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1 Introduction

The notion that degrees of freedom at different length scales decouple from each other is

a cornerstone of modern physics. In this note, we consider situations where details of the

short-distance physics are unknown, but one is interested in its long-distance effects as

parameterized by effective field theory (EFT) coefficients. In relativistic quantum theories,

it is known that “not anything goes”: if the short-distance physics part is compatible with

causality and unitarity, the low-energy parameters will obey certain inequalities, discussed

notably in [1]. In this paper we explore such inequalities in an effort to carve out the

allowed space of local and unitary EFTs.
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We will consider asymptotically flat space-time, where the S-matrix encodes long-

distance or low-energy observables. We will specifically study a subset of EFT parameters,

denoted gk, captured by 2 → 2 scattering. As will be reviewed below, causality and

unitarity imply dispersive sum rules:

gk =
∑

J

∫ ∞

M2
ds (· · · )k ρJ(s) (1.1)

where the spectral density ρJ(s) (proportional to the imaginary part of the amplitude)

is related to the probability of a high-energy state with angular momentum J to scatter

at energy
√

s > M , and the kernels (· · · )k are given explicitly below and depend on the

particular EFT coefficient gk of interest. The mass M separates “light” and “heavy” states

and can be interpreted as the EFT cutoff in an appropriate scheme. We will be agnostic

about the high-energy sector: our only input will be its compatibility with unitarity and

crossing symmetry. Unitarity, the statement that probabilities should lie between 0 and 1,

will simply mean:

0 ≤ ρJ(s) ≤ 2 . (1.2)

Not all spectral densities that satisfy this inequality are reasonable candidates for the

imaginary part of a scattering amplitude, however. This is because Kramers-Kronig type

dispersion relations can reconstruct amplitudes from ρJ alone, but there is no guarantee

that the outcome satisfies the full crossing symmetry. Crossing-symmetric ρJ(s)’s are or-

thogonal to an infinite set of “null constraints”, which will be a key ingredient of this paper.

For our purposes, classifying causal and unitary EFTs amounts to finding the image,

under the map (1.1), of the set of unitary and crossing-symmetric ρJ(s).

Causality constraints in quantum field theory have been discussed since the inception of

the subject. Many studies were motivated by the phenomenology of the strong force [2]. To

give just a few examples, dispersion relations and sum rules were used in the analysis of low-

energy pion scattering [3–5], and inequalities satisfied by EFT parameters were obtained

using properties of forward amplitudes in [6, 7]. This work aims to explore inequalities on

EFT parameters systematically.

We focus on the simplest example: a single (non-gravitating) real scalar field. Since

we view the EFT cutoff M as much larger than the mass of the light scattered particles,

we take the latter to be massless. On grounds of dimensional analysis, one expects the

coefficient of a (k + d)-dimensional operator in the low-energy effective Lagrangian to scale

like ∼ 1/Mk, possibly further suppressed by a small coupling, but never larger. This

scaling is clearly realized when one integrates out a massive field. The main question to be

addressed is: Can dimensional analysis scaling be justified by rigorous numerical bounds?

Can “accidentally large” EFT coefficients be ruled out?

We will find that the answer is positive, and we present a general framework to nu-

merically obtain the optimal bounds. Furthermore, we will show that much of the shape of

the allowed space, including two kinks, can be understood from simple analytic scattering

amplitudes.

The relation between dimensional analysis scaling and causality resonates with many

previous studies, for example [8–13]. Our new observation will be the seemingly universal

existence of two-sided bounds.
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This paper is organized as follows. In section 2 we review the general principles sat-

isfied by scattering amplitudes, introducing a family of “Bk” sum rules expressing EFT

coefficients as averages over high-energy probabilities. In section 3, we provide a general

numerical optimization strategy to rule-out candidate EFTs by making use of the averaging

technology. In section 4, numerical results are presented along with remarks. Section 5

bridges the numerics with the analytic results. We conclude in section 6 with a discus-

sion about the potential use cases of the numerical framework presented and the further

implications of the numerical results.

Note added: when this manuscript was being completed, the works [14] and then [15]

appeared with partial overlap in the results. The second paper in particular gave a two-

sided bound on the stu interaction which agrees with our eq. (3.6). Further comparisons

will be interesting.

2 Preliminaries: scattering amplitudes and dispersion relations

2.1 Low energy: effective field theory

We consider 2 → 2 scattering of massless identical real scalars in a Poincaré invariant theory

(figure 1). Treating all momenta as incoming, the amplitude is a function of Mandelstam

invariants:

s = −(p1 + p2)2, t = −(p2 + p3)2, u = −(p1 + p3)2 (2.1)

which satisfy s + t + u = 0. By crossing symmetry, it is invariant under all permutations

(this holds with appropriate i0’s in the discontinuity, as further discussed below):

M(s, t) = M(t, s) = M(s, u) = . . . (2.2)

Our first step is to parameterize the amplitude at low energies in terms of a specific effective

field theory. Generally, the form of the amplitude depends on the couplings of the theory.

It becomes particularly simple if the theory is weakly coupled and we restrict ourselves to

the tree approximation. We thus use the tree approximation here and until subsection 2.4

In this case, the amplitude has no low-energy branch-cuts, so the EFT expansion is simply

a series in small s, t, u:

Mlow(s, t) = − g2
[

1

s
+

1

t
+

1

u

]
− λ

+ g2(s2 + t2 + u2) + g3(stu) + g4(s2 + t2 + u2)2 + g5(s2 + t2 + u2)(stu)

+ g6(s2 + t2 + u2)3 + g′
6(stu)2 + g7(s2 + t2 + u2)2(stu) + · · · (2.3)

The first line accounts for φ3 and φ4 relevant interactions, while the remaining terms simply

list the most general symmetric polynomials in s, t, u, to account for higher-dimension oper-

ators in the EFT. The subscript denotes the degree in Mandelstam invariants. Symmetric

polynomials are easy to enumerate since their ring is freely generated by two elements:

s2 + t2 + u2 and stu (given that s + t + u = 0).

– 3 –
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Figure 1. The 2 → 2 scattering process studied in this paper. For different choices of four-

momenta, time can flow either horizontally or vertically (or diagonally).

A short exercise shows that the preceding amplitude is obtained from the following

effective Lagrangian in the tree approximation:

Llow = − 1

2
(∂µφ)2 − g

3!
φ3 − λ

4!
φ4

+
g2

2

[
(∂µφ)2]2 +

g3

3
(∂µ∂νφ)2(∂σφ)2 + 4g4

[
(∂µ∂νφ)2]2 + · · ·

(2.4)

As is well known, Lagrangian densities are not unique: they are defined modulo integration-

by-parts and field redefinitions. One can cast any effective Lagrangian for a real scalar field

into the form (2.4) by using field redefinitions to eliminate, order by order in the derivative

expansion, corrections to the kinetic and cubic terms as well as appearances of ∂2φ. See

for example [16] for a discussion in the Standard Model context. The amplitude (2.3) is a

physical observable unaffected by such ambiguities, which is why we choose to parameterize

the coefficients in terms of it.

Our goal is to constrain the EFT parameters gk assuming existence of an high-energy

completion which is causal and unitary, but not necessarily weakly coupled. Low-energy

interactions involving five or more powers of φ will not be constrained by our methods, since

they are not detected by (tree-level) 2 → 2 scattering. When low-energy loop corrections

are included, the detailed form of eq. (2.3) will be modified, but we do not expect the

number of independent EFT parameters that we can constrain to increase. A precise

definition of the gk’s that remains valid in the presence of low-energy loop corrections is

given in eq. (2.18) below.

2.2 High energy: partial wave decomposition

At high energies, we will be agnostic about the form of the amplitude except for the

assumption that it is causal and unitary. We follow the general framework of S-matrix

theory, as reviewed for example in [2]. Let us begin with unitarity of the S-matrix, which

is formally that: S†S = 1, where S = 1 + iM. More precisely, one picks a physical region,

say where s > 0 is interpreted as center-of-mass energy squared, and −s < t < 0 gives the

momentum transfer (squared); the scattering angle is

cos θ = 1 +
2t

s
. (2.5)
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The scattering operator is a convolution with respect to angles, which is diagonalized by

going to a basis of angular momentum partial waves. The unitarity condition is thus

simplest to state in this basis (our conventions follow [17]):

M(s, t) =
∑

J even

n
(d)
J fJ(s)PJ

(
1 +

2t

s

)
, n

(d)
J =

(4π)
d
2 (d + 2J − 3)Γ(d + J − 3)

πΓ
(

d−2
2

)
Γ(J + 1)

, (2.6)

where d is the space-time dimensions and PJ(x) are the d-dimensional version of Legendre

polynomials (which appear in the d = 4 case):

PJ(x) ≡ 2F1

(
−J, J + d − 3,

d − 2

2
,
1 − x

2

)
. (2.7)

Details of the specific scattering process are encoded in the coefficients fJ(s). In this

normalization convention, unitarity of the elastic amplitude of identical real particles is [17]:

∣∣SJ(s)
∣∣ ≤ 1, SJ(s) ≡ 1 + is

d−4
2 fJ(s) . (2.8)

The elastic amplitude SJ can have absolute value less than unity due to inelastic processes.

