ACM Symp. on the Theory of Com-

puting (STOC), 2001, 306–315.

http://www.ti.inf.ethz.ch/ew/research/papers/2001/gstvw-olnp-stoc01.ps . 22, 27,

29

[28] Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky, Discriminants,

Resultants, and Multidimensional Determinants, Birkhäuser, 1994. Zbl. 0827.14036. 67
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Birkhäuser, 2000, 43–73. Zbl. 0960.68182. 8, 64

[42] Michael Joswig, Volker Kaibel, and Friederike Körner, On the k-systems of a simple

polytope, Isr. J. Math., 129 (2002), 109–117. Zbl. pre01760709. 52

[43] Volker Kaibel and Marc E. Pfetsch, Some algorithmic problems in polytope theory,

Tech. report, TU Berlin, February 2002. 25 pages, arXiv:math.CO/0202204. To appear in:

Algebra, Geometry, and Software Systems. M. Joswig and N. Takayama (eds.), Springer. See

also http://www.zib.de/pfetsch/apropo/ . 20

[44] Gil Kalai, Many triangulated spheres, Discrete Comput. Geom., 3 (1988), 1–14.

Zbl. 0631.52009. 8, 77, 79, 83, 84, 95

[45] , A simple way to tell a simple polytope from its graph, J. Comb. Theory, Ser. A, 49

(1988), 381–383. Zbl. 0673.05087. 20

[46] , A subexponential randomized simplex algorithm, in Proc. 24th ACM Symposium on

the Theory of Computing (STOC), ACM Press, 1992, 475–482. 18

[47] Leonid V. Kantorovich, Mathematical Methods of Organising and Planning Production,

Publication House of the Leningrad State University, Leningrad, 1939. English translation:

Management Science 5 (1958–59), 1–4. 6

[48] , My journey in science (proposed report to the Moscow Mathematical Society) (Rus-

sian, English), Russ. Math. Surv., 42 (1987), 233–270. translation from Usp. Mat. Nauk 42,

No. 2(254) (1987), 183–213, Zbl. 0631.01025. 6

[49] Narendra Karmarkar, A new polynomial-time algorithm for linear programming, Combi-

natorica, 4 (1984), 373–395. Zbl. 0557.90065. 6, 18

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0156.43304&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01784794&format=complete
http://www.georgehart.com/virtual-polyhedra/neolithic.html
http://www.ms.uky.edu/~lee/ham.pdf
http://www.emis.de:80/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=JFM%2029.0117.01&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0916.90206&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0584.05028&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0844.52006&format=complete
http://www.math.tu-berlin.de/diskregeom/polymake/
http://www.math.tu-berlin.de/diskregeom/polymake/
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0960.68182&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01760709&format=complete
http://arxiv.org/abs/math.CO/0202204
http://www.zib.de/pfetsch/apropo/
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0631.52009&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0673.05087&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0631.01025&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0557.90065&format=complete


120 BIBLIOGRAPHY

[50] Leonid G. Khachiyan, Polynomial algorithms in linear programming (Russian), Zhurnal

Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 20 (1980), 51–68. Zbl. 0431.90043; En-

glish translation: U.S.S.R. Comput. Math. Math. Phys. 20 (1980), 53–72, Zbl. 0459.90047.

6, 18

[51] Victor Klee, Heights of convex polytopes, J. Math. Anal. Appl., 11 (1965), 176–190.

Zbl. 0133.15904. 18

[52] , Paths on polyhedra II, Pacific J. Math., 17 (1966), 249–262. Zbl. 0141.21303. 7

[53] Victor Klee and Peter Kleinschmidt, The d-step conjecture and its relatives, Math. of

Op. Research, 12 (1987), 718–755. Zbl. 0632.52007. 17

[54] Victor Klee and George J. Minty, How good is the simplex algorithm?, in Inequalities

III, Proc. 3rd Symp., Los Angeles 1969, O. Shisha, ed., Academic Press, New York, 1972,

159–175. Zbl. 0297.90047. 3, 7, 17

[55] Ulrich Kortenkamp, Every simplicial polytope with at most d + 4 vertices is a quotient of

a neighborly polytope, Discrete Comput. Geom., 18 (1997), 455–462. Zbl. 0898.52009. 40

[56] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust, Computing

a canonical polygonal schema of an orientable triangulated surface, in Proc. 17th Ann. ACM

Sympos. Comput. Geom., 2001, 80–89. 97

[57] Carl W. Lee, Subdivisions and triangulations of polytopes, in Handbook of Discrete and

Computational Geometry, CRC Press, 1997, ch. 14, 271–290. 64

[58] , Kalai’s squeezed spheres are shellable, Discrete Comput. Geom., 24 (The Branko Grün-

baum Birthday Issue, 2000), 391–396. 79

[59] Frank H. Lutz, Triangulated manifolds with few vertices and vertex-transitive group actions,

PhD thesis, TU Berlin, 1999. Shaker Verlag, Aachen, Zbl. 0977.57030. 12

[60] , Nearly neighborly centrally symmetric 3-spheres with cyclic group action on 4m vertices.

