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1. For 0 < r < l ,  let Rr be the annulus {z ; r<Jz]<l} .  Denoting by E the unit 

disk and by C its circumference, D~ will be the class of schlicht analytic functions/ 

with /(R~) c E -  {0} = E o and /(C) = C. For B e R, we put 

b~(B)= in/I/(B)I, b:(B)=sup [/(B)] (1.1) 

and denote by D~(B; b ) c  D, the subclass of functions satisfying II(B)] = b where b~(B)<~ 

b <~ b~(B). We shall study the following problem: Which/unctions minimize or maximize 

]/'(B)I in the class Dr and in the classes D~(B;b)? 

In order to avoid the consideration of uninteresting rotations about the origin we 

shall mainly deal with the equivalent problems: 

Prom(B); Which/unctions, positive at B > O, minimize [/'(B)I within D~; 

P~.~(B); Which/unctions, positive at B > O, maximize I/'(B)I within Dr; 

Pmm(B; b); which/unctions, positive at B > O, minimize ]/'(B)I within D,(B; b); 

P ~ , ( B ;  b); Which/unctions, positive at B > O, maximize ]/'(B)] within D,(B; b). 

P . L .  Duren [1] posed already the problems Prarn(B) and P ~ ( B ) ;  using the var- 

iational Lemma of Schiffer [4]3 Duren [1] showed in sections 3-5: (i) Pmin(B)has the 

unique solution /Fr; (ii) Pmx(B) has the unique solution #Pr provided B i s  in a precise 

sense su//iciently /ar away /rom the inner boundary component I zl = r o/Rr.  [The func- 

tions (I)r, ~Fr will be defined in the following section 2.]. In the ease when B is no 

more sufficiently far away from the inner boundary component, Duren [1] achieved 

a partial solution of Pm~(B). 
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In the following we shall determine all solutions of each of the problems Prom(B), 

P~(B), P~m(B; b), P~(B; b); certain quadratic differerentials will play here a key 

role. I t  turns out that  the extremal functions in the problems P~m are always unique 

while the extremal functions of the problems P ~  usually form a one-parameter family. 

Since the problems. P ~  are  more complicated they will b e  treated below in much 

more detail. 

We shall use the notations common in the theory of extremal length: 

for the length of the curve 7 in the metric ~ which is a non-negative Borel measurable 

function Q(z) of two real variables; 

for a family F of curves 7; 

for the ~-area of a domain G; 

L(r,  e) = ~ L(7, e) 
~,GF 

A(G,~)=f~a~dxdy 

L~(r,e) 
~(r, e) A(a,Q) 

for the ~-length of the family F of curves 7 lying in G provided the metric ~ is ad- 

missible for F, i.e. the above quotient is defined; 

2(r)=sup 2(F, e) 
Q 

(the supremum being taken over all admissible metrics Q) for the extremal length of 

F; the metric ~* is extremal if ~t(F)=~t(F, q*). If A(F)~0, c~ and if there is an ex- 

tremal metric ~* then any other extremal metric is almost everywhere a constant 

multiple of ~*. 

2. For the determination of the quantities b~(B), b:(B) in (1.1) we use (here and 

also later) the following notation. 

For 0 < b <  1, E~ is the unit disk slit along the two segments ( - 1 ,  0], [b, 1). For 

- l < a < l ,  Ea is the unit disk in which the closed segment Sa between a and 0 is 

deleted, with degenerate case E 0 = E - {0}. a(r) > 0 is such that  RT and E~(T) are con- 

formally equivalent, q)~ is the function mapping RT conformally onto E_~(~)with 
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~PT(1)=I; ~FT given by lET(z)=--~Pr(--z) for z G R r  maps then RT conformally onto 

EaCr); both ~T and ~ r  leave the points _ 1 fixed. 

THEOREM 1. Let B > O  be a point  o/ Rr. I n  the noSation (1.1) we have then 

(i) b;(B) = ebb(B), b'~(B) = vET(B); 

(if) i /  [ e ~r and /(B) > O, [(B) = b~(B) implies / = ~P~ a n d / ( B )  = b~r(B) implies [ = g2"r. 

TO prove the theorem we will use several lemmata. 

We consider for 0 < b <  1 the family F;  of curves in E;  joining the upper half 

C + = {z; z fi C, ~ z > 0} and the lower half C- = {z; z e C, ~ z < 0} of C. To determine the 

extremal length 2(F;) we introduce the quadratic differential 

ab = [z(z - b) (z - b-l)] -1 dz 2. (2.1) 

Since the function qb in E~ given by 

= branch of f0  qb(z) 

integration within E~, maps E~ 

qb(C+), qb(C-), the metric 

a~, (2.2) 

conformally onto a rectangle with horizontal sides 

is extremal for F~, and a curve 7EF~ is of shortest 9b-length if and only if 7 satis- 

fies the differential equation ab < 0. Denoting this shortest e~-length within F~ (which 

equals twice the o~-length of either of the segments [ -  1, 0], [b, 1] after having ex- 

tended ~ continuously to the full unit disk) by L~ and the oh-length of the segment 

[0, b] by Hb we obtain 

2(r~) = L~ 2 =__L~ (2.4) 
A (E~, Qb) Hb" 

Similarly, the extremal length Jt(Fb) of the family Fb of curves joining the two seg- 

ments [ - 1 ,  0] and [b, 1] in E~ is given by 

x(rb) =L~=~-I(P~). (2.5) 

LV.MMX 1. For 0 < b < l ,  ~(P~) decreases strictly and 2(Pb) increases strictly in b. 

Proo/. For 0 < b 1 < b < 1, F~, c F~ and thus 

1 3 -  672906 Acta mathematica. 118. Imprim6 le 19 juin 1967, 

pb(z) = dz ~ (2.3) 
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(2.6) 

The last inequality in (2.6) is strict unless Qb is extremal for F~,. ~,  however, is not 

almost everywhere a constant multiple of 0~, which is extremal for F~, since ~b is 

bounded near z = b  I while ~ , ~  co as z->b 1 in E'~,, by (2.1) and (2.3). Hence the last 

inequality in (2.6) is indeed strict. The statement about ~t(Fb) then follows from (2.5). 

For - 1  <a~<0 we denote by F'~b the family of curves which have both end- 

points on C which lie up to the endpoints in E a -  (b}, and which separate the boundary 

segment S~ of E a from the point b e (0, 1). For 0 ~< a ~< b ~ (0, 1) we denote by F~b the family 

of closed curves in E a which do not pass through b and which separate S~ U (b} from C. 

LEMMA 2. For aE(- -1 ,0] ,  2(Fab)=2(Fb) and ~ is extremal /or F'~b; /or aE[0,  b], 

~(F~b)=4~(Fb) and Qb is extremal /or Fob. 

To prove the first statement we observe that  a E ( - 1, 0] implies F~ ~ Fab c Fob 

whence 
~(r0~) < ~(r:~) < ~(r;). (2.7) 

On the other hand, the Qb-length of ~ E F0b is at  least twice the pb-distance �89 Lg be- 

tween C and the segment (0, b) of the real axis since each ~ meets that  segment. 

Z7 L7 - ~ (F~); (2.8) 
Hence Jt(F~176 ~ ) = A  (Ea, ~b) A (E~, eb) 

(2.7) and (2.8) together give the first equality of Lemma 2 and the extremality of 

~b for F~o. To obtain the second statement of Lemma 2 we observe first tha t  in Eb 

qb(z) = (branch of a~), integration within Eb, 

has for periods only integral multiples of 2H~ whence exp [i~H~lq~(z)] is a function 

in E b which, moreover, maps Eb conformally onto an annulus. Thus gH~IQb is ex- 

tremal metric for Fbb, the family of curves separating the two boundary components 

of E b, and 
(2g) ~ 4Hb 

2(F~) = 2xe~gL~H;1--- L~ = 4~t(Fb). (2.9) 

With nHgl~o also Qb is extremal for rb~, and a similar reasoning as above in proving 

the first part  o f  Lemma 2 yields: with aE [0, b], e~ is extremal metric for any Fa~ and 

2(P~) =2(Fbb), SO with (2.9) also the second assertion of Lemma 2 follows. 
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3. LEMMA 3. Let G c E  o be a doubly connected domain Containing the point b > 0  

and having C as one boundary component; let r'b be the family of curves which have both 

endpoints on C, which lie up to the endpoints in G and which separate the complemenkery 

component K c E  of G from b; let rb be the family of closed curves in G which separate 

C and KU{b}. Then 

(i) ~(r~)~>x(r0o) with equality if and only i/ G is an Ea for some a e ( - 1 , 0 ) ;  

(ii) 2(r~)>~(ro~) with equality i / a n d  only if G is an E a for some a e [0, b). 

Proof. I.  From r~ c FOb and rb c Fob we obtain at once the two inequalities stated 

in Lemma 3. 