We will only need the imaginary part of the high-energy amplitude. Defining the spectral

density ρJ(s) = s
d−4

2 Im fJ(s), it can thus be written as

Im M(s, t) = s
4−d

2

∑

J even

n
(d)
J ρJ(s)PJ

(
1 +

2t

s

)
(2.9)

where the unitarity constraint is

0 ≤ ρJ(s) ≤ 2 ∀s > 0, ∀J even . (2.10)

The normalization is such that ρJ = 1 for complete absorption (SJ = 0), and ρJ = 2 for

an elastic phase shift π. For the most part (except for subsection 3.5) we will only use the

first inequality: 0 ≤ ρJ(s).

2.3 Dispersion relations

The other key ingredient from S-matrix theory is the connection between low and high ener-

gies, which stems from analyticity. More precisely, we will use the following two properties

of the amplitude:

1. For fixed t < 0 and |s| sufficiently large, M(s, t) is analytic in s away from the

real axis.

2. For fixed t < 0, lim|s|→∞

∣∣∣M(s,t)
s2

∣∣∣ = 0 along any line of constant phase.

Physically, these conditions combine causality and unitarity. For an elementary explanation

of their respective significance, we refer to the signal propagation model in appendix D of [8],

where it is explained that propagation of a signal through a black box is causal if and only if

the corresponding transfer function S(ω) is analytic in the upper-half frequency plane (with

sub-exponential growth), and that |S(ω)|2 ≤ 1 throughout the upper-half-plane if the box

– 5 –
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Figure 2. Analyticity in the upper-half-plane relates the s-channel amplitude and the complex

conjugate (anti-time-ordered) u-channel amplitude. Note that the s- and u-channel cuts overlap in

the physical region where t < 0, which is not a problem since the crossing path avoids small |s|.

furthermore preserves the squared-norm of signals. These are general facts about Fourier

transforms. The original physical derivation of crossing symmetry [18] applies these facts

to the expectation value of a retarded commutator in one-particle state. Schematically,

one considers

〈p4| [φ(x3), φ(x2)]θ(x0
3 − x0

2) |p1〉, (2.11)

which vanishes outside the forward light-cone rendering its Fourier transform analytic in

the upper-half s-plane (intuitively, one uses that s is linear in right-moving light-cone

momentum), at least for large enough |s|. Its boundary values on the real axis unite the

s-channel amplitude and the complex conjugate of the u-channel amplitude, see figure 2.

This is the traditional understanding of crossing symmetry within the axiomatic the-

ory [19]. The boundedness property, in particular including the extra factor of 1/s2 com-

pared with the signal model, will be critical for us. We believe it can be justified physically

by directly analyzing the transverse Fourier transform [20]. As far as we understand, prop-

erties 1-2 are theorems in axiomatic quantum field theory, for example in the context of

pion scattering [21, 22]; we take them as axioms embodying causality and unitarity.

The two properties assumed above amount to the existence of twice-subtracted disper-

sion relations. Let us derive such dispersion relations explicitly. The starting point is that

an integral over a large circle vanishes:

∮

∞

ds′

2πi(s′ − s)

M(s′, t)

(s′ − s1)(s′ − s2)
= 0 (2.12)

where s1 and s2 are arbitrary subtraction points. For large enough s′, the integrand

behaves like ∼ M(s′, t)/s′3, and so the integral vanishes thanks to property 2. Typically,

one would formally treat all of s, s1 and s2 as non-real and deform the contour toward the

real axis. Summing the three explicit poles and cuts then relates M(s, t) to its value at two

subtraction points plus an integral over the discontinuity of M across the real axis [23].

For our purposes it is convenient to instead treat the subtraction poles as part of the

real-axis cuts. We choose s1 = 0 and s2 = −t to maintain the symmetry between the s and

u channels without introducing any new energy scale into the problem. The identity (2.12)

– 6 –
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Im
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s

Figure 3. Contour deformation which gives the sum rule (2.14) when low-energy loops are

neglected: the integral over arcs at infinity vanishes, thus relating low-energy data and heavy cuts.

then relates the residue at s′ = s with a discontinuity:

M(s, t)

s(s + t)
=

∫ ∞

−∞

ds′

π(s′ − s)
Im

[ M(s′, t)

s′(s′ + t)

]
(t < 0, s /∈ R), (2.13)

where we have written the discontinuity as an imaginary since the amplitude on the “wrong

side of the cut” is its complex conjugate; technically Im f(s) ≡ 1
2i

[
f(s + i0) − f(s − i0)

]
.

We call eq. (2.13) a twice-subtracted dispersion relation because of the two powers of s′

added to the denominator.

Let us see how this works in the simplest situation considered in eq. (2.3), where low-

energy loops are neglected. Then branch cuts can only start at the UV cutoff M2. The

right-hand-side of eq. (2.13) then contains low-energy poles at s = 0 and s = −t (due

both to the denominator in eq. (2.13) and poles in the amplitude), and high-energy cuts

at s > M2 and s < −M2 − t. Separating low and high energies gives a relation:

Mlow(s, t)

s(s + t)
+ Res

s′=0,−t

[
1

s′ − s

Mlow(s′, t)

s′(s′ + t)

]

=

∫ ∞

M2

ds′

π

(
1

s′ − s
+

1

s′ + s + t

)
Im

[Mhigh(s′, t)

s′(s′ + t)

]
.

(2.14)

We used s ↔ u symmetry to combine the left and right cuts. This relation is supposed to

converge for any s, t with u < 0. Interestingly, plugging in the EFT expansion eq. (2.3) for

Mlow, one finds that both the spin-0 exchange diagram g2 and spin-0 contact interaction

λ cancel out, and what remains is pole-free (this could have been anticipated from the

fact that the three residues on the left combine into a single contour over a large circle).

On the right-hand-side we insert the partial wave expansion (2.9). It is useful to define

heavy averages:

〈
F (m2, J)

〉
≡

∑

J even

n
(d)
J

∫ ∞

M2

dm2

π

m4−d

m2
ρJ(m2)

[
F (m2, J)

]
. (2.15)

Eq. (2.14) becomes, for t < 0:

2g2 − tg3 + 4
(
2t2 + s(s + t)

)
g4 + . . . =

〈
2m2 + t

(m2 − s)(m2 + s + t)

PJ(1 + 2t
m2 )

m2(m2 + t)

〉
. (2.16)

– 7 –
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The averaging symbol denotes a (non-normalized) positive sum over heavy states with

mass m > M . All the results in this paper follow from Taylor-expanding both sides in s

and t and using positivity of the measure 〈· · · 〉. It will be useful (though non-essential) to

re-organize a bit.

2.4 The Bk(t) family of sum rules

It is easy to see that the Taylor expansion of both sides of eq. (2.16) maintains the symmetry

under s → −s − t, and therefore only even powers of s carry information. More precisely,

for each even integer k the coefficient of [s(s+ t)]k/2−1 gives a one-parameter family of sum

rules parameterized by t, which we call Bk(t). It can be computed by taking the s → 0

limit in eq. (2.12):

Bk(t) ≡
∮

∞

ds

2πi

1

s

M(s, t)
[
s(s + t)

]k/2
= 0 (t < 0, k = 2, 4, . . .) . (2.17)

This is similar to moment sum rules
∮

∞
ds

sk+1 M(s, t) which have been used since times

immemorial. Here we have simply re-organized using the s ↔ u symmetry of our prob-

lem to eliminate odd moments.1 The subscript indicates that Bk enjoys the high-energy

convergence of a k-subtracted dispersion relation.

A closely related basis of sum rules was introduced recently for conformal field theory

correlators [24] (see also [25]). For holographic theories, the Mellin-space form of the sum

rule, called B̂k,t (see eq. (4.54) and section 4.8 there), precisely reduces in the flat space

limit to our current Bk(t). In this context, convergence for k ≥ 2 is a consequence of the

known boundedness of conformal correlators in the Regge limit.

For massless scattering, the low-energy s- and u-channel cuts of M(s, t) generally

overlap as shown in figure 2. It is important that eq. (2.17) can be computed without going

between the cuts. We simply deform the contour to pick heavy branch cuts at s > M2 and

u > M2, and keep the rest as large arcs with |s| ∼ M2, the EFT cutoff, see figure 4. This

gives a relation between physics at the scale M and that at higher-energies:

Bk :

∮

|s|≈M2

ds

2πi

1

s

M(s, t)
[
s(s + t)

]k/2
=

〈
2m2 + t

m2 + t

P(d)
J

(
1 + 2t

m2

)

[
m2(m2 + t)

]k/2

〉
(t < 0, k = 2, 4, . . .) .