Preprint, 5 pages, 2002. 9, 102

[61] Tomonari Masada, Hiroshi Imai, and Keiko Imai, Enumeration of regular triangulations,

in Proc. 12th Ann. ACM Sympos. Comput. Geom. (Philadelphia, PA, USA), ACM Press,

1996, 224–233. http://www-imai.is.s.u-tokyo.ac.jp/PAPERS/MasImaIma.ps . 71
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[63] Jiř́ı Matoušek, Micha Sharir, and Emo Welzl, A subexponential bound for linear pro-

gramming, in Proc. Eighth Annual ACM Symp. Computational Geometry, Berlin, 1992, ACM

Press, 1–8. 18

[64] Peter McMullen, The numbers of faces of simplicial polytopes, Isr. J. Math., 9 (1971),

559–570. Zbl. 0209.53701. 7, 8, 18, 19, 78

[65] , The polytope algebra, Adv. Math., 78 (1989), 76–130. Zbl. 0686.52005. 78

[66] , Separation in the polytope algebra, Beitr. Algebra Geom., (1993), 15–30.

Zbl. 0780.52015. 78

[67] Peter McMullen and Geoffrey C. Shephard, Diagrams for centrally symmetric poly-

topes, Mathematika, 2 (1968), 123–138. Zbl. 0167.50902. 9, 101, 103, 106

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0431.90043&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0459.90047&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0133.15904&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0141.21303&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0632.52007&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0297.90047&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0898.52009&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0977.57030&format=complete
http://www-imai.is.s.u-tokyo.ac.jp/PAPERS/MasImaIma.ps
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0209.53701&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0686.52005&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0780.52015&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0167.50902&format=complete


BIBLIOGRAPHY 121

[68] Jed Mihalisin and Victor Klee, Convex and linear orientations of polytopal graphs, Dis-

crete Comput. Geom., 24 (2000), 421–435. Zbl. 0956.05048, doi:10.1007/s004540010046. 20

[69] Theodore S. Motzkin, Comonotone curves and polyhedra, Abstract, Bulletin Amer.

Math. Soc., 63 (1957), 35. 18

[70] Manfred Padberg, Linear Programming, second ed., vol. 12 of Algorithms and Combina-

torics, Springer Verlag, Heidelberg, 1999. 17

[71] Marko Petkovsek, Herbert S. Wilf, and Doron Zeilberger, A = B, A. K. Peters,

1996. Zbl. 0848.05002. 105

[72] Julian Pfeifle, Secondary polytope of a cyclic 8-polytope with 12 vertices. Electronic Geom-

etry Model No. 2000.09.032, 2000. http://www.eg-models.de/, Zbl. pre01682981. 71

[73] , Secondary polytope of the 3-cube. Electronic Geometry Model No. 2000.09.031, 2000.

http://www.eg-models.de/, Zbl. pre01682980. 71

[74] , Kalai’s squeezed 3-spheres are polytopal, Discrete Comput. Geom., 27 (2002), 395–407.

Zbl. 1003.52007, doi:10.1007/s00454-001-0074-3. 9, 80, 83, 90

[75] Julian Pfeifle and Jörg Rambau, Computing triangulations using oriented matroids,

in Algebra, Geometry, and Software Systems, Michael Joswig and Nobuki Takayama, eds.,

Springer, 2003, ch. 3, 49–75. ZIB-preprint 02-02. 63

[76] Konrad Polthier, Samy Khadem-Al-Charieh, Eike Preuß, and Ulrich Reitebuch,

Javaview. http://www-sfb288.math.tu-berlin.de/vgp/javaview/ . 8, 70

[77] Jörg Rambau, TOPCOM—a package for computing Triangulations Of Point Configurations

and Oriented Matroids. http://www.zib.de/rambau/TOPCOM.html . Software under the Gnu

Public Licence. 8, 64

[78] , Polyhedral Subdivisions and Projections of Polytopes, PhD thesis, TU Berlin, 1996.

Shaker Verlag.