I I .  Assume now 
~(r~) = X(l~0b). (3.1) 

Since 2(r~)~>~(r;, (3.1) implies first of all tha t  Q0 is extremal 

for r~. G is conformally equivalent to some Ea, - 1  < a ~< 0; let the function g with 

g(b) > 0 and g(C)= C map G conformally onto that  Ea. The eonformal invarianee of 

extremal length gives with Lemma 2 the relation 

and from Lemma 1 we obtain 
g(b)=b. (3.2) 

Putting h( z )=[z ( z -b ) ( z -b - l ) ]  - 1  and applying the transformation z=g(w), the 

quadratic differential ab i n  E ,  has in G the expression 

h[g(w)] g'~(w) dw ~, w e G; 

the metric 0(w)=lh[g(w)]l �89 is thus also extremal for r~, and from the already 

observed extremality of ~b(w)=lh(w)l ~ together with the continuity of both p and q~ 

in G - { b }  we obtain with some positive constant e the relation 

IhLq(w)]l �89 Ig'(w)l = e .  Ih(w)1�89 u c .  (3.3), 

Using the fact tha t  h[g(w)] g'2(w) as well as h(w) is regular analytic in [ G -  {b}] U C we 

conclude from (3.3) for some complex number e# O  the relation 

h[g(w)] g'~(w) = c h(w), w s G U C. (3.4) 
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From h[g(w)] g'2(w)dw a > 0  and It(w)dw 2 > 0  on each line element of C, from the in- 

variance of C under g and from (3.4) we conclude c > 0, and from 

f v  [h(w)[~' [dwl = f c  [a~'[ = f c  ]h[g(w)] It [g'(w)[ [dw] =[c I �9 f c  [h(w)]�89 

we conclude l 1=1, thus and the conformal map g satisfies in G - { b }  the dif- 

ferential equation 
g'~(w) = g(w)[g(w) - b] [b -1 - g (w)] 

w(w - b )  (b - 1  - w )  (3 .5 )  

Letting w-+b in (3.5) and observing (3.2) we obtain g'2(b)=g'(b) which leads to 

g'(b) = 1 (3.6) 
since g' (w) # O in G. 

The most elementary way to determine g from (3.5) near b under the conditions 

(3.2), (3.6) is to represent g(w) -b  by the Taylor series w - b  + ~ , ~  cn(w-b) '~ and to 

compare coefficients. A simple computation gives c. = 0 for n/> 2. Hence g(w) = w near 

b, and g is the identi ty in G. 

This proves: if )t(r~)=~t(F0b) then G =E~  for some a e ( - 1 , 0 ] .  

I I I .  Reasoning similarly as above in II.  one obtains the condition for equality 

in Lemma 3 (ii) as stated. 

4. Proo] o] Theorem 1. Let  B > 0  be a point of Rr and let / E ~ r  be such that  

] (B )>0 .  We denote by F~,:s the family of curves having both endpoints on C, lying 

up to the endpoints in R,, and separating B from C,={z;Iz]=r}; we denote by rR,;s 

the  family of closed curves in R~ separating C and C~ U {B}. Putt ing /(R,)= G and 

using the notation of Lemma 3 we have by conformal invariance of extremal length 

and  by  the lemmata 2 and 3 

und similarly 

= = = 2(r:<,,) > = (4.2) 

:From (4.1) and (4.2), the relation 

dp,(B) <~/(B) <~ ~tF,(B) 

ffollows (Lemma 1) which with (1.1) is the first statement of Theorem 1. The equal- 
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i ty / (B)=r gives the equality 2(r;(.))=2(r~.~(.)) in (4.1) which, again by  Lemma 

3, implies tha t  g =(I)~o/-1 is the identi ty or tha t  /=(I)r; similarly the equal i ty / (B)  = 

~F~(B) implies /=xF~. This proves Theorem 1. 

Remark. If b~(B) < b < b:(B), there are obviously functions / e ~ wi th / (B)  = b; one 

such function is obtained applying to r the linear transformation which leaves C and 

the real axis invariant  and carries b~(B) to b; tha t  function, as we shall see later  

(Theorem 9), is actually the unique solution of the problem P~m (B; b). 

As a trivial consequence of Theorem 1 we note the 

COROLLARY. The problems P~i=(B; b~(B)) and P ~ ( B ;  b~(B)) have both the unique 

solution O~; the problems Pmln(B; br(B)) and Pma~(B; b'~(B)) have both the unique solution ~Fr. 

5. We turn now to the problem P=~x(B;b) for b~(B)<b<b'~(B). We put  A = 

{ ( a , b ) ; - l < a < b , O < b < l } ,  and associate with each point (a,b) EA the quadratic 

differential 
(b - l -b )  ~ 

~ z - - - ~ ' _ ) l  , az ~ for a # O ,  
~r~-b- l  + b - a - l - a  z ( z -b)  ( z - b - )  

= (b -1 - b) ~ (z - b) -~ ( z -  b-l) -~ dz ~ for a = O. (5.1) 

We call Rab the rational function a~/dz ~ and observe 

Rab(Z ) d z  2 = Rab(Z - I )  [d(z-1)] 2. 

2 1 b - l - b  
With Zab=b_l b ~ b _ l + b _ a _ l _  a for a :#= 0, 

(5.2) 

R~ has a t  b the principal par t  ( z -b) -2+Zab(z -b)  -1. 

Any maximal curve (maximal as a point set) on which a ~ <  0 is called a tra- 

jectory of a~. Because a and b are real and because of (5.2), all trajectories of a ~  

are symmetric to the real axis and to C; C itself is also a trajectory. For a 4 0 ,  the 

open segment ~ab~(1) between a and 0 is a t rajectory of aab, there is also one other 

non-closed trajectory ~b'~(~) of a~b in E which has the limit point a at  both  ends; all 

but  the just mentioned trajectories ~a~,~'(1) "~ab~'(2) in E are closed curves separating b and C. 

For a =0 ,  the trajectories of q0b in E consist of the non-Euclidean circles about  b. 

Each point of E, except the point b, and except the points a, 0 for a # 0 ,  is con- 

tained in exactly one trajectory of aab. 

2 
= lim Za~ for a = 0, (5.3) 

a - . 0  b -  1 _ b 
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For a~:0,  we but  K ~  = jr(1),~ab U na~'(2) 0 {a}U {0}; K0b denotes the non-Euclidean 

circle about  b through 0; for convenience we put  ~u(l)ob - -~,  K ~  =Kob-  {0}. In  each 

case, K ~  is the closure of the union of the trajectories of dab with limit point a. 

E - K o ~  has two components, a simply connected domain G~'b B b and a doubly 

connected domain ~ b  having C on the boundary. The reduced modulus(1) of Gab at  

b is called M:b, the modulus(2) of G:~ is called M:b. 

We denote by  R~b(z) the branch in the interior of E - nab~(1) which is positive on 

the segment (b, 1) of the real axis, and put  correspondingly a~b =R~b(z)dz. The periods 

of ~a~b in G:b are integral multiples of 2 ~ i ,  the periods of ~a~b in Gab are integral 

multiples of ih:b where h:b is the IR~]Llength of C. This gives immediately an 

analytic expression for the function q* mapping G;b conformally onto a disk about  

the  origin and for the function q** mapping G:b onto a concentric annulus about  the 

origin. With z~ = K ~  N (b, 1) we have 

F g*(z) = e x p  a~b, integration within G~b, (5.4) 
d Z ~  

and  q*(b)=0 in particular, and 

q**(z) = e x p  L ~  a~b , integration within Gab. (5.5) 
ab 

Denoting further by  k~b the [R~[�89 of the segment of the negative real axis 

within G'~b, and by  k~b the reduced [R~]�89 of the segment of the positive real 

axis on the left of b within Gab, i.e. 

} k~b = lira [ R~(x)[~ dx + log e , (5.6) 
e---~O+ ( d max (a,O) 

fn~n(a,O) 

k"~b = _ [R~(x)[~ dx, (5.7) 

i s  

we have M ~ b -  kab , kay,. (5.8) 
2~r' M~b-h~b 

6. We compare the decomposition of E by K ~  with the decomposition by  other 

continua. Kb~ b will be a continuum in E which contains 0 and separates b E (0, 1) and 

(1) The reduced modulus of a simply connected domain O' at bEG" is (2~)-1 log t, when 
maps O' eonformally onto a disk of radius t about the origin with ~(b)= 0, ]q~'(b)[ = i. 

(~) The nmdulus of a doubly connected domain G ~ is (2~) -1 log t'lt', when r maps G" conform- 
ally onto an annulus t' < [ w I < t," 
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C .  E - K  b has several components;: G'(Kb) is the simply connected component con- 

taining b, G"(K~) is the doubly connected component having C on the boundary. 

M'(Kb, b) is the reduced modulus of G'(Kb) at b, M"(Kb) is the modulus of G"(Kb). 

We shall use(1) ([2], Theorem 1) 

THE OREM 2. Let b E (0, 1) be fixed; let 0 E Ko be a continuum in E separating b and C. 

Then/or  any a e ( - 1, b) we have 

(2 ~)2 M'(Kb, b) + h~ 2 M"(Kb) <~ (2 z)2 M'~b " ~ 2  ~,, I~ab~• ab , (6.1) 

equality in (6.1) is possible for at most one value aoE ( - 1, b), and equality for a o implies 

Kb :Kao,b. 

T~EOREM 3. Let a, b be fixed with - l < a < b ,  0 < b < l ;  let Kabg0 be a proper 

subcontinuum of K~b; let g map Gab = E - K~ conformaUy into E o with g(b ) = band, g( C) = C. 