(2.18)

This equation is valid even when EFT loops are included. The idea is to choose the EFT

cutoff M such that loop corrections in the low-energy EFT are under control over the

arcs with |s| ≈ M2. Eq. (2.18) thus equates an EFT-computable left-hand-side, with a

high-energy average that enjoys positivity properties.

The specific relation between the left-hand-side and EFT coefficients will depend on

EFT interactions. For concreteness let us thus focus again on the case where EFT loops

are neglected. The left-hand-side is then just the sum of residues at s = 0 and s = −t; by

1The identity:
∮

∞

ds
2πi

1
s

[
s(s + t)

](k−k′)/2
= δk,k′ shows that eq. (2.17) indeed extracts the coefficient of

[s(s + t)]k/2 in Mlow.

– 8 –
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Figure 4. Integration contour to be used when low-energy loops are included; the integral vanishes

as it is equivalent to arcs at infinity. This relates high-energy cuts at s > M2 and u > M2 with

EFT-computable data near the EFT cutoff |s| ∼ M2.

symmetry, we can replace 1
s by

(
1
s − 1

s+t

)
and include a single pole, and the Bk sum rules

becomes:

Bk : Res
s=0


 2s + t

s(s + t)

Mlow(s, t)
[
s(s + t)

]k/2


 =

〈
2m2 + t

m2 + t

P(d)
J

(
1 + 2t

m2

)

[
m2(m2 + t)

]k/2

〉
(t < 0, k = 2, 4, . . .) .

(2.19)

This simplification of eq. (2.18) is only valid when neglecting EFT loops.

Let us record the first few two instances explicitly:

B2 : 2g2 − g3t + 8g4t2 + . . . =

〈(
2m2 + t

)PJ

(
1 + 2t

m2

)

m2 (m2 + t)2

〉
, (2.20)

B4 : 4g4 + . . . =

〈(
2m2 + t

)PJ

(
1 + 2t

m2

)

m4 (m2 + t)3

〉
. (2.21)

The left-hand side has a regular series in t, and the right-hand side involves Gegenbauers

PJ(1 + 2t
m2 ), which can be straightforwardly expanded at small t ≪ M2 using eq. (2.7) .

Recall that averages are taken over heavy states with m ≥ M . Matching both sides order

by order in t generates a linear system in gn’s:

g2 =

〈
1

m4

〉
, g3 =

〈
3 − 4

d−2J 2

m6

〉
, g4 =

〈
1

2m8

〉
,

g4 =

〈
1 + 4−5d

2d(d−2)J 2 + 1
d(d−2)J 4

2m8

〉
.

(2.22)

We introduced the spin Casimir J 2 = J(J +d−3) for convenience. Note that we truncated

Mlow to order g4, but it is possible to work to higher orders and generate linear relations

on couplings such as g5 and so on.

The averaging notation immediately shows that g2, g4 > 0 since they are high-energy

averages of positive quantities 1
m4 and 1

2m8 , respectively. Furthermore, the inequalities

g3 ≤ 3g2

M2 and g4 ≤ g2

2M4 also follow readily since m ≥ M inside the average. In contrast,

the sign of g3 is not immediate due to the presence of spinning particles – the magnitude

– 9 –
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Figure 5. The null constraint m8n4(m2, J), which is a function of only J . It vanishes at J = 0,

is negative at J = 2, but positive at J = 4, 6, . . . , and thus balances spin-two against higher-spin

states. The sign change in various space-time dimensions (at Jcritical = 1
2 (3 − d +

√
d(d + 4) + 1))

is always situated between 2 < J < 3.

of J 2 requires a deeper investigation. This difficulty was noted in attempted proofs of the

six-dimensional a-theorem [26].

The key to calculating a lower bound for g3 will be the existence of two distinct averages

that output g4. Equating them yields the first example of what turns out to be an infinite

set of null constraints:

0 =
〈
n4(m2, J)

〉
, n4(m2, J) ≡ J 2

(
2J 2 − (5d − 4)

)

m8
. (2.23)

This is a constraint on the probabilities ρJ(s) which define the average 〈·〉. The subscript

indicates the degree in 1/m2. Physically this stems from crossing symmetry – since there

is a unique symmetric polynomial at degree 4, the coefficients of s2t2 and s4 must be

related. There are no lower-degree examples of this phenomenon: monomials with fewer

than two powers of s are killed by any double-subtracted sum rule, and odd powers of s

are information-free since fixed-t dispersion relations preserve the s ↔ −s − t symmetry of

our problem.

Null constraints such as eq. (2.23) will be central to this work. They balance spin-two

states against higher spin states: as visible from figure 5, the average vanishes for spin 0, is

negative for spin 2, and positive for all other spins. This implies that, as soon as one particle

of spin 2 is present, higher-spin particles must also be present, with predictable properties.

(Spin two particles are singled out by the physical assumption that double-subtracted sum

rule converges.)
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3 Optimization framework

The Bk sum rules just introduced, coupled with positivity of high-energy averages 〈·〉
provide a complete apparatus to establish potent self-consistency conditions on EFT coef-

ficients gk’s (defined in eq. (2.3)). We recall our physical assumptions:

• Double-subtracted dispersion relations converge

• The low-energy amplitude is crossing symmetric

• The high-energy spectral density is positive

Since we are considering averages over heavy states (with m > M), the coefficients (except

in subsection 3.5) are naturally normalized by g2 and the EFT cutoff M . We will therefore

be bounding dimensionless ratios:

g̃3 = g3
M2

g2
, g̃4 = g4

M4

g2
, g̃5 = g5

M6

g2
, . . . (3.1)

Optimal bounds on these g̃k’s will be found by formulating a dual problem, in which we

combine the desired averages (such as 2.18) with null constraints (such as eq. (2.23))

to obtain sign-definite sum rules. We first describe a simple example analytically, then

describe a systematic implementation as a semi-definite problem amenable to publicly

available software like SDPB [27].

3.1 Warm-up problem with three sum rules

As a warm-up, let us ask whether it is possible to lower-bound the g̃3 coefficient using the

B2, B4 sum rules previously calculated. We consider the corresponding system of three

equations from (2.22) (including the null constraint obtained via g4 data):

g2 =

〈
1

m4

〉
, g3 =

〈
3 − 4

d−2J 2

m6

〉
, 0 =

〈
J 2(2J 2 − 5d + 4)

m8

〉
. (3.2)

With these definitions, let us examine a similar, but simpler set of relations:

h2 =

〈
1

m4

〉
, h3 =

〈
a − J 2

m6

〉
, 0 =

〈
J 4 − bJ 2

m8

〉
≡
〈
n(m2, J)

〉
. (3.3)

These relations take on the same form as original identities when a = 3(d−2)
4 , b = 5d−4

2

and the coupling is rescaled to g3 = 4
d−2h3. Consequently, our warm-up problem is to

lower-bound h3.

What makes a finite lower bound plausible is that the null constraint (the third equa-

tion) should somehow prevent large spins from contributing too much. This is an important

point: the allowed range for g̃3 is restricted by higher derivative crossing equations!

We now calculate a lower bound in two ways. The first – and simplest – method is to

use the Cauchy-Schwarz inequality with the null constraint:

〈
J 2

m6

〉2

≤
〈

1

m4

〉〈J 4

m8

〉
= b

〈
1

m4

〉〈J 2

m8

〉
. (3.4)
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Then, using the fact that m > M and J 2 ≥ 0 inside the average yields
〈

J 2

m8

〉
≤ 1

M2

〈
J 2

m6

〉
,

and by dividing both sides by that average, we obtain an upper-bound on
〈

J 2

m6

〉
as desired:

〈
J 2

m6

〉
≤ b

M2

〈
1

m4

〉
⇒ h3 ≥ − b

M2
h2 . (3.5)

This has a simple physical interpretation: if we define an impact parameter b̃ = 2J
m , then

we have effectively shown that heavy states can’t contribute at impact parameters much

larger than ∼ 1/M . In terms of the original problem (3.2), we have shown that

− 2(5d − 4)

d − 2
≤ g3M2

g2
≤ 3 . (3.6)

This shows the existence of two-sided bounds for generic couplings. This is an important

qualitative result, to our knowledge originally emphasized in [11, 12]: ratios of EFT cou-

plings, in units of the cutoff scale M , must be O(1) numbers. Numerically, however, the

Cauchy-Schwarz method does not yield the optimal lower bound.

In contrast, the second – and more powerful – method is re-interpret the above task

as a semi-definite problem, in order to systematically search for optimal bounds. Denote

hi(m
2, J) the function whose average gives hi. The idea is to construct positive-definite

combinations of the three averages in eq. (3.3):

F (m2, J) ≡ h3(m2, J) + αh2(m2, J) + βn(m2, J)

=
a − J 2

m6
+

α

m4
+ β

J 4 − bJ 2

m8
,

(3.7)

where we must find α, β such that F (m2, J) ≥ 0 for all J = 0, 2, 4 . . . and m ≥ M . Taking

the average of any such F then proves h3 ≥ −αh2. The optimal bound will come from a

non-negative F with minimal α.