See also http://www.zib.de/rambau/Diss/diss_MASTER/diss_MASTER.html . 107

[79] , Topcom: Triangulations of point configurations and oriented matroids, Tech. Report

02-17, ZIB-Report, 2002. Proceedings of the International Congress of Mathematical Software,

to appear. 8, 64

[80] Ulrich Reitebuch, Rhombicosidodecahedron. Electronic Geometry Model No. 2000.09.013,

http://www.eg-models.de. Zbl. pre01683017. 64

[81] , Soccerball. Electronic Geometry Model No. 2000.09.019, http://www.eg-models.de.

Zbl. pre01683023. 3

[82] Jürgen Richter-Gebert, Realization Spaces of Polytopes, LNM 1643, Springer, 1996.

Zbl. 0866.52009. 19, 20

[83] M. Rosenfeld and David Barnette, Hamiltonian circuits in certain prisms, Discrete

Math., 5 (1973), 389–394. Zbl. 0269.05114. 90

[84] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner Deformations of
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Kapitel 11

Zusammenfassung

Teil I dieser Dissertation kreist um die Frage, ob es für jedes n > d ≥ 4 eine lineare Zielfunk-

tion f :
� d → �

und ein d-dimensionales Polytop P mit n Facetten und maximal vielen

Ecken gibt, so dass f auf P einen strikt aufsteigenden Hamiltonpfad induziert.

Diese Frage ist unter anderem motiviert durch die Existenz der Klee-Minty-Würfel : das

sind Polytope vom gleichen kombinatorischen Typ wie ein d-dimensionaler Würfel, die aber

so in
� d realisiert sind, dass es einen strikt aufsteigenden Pfad durch alle 2d Ecken gibt.

Sie sind für die Theorie der linearen Programmierung deswegen interessant, weil sie den

Simplex-Algorithmus mit einigen natürlichen Pivot-Regeln dergestalt in die Irre leiten, dass

er das Optimum erst nach Durchlaufen sämtlicher Ecken des Würfels erreicht.

Nun kennen wir in jeder Dimension d die Polytope mit maximal vielen Ecken, bei gege-

bener Facettenzahl: die polar-nachbarschaftlichen Polytope. Es stellt sich somit die Frage, ob

man für alle n > d ≥ 4 ein polar-nachbarschaftliches d-dimensionales Polytop mit n Facetten

so im
� d realisieren kann, dass es einen strikt aufsteigenden Hamiltonpfad zulässt.

In Dimension d = 4 können wir diese Frage vollständig lösen. In Kapitel 4 betrachten

wir den Graphen G des kleinsten interessanten 4-dimensionalen polar-nachbarschaftlichen

Polytops C4(7)∆, und klassifizieren sämtliche Äquivalenzklassen von G unter Grapheniso-

morphie nach ihrer Realisierbarkeit. In Kapitel 5 realisieren wir dann für jedes n ≥ 5 ein

4-dimensionales polar-nachbarschaftliches Polytop mit n Facetten und der maximal mögli-

chen Anzahl n(n − 3)/2 von Ecken so im
� 4, dass es bezüglich der linearen Zielfunktion

f :
� 4 → �

, x 7→ x4 einen strikt aufsteigenden Hamiltonpfad in seinem Graphen gibt.

In Teil II widmen wir uns mehr kombinatorischen Eigenschaften von Simplizialkomplexen,

insbesondere der Frage nach der Anzahl kombinatorischer Typen von simplizialen Sphären.

Kalai zeigte im Jahr 1988, dass es für alle d ≥ 4 deutlich mehr kombinatorische Typen

d-dimensionaler simplizialer Sphären als Typen von (d + 1)-dimensionalen Polytopen gibt,

konnte diese Frage aber für d = 3 nicht entscheiden.

Wir zeigen in Kapitel 8, dass Kalais Konstruktion für d = 3 sogar ausschließlich polyto-

pale Sphären liefert, indem wir sämtliche Sphären seiner Familie als Randkomplexe simpli-

zialer 4-dimensionaler Polytope realisieren. In Kapitel 9 zeigen wir dann, dass die Antwort

für d = 3 trotzdem dieselbe wie für d ≥ 4 ist: Es gibt tatsächlich viel mehr kombinatorische

Typen von 3-Sphären als von 4-Polytopen! Günter M. Ziegler und ich konstruieren
”
viele

triangulierte 3-Sphären“, indem wir eine Konstruktion von Heffter aus dem Jahr 1898 mit

einer Idee von Eppstein von 2002 kombinieren.

In Kapitel 10 schließlich wird gezeigt, dass es für alle geraden d ≥ 4 und ungeraden d ≥ 11

keine d-dimensionalen zentralsymmetrischen sternförmigen Sphären mit 2d + 4 Ecken gibt.
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