Then (i) [g'(b)[ ~< 1; (ii) [g'(b)[ = 1 implies that both Gab and Gab are invariant under g. 

Proof. I.  K = E - g ( G a b )  is the bounded complementary component of g(Gab)with 

respect to the complex plane, thus 0 E K  and K is compact and connected. Further, 

g(K~b--K~b) is connected, and so is its closure which has at  least one point in com- 

mon with K. Thus K = K  U [closure of g(Kab-K~)]  is conected, it is also compact 

being the union of two compact sets. K further separates g(Gab) ~ b and g(G'~b) whence 

K separates b and C, we may write thus Kb for K, and we have g(G'ab)=G'(Kb), 
H H n 

g(G'~b) =G"(Kb). The conformal invariance of the modulus Mab of Gab gives M~b = 

M"(Kb), and from the statement (6.1) in Theorem 2 now follows the inequality 

M'(Kb, b) - M'~b <. O. (6.2) 

The left side of (6.2), however, equals (2g) -1 log [g'(b)[, which proves part  (i) of 

Theorem 3. 

/ / .  Suppose now [g'(b)] =1.  In this case we have in (6.1) equality, and by  the 

second statement of Theorem 2 thus necessarily Kb =Kab. Thus g(Gab) is the compo- 
G I  t n M nent of E - K ~  which contains b whence g( ab)=Gab, similarly g(Gab)=Gab, proving 

Theorem 3 part  (ii). 

7* We call ~ ( ] ~ a b )  the family of functions which map G ~ = E - K a b  conformally 

into E 0 with g(b)=b, g(G)=C, [g'(b)[=l, and we want to determine the elements of 

(1) Closely related results are given in Jenkins [3]. 
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~(Kab). We first introduce general coordinates related to (5.4), (5.5) in G ab -  {b} and 

in Gab as follows. 

~*(z)=log q*(z) modulo 2~i,  zEGab-{b},  (7.1) 

hab . .  . 

~**(z) = ~ log q**(z) modulo *hab, z E Ga~. (7.2) 

The conformal serf-maps of Gab with fixed point b are precisely the maps 

~* ~ ~* + iv q', v q' real, (7.3) 

and the eonformal self-maps of G'~ with C fixed are precisely the maps 

~**-~ ~** + itS", v ~" real. (7.4) 

The map (7.3) is called O'-shi/t o/ G'ab (along the trajectories of ~b), the map (7.4) 

is called z$"-shift o/ G'~b (along the trajectories of a~). 

We observe further that  $*(z) and ~**(z) may be defined continuously also on the 

boundary of Gab and G~b respectively provided that  the two shores of the horizontal 

boundary segment Sa (of Gab for a < 0, Gab for a > 0) are distinguished. The shift maps 
zr(2) (7.3), (7.4) are then continuous also on the boundary. If near nab we restrict ~$*(z) 

,, - ~-(2) and within ( - ~ ,  ~) and ~**(z) within (--�89 �89 then ~*(z)=~**(z) on ~ab, 

that  common value is a conformal map of na~(2). This is immediate from the fact that  

in the unit disk slit along the segment ( -  1, b] 

r = ~b, (7.5) 

integration within the slit disk, is a (single-vMued) function. 

With a given Kab we distinguish two cases. 

Case I .  Kab is a subset of the real axis. We will then use for K~b also the nota- 

tion K~(0, 0). 

Case II .  Kab is not a subset of the real axis. Then the curved par t  ~abTr(2) = Ka~ N ~abT"(2) 

has positive ]Rab[Llength less than min(2g, hab). ~blr(~) may or may not be connected 

(i.e. may or may not stretch out from a in both directions along part  of ~(~)~" lXab]~ W e  

call v~+ or v ~_ respectively the ]Ro~[�89 of the component of ~ab~r(2) starting out 

from a into the upper or lower haft plane. Either of v~+, v ~_ may vanish, but  

o<  +o_  =  K ,la lt < min (2~, hao). (7.6) 

In this ease we use for K~ also the notation K~(tg+,~9_). 
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8. L~MM~, 4. Let Ko~ = Kab(v~+, v~-) be given; let go, - ~ -  <~ <<-~+, be the function in 

Go~ = E--Kab with the following properties: 

(i) g(b) = b, (ii) the restriction o/go to both G~b and Gab is a ~-shi/t along the trajectories 

o/ ~ab, (iii) with ~ o/(7.5), 

~[g~(z)]=~(z) +iz~ for z~- "~(~)--Tr(~)~b ~ab. (8.1) 

Then go is a conformal map of Ga~ into E o leaving C invariant with g~(b) = e ~~ 

Proof. go is apparent ly conformal in both G~b and Ge~b leaving these two domains 

invariant  and satisfying g'(b)=e ~~ We conclude from (8.1) and (7.6) the relation 

g~(K(~ -~r(~)~bj c AkabT~'(2)'. the shift is too short to carry a point of ~(2).LXab - -  Tg(2)jXab away from 

~z(2) ~(2) choosing ~ab~(2) to the real axis. Further  the equality (8.1) is valid also near ~ - - ~ a b  

near this set in G~b for ~* and in G~b for ~** the principal value ~ of (7.5), thus go is 

~(~) This proves the ~-(~)_ ,~(2) mapping this set onto a piece of ~ 0 .  also conformal o n  ZXab ~ 'ab 

lemma. 

We will call the conformal map  go the ~-shift of Gab. go shifts also the conti- 

nuum K~b in an obvious sense by  v~. 

9. To complement Theorem 3 we prove 

THV.OI~EM 4. Let K~b = K~(~+, ~_ ) be given; let (~(K~) be the family of conformal maps 

g o/ G~ = E - K ~  into E o with g(b)= b, g(C)= C, [g'(b)[= 1. Then (~(Kab) consists of the zg. 

shifts of G~ with -z~_ ~z9 ~ + ;  if, in particular, ~_ =0=v~+,  then (~(Ka~) consists ~ust o/ 

the identity. 

Remark. Theorem 4 is of Schwarz' Lemma type; if Ka~ is short [Kay=Kay(0, 0)], 

the fact tha t  a function has derivative of modulus 1 a t  a particular point implies 

tha t  ~he function has its derivative even identically equal to I.  We refrain, however, 

here from pursuing this aspect of Theorem 4. 

Proof o/ Theorem ~. The inclusion ~(Kab)~{go; V ~- ~<V~<V~+, go is zg-shift of Gab} 

"G'" G" follows from Lemma 4. Let  now g~(~(Ka~). Theorem 3 (ii) gives g(a~) = ab, g(G~)= 

G:o which implies: the restriction of g to Ga~ is a v~'-shift and the restriction of g to 

G~ is a v~"-shift, v ~' and v ~" both real. Let  us consider the case - l < a < 0 :  [a, 0] 

is contained in the boundary of Ga~, h ~  < 2g.  We may  assume 

~ " = ~ ' e  [ - ~ _ ,  - ~ _  + 2 ~ ) .  

I f  the open interval (--�89 �89 is shifted by  ~ ' e ( O + , 2 ~ - O _ )  it 

will overlap with the open interval (�89 2~--�89 thus such a v~'-shift will move 

at  least one point z' of ( K a y - K ~ )  ~(~) " " ~a~ [on which set ~*(z )  e ( - �89 ha~ + z$-, �89 hab -- ~+) 
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mod 2 ~r] to a po in t  of the half open segment (a, 0] on the real axis [on the two shores of 

which segment ~ * ( z ) e  (�89 h~b, 2~r--~ h~b) rood 2g] .  However ,  z' is a point  of G~ which is 

a common boundary  point  of G~0 and G~a0 while for  vq'E (vq+, 2 ~ r -  v q_) the vq'-shift moves 

z' to a point  which is not  a boundary  point  of G~b. Therefore the restr ict ion of 

g e (~(Ka~) to Gab cannot  be a vq'-shfft for v q' E (tg+, 2ze - 0_) since g(G~o) = G'~. Hence (~(K~) 

{go; -zg-<~vq~<vq+}, and for v% =0=~+,  (~(K~) consists only  of the iden t i ty  go. This 

proves Theorem 4 in the case - 1  < a <  0. A similar reasoning applies in the  case 

0 < a < b, while for a = 0 the only functions leaving G00 and b or Gob and C invar iant  

are the non-Euclidean rotat ions about  b, in which case Theorem 4 is e lementary.  

Theorem 4 has the 

COROLLARY. Let -- 1 <al  <a2<b , 0 < b <  1; let E=,.o and K=,.o be proper subcon- 

tinua o/K=,.o and Ka,.o respectively such that these two subcontinua both contain the point O. 

Then there is no con/ormal map o/G=,.b = E - Ka,.b onto Ga,.b = E - Ea,.o which leaves b and C 

/ixed, unless Ga,.b = G=,.~. 