Let us first reproduce the first Cauchy-Schwarz argument in this language, which

should give α = b
M2 . Assume β > 0. The argument amounts to completing squares in the

J 4/m8 term:

F (m2, J) =
α − βλ2

m4
+

a

m6
+

J 2

m6
(2βλ − 1) − βb

J 2

m8
+ β

1

m4

(
J 2

m2
− λ

)2

︸ ︷︷ ︸
positive

. (3.8)

For any λ this is an identical rewriting of eq. (3.7), and the Cauchy-Schwartz-like method

is to choose λ, β such that the other terms are positive as well. From the limit J → ∞,

the terms with J 2 need to give a positive functions of m, which imposes that (2βλ − 1 −
βb/M2) ≥ 0. To minimize α we must minimize βλ2; we find that the minimum saturates

the inequality, and is simply β = M2/b with βλ = 1. With this choice, our trial functional

becomes

F (m2, J) =
α − b

M2

m4
+

a

m6
+

J 2

m6

(
1

M2
− 1

m2

)
+

M2

bm4

(
J 2

m2
− b

M2

)2

︸ ︷︷ ︸
positive

. (3.9)
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The minimal α for which the first terms are positive for all m2 is then α = b
M2 , precisely

as anticipated! We have thus exhibited a positive functional F which proves the Cauchy-

Schwarz bound in (3.5).

It is now easy to see why this bound is not optimal: F doesn’t need to be expressible

as a sum of three separately positive parts!

In d = 4, for example, the above argument gives −16 ≤ g̃3. In comparison, using

the numerical search strategy detailed in the next subsections, we find that the following

combination is positive for all J = 0, 2, 4 . . . and m ≥ M :

0 ≤ F (m2, J) =




10.61249

1

0.0671875


 ·




g2(m2, J)

M2g3(m2, J)

M4n4(m2, J)


 . (3.10)

This allows to infer, by taking the average of this inequality, that

−10.61249 ≤ g̃3 . (3.11)

This is significantly stronger than −16 ≤ g̃3 that we just derived in an ad hoc manner.

How can we understand the solution (3.10) analytically? They key ingredient will be that

spins J are discrete, whereas our ad hoc bound treated J ’s as continuous parameter.

We now calculate this bound analytically. Let us return to the functional ansatz (3.7)

and try to directly constrain the unknowns α, β. Putting J = 0 we only deduce α ≥ 0.

Putting J = 2, 4 . . . gives a sequence of quadratic polynomials in (m2 − M2), each with

positive curvature. Such polynomials are non-negative if the two roots are negative, or

if both roots are positive and equal, or if they are complex conjugate pairs. It seems

virtually impossible to guess a priori which case is realized, however this information is

readily gleaned by plotting the numerical polynomials (3.10), as shown in figure 6. We see

that the J = 2, 4 inequalities are both saturated: the former by having a root at m2 = M2,

and the latter by having a positive double root (i.e. vanishing discriminant).

These two saturated inequalities give algebraic equations that may be solved analyti-

cally; this determines the vector (α∗, 1, β∗) in eq. (3.10) to be:

α∗ =
5d − 2 +

√
(d+3)(319d3+76d2−292d+32)

6(d+1)(d+4)

2(d − 2)
, β∗ =

1

2d(d − 1)

(
α∗ − 5d − 2

d − 2

)
. (3.12)

In d = 4, this gives α∗ = 9
2 + 7

4

√
61
5 ≈ 10.61249 . . . precisely as found numerically! This

result showcases the use of numerics to guide our analytical understanding. Moreover, the

preceding formula can be shown to give the correct optimal lower bound on g̃3 in any d ≥ 3,

when including the single null constraint n4. (When we add more equations below, the

d = 4 bound will converge to g̃3 ≥ −10.346.)

3.2 Dual problem: general formulation

We now introduce the general “dual” optimization problem which allows to carve out the

space of EFT coefficients g̃3, g̃4, g̃5, . . . allowed by unitarity and positivity.

The data at our disposal comes from the Bk sum-rules in eq. (2.19):
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Figure 6. The non-negative function F (m2, J) returned by SDPB when maximizing the lower

bound for g̃3. The spin 4 curve is particularly enlightening because it features a double root.

1. Representative averages gk(m2, J) which measure each “desired” gk:

g2 =
〈
g2(m2, J)

〉
, g3 =

〈
g3(m2, J)

〉
, g4 =

〈
g4(m2, J)

〉
, · · · (3.13)

2. A set of null functions ni(m
2, J) whose heavy averages vanish:

0 =
〈
n4(m2, J)

〉
=
〈
n5(m2, J)

〉
=
〈
n6(m2, J)

〉
= . . . (3.14)

First consider the problem of lower-bounding g3, given g2, but being agnostic about the

other gk’s with k ≥ 4. Define a vector of functions which combines g2, g3 and null con-

straints:

v(m2, J) ≡ (
g2(m2, J), M2g3(m2, J), n4(m2, J), n5(m2, J), . . .

)
. (3.15)

The following (“dual”) optimization problem then determines a lower bound on g3:





maximize: A

subject to: 0 ≤ (−A, 1, c4, c5, . . .
) · v(m2, J) ∀ m ≥ M, ∀J = 0, 2, 4, . . .

(3.16)

Here we are maximizing over A and all possible linear combinations ci of the null constraints

ni(m
2, J). Having found such a linear combination ci and an optimal number A, it readily

follows from linearity and positivity of 〈·〉 that

0 ≤ −Ag2 + M2g3 + 0, (3.17)
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allowing the desired optimal bound on g̃3 to be inferred:

A ≤ g̃3. (3.18)

This equation motivates the maximization of A. Alternatively, to find an optimal upper

bound B, it is enough to consider the analogous problem:




minimize: B

subject to: 0 ≤ (
B, −1, c4, c5, . . .

) · v(m2, J) ∀ m ≥ M, ∀J = 0, 2, 4, . . .
(3.19)

It then follows that g̃3 ≤ B. Taking the intersection of these two sets yields a convex region

defined by

A ≤ g̃3 ≤ B. (3.20)

These are the inequalities inferred on g̃3 from data in the Bk sum-rules.

In theory, the null constraints ni are part of an infinite dimensional vector space, but

for numerical purposes, the dimensionality is taken to be finite and determined by the

truncation order of the low-energy expansion Mlow. We will find that the optimal bounds

converge rapidly as the maximal degree is increased.

This problem can be readily adapted if we are given additional assumptions. For

example, to make exclusion plots in the (g̃3, g̃4) plane, one strategy is to postulate some

value of g̃
(0)
3 in the allowed range, and for each value we determine lower and upper bounds

on g̃4. The vector v in eq. (3.15) then acquires an extra g4 row:

v 7→ (
g2, M2g3, M4g4, n4, n5, . . .

)
. (3.21)

Imposing positivity of
(−A, −B, 1, c4, c5, . . .

) ·v(m, J) for all m and J yields a lower bound

g̃4 ≥ A+Bg̃
(0)
3 , for example. In fact, since the EFT parameters enter linearly, the resulting

inequality automatically carves out a half-space in the (g̃3, g̃4)-plane:

g̃4 − Bg̃3 ≥ A. (3.22)

This half-plane is tangent to the allowed region at g̃3 = g̃
(0)
3 . If this process is repeated for

distinct g̃
(0)
3 , a collection of planes is rapidly generated from which it is possible to carve

out the convex allowed space.

This processes generalizes to higher dimensional planes (i.e. hyperplanes): the vector

v always contains only those coefficients we are not being agnostic about, plus an arbitrary

number of null constraints. Although we will not go beyond three-dimensional regions, we

note that an efficient search algorithm in higher dimensions is described in ref. [28].

3.3 Example with a SDPB implementation

The optimization problem just formulated is in a form that is directly amenable to the

SDPB solver [27]. There are just two simple substitutions to make:

1. The program accepts polynomials of x ≥ 0; we set m2 7→ M2(1 + x) and remove a

common denominator.
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2. The program accepts finite lists of polynomial constraints. We tabulate a finite list

of spins J = 0, 2, . . . , Jmax and add a single function of x corresponding to J → ∞.

The second truncation is valid as long as Jmax is taken sufficiently large; once convergence

is achieved, further increases of Jmax have no effect on the bounds.

We consider now an example relevant to one of the plots in the next section, when

working in d = 4, Jmax = 40 and Mandelstam order n = 4. The goal is to find a lower

bounding plane on g̃4 for fixed g̃3, say g̃3 = −10.5 (which is slightly above the allowed lower

bound (3.10) for this truncation). The polynomial vector v combines the three observed

coefficients and a single null constraint n4, rescaled by appropriate powers of M :

v(x, J) ≡ M4(1 + x)4 ×
(
g2, M2g3, M4g4, M4n4

)
(3.23)

=
(
(1 + x)2, (1 + x)(3 − 2J(J + 1)), 1

2 , 2J(J + 1)(J(J + 1) − 8)
)

. (3.24)

In addition to tabulating v for all even J ≤ Jmax, we also include the infinite-J limit, which

is simply the coefficient of J4:

v(x, ∞) = (0, 0, 0, 2) . (3.25)

To lower-bound g̃4 at the stated value of g̃3, we search for four-vectors y, normalized to

y·(0, 0, 1, 0
)

= 1, which solve the following problem:





maximize: h = y· (−1, −(−10.5), 0, 0)

subject to: 0 ≤ y·v(x, J) ∀ x > 0, J ∈ {0, 2, · · · , 40, ∞} .
(3.26)

The lower bound is then

g̃4 ≥ h (at g̃3 = −10.5) . (3.27)

The solution vector y computed by SDPB was found to be y ≈ (1.4823, 0.1810, 1, 0.01472),

giving h = 0.4183. The half-plane allowed by positivity of y·v is thus

g̃4 + 0.1810(g̃3 + 10.5) ≥ 0.4183 (3.28)

which gives one of the boundaries used to make the n = 4 region in figure 10 (b) below.

3.4 Generating null constraints

So far we used a single constraint from crossing: the null average n4(m2, J) from eq. (2.23).

The bounds improve after we add more constraints. Let us describe a way to generate them.

A straightforward method is as follows. First, fix a degree in Mandelstam invariants,

n. Then, list all the
⌊

n
2

⌋
low-energy averages corresponding to this degree, namely the

coefficient of tn−k in the left-hand-side of the Bk(t) sum rules (2.19) with k ≤ n, us-

ing the crossing-symmetric low-energy ansatz (2.3). The right-hand-sides of those linear

combinations with vanishing left-hand-side then constitute a basis of null constraints.
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The first few cases, up to degree n = 7, are (in arbitrary normalization):

m8n4 = (4 − 5d)J 2 + 2J 4 ,

m10n5 =
(
23d2 − 12d − 20

)
J 2 + (−21d − 2)J 4 + 4J 6 ,

m12n6 = 4
(
13d2 + 21d + 2

)
J 4 − 3(d + 2)

(
17d2 + 4d − 16

)
J 2

+ 2(−9d − 8)J 6 + 2J 8 ,

m14n7 = 6
(
45d2 + 140d + 92

)
J 6 + 4

(
−140d3 − 619d2 − 711d − 46

)
J 4

+
(
401d4 + 2108d3 + 2284d2 − 3008d − 3360

)
J 2

+ 5(−11d − 18)J 8 + 4J 10 ,

m14n′
7 = (−27d − 14) J 4 + 2(d − 1)(19d + 22)J 2 + 4J 6

(3.29)

where we recall that J 2 = J(J +d−3). Note that all null averages vanish when J = 0: they

relate spinning heavy states to one another, but spinless states are completely decoupled.

We find that there exists a single null constraint for each degree n = 4, 5, 6, then

two constraint each for n = 7, 8, 9, three each for n = 10, 11, 12, etc.: the number of

linearly independent null constraints at each degree increases by 1 for every increase of n

by 3. A sequence of generating functions Xk(t) which enumerates them all is discussed in

appendix A.

Finally, it is important to stress that the null constraints only average to zero modulo

EFT loops, since the method for finding them relies on the explicit tree-level parameteriza-

tion (2.3). The interpretation of resulting inequalities as bounds on gk is thus only strictly

valid in this approximation. In an interacting EFT, the coefficients gk depend on choices of

scale and renormalization scheme, and the correct interpretation of the positive functionals

F is that they give rigorous (possibly non-optimal) inequalities of the form:
〈

g3(m2, J) +
∑

i

cini(m
2, J)

〉
≥ A

〈
g2(m2, J)

〉
(3.30)

where all averages are computed as integrals over arcs with |s| ≈ M2 following eq. (2.18).

The method thus produces rigorous bounds on computable combinations of EFT couplings

at the scale M .

3.5 An ad hoc upper bound on (∂φ)4

The systematic method explained above bounds ratios gk/g2, but how about g2 itself? Here

we present one upper bound on g2; this subsection is somewhat separate from the rest since

we were unable to systematically optimize the bound.

The naive intuition is that if heavy states couplings are order unity, then g2 ∼ 1
Md . An

upper bound with this scaling should thus follow from the unitarity limit, ρJ ≤ 2. This

would be the full story if heavy states only had a finite number of spins, however, to get

an actual bound one must also control the infinite sum over spins. The idea is to combine

the sum rule for g2 with a multiple of the first null constraint n4:

g2 =

〈
1

m4
− α

f(J)

m8

〉
with f(J) = J 2(2J 2 − (5d − 4)

)
. (3.31)
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This holds for any α; we recall that J 2 = J(J + d − 3) is the spin Casimir. Inserting

the definition (2.15) of the average and switching to a dimensionless mass parameter z =

M2/m2 < 1, this can be rewritten

g2 =
1

πMd

∑

J even

n
(d)
J

∫ 1

0

dz

z
z

d
2 ρJ(M2/z)

(
1 − αz2f(J)

)
. (3.32)

This is a good step to get an upper bound on g2 since for α > 0 the integrand is mostly

negative at large spin J , except for a small region with z small. We use unitarity in two

steps: first, we use positivity ρJ ≥ 0 to restrict the integral to the small-z region where the

parenthesis is positive, where we can then use ρJ ≤ 2. Thus:

g2 ≤ 2

πMd

∑

J even

n
(d)
J

∫ zmax(J)

0

dz

z
z

d
2

(
1 − αz2f(J)

)
(3.33)

where zmax(J) = min([αf(J)]−
1
2 , 1) determines the region where the parenthesis is positive.

The important point is that at large spin this region shrinks, which will ensure convergence

of the J sum. Effectively the region is bounded by impact parameter Mb̃ ∼< α−1/4. At

small spins the full range is generally accessible. Letting zmax(J) = 1 for J ≤ J∗(α), the

sum splits as

g2 ≤ 2

πMd


 ∑

0≤J≤J∗(α)

n
(d)
J

(
2

d
− 2αf(J)

d + 4

)
+

8α− d
4

d(d + 4)

∑

J>J∗(α)

n
(d)
J

f(J)
d
4


 . (3.34)

Both sums run only over even spins. Since n
(d)
J ∝ Jd−3 at large spin, the sum to infinity

converges. This inequality is valid for any α > 0; with increasing α, the J = 0, 2 terms tend

to increase whereas the rest decreases: the optimal bound with this method is obtained

by minimizing over α. The dependence is rather non-linear (which is why we were not

able to generalize the method to include more null constraints), but evaluating the sum

numerically we find (in all dimensions we tried) that the optimum occurs with J∗ = 2. In

d = 4, for example, the optimal value α∗ = 0.025, giving the analytic bound:

0 ≤ g2

(4π)2
≤ 0.794

M4
(d = 4) . (3.35)

As expected, up to a standard loop factor, the coefficient of 1
2(∂φ)4 can’t exceed order unity

in units of the heavy scale. We stress that, contrary to other bounds in this paper, upper

bounds on couplings at the cutoff scale cannot be straightforwardly interpreted in terms

of Lagrangian parameters, since any EFT which saturates them is by definition strongly

interacting already below the cutoff, making quantum corrections non-negligible. Rather,

the bound may be interpreted as follows: among all observables which are linear in the

S-matrix at the scale M and which reduce to g2 at weak coupling, there exists one which

satisfies eq. (3.35): namely, eq. (3.31) with the quoted α∗. This observable resides at the

scale M in the sense of eq. (3.30).

Similar bounds in different spacetime dimensions are recorded in table 1; after normal-

izing with a suitable d-dimension factor (closely related to n
(d)
0 ) we find that the obtained

bound is pretty stable in dimensions.
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d 3 4 5 6 7 8 9 10 26 50

bound 0.155 0.132 0.138 0.140 0.141 0.141 0.140 0.140 0.132 0.127

Table 1. Nonperturbative (possibly non-optimal) upper bounds on
g2MdΓ(

d
2 )

(4π)
d
2 Γ(d)

in various spacetime

dimensions.

n dim N min g̃3 min g̃5 min g̃′

6

4 1 −10.6125 − 25
6 ≈-4.17 −15

5 2 −10.6125 − 25
6 ≈-4.17

6 3 −10.3662 −4.0969 −13.436

7 5 −10.3580

8 7 −10.3492 −4.0960 −12.926

9 9 −10.3492

10 12 −10.3477

11 15 −10.3474

12 18 −10.3473 −4.0960 −12.820

13 22 −10.3470

14 26 −10.3468

15 30 −10.3466

16 35 −10.3465 −4.0960 −12.811

Table 2. Convergence of the “box bounds” (4.2) with increasing Mandelstam order n , which

results in larger sets of orthogonal constraints N = {n4(m2, J), · · · }. At order n = 3, all lower

bounds would be −∞ since no null constraints exist at that order.