Proo/. Assuming, on the contrary,  for  Ga,.b~ = Ga,.~ the existence of a conformal 

map  gl~ of Ga,.b onto  G=,.b with gl~(b)=b, gl~(C)=C, and put t ing  gf~=g~l, we obtain 

from Theorem 4 t h e  contradic tory s ta tements  ]g;2(b) l < 1 and ]g~l(b)1-1 = Ig~l(b) l < 1 since 

clearly gl~ (~ ~(Ka,,b) and g21 ~ (~(Ka,.b)" 
The  problem P ~ ( B ;  b) was solved in the corollary of Theorem 1 for b=b;(B) 

and b=b:(B). In  the remaining cases, P~a~(B; b) is solved by  

T H E o RE M 5. Let B > 0 be a point o /Rr  = {z; 0 < r < I z I < 1} and let b;(B) < b < b'~(B). 

Then 

(i) there is a unique a b e ( - 1 ,  b) such that R r -  {B} can be mapped con/ormaUy onto 

some E-(Kab.b 0 {b}) by a/unction o/~r ,  moreover, la~l < a(r); 

(ii) the IRa~.bli-length 2v~s.0. o/the curved part ~ab.Lr(2)0 O/ K~b.o above is positive; 

(iii) /] h G ~r maps R ~ - { B }  con/ormally onto G o - { b }  where G o = E - K  b and Ko = 

Ka~.b(~B: b, OB: O) are symmetric to the real axis, / e  ~ ( B ;  b) implies [/'(B) I ~< [~ (B); 

(iv) q fear(B; b) and / (B)=b>O,  If(B)l  = 1 i/ and only i / / = g o o h  with I~1 <'~OB:O 

where go is the z$-shi/t o /G  o. 

Proof. If  ao is such t ha t  R r -  {B) can be mapped  conformally onto E - (Kab.a (/{b)) 

by  a funct ion ] E ~T then  from the  str ict  inequal i ty  b;(B) < b < b:(B) together  wi th / (C)  = C 

we infer ](Rr)# r as well as/(R~) # ~Fr(Rr). Kab.a then nei ther  contains the segment 
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[ - a(r), 0] nor the segment [0, a(r)] which gives l ar a(r) as well as the positivity of the 
~ ( 2 )  ~. IRa,.bit-length of a~ab.o, ab<b since bEE-K~b.b. There is at  most one such ab, by the 

corollary of Theorem 4; that  there is actually one such ab will be shown later (Theorem 

6) by a direct construction [which also will give /~ of (iii)above]. This proves (i) and 

(ii). (iii) is immediate from Theorem 3 (i), observing that  the function/b (which is sym- 

metric to the real axis) has positive derivative at B. (iv) is immediate from Theorem 4. 

10. We turn now to the construction of the function [~ in Theorem 5 (iii). 

With two positive parameters 8, h we consider the pentagon P containing the 

half-strip {z; ~ z < 0 ,  0 <  ~z<~r} the sides of which are the following segments parallel 

to the axes: 

{z;  - oo < ~ z  < 0 ,  ~ = ~}, {~; - oo < ~ z  < h, ~ = 0 } ,  

{z; ~=h,0<3~ <s} ,  {~;0<~<h, 3~=~}, 

and the closed segment between is, ize (degenerate to the point i~r for s = ~r when P 

is degenerate to a half strip); the sides of P form the angle 0 at oo, the angles g//2 

at  h and h + is; for s<  z~ the sides form the angles 3~r/2 at is and zr/2 at iz~, for 

s>~r the sides form the angles 7e/2 at is and 3z r /2 at i~r, for s=ze at is=i~r the 

angle 7e is formed. 

'The function mapping the upper half plane conformally onto P with co, - 1 ,  + 1 

corresponding in this order to the boundary points co, h, h + is of P is 

p(w)=ize+ ~ w y t - x  dt 
jm~(x.~) t - Y  V ~ I - I '  integrand > O f o r  t < - l ,  ( l O . 1 )  

where x >  1, y >  1 correspond to the remaining vertices of P with angles 3~r/2, zr/2 in 

tha t  order (8 ~= ~r), and x = y > 1 corresponds to the vertex i~r of P (s = 7e). P is deter- 

mined by the pair (s, h), 0 < s ,  h <  oo, as well as by the pair (x, y), 1 <x ,  y <  o~. The 

correspondence between (x, y) and (s, h) is one-one, and we have the expressions 

; ' 
8 ~ 

1 t V l - i  ~ (lO.2) 

~n(x'~)V~- t dt 
and h = dt - - ~ -  t Vff~- 1~ 

or alternatively 

h=f~,(x.~)t--y+t - t - y J  V~:~_I + 

(10.3) 

~) V y + t  dt (10.4) 
+t  Vt2-1" 
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I n  calculating part ial  derivatives of h, (10.3) is more convenient  ff x < y  and  (10.4)is  

more convenient  if x > y. 

11. L~MMA 5. The mapping ~ : (x, y) -~ (s, h) is a sense preserving homeomorphism of 

(1, ~ )  • (1, ~o) onto (o, oo) • (0, ~ ) .  

Proof. We saw already tha t  ~ maps  (1, r • (1, r onto (0, co) • (0, c~) in a one- 

one fashion. F rom (10.2), (10.3) we infer the  cont inui ty  of ~. B y  the J o r d a n  curve 

theorem it then  follows tha t  any  neighbourhood of a point  (x0, Y0) is mapped  b y  9o onto a 

neighbourhood of the image point  (s0, h0), thus the inverse ~ - t i s  also continuous. ~ is 

sense preserving since it is sense preserving on the line x = y :  t h a t  line is mapped  

onto the line s = g while x < y corresponds to s < g and x > y corresponds to  s > g.  

We will see, however, in addit ion tha t  for x:~ y the partial derivatives of s, h 

with respect to  x, y are continuous with positive Jacob ian  J(x, y) =s x hy - s  u hx; fur ther  

applying the m a p  (s, h) -~ (s - ~) (1 - log Is - ~zl), h) = (s', h') near s = ~, and applying the  

maps  (x, y) ~ (x + y, y - x) = (~, ~/) and (~, ~) -~ (~, ~(1 - log 1~ I)) = (x', y ' )  near the  line x = y, 

a direct  calculation (which we omit) shows t h a t  the part ial  derivatives of (s', h ' ) w i t h  

respect to (x', y') are continuous near x'  > 2 ,  y' = 0  corresponding to x = y >  1, and  t h a t  

the Jacobian  of (x', y')->(s', h') is positive there, which proves the lemma again. 

We pu t  

A(t; x, y) = [ ( x -  t) ( y -  t) (1 - t 2 ) ]  - � 8 9  for 0 < t 2 < 1, (11.1) 

B ( t ; x , y ) = [ ( x - t ) ( y - t ) ( t 2 - 1 ) ]  -�89 f o r t 2 > l w i t h t ~ [ m i n ( x , y ) , m a x ( x , y ) ] ,  (11.2) 

A ( x , y ) = ;  A(t;x ,y)dt ,  A * ( x , y ) = ;  x - _ : A ( t ; x , y )  dt. (11.3} 
1 l y  

Abbreviat ing + by  
ax(x,  y) max(x ,  y) 

we pu t  fur ther  for x 4 y 

~ in (x, y) ~-1 
B(x, y) = B(t; x, y) d$ = B(t; x, y) dt 

m a x  (x y) 
(11.4~ 

f : (z, y) 
and  B*(x, y) = x - t B(t; x, y) dt for x < y, 

y - t  

f 
-1 x - -$  
m~x(z.u) ~ - -~  B(t: x, y)dt  for x > y .  (11.5), 
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Denot ing  par t ia l  der ivat ives  b y  subscripts  we ob ta in  f rom (10.2) 

s~=�89 sy=-�89 (I1.6) 

and f rom (10.3), (10.4) for x # y  

h~ = �89 B(x, y), h~ = - 1 B*(x, y). (11.7) 

The J acob i an  J(x, y)=sxh~-s~hx of the  m a p  (x, y)-~ (s, h) for x #  y is g iven b y  

4 J(x, y) = - A(x, y) B*(x, y) + A*(x, y) B(x, y). (11.s) 

Observing t h a t  for  some t ~ E ( - 1 , 1 )  and  for  some tB, where  tBE(1,x) for  x < y  and 

tB E (x, + oo ] U [ - oo, - 1) for x > y, we have  

, Z -- t B 

and  we obta in  f rom (11.8) 

( X--tB+X--tA)>O for x # y .  (11.9) 4 J ( x , y ) = A ( x , y ) B ( x , y )  - y - t B  y - tA  

12. Before construct ing the  funct ion /b of Theorem 5 (iii) we will consider still 

fu r ther  auxi l iary  maps .  We  s ta r t  f rom the  uni t  disk slit  along the  segment  [ - a ( r ) ,  0] 

of the  real  axis wi th  the  point  b~(B) removed,  which is (I)r(Rr-  {B}), B > 0. W e  m a p  the  

upper  half  of the  uni t  disk conformal ly  onto the  upper  half  plane so t h a t  the  points  + 1, 

- 1, b~(B) go into the  points  - 1, + 1, oo in t h a t  order.  Le t  ~ and  fl, 1 < ~ < ~, be the  

points  corresponding to - a(r) and  0 respectively.  Choosing the  pa rame te r  ~ 6 [r162 fl] and  

mapp ing  the  upper  half  plane b y  

f /  t -  (~ dt 
~(w) = in  + ~/ ( t -  ~) ( t -  fl) t~Vt~L1-1 ' in tegrand > 0 for  t < - 1, 

we obta in  a hexagon H~ which is degenerate  to  a pen tagon  as considered in section 

10 for (~ = ~ (with x = ~, y = fl) and  for ~ = fl (with x = fl, y = r162 and  which is otherwise 

such a pen tagon  slit along the  segment  [~(~), iz~] of the  imaginary  axis. We  denote  

the  pa rame te r s  x, y of this pen tagon  thus  corresponding to H~ b y  x(D), y((~), and t h a t  

pen tagon  itself b y  P=P~.  Writ ing s(P), h(P) for the  o ther  pair  of pa ramete r s  s, h 

determining P and  pu t t ing  

f :  0 - t dt 
s ' ( H ~ ) = l ~ ( 1 ) - ~ ' ( - 1 ) l =  1 V ( a - t ) ( f l - t )  ll/1--t 2' 

(12.1) 
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f /  (~ - t dt 
h. (H~)=l~(~) -~(1) ]  = V ( ~ - t ) ( f l - t )  VV~-I' 

(12.2) 

for the corresponding sides of H~, we see that  x((~), y((~) satisfy the equations 

sH(H~) = s(P~),  h~(Ho) = h(P~).  (12.3) 

By (12.1), SH(Ho) is strictly increasing in ~E[~,fl] from sR(H~)<z to SH(H~)>g, 

SO the equation SH(Ho)=~ determines a unique number (~0 E (~, fl), and SH(H~)< or for 

(~ e [~, (~o), SH(Ho) > g for (~ E ((~o, fl]. Since the partial derivatives (11.6), (11.7) of s(P~), 

h(P~) with respect to x, y are continuous for x ~= y we obtain differentiating (12.3) with 

respect to 
&(Ho) = 8x(P~) x'(O) + 8~(P~) y'(O) 

hH(Ho) = hx(P~) x' (O) § hy(P~) y'(~), ~ 4 (~0, (12.4) 

the dash denoting differentiation with respect to 0, right-sided at  ~=~ ,  left-sided 

at (~ = fl. 

Solving (12.4) for x ' ,y '  and observing SH(H~)--A(:c, fl), hH(H~)-B(~,  fl) we obtain 

from (11.6), (11.7) and observing (11.8), (11.9) for x((~), y((~) with ~e[~,fl]-{Oo} the 

system of differential equations 

A*(x, y) B(~, f l ) -  A(o:, fl) B*(x, y) 
x' = 2 

A*(x, y) B(x, y) - A(x,  y) B*(x, y) ' 

y' = 2 A(x,  y) B(g, fl) - A(o:, fl) B(x, y) (12.5) 
A*(x, y) B(x, y) - A(x,  y) B*(x, y) 

with the boundary conditions 

x(o~) = o:, y(a) = fl; x(fl) = fl, y(fl) = ~. (12.6) 

The denominator in (12.5), equal to 4 J(x,  y), is positive. 

13. We put Q={(x ,y ) ;  x > l , y > l } , Q o = { ( x , y ) ;  o:<~x<~fl, a<~y<~fl}, /={(x ,y ) ;  

x = y > 1}, 1 o = 1 N Q0, and we shall determine some properties of the functions x(8), y(O) 

considering the differential equation (12.5) in Q -  1. 

With the notation 

B(x , y )  M*(x,  y) B*(x,y)  (13.1) 
M(x ,  y) = A(x,  y)' A*(x, y) 

and the abbreviations A(x,  y) = A,  A*(x, y) = A*, A(g,  fl) = a, B(x, y) = B, B*(x, y) = B*, 

B(o~, fl) = b, M(x,  y) = M,  M*(x, y) = M*, M(o~, fl) = m [the notation a = A (~, fl), b = B(~, fl) 
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will be used only in this section where a confusion with the different previous mean- 

ing of the symbols a and b as in aab is not  to be feared], the differential equat ion 

(12.5) gets the form 

a m - M *  y ' = 2  a m - M  
x ' = 2 A M _ M . ,  A ' M - M * '  ( x , y ) E Q - 1 .  (13.2) 

The expressions A, B, M are symmetr ic  in x and y; M(x,  y) is the extremal  distance 

between the segments [ - 1, 1], [rain (x, y), max  (x, y)] in the upper  half plane, thus  

M(x,  y) >1 m for (x, y) E Q0 - l0 with equal i ty  only at  (a, fl) and (fl, a). We have M - M* = 

A-1 A,-14 J > 0 for (x, y) E Q - l, and we notice M-~ ~ and M*-+ ~ as (x, y) tends to a 

point  of l. While (13.2) is not  defined on l, the  direction dy /dx  prescribed by  (13.2) 

in Q -  1 has limiting value + 1 on 1 as is seen upon a little consideration. 

LEMMA 6. For ~E[g, fl], the /unction y(5) is strictly decreasing /rom fl to ~ with 

y' (~) < 0 in (~, ~o) U (~o, fl)" 

Proo/. (12.6) gives a l ready y (a )= f l ,  y( f l )=~,  so we have merely  to show tha t  

y((~) is str ict ly decreasing with negative derivat ive in (a, (~o)U (~o, fl)- 

F rom (12.5) or (13.2) we have immediate ly  

x ' (~ )=2=x ' ( f l ) ,  y'(o~)=O=y'(fl). (13.3) 

Since M, M* have on Q -  1 continuous first order part ial  derivatives with respect to  

x and y we obtain from (12.5) using (13.3) 

y"(a) = �89 J(o:, fl) ~x [A(x, y) .  b - a .  B(x,  y)]~:~ .~ 2. (13.4) 

A t  (x, y ) = ( ~ , f l )  we have from (11.1) through (11.4) 

~x ~ A ( x , y ) =  _1~ - -  A(t; zc, f l )d t=  . . . .  ~ 1 a 
1 ~ - - t  o t - - t  o 

and ax B(x, y) = - �89 
1 "b 

B ( t ;  ~, fl) d t  = - �89 ot - t l  

with suitable toe ( - 1, 1) and suitable t i e  (fl, c~] U [ -  oo, -- 1). Therefore 

(1 1) 
o~ [A(x,  y ) .  b - a -  B(x ,  y ) ] ~  = - �89 ab < 0 

•p ~( t o ~ - -  t 1 

whence from (13.4) 
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y"(g) < 0. (13.5) 
In a similar way we obtain 

y~(fl) > 0. (13.6) 

(13.3), (13.5), (13.6) show that  y ' (5)<0 on the rigth of a near a and on the left of 

fl near fl, and Lemma 6 is proved once it is shown that  y ' (5)never  vanishes in 

(cr 50) U (50, fl) since (x(5), y(5)) E l only for 5 = 50. Assuming now that  y'(5) vanishes 

somewhere in (a, 50) we denote by 51 the smallest zero of y ' i n  (~, 50)so that  y ' (5)<0 

for 5E (~,51). Since M * < M ,  (13.2) gives x'(51)>0; thus on the left of 51 and near 

51, x(5) is increasing and y(5) is decreasing whence the extremal distance M[x(5), y(5)] 

is increasing at 51, and from (13.2) the contradiction y ' (5)>0 near 51 on the left of 

51 would follow. Therefore indeed y ' (5)<0 for 5E(g, 5o), and similarly y ' (5)<0 for 

5E (50, fl) is obtained. This proves the lemma. 

L v. MMA 7. There is a (unique) number 51~ E (a, 5o) such that sign x' (5) = sign (51x - 5) 

/or 5 E [a, 5o); there is a (unique) number 5~ E (5 o, fl) such that sign x" (5) = sign (5 - 5~x) /or 

5 E (5o, fl]. 

Proo/. We saw already M~ =M*[x(5), y(5)]-~ c~ for 5-~5 o. From (13.2), (13.3) we 

conclude that  x'(5) vanishes at least once in (~, 50) and once in (50, fl). On the other 

hand, a simple calculation gives 

~M* 
sign --~- = sign (x - y), (x, y) E Q - l (13.7) 

whence, by (13.2), x'(5x) = 0 for 5x EI(~, 50) U (50, fl) implies that  x' is strictly decreasing 

or strictly increasing at 5x as Y((~x)- x(Sx) is positive or negative, i.e. as 5zE (a, 50)or 

5x E (50,/~). The lemma follows. 

Lv.MMA 8. The curve ?~={(x , y ) ; x=x(5 ) , y=y(5 ) ,o~<-5<- f l }  lies up  to the initial 

point  ?~ = (a, fl) and the terminal point ?~ = (fl, a) in the interior o/Qo; its slope d y / d x  is a 

cont inuous/unct ion o/ 5 [assuming the value • c~ exactly twice continuously at 5 = 51x and 

5 = 52~]; ?o passes at 50 through the line l with slope + 1. 

Intuitively, Lemma 8 says that  the curve ?~ has the shape of a question-mark 

intersecting its tangent 1 at ?~, from left and above to right and below. I t  might 

seem surprising that  x(5) is not monotonic in [~, fl], and is at  5o decreasing just as 

fast as y(5). 