4 Numerically ruling-out: the allowed space of scalar EFTs

In this section, we summarize the obtained numerical results, focusing on d = 3 + 1 space-

time dimensions. Treating the low-energy EFT to tree-level, we determine the space of

EFT coefficients gn, where the low-energy amplitude is parameterized as

Mlow = − g2
[

1

s
+

1

t
+

1

u

]
− λ

+ g2(s2 + t2 + u2) + g3(stu) + g4(s2 + t2 + u2)2

+ g5(s2 + t2 + u2)(stu) + · · ·

(4.1)

Recall that it is convenient to introduce dimensionless EFT coefficients g̃n normalized by

g2 and appropriate powers of the mass gap M introduced in equation (3.1), since the

numerical analysis is performed directly on these variables. We find optimal upper and

lower bounds for g̃3, g̃4, and g̃5, given positivity of high-energy spectral densities ρJ , using

the optimization framework introduced above.
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4.1 Bounds on individual coefficients

Let us begin by confining the value of individual EFT coefficients, being completely agnostic

about all the others. Table 2 shows how these bounds depend on the number of crossing

symmetry constraints kept. We conclude that, in d = 3 + 1 space-time, normalized EFT

coefficients satisfy:

−10.346 ≤ g̃3 ≤ 3, 0 ≤ g̃4 ≤ 1

2
, −4.0960 ≤ g̃5 ≤ 5

2
. (4.2)

The simple, rational upper bounds are saturated by the spin-0 contribution to sum rules

like eq. (2.22).

While keeping constraints with higher Mandelstam degree n is feasible, runtime-wise,

we found that the large-spin convergence was harder to control as we needed Jmax =

O(1000). However, for n ≤ 16, convergence is easily obtained for smaller spins. This is the

reason why we stopped the table at n = 16; it would be interesting to understand how to

stabilize the numerics at large n.

The g̃3 lower bound is plotted as a function of 1/dim N in figure 7, where dim N is the

dimension of the number of null constraints accessed. The dimension of this vector space

is naturally monotonically increasing with the Mandelstam order n. Ideally, one would like

to extrapolate the bounds to n → ∞, however the approach is somewhat irregular and

we didn’t find a compelling fit function. Therefore, the recorded bounds are simply taken

from our largest reliable value of n.

In d = 6 and d = 10, the analogous bounds take the values:

d = 6 : − 8.13879 ≤ g̃3 ≤ 3, 0 ≤ g̃4 ≤ 1

2
, −3.03373 ≤ g̃5 ≤ 5

2
(4.3)

d = 10 : − 7.04934 ≤ g̃3 ≤ 3, 0 ≤ g̃4 ≤ 1

2
, −2.51054 ≤ g̃5 ≤ 5

2
(4.4)

These upper and lower bounds were obtained by solving the optimization problems

given in equations (3.16) and (3.19), respectively. For the n = 16 data points in the table,

we kept spins up to 200 (in addition to J = ∞). A full list of the bounds on the first

10 coefficients g̃n obtained with n = 10 (corresponding to 12 linearly independent null

constraints) are presented in appendix B.

4.2 Two-dimensional allowed region in (g̃3, g̃4) plane

The “box bounds” in eq. (4.2) tell an incomplete story since they miss potential correlations

between the coefficients. Exclusion plots on the (g̃3, g̃4) plane can be obtained following the

constrained optimization framework presented at the end of section 3.2. Specifically, upper

and lower bounding planes on g̃4 were obtained by sampling g̃3 at various points in the

range allowed by eq. (4.2). Repeating this process for a large number of sampling points

generates a collection of linear inequalities, whose intersection defines a refined allowed

region. Figure 8 depicts this region with over 100 sampling points along g̃3.

Further insight into the shape of the region can be obtained by noticing that the

crossing symmetry constraints do not mix particles of spin 0 with the others, as noted in
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Figure 7. The g̃3 lower bound vs. 1/dim N , where dim N is the dimension of the number of

null constraints accessed. Plotting with respect to 1/(dim N)2 or different powers of 1/n did not

reveal any particularly compelling fitting function. The kink described in the next plot is situated

at −10.19 ≈ g̃3.
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Figure 8. The (g̃3, g̃4) allowed region. Numerics were performed at n = 10 Mandelstam order and

J = 0, 2, . . . , 40. One can see that g3 may take-on negative values, while g4 is positive. Boundaries

appear smooth except for two kinks at (−10.19, 0.5) and (3, 0.5).
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Figure 9. The (g̃3, g̃4) allowed region, segmented into theories without spinless particles (J ≥ 2)

and theories with only spinless particles (J = 0). The convex hull of these two regions reproduces

figure 8.

eq. (3.29). This indicates that heavy spin-0 particles satisfy crossing on their own, as will

be further discussed in the next section. For numerical purposes, this decoupling allows

to refine the problem: any high-energy spectrum can be written as a positive sum of its

spin-0 content, plus a unitary solution to crossing that only contains particles of spin J ≥ 2.

The full allowed region is then simply the convex hull of the allowed regions for these two

problems:

Entire region = Convex Hull [Spin-0 + Spin-J ≥ 2] . (4.5)

As may be seen from the form of the g3 sum rule (2.22), the two solutions are differentiated

by the sign of g3: positive for Spin-0 and negative for Spin-J ≥ 2.

In our implementation of the dual problem, theories with only J ≥ 2 particles can be

studied by simply dropping the positivity constraint for the functional action on J = 0. The

allowed regions for the Spin-0 and Spin-J ≥ 2 sub-problems are the narrow almond-shaped

regions shown in figure 9.

The shape of these regions is largely explained by a simple scaling argument: given any

solution to crossing, scaling-up its overall mass scale will give a new solution. Starting from

any allowed point (g̃3, g̃4), this generates an allowed path (αg̃3, α2g̃4) where 0 ≤ α ≤ 1. This

explains the parabolic shape of the “underbellies” in figure 9. In fact the Spin-0 almond

is simply the convex hull of the parabola connecting (0, 0) to (3, 1
2). (This is qualitatively

similar to what is found in the forward limit [11, 12, 14].)

The Spin-J ≥ 2 region is more complicated – while it also displays a parabolic un-

derbelly near the origin, it fails to extend all the way to g̃4 = 1
2 . The boundary must
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(a) Convergence is rapidly achieved by adding

null constraints.
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(b) Close-up near the left kink at (−10.19, 0.5).

Figure 10. Convergence of the (g̃3, g̃4) allowed region (shaded) with the Mandelstam degree n of

crossing equations. The positive section of the horizontal axis is omitted since that region converges

immediately.

thus exhibit non-analytic behaviour at the end of the parabola, however we were unable to

localize a kink that remains stable with varying the Mandelstam expansion order n, sug-

gesting milder non-analyticity (such as a discontinuous second derivative). This qualitative

feature is demonstrated by close-ups on the high-g̃4 end of the allowed region are shown in

figure 10, which also indicates convergence with increasing n.

The line g̃4 = 1
2 features two kinks: at (−10.19, 0.5) and (3, 0.5), as shown in figure 10.

Below we will find analytic expressions for the scattering amplitude at these kinks!

We chose the simplest and perhaps weakest method of calculating the exclusion re-

gion. Method of radials or normals have the potential more efficiently calculate these

boundaries with higher fidelity near kinks [29]. For example, the normals maximization

procedure explained extracts sharp features at regions of large curvature. Unfortunately,

we were not able to use the normals method because it requires one to solve the “primal”

problem instead.

4.3 Three-dimensional allowed volume in (g̃3, g̃4, g̃5)

Finally, we consider the space of EFT coefficients (g̃3, g̃4, g̃5) using a similar procedure to the

2d process. Once the 2d exclusion region is obtained, points in (g̃3, g̃4) are sampled from the

exclusion region and then the optimal upper and lower bounds on g̃5 with the associated

hyperplanes are computed via the constrained optimization approach. Figure 11 shows

that the 3d region is narrow, suggesting that S-matrix positivity is a potent constraint on

the EFT.

Finally, the exclusion plot converges as the truncation order n is increased as shown

in figures 10. In particular, the n = 10 and n = 14 regions overlap better than the

n = 4 and n = 10 regions. Despite doubling the number of functions ni(m
2, J) in the null
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(a) General shape of the volume. (b) View of the narrow ridge along g̃4 = 1
2 .

Figure 11. g̃3 vs. g̃4 vs. g̃5 “tortilla chip”. Numerics were performed at n = 10 Mandelstam order

and J = 0, 2, . . . , 40. The volume is surprisingly narrow, showing a strong g̃3-g̃5 correlation.

constraints N to sharpen bounds between n = 10 and n = 14, the numerics show that they

generate very similar regions. Therefore, it is sufficient to consider n = 10 in order to infer

general features.

5 Analytically ruling-in: the two kinks with g̃4 =
1

2

It is interesting to ask whether the bounds on (g̃3, g̃4, . . .) obtained in the preceding section

are indeed optimal. We obtained these bounds using the so-called dual problem, which

“rules-out” more and more space as one adds null constraints. This contrasts with the

primal problem, whereby the goal is to “rule-in” coefficients of 2 → 2 S-matrices satisfying

all the axioms. When results from both problems agree, the optimal solution is apprehended

with complete confidence.

Systematic implementations of the primal problem have been proposed for generic field

theories (without a large gap M) [30, 31]. Convergence of the dual and primal problems

have also been studied for two-dimensional S-matrices [29, 32]. We will not attempt to

adapt these methods to our problem, but we will study simple special theories which can

be ruled in analytically.

The (g̃3, g̃4) allowed region in figure 8 prominently displays two kinks with g̃4 = 1
2 (con-

nected with a horizontal segment). This value is interesting, because the EFT parameter

g2 and g4 satisfy the following sum rules:

g2 =

〈
1

m4

〉
, g4 =

1

2

〈
1

m8

〉
, (5.1)

where 〈 · 〉 signifies a positive sum over states with m ≥ M and different spin, as previously

defined. The coefficient g4 = g2

2M4 can only be realized if the high-energy theory contains

only states at the single mass m = M !
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The corresponding amplitudes are therefore rational functions with poles at s, t or

u = m2. Furthermore, they must satisfy the boundedness property lims→0
M(s,t)

s2 = 0.

It is easy to see that there are only two crossing-symmetric rational functions with these

properties:

Mspin-0 =
1

m2 − s
+

1

m2 − t
+

1

m2 − u
,

Mstu-pole =
m4

(m2 − s) (m2 − t) (m2 − u)
− γ(d)Mspin-0 .

(5.2)

Here, γ(d) is a coefficient that will ensure unitarity and positivity of the amplitude in

d-dimensional space-time. In particular, we have that

γ(d) ≡ 4

9
2F1

(
1

2
, 1,

d − 1

2
,
1

9

)
. (5.3)

To show this, consider the spectral density of the first amplitude (its imaginary part)

is supported entirely on spin-0. Following the decomposition used in figure 9, we have then

subtracted a constant multiple of Mspin−0 to remove the spin-0 content from Mstu-pole. To

find the left kink, we should thus tune γ(d) to make the spectral density supported only

on spins J ≥ 2.

In general, the Gegenbauer polynomials satisfy an orthogonality relation [17] that

allows one to extract the coefficient:

fJ(s) =
Nd

2

∫ 1

−1
dz
(
1 − z2

) d−4
2 PJ(z)M(s, t(z)), (5.4)

where z = 1 + 2t
s and Nd = (16π)

2−d
2

Γ( d−2
2 )

we find

ρJ(s)
∣∣
stu-pole

= 2πNdmd−4δ(s − m2)

∫ 1

−1
dz
(
1 − z2

) d−4
2 PJ(z)

(
1

9 − z2
− γ(d)

4

)
. (5.5)

Plugging in P0(z) = 1 and computing the integral, we find that the spin-0 component

vanishes provided we choose:

γ(d) =
4

9
2F1

(
1

2
, 1,

d − 1

2
,
1

9

)
. (5.6)

To verify that the partial waves are positive for J ≥ 2, one can use the Froissart-Gribov

formula (see eq. (2.53) of [17]) to analytically integrate (5.5) in terms of a single residue

at z = ±3; the integral is proportional to the function defined as Q
(d)
J (3) there, which

is a positive hypergeometric function for any d ≥ 3. We conclude that the amplitude

Mstu-pole, with the value (5.3), satisfies all the axioms of crossing symmetry, spin-2 Regge

convergence, and positivity ρJ(s) ≥ 0! Of course, this does not imply that this amplitude

can indeed be realized in some fully-fledged UV complete theory, only that it cannot be

ruled out with our current methods.

Let us now situate the amplitudes Mspin-0 and Mstu-pole in the context of our numerical

exclusion plots. By series expanding at small s, t, u and comparing with the low-energy
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Figure 12. Remaining allowed sliver compared with the positive span of the two analytical models:

Mstu-pole and Mspin-0, which lie at the left and right upper kinks, respectively.

parameterization 2.6, it is straightforward to find that

Mspin-0 : (g̃3, g̃4, g̃5) =

(
3

m̃2
,

1

2m̃4
,

5

2m̃6

)
(5.7)

Mstu-pole : (g̃3, g̃4, g̃5) =

(
2

m̃2

3γ(d) − 1

2γ(d) − 1
,

1

2m̃4
,

1

m̃6

5γ(d) − 2

2γ(d) − 1

)
, (5.8)

where m̃ ≡ m
M . At m̃ = 1 and d = 4, the spin-0 model produces the upper-right kink at

(3, 1
2), whereas the stu-pole model gives (g̃3, g̃4) = (62 log 2−1

4 log 2−3 , 1
2) ≈ (−10.19196, 0.5) which

precisely matches with the numerical value in figure 10! We also found agreement with

the numerical position of the kink in d = 6 and d = 10. As d → ∞, the kink converges

to (−6, −1
2).

The fact that the amplitude Mstu-pole realizes a negative coefficient for stu (i.e. g3 < 0)

suggests that it would be impossible to prove irreversibility of six-dimensional renormal-

ization group flow using only crossing and positivity of 2 → 2 scattering [26]. This con-

trasts the successful four-dimensional case, in which the a-theorem was related to positivity

of g2 [33].

The convex hull of the space of the two amplitudes Mspin-0 and Mstu-pole, for different

values of the mass m, generates the region with parabolic boundaries shown in figure 12.

The parabolic “underbellies” are simply the dimensionally-rescaled theories at the kinks.

This region is analytically “ruled in”.

One notices that a sliver obtained via numerics is not in the span of these simple

analytic models. Since the upper-left arc of this sliver cannot be generated by the convex

hull of (possibly rescaled) discrete theories, we attribute it to a continuous one-parameter
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family of “extremal theories” which terminate at the kink. It would be interesting to find

an analytic expressions for this family.

One may wonder if this family of extremal theories terminates at a second kink; we

did not locate any stable candidate in the numerics. This suggests that the family instead

disappears inside its own convex hull. Naturally this would occur at the point where its

slope becomes tangent to the parabola of dimensionally-rescaled theories originating from

that point, dg3

g4
= g3

2g4
. In this scenario, only the second derivative of the boundary shape

would be discontinuous, explaining the difficulty in locating it numerically.

We find it remarkable that two simple analytic models almost span the entire region

obtained via numerics: to a good approximation (up to the missing sliver), a scalar EFT is

compatible with causality and unitarity if it is a positive linear combination of the models

in eq. (5.2).

6 Concluding remarks

In this work we showed, in the case of a scalar field theory, that the space of low effective

field theories is sharply constrained by positivity of the S-matrix. Dimensional analysis

teaches us to expect a low-energy coupling of mass dimension n to be suppressed by a

factor of 1/Mn, where M is the mass of new heavy states. Our main finding is simple: in

any causal and unitary theory, dimensional analysis scaling is a theorem.

More precisely, for a theory of a single identical real scalar, we showed that dimension-

less ratios of the form gk/g2M#, where g2 is the coefficient of 1
2(∂φ)4, are bounded above

and below by finite constants of order unity. Our method does not assume that physics

above the scale M is weakly coupled, only that it is consistent with unitarity and causality.

The technical assumption is the convergence of double-subtracted dispersion relations in

2 → 2 scattering. We then separately bounded g2 itself in eq. (3.35).

To our (possibly incomplete) knowledge, this is the first time that two-sided bounds

are obtained for interactions that vanish in the forward limit, such as the six-derivative

“stu” contact interaction g3 (see eqs. (2.3) and (4.2)). The key ingredient was to use “null

constraints” (for example eq. (2.23)): integrals over the high-energy spectral density which

must vanish by crossing symmetry, and which limit the contribution of higher-spin particles.

A systematic procedure to extract optimal bounds was presented. The precise form of the

null constraints are affected by low-energy self-interactions (i.e. loops within the low-energy

EFT), whose effects would be interesting to investigate. It would be interesting to assess

if bounds of this type are closely saturated in specific low-energy processes, for example

pion scattering. In this case, a generalization to non-identical scalars might be necessary.

In this paper we ignored gravity. A graviton pole would cause the B2(t) sum rule to

diverge in the forward limit, invalidating conclusions from a Taylor series around t = 0.

However the X2(t) null constraints in eq. (A.3) should remain valid for t < 0 and their

implications are worth investigating. Intuitively, one may anticipate that the graviton pole

will somewhat weaken the bounds on scalar scattering [1, 34, 35] (see also [36]). However,

following the general principle that self-consistent spinning S-matrices are harder to come

by, interactions involving gravitons are likely to be sharply constrained by similar methods,

possibly extending [8, 37, 38] or addressing conjectures of [39].
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For non-gravitational scalar scattering, we found that crossing symmetry does not mix

heavy spinning and spinless states. The allowed 2 → 2 low-energy S-matrices are positive

sums of those two sectors. These are respectively (almost completely) spanned by the

two simple analytic models in eq. (5.2), which realize theories at kinks. Perhaps this is a

tantalizing hint that the collection of valid EFTs is not so vast after all.
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A A basis of crossing symmetry constraints

In this section we present a complete basis of vanishing heavy averages, which vanish in

any theory with no branch cut below M2 (i.e. when neglecting low-energy loops). They

are organized as functions Xk(t) where k is an even integer representing the number of

subtractions.