Proo/. The piece {(x, y); x = x(5), y = y(5), ~ ~< 5 ~< 51x} of ?~ on which x(5) is strictly 

increasing and y(5) is strictly decreasing [Lemmata 6 and 7] lies up to the initial 
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point (~, fl) in the open triangle A~ with vertices (~, fl), (:r ~), (fl, fl). Since 7~0 is (Lemma 6) 

a point of the open segment between (g, a), (fl, fl), the curve 7~ cannot leave A~ for 

6~--<6<60 (Lemma7).  Similarly it is seen that  the piece ( (x ,y) ;x=x(6) ,  y=y(6),  

60< ~ < fl} lies within the open triangle A s with vertices (fl, fl), (~, a), (fl, a), thus the 

first statement of Lemma 8 holds. The continuity of the slope dy/dx is obvious for 

6 �9 60, and for 6 = 60 it follows from limo_~. (dy/dx) = 1 which fact was remarked before 

Lemma 6. The third statement of Lemma 8 is now obvious. 

14. In  order to construct the function /b of Theorem 5 we use the following nota- 

tion. @~, u > 1, is t h e  function mapping the upper half of the unit disk conformally 

onto the upper half plane with the boundary correspondence | + 1) = - 1, | - 1) = 

§ 1, ~ ( 0 )  = u. With 1 < zl < z~ and ul ~< ~ ~< u~, ~,.~,:~ = ~,. ~,: ~ is the function defined 

in the upper half plane by  

Z t 6 dt 
, ~  V ( t -u l )  ( t -u~)  t~]/~-I ' integrand > 0  for t <  - 1, (14.1) 

mapping the upper half plane onto a hexagon which is degenerate to a pentagon for 

6 = u l  and 6=u2.  [Cf. section 12.] 

Consider the annulus R~ with the point B > 0 of Rr distinguished. With (P~(R~)= 

E_~(~), dP~(B)=b~(B), the number fl=fl(r ,  B ) > I  is uniquely determined by the requi- 

rement @~[b~(B)]=~; let O~[-a(r )]=a=cc(r ,B)>l .  Let  ~.~;~(1)=h+is where h= 

h(r, B; ~) > O, s = s(r, B; 6) > 0. There is a unique pair (x, y) with x = x(r, B; (~) e [~, fl] 

and y = y(r, B; 6) E [a, fl] such that  tx. y:,(1) = h + is (Lemmata 5, 8), and by Lemma 6 

the correspondence between 6 E [a, fl] and y e [a, fl] is homeomorphic for fixed r, B. We 

put further ~ 1 ( ~ ) =  b with b = b(r, B; 6) and O~l (x )=a  with a = a(r, B; 6), and we shall 

see (Lemma 9) tha t  a, b depend likewise homeomorphically upon 6 for fixed r, B. 

THEOREM 6. Let there be given the annulus R r and a point B > 0  o/ Rr. Let o~ 

and fl, both depending on r and B, be as above, and let b*e [b~(B), b'~(B)J be given. Then 

there is a unique ~* e [~, fl] such that b* = b(r, B; ~*) with the above /unction b(r, B; (~); 

/urther with x* = x(r, B; ~*), y* = y(r, B; 6"), a*= a(r, B; ~*), depending each on r, B, 6 as 

above, the /unction /b* mapping Rr con/ormaUy onto the domain E - K ~ .  b* symmetric to 

the real axis and maximizing if(B)/  within the class ~r(B,b*) is given in the upper hall 

o/ R r through 
| o~x,. ~.: x .o~.  ~:~.o |162 b* ~ - 1  - 1  

Proo/. We prove first that  for any  6 E [~, fl] with corresponding x, y, b, a the ana- 

lytic function/b given in the upper half of R r by  

1 4 -  672906 A c t a  m a t h e m a t i c a .  118. Impr im6 le 20 ju in  1967. 
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/b = ~ o  G,~: ~ o ~'~.~:,~o ~o(I ) , .  (14.2) 

maps R~ conformally onto G = E - K ~  where Ko~ B 0 is a continuum symmetric to the 

real axis on Kab [ef. section 5 for the definition of Ko~]. The statement is obvious for 

8 = ~  since then, by (12.6), [b=(I)r in (14.2), it is also obvious for ($=/~ since then 

the right side of (14.2) equals O[,lo~.l:po$~.~:#oOljo(I)r which by  ~.~:~= ~.~.~ equals 

O~loO#o(I)r=~F~ because 0~100~ is the map z ~ ( z + a ( r ) ) / ( l + a ( r ) z ) .  So let now 

8E(g,/~). Since [0 of (14.2) is real on the intersection of Rr with the real axis it is 

sufficient to show that  the set K omitted in the upper half unit disk by [b(R~+), where 

Rr + is the upper half of R~, lies on a trajectory of aab< 0 and has a as a limit point. 

K is the image by O~lo$z.~:x of the segment [$~.#:~(8), i~z)=k0 by which the 

corresponding hexagon Ho=$~.~:ooO#o~Pr(Rr +) and pentagon ~.~:zoO~o(1)r(R~ +) differ. 

k0 lies on a trajectory a < 0 of the quadratic differential a = 1 �9 d~ 2, and the transforma- 

tion 0 = ~.�89 (~) gives a the expression 

~ ) - x  1 
a = 0 - y  0 * - ~  dO2" (14.3) 

With y = 1 (b-1-4- b) = y(b), 0 < b < 1, (14.4) 

[ b - z 1 - bzl 
we have | (z) = �89 [7--7:_ + T--:y. | ,  (14.5) 

Ll--uz 

and the application of the transformation z=O~l (O)  to (14.3) gives a after a simple 

calculation the form a~ of (5.1) where a =  O~1(x), therefore the set K omitted in the 

upper half unit disk by )tb(R~+ ) is indeed the piece of the trajectory ~o~< 0 between 

a and ~-1o; '-1 vy  ~x.y:xo~.~:o(8). By  the Theorems 3 and 4, the eonformal map/~  given in 

Rr + by (14.2) is the unique function positive at B > 0  and symmetric to the real axis 

which maximizes [/~(B)] within ~r(B;b). To complete the proof of Theorem 6 it re- 

mains to show that  for any b*E [b~(B), b~(B)] there is a unique 8*E [~, fl] such that  

b(r, B; 8*) = b*. 
$ �9 n 

Let there be given b E[br(B),b~(B)]. (14.4) determines uniquely y*=y(b*), and 

y* E [~, fl] since y[b~(B)] =/~ and y[b'~(B)] = ~; y* E [~,/~] determines (Lemma 6) uniquely 

8" E [a,/~], and thus for fixed r and B the equation b* = b(r, B; 8) is satisfied for exactly 

one 8*E [~, fl]. This concludes the proof. 

We remark that  a* =a(r, B; 8"), which is uniquely determined also by b*, is the 

unique ab* whose existence was asserted in Theorem 5 but  not proved there. Denoting 

for fixed r, B, the functions a(r, B; 8) and b(r, B; 8) simply by a(8) and b(8) we prove 
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LEMMA 9. The derivatives a'((~), b'((~) exist and are cont inuous/or  ~E[~,fl]-((~o}, 

with a'(~) > 0 in [~, ($o) U ((~o, fl] and b'(~) > 0 in (o~, ~o) O (~o, fl). 

Proo/. I .  Since y'(~) is continuous in [~, 80) U (80, fl] the assertion for b(~) is im- 

mediate from Lemma 6 and (14.4). 

I I .  The continuity of a'(~) in [~;(~0)U (Oo, fl] is again obvious. For x:~y ,  the 

relation a = O ~ l ( x )  has, by (14.5), the form 

b - a  1 - a b  
(14.6) 2 x =  1 - a b ~  b - a '  

and using (14.4) we obtain from (14.6) the r e l a t i o n a l ( x - y ) -  2 a ( x y - 1 ) + ( x - y ) = O ;  

since ]a[ < 1 and since from x(Oo)= Y((~o) follows a(~o)=0 we have explicitly 

1 
~ a  ~ �9 

x - - y  
( x y - l - V ( x 2 - 1 ) ( y ~ - l ) ) ,  ~E[~,~o) U (~o, fl], a(8o)=O. (14.7) 

We consider first the case ~<(~< 80. Since then x <  y we have from (14.7) 

whence the statements 

x y - 1  ~ ( x y - l l 2  --a - -  1 (14.8} 
y - x  \ y - x /  - 

a'(~)>O and d x y - l > o  
d5 y - x  

are equivalent for a ~< ($ < 80. So it is sufficient to prove 

( y -  x )  d ( x y  - 1) - ( x y  - 1) d ( y _  x) = x ' ( y  ~ - 1) - y ' ( x  2 - 1) > 0 

or equivalently, using (12.5) and observing the positivity of the denominator there~ 

the relation 
A(g,  fl) . B**(x, y) - B(~, fl) A**(x, y) > 0 (14.9} 

where B**(x, y) = (x 2 - 1) [B(x, y) - B*(x, y)] - (y2 _ x ~) B*(x, y), 

A**(x, y) = (x 2 - 1) [A(x, y) - A*(x, y)] - (y~ - x  ~) A*(x, y). 