We first give a pedestrian argument considering the unsubtracted case, X0, and then

make a general argument exploiting crossing symmetry.

As a warm-up, let us first consider a “superbounded” theory where lims→∞ M(s, t) → 0

for t < 0, so that unsubtracted dispersion relations converge, and where the low-energy

amplitude is polynomial, corresponding to g = 0 in (2.3). In the superbounded case the

first sum rule is B0 from eq. (2.18):

B0 : g0 + 2g2t2 + 2g4t4 + . . . =

〈
2m2 + t

m2 + t
P
(

1 +
2t

m2

)〉
(A.1)

where we relabelled the constant term in the amplitude as g0 = −λ. Viewed as a function

of t this sum rule is marginally useful because it involves infinitely many unknowns on

the left-hand-side and one loses control when −t becomes of order M2. However, each gk

with k ≥ 2 can be computed by some other sum rule: for example, the t → 0 limit of B2

measures g2, B4(0) measures g4, etc. Dividing by an overall t for future convenience, we

can package these into an infinite set of null constraints:

0 =

〈
2m2 + t

t(m2 + t)
PJ

(
1 +

2t

m2

)〉
−

∞∑

k=0

Bhigh
k (0)t2k−1

=
〈
X0(t; m2, j)

〉
where X0(t; m2, J) ≡

(2m2 + t)PJ

(
1 + 2t

m2

)

t(m2 + t)
− 2m4PJ(1)

t(m4 − t2)
.

(A.2)

X0(t) defines a sensible sum rule for any 0 < −t < M2, and Taylor-expanding around t = 0

gives an infinite number of averages which vanish by crossing symmetry (if unsubtracted

sum rules converge).
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Repeating the same manipulations for subtracted sum rules, we find that to cancel the

cancel the generic power of t in B2(t) one must also both the Bk(0) and its first derivative

around t = 0; there is then a unique solution: 〈X2(t; m2, J)〉 = 0 where

X2(t; m2, J) =
(2m2 + t)

(
PJ

(
1 + 2t

m2

)
− PJ(1)

)

m2t2(m2 + t)2
− 4P ′

J(1)

tm2(m4 − t2)
. (A.3)

For any 0 < −t < M2, this enjoys the high-energy convergence as a double-subtracted

dispersion relation, whence the subscript. Setting t = 0 this reproduces the n4 sum rule

in eq. (3.29). Finally, we record explicitly the four-subtracted version obtained with the

same method:

X4(t; m2, J) =
(2m2 + t)

(
PJ

(
1 + 2t

m2

)
− PJ(1)

)

m4t3(m2 + t)3
− 2(2m4 − 3t(m2 + t))P ′

J(1)

m8t2(m2 − t)(m2 + t)2

− 4P ′′
J (1)

m8t(m4 − t2)
. (A.4)

A.1 Derivation using dispersion relations in three channels

Let us now present the general case along with a direct derivation. The idea is to combine

dispersion relations in all three channels. Consider the following identity:

Xk(t′) : 0 =

[∮

Cs

+

∮

Ct

+

∮

Cu

]
ds ∧ dt

(2πi)2st(t − t′)

M(s, t)

[st(s + t)]k/2
, (A.5)

where each contour is a product of circles: Cs = Circles∼0 ∧ Circlet→∞, Ct = Circlet∼0,t′ ∧
Circleu→∞ and Cu = Circleu∼0 ∧ Circles→∞. The first contour implements a fixed-s sum

rule, which we then evaluate at s → 0, and similar for the others, but note that the fixed-t

relation is evaluated at both t = 0 and t = t′. All the integrals vanish (for k ≥ 2) due to

the vanishing at large-t of M(s, t)/t2. (The contours around 0 are a bit dangerous, since

the integrals around say large-t converges only when s < 0; this should not be a problem

since (ignoring EFT loops) one can interpret the residue as extracting the coefficient of 1/s

in the Laurent expansion as s → 0−.) The trick is then to deform the arcs at infinity to

pick high-energy cuts and low-energy poles, as in figure 3 of the main text.

What is nice with the above contour is that all double-residues cancel because of

antisymmetry of the contours. For the double residue at (s, t) = (0, t′) the cancellation

simply follows from mismatching orientations, since the contours Cs and Ct compute the

same double-residue in opposite orders:

0 = Circles∼0 ∧ Circlet∼t′ + Circlet∼t′ ∧ Circles∼0 . (A.6)

Alternatively, in practice, one may think of the integral 1
2πi

∫
Circles∼0

as just a residue,

defined by plucking ds
s ∧ from the left of the differential form it multiplies, and the integral

vanishes because the thus-defined residue operation is antisymmetric. The nested poles at

(s, t) = (0, 0) require more care (one has to perform a blow-up) since all three contours

contribute, but one still finds a perfect cancellation, as one may verify explicitly:
(

Res
t=0

Res
s=0

+ Res
s=0

Res
t=0

+ Res
t=0

Res
s=−t

)
Poly(s, t)

(st(s + t))n
ds ∧ dt = 0 (A.7)

for any polynomial numerator. This is curiously reminiscent of the Jacobi identity.
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The upshot is that the integral (A.5) is orthogonal to any tree-level low-energy EFT

amplitude (whether or not it is s-t-u symmetric), it gives purely a constraint on high-energy

cuts. Similar constraints would follow for any choice of (rational) denominator. Each term

in eq. (A.5) contributes cuts in two channels, for example the Cs term contributes

〈
Res
s=0

(
1

m2(t′ − m2)
+

1

(m2 + s)(m2 + s + t′)

) m2PJ

(
1 + 2s

m2

)

s(sm2(m2 + s))k/2

〉
(A.8)

where the two terms in the parenthesis come from the t and u-channel heavy cuts, respec-

tively. If we did not assume s−t−u symmetry, we would get a relation between the three

spectral densities. Here we record only the simplified result assuming that all the spectral

densities are the same: 0 = 〈Xk(t; m2, J)〉 where

Xk(t; m2, J) =
2m2 + t

t(m2 + t)

PJ

(
1 + 2t

m2

)

(tm2(m2 + t))k/2

− Res
s=0


 (2m2 + s)(m2 − s)(m2 + 2s)

s(t − s)(m2 + s)(m2 − t)(m2 + s + t)

PJ

(
1 + 2s

m2

)

(sm2(m2 + s))k/2


 .

(A.9)

This is the main result of this appendix. For any even k ≥ 2 and −M2 < t < 0 we

expect these to be physical sum rules (i.e. convergent in theories where double-subtracted

dispersion relations converge) orthogonal to any tree-level low-energy amplitude. For k =

0, 2, 4 this reproduces the formulas quoted in eqs. (A.2)–(A.4).

Expanding at small t, the Xk(t) sum rules admit regular Taylor series, which reproduce

precisely the sum rules recorded in eq. (3.29). Namely, the coefficient of tn in Xk has degree
3k
2 + n + 1 in 1/m2, so the first case is X2(0) ∼ g4. The first time one gets two X sum rules

is at weight 7, where X ′′′
2 (0) and X4(0) span g7 and g′

7. The number of X sum rules per

degree increases every 3 degree because of the 1/(stu)k/2 factor in eq. (A.5). The number

of X sum rules thus agrees precisely with the counting below eq. (3.29). We conclude that

the Xk(t) sum rules are a complete basis of sum rules orthogonal to tree-level EFTs! As

mentioned below eq. (3.30), when EFT loops are included these sum rules may average to

nonzero but computable quantities.
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B Bounds on operators up to order s10

In table 3 we record numerical bounds on various EFT coefficients in four spacetime di-

mensions.

EFT coefficient Lower bound Upper bound

g̃3 −10.346 3

g̃4 0 0.5

g̃5 −4.096 2.5

g̃6 0 0.25

g̃′

6 −12.83 3

g̃7 −1.548 1.75

g̃8 0 0.125

g̃′

8 −10.03 4

g̃9 −0.524 1.125

g̃′

9 −13.60 3

g̃10 0 0.0625

g̃′

10 −6.32 3.75

Table 3. Bounds on coefficients g̃
(p)
k = g

(p)
k M2k−4/g2 for d = 4 spacetime dimension, where g

(p)
k

refers to the coefficient of (s2 +t2 +u2)
k−3(2p+δk,odd)

2 (stu)2p+δk,odd , which has degree k in Mandelstam

invariants and contains 2p powers of stu more than the minimum at that degree. The upper bounds

are all simple rational numbers realized by the Mspin-0 model. The values (except for g̃3) were

calculated at order n = 10, which corresponds to the number of null constraints of dim N = 12.
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