From (11.3), (11.4), (11,5) we obtain 

B(t; Y) x~ 
B(x, y) - B*(x, y) = (y - x ) |  dt, 

y - t  dl  
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1 A(t; x, y) 
A(x ,Y) -A*(x ,Y)=(Y-x)  f_ 1 -~2-~ dt 

whence with ~ - I - (y + x) ( x -  t) ~ t(y + x) - ~ -  1 

t(y + x) 1 
B**(x, y) = ( y -  x ) |  B(t; x, y) dr, 

y - t  31 

f~  t(y + x) -- x y -  1 A dr. A**(~, y) = ( y -  ~) (t; Y) 1 y - t  

Using again (11.3), (11.4) we obtain with a suitable value t 0 ~ ( - 1 , 1  ) and a suitable 

value t~ ~ (1, x) 

A(a, 8) n**(x, y) - B(a, 8) A**(x, y) 

= ( y - - x )  [t~(Y + x) ----xy- 1 A(o~, 8) B(x, y ) -  
]_ y -  t~ 

to(y + x) - xy - 1 B(g, 8) A (x, y ) ] ,  
y - t o 

(14.10) 

and both factors of the second term in (14.10) are positive. So (14.9) is indeed correct 

whence a'(~) > 0 for cr ~ (~ < (~0. 

I / / .  Reasoning similarly as in II .  above one concludes also a ' (~)>0 for ~0< (~ ~fl.  

This proves the lemma. 

15. We investigate now which /~(B) for bE[b~(B), b~(B)] is maximal. We place 

~ ,  into the w-plane; after having 0~ continued analytically into the full slit disk 

E-a(r) we place 0~o(I)T(Rr) , which is the extended plane slit along the segments [ - 1, 1], 

~ ,  8] of the real axis, into the 0-plane, and h,(Rr) into the z-plane. In/b(Rr) we take 

the  quadratic differential q~ determined in the last section; since a and b depend both 

on  (~E[a,~] and since fb(Rr) lies in the z-plane we write now (~6;z for (~a~ in /t,(Rr). 

F o r  the analytic expression obtained from ao:z by  application of /gl we write ao;w, 

and  for the analytic expression obtained from a~:w by application of 0~o(I)r (or from 

a~:~ by  application of -I ~.~:~o~x,y:xo0~) we write (~:o. a~;z, a~:o,a~;w are different ex- 

pressions of the same quadratic differential. 

We choose Qe>0  large and denote by  F~;e(~e) the area of the disk J0J<Qe in 

t he  metric Ja~;e/dO2J�89 similarly we choose ~z>0, ~w>0 both small and denote by 

F~;z(~z) and F~:w(~w) respectively the area of E-{z ;  Jz-b[ <~qz} in the metric Jq,~;z/dzgJ �89 

~nd of R,-{w; Iw-b;(B) I <~} in the metric I~.~/~w~l �89 
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The equality F~:~ (~) = Fa;o (~o) = F~;w (Qw) (15.1) 

relates the three numbers ~z, ~o, @w in such a way that one of them determines the 

two others and that the conditions ~z-~0, @o-~ oo,@w-~0 are equivalent. From now on 

we will have these three numbers always related by (15.1). The relation 

]~(B) = lim P_~z (15.2) 
q~-~o Qw 

as well as the relations 

d [ 1 i] = l h n  1 -D1,  (15.3) 

d [  1 ] __lira 1 =D~ (15.4) 

follow. Observing that the right side of (6.1) is the at b reduced area of the unit 

disk in the metric ]OO:z/dz2[ �89 we have 

lira [F~;~ (~) + 2n log ~] = (2n) 2 M~b + h~ M~,  (15.5) 
0~--~0 

which gives with (15..1) the relation 

.F~;o(Oo)=(2~r)~M'~b+ha~M'~b-2vr log q~+o(1) for qo-~OO. (15.6) 

Subtracting 2vr log Qo in (15.6) and taking the limit we obtain with (15.4) 

-2vr  log D~=(2~)2M'~o+ha~M'~o- lira [Fo:o(eo)- 2~ log Co] (15.7) 

which becomes with (15.2), (15.3) after addition of 2~rlog D 1 

�9 H H 

2~r log/~(B)=(2vr) M,~b+habMab+2Vr log D~-  lira [F~:,(eo)-2vr log ~o]. (15.8) 
qO--*oo 

f 
~ t -  ~ dt 

The function ~'P:~ g ( t ' ~ )  ($-fl) J/ff~-l- 1' 

integrand > 0 for t < -  1, maps the upper half plane onto the hexagon H~ the inte- 

grand being a branch of ao~;o; we get thus in the notation of section 12 

lira [Fo;o(~o)-2vr log 0o] 
00--~oo 

= 2s~(Ho) " hH(I-Io) + 2~  ]/~-o~) ( t -  fl) ~ d~-  2~ log fl, (15.9) 

and we have finally from (15.8), (15.9) 
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2 " M 2 n 2 z~ log/~(B) = (2 z~) M~o + hab M~b -- 2 sR(Ho)" hH(HO) 

- 2 z ~ j p  [ l / ( t _ ~ ) ( t _ f l  ) ~ dt+2z~log(D~.fl).  (15.10) 

16. In order to find the maximal value of (15.10)in bE [b~(B), bT(B)] we will use 

several properties of the functions M~b, M~b. 

LEMMA 10. The map (a, b)-~(Mab, M~b) is continuous on 

A=((a ,b);  - l  < a < b , O < b < l } .  

We omit the easy proof. (The lemma is amply contained in Theorem 8 of [2].) 

LEMMA 11. The partial derivatives (~/~a) M~b, (~/aa) M" ab are continuous on A 

except on the line a = O; the partial derivatives (~/~b) Mao, (~/~b) Mab are continuous on A. 

This is part  of Lemma 7 of [2]. 

L~.MMA 12. (23) ~ (O/~a)M'~+h~2(~/Oa)M~b=O on A except on the line a=O. 

With the continuity of (8/aa)M'ab, (O/aa)M~b for a~=0 the lemma is immediate 

from Theorem 2 part  (i) of [2]. 

L~.MMA 13. (2 ~)2 (O/Ob) M'~b § h'~ 2 (~/~b) M~b = -- 2 ~ Z~b on A where Zoz is given in 

(5 .3) .  

This is Theorem 5 of [2]. 

LEMMA 14. The equation Za~=O de]ines on A an implicit /unction a=~(b) where 

0 < b < V 2 -  1, with limb-,0 j(b)= 0, lim~-,V~-i ~(b) = - 1; j(b) has a continuous always nega- 

tive derivative on 0 < b < V 2 - 1 .  

This follows at once from Lemma 5 of [2]; it may be obtained also from (5.3). 

Denoting by A*={(a,b); (a,b) EA,Zab=O} the graph of j we have 

LEMMA 15. On A - A * ,  Z~ has the sign o/ a -] (b)  i/ bE(O, ~ 2 - 1 ) ,  and Zab>0 if 

b E [ V 2 - 1 ,  1); in particular, Zoz>0 i~ a>~O on A. 

This follows from (5.3) using e.g. the explicit expression 

j(b) = - (sinh fl - Vsinh~ f l ,  1) (sinh2/~- Vsinh' fl - 1) 

where sinh fl=�89 (b - l - b )  for bE(0, V2-1) ,  which expression is given in (8.1) of [2]. 
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17, Let  ~q[a,  f l]-(~0}. Since then x * y  and a=O;l(x)#-O we obtain differen. 

tiating (15.10) with respect to ~ (using Lemma 10 and the continuity of a'=da/d$, 

b'=db[d$) the relation 

2 ~ ~ log g(B)= (2~) ~ ~ M~ + .oo0 ~ Mo~ 

+ [(2~)' % M'o~ + ~  ~ M" 3~, d 

d I T M  1 dt 
(17.1) 

To simplify (17.1) we use the 

L~M~ 16. For ~e[~,B]-{~0}, 

,, ,, dh,, d ~~ 1 dt 
~.0M.0h5 o~-~ [~,(H~).~(H~)]+~, V(7:-~ (t-fl) Vt~-I =~ (17.2) 

Proo/. We notice 

H g 

h~ = 2sH(H~) and Mob 

Thus the left side of (17.2) has also the form 

d d 
hs(H~) ~ sH(H~) -- s,(Ho) . ~ h,(H~) + xe 

h.(H~) 
28.(H~)" 

f 
~ 1 d$ 

(17.3) 

from (12.1), (12.2), it  is seen that  (17.3) is actually independent of 0. Choosing in 

(17.3) for (~ the value B we obtain therefore with (12.1) and (12.2) for the left side 

of (17.2) also the expression 

, V(t- ~) ( t -  B) Vi-:~" (/3- 0 V(t :- a) (~- B) V~- 1 

_ ; ( B _ t  ) 1 dt ~ 1 dt 

, V:~---~) (t- ~) ~S--t," /it- ~) (t- B) ~ 1 

f ~ 1 dt (17.4) 
+ ~ V(t- ~) ( t -  ~) V~ ~-:- 1 

The transformation 

f ~  1 dt u = ~ / (~r  ( t - B )  ~ ,  integrand > 0 for t>B, (17.5) 
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maps the upper haft O-plane onto the rectangle 0 < ~ u <  03x, 0 < ~ u <  03~ with 

f :  1 dt f_  1 d t > o  ' ,ol = r  t) ( 8 -  tj ~ > o, 03~ = 
1 1 V(~ -  t) ( 8 -  t) 

where {2031,2i032} is a set of fundamental periods of the elliptic function 0(u)inverse 

to u(0) of (17.5). Putting 

f 
'~ 1 dt 

u ~  = V ( t - ~ )  ( t -8)  ~ e (0, 030, (17.6) 

(9(u) has simple poles at  u =  q-u~ modulo periods, with residue - 1  at  + u ~  and 

residue + 1 a t  - u ~ ,  Applying the transformation (17.5) to (17.4) we obtain (17.4) 

in the form 

03 ,"  [ f l -O(u)]du-  0 3 x "  [fl-O(u)]du+au~., (17.7) 
J f0,2 ~ ~z 

the path of integration in (17.7) being always a straight line segment. The elliptic 

function /~-O(u) has in terms of Weierstrass' function ~(u)=u-X+O(u a) near u=O,  

corresponding to the period parallelogram with vertices __ 031-i032, the expression 

fl -- (9(u) = ~(u - u.o) - ~(u + u.,) + 2 ~(u~) (17.8) 

since both sides of (17.8) vanish at  u = O  and the difference of the two sides is an 

elliptic function without poles. (17.8) now gives 

s /'f0,~+u~ 

[8 -- ~)(U)] du  = o) 1 �9 2 r -{- J10,2-~ [~(u) - r -]- o31) ] du'~ 
COl 

taking into account that  $(u) -  ~(i03~) and ~(u + 03x)- ~(i03~+ 031) are odd functions of 

u -  103~ we obtain with the usual notation ~(iw2)- ~(i03z + 031)=-  ~x 

~t i0,'+0,x [8 ~)(U)] [031" ~(uoo) ~1U~]. (17.9) du 2 
0,$ 

Similarly we obtain 

I f  ~*+'m l i  "~'+'~'-"00 1 fo,+,o.+.= 
[fl-O(u)]du=w~'2r162162 r .~ 0,,+ ".0 r 

which becomes applying Cauehy's integral theorem to the rectangle with vertices 

031 • u~, 031 + i03~ • u= in which r is regular, 

1;0, ,  +'0, �9 1 ~0,,+-00 
- [ 8 -  O(u)]  du = 032" 2 r  + : [r - ~(u + i03~)] du 
$ *)0,z $ d oJl--l~co 
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from which, reasoning similarly as before  (17.9), one obtains with the usual notation 

~ ( ( o l )  - ~ ( ( o l  + i (o2)  = - i ~  

1 I ~+t~2 ~# ~, [fl - O ( u ) ]  du = 2 [(oa ~(uoo) - Be uoo]. ( 1 7 .1 0 )  

Inserting (17.9), (17.10) into (17.7) and observing that  (17.7) and the left side of 

(17.2) are identical we obtain 

f~ ,, d ,, d . h , ( H ~ ) ] + ~  1 dt 
hab Mao ~ hub -- ~-~ [ s . ( H o )  V(t  - ~)  (t - / ~ )  ~/t ~ - 1 

= 2 (o~ [(ol ~(uoo) - ~ t  uoo ] - 2 (ol [(o~ ~(uoo) - 78 uoo ] + ~uoo 

= [2 (o 1 ~ -  2 (ouSt + rr] uoo, (17.11) 

and the last term in (17.11) vanishes by Legendre's relation about the additive periods 

of the function $(u). This proves Lemma 16. 

18. LEMMA 17. Let ~e(~,fl)--(($o); let a=a(r ,B;~)  and bffib(r,B;~) be as in 

Theorem 6. Then 

sign ( ~  log ['b(B)) =sign ( - Zo~). (18.1) 

Proo[. In (i7.1), the factor of a' vanishes by Lemma 12; the factor of "b' equals 

-2~rZo~ by  Lemma 13, and the remaining terms vanish by Lemma 16. Thus we have 

d db 
d-~ log ['o(B)= -ga~ ~ ,  Oe[~,~]-{($o}, (18.2) 

and (18.1)follows from (18.2) by  Lemma 9. 

THEOREM 7. Le~ B > 0  be a poin~ o/the annulus R r and let (I)r(Rr) =E-a(r), dPr(B) = 

b~(B). Then the problem P ~ ( B )  has the /ollowing solution: 

(i) ~] Z_a(r).b;(s)~>0, (I)r is the only /unction o/ ~r satis/ying 

(Ia;(B) = max If(B)[ (18.3) 

and any q~E~r with [~0'(B)I=~P;(B ) has the [orm q~(z)=e'rdPr(z ) with 7 real; 

(ii) i[ Z_a(r).b;(s) < 0, there is in the previous notation a unique ($+ e (~,/~) such that 

Za+b+ = 0 where a + ---- (r, B; ~+) < 0, b + = b(r, B; ~+); ~+ < ~o and [b+ satis/ies 
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l ;  + (B)  = m a x  If (B)1;  (18 .4)  
f~lir 

any 9E ~r with ]~'(B)[ =/~+(U) has the [orm 

q~(z) = e*V ga[/b+(z)], 7 real, (18.5) 

where go is the ~-shift o/ section 8 with [0]~<v ~+ and 

f~+ ~ + - t  dt 1 h~+b+ <~t; 
o < a § = V ( t -  ~) (~- t) ~ = 

/urther any q~ o/ (18.5) is in ~ and has [q)'(B)[=/'o+(B); 

(iii) the cases (i) and (ii) above mean geometrically: case (i) corresponds to f l - a  <~ 

b~(B) and case (ii) corresponds to f l -a>b~(B) .  

Proo/. Let (~1 E (o~, fl) and put  a 1 = a(r, B; ~1)' bl = b(r, B; (~1). Since both a and b are 

strictly increasing (Lemma 9) in (~, Za, b,~>0 implies Z(~)=Za(r,B;O).b(r.B;o)>O for 

~1 < ~ ~ ~: by Lemma 15, Zab > 0 above and Z~ < 0 below A*; by Lemma 14, A* has negative 

slope. For 01 =~ ~0,/'b(B) (which is positive) as function of ~ is at  01 therefore increasing, 

decreasing or stationary with strict maximum as Za,b, is negative, positive or zero (Lemma 

17). At ~0,/'o(B) is decreasing in (~ by  Lemma 17 and the mean value theorem since 

a(r,B;Oo)=O and Z0. b(r.B:~.))>0 by  Lemma 15, and since Z(O)is  continuous in 0. 

Thus either Z((~) >i 0 in [a, fl] or else there is exactly one value (~+ E (a, (~0) with Z(O +) = 0 

and Z(($) < 0 for a ~< (~ < ~+ and Z(0) > 0 for (~+ < ~ ~< ft. In the former case [Z(a) >~ 0], 

/'b(B) attains its maximal value in [b~(B), b~(B)] only at  b(r, B; a)=b~(B); in the latter 

case [Z(~) < 0],/~(B) attains its maximal value only at  b + = b(r, B; (~+). Thus in ease 

(i) of Theorem 7 we do have (18.3), and in ease (ii) we have the unieity of (~+ and 

the validity of (18.4); the remaining statements in the eases (i); (ii) follow readily 

from Theorems 4 and 5; statement (hi) is obtained upon simple computation. 

19. The solution of the problems Pmin(B) and Prom(B; b) is much simpler. Since 

any argumentation in solving these problems is similar to or even easier than some 

reasoning encountered above we shall give below the relevant statements refraining 

from proofs. 

THEOREM 8. Let Ecd be the unit disk slit along the segment [c, d] with - 1  < c< 

d <  1, and let d< b< 1; let h be a /unction mapping E~ con/ormally into the unit disk 

E and saLis/ying h(b)=b as well as h(C)= C where C is the circum/erence o/ E. Then 

]h'(b)[>~l with equality i/ and only i/  h is a non.Euclidean rotation about b. 



EXTREMAL ELEMENTS IN CONFORMAL MAPPINGS OF AN ANNULUS 221 

COROLLARY. / /  in addition 0E[c,d] ,  and q h satis/ies also h(Eca)CEo=E-(O},  

then [h'(b)]--1 implies that h is the identity. 

THEOREM 9. Let B > 0  be a point o/ the annulus Rr; let Hb, b~(B)<~b<.b'~(B), be 

the/unction mapping R r con/ormally onto Eta with d < b, Hb( B ) = b, Hb(1)= 1; l e t / e  Dr(B; b) 

with / (B )> 0 .  Then [/'(B)[>~H~(B) with equality i/ and only i/ /=Hb. 

THEOI~EM 10. With B > 0  as above, le t /E Dr with/(B) >0.  Then If(B)] >~F~(B) with 

equality i/  and only i~ /=~T'r, where ~2"r is given in section 2. 

20. Final remark. I t  might be of interest to find out extremal properties of the 

functions F~(z)Hl-'(z) with 0 < 7 <  1 and Fb=gooh where g~ is a v%shift (section 8) 

and /b is given by  {14.2). This might lead to the determination of the range o f / ' (B )  

for / E Dr, /(B) = b. 
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