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1. For 0<r<1, let R, be the annulus {z;r<|z|<1}. Denoting by E the unit
disk and by C its circumference, ¥, will be the class of schlicht analytic functions f
with f(R)<E—{0}=E, and f(0)=C. For BER, we put

b;(B) =,11§f [#(B)|, b:(B) ~Sup |#B)] (1.1)

and denote by ,(B;b)<, the subclass of functions satisfying |f(B)| =b where b;(B) <
b<b;(B). We shall study the following problem: Which functions minimize or mazimize
|f(B)| in the class ¥, and in the classes ,(B;b)?

In order to avoid the consideration of uninteresting rotations about the origin we
shall mainly deal with the equivalent problems:

Ppy(B);  Which functions, positive at B> 0, minimize |f(B)| within &,;
Poox(B);  Which functions, positive at B >0, mazimize |f (B)| within F;
Pu(B; b); Which functions, positive at B> 0, minimize | (B)| within F.(B;b);
Ppox(B; b); Which functions, positive at B >0, maximize |f (B)| within ,(B;b).

P. L. Duren [1] posed already the problems P, (B) and P, (B); using the var-
iational Lemma of Schiffer [4], Duren [1] showed in sections 3-5: (i) Pyu(B) has the
unique solution W,; (ii) Ppa(B) has the unigue solution ®, provided B is in a precise
sense sufficiently far away from the inner boundary component |z|=r of R,. [The func-
tions @,, ¥, will be defined in the following section 2.]. In the case when B is no
more sufficiently far away from the inner boundary component, Duren [1] achieved
a partial solution of P, (B).
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In the following we shall determine all solutions of each of the problems P, (B),
Poo(B), Pom(B;b), P (B;b); certain quadratic differerentials will play here a key
role. It turns out that the extremal functions in the problems P, are always unique
while the extremal functions of the problems Pg,, usually form a one-parameter family.
Since the problems. P,,, are more complicated they will be treated below in much

more detail.
We shall use the notations common in the theory of extremal length:

Ly, 0)= Le(z) |dz|

for the length of the curve y in the metric o which is a non-negative Borel measurable

function g(z) of two real variables;

L(T, o) =inf L(y, )
yell

for a family I" of curves y;
A(Q, 0)= ff o dxdy
G

for the g-area of a domain G,
LXT, o)

ML, 0) = 4(Go)

for the p-length of the family I' of curves y lying in G provided the metric g is ad-

missible for I, i.e. the above quotient is defined;
MT) =sup AT, @)
e

(the supremum being taken over all admissible metrics g) for the extremal length of
I'; the metric g* is extremal if A([")=A(T,¢*). If AI')*0, o and if there is an ex-
tremal metric p* then any other extremal metric is almost everywhere a constant

multiple of p*.

2. For the determination of the quantities b,(B),b;(B) in (1.1) we use (here and
also later) the following notation.

For 0<b<1, E, is the unit disk slit along the two segments (—1, 0], [b, 1). For
—l<a<]1, E, is the unit disk in which the closed segment S, between a and 0 is
deleted, with degenerate case E,=E —{0}. a(r)>0 is such that R, and Z, are con-
formally equivalent. ®, is the function mapping R, conformally onto E_,, with
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o (1)=1; ¥, given by ¥,(2)=—®,(—2) for z€ R, maps then R, conformally onto
E,qy; both @, and ¥, leave the points +1 fixed.

TaEoREM 1. Let B>0 be a point of R,. In the notation (1.1) we have then

(i) b(B)=®(B), b(B)=Y.B):
(ii) if f€F, and f(B)>0, f(B)=b,(B) implies f =®, and {(B)="b;(B) implies f="F,.

To prove the theorem we will use several lemmata.

We consider for 0<b<1 the family I', of curves in E; joining the upper half
0+ ={2;2€C, J2>0} and the lower half C~ ={z;2€C, J2<0} of C. To determine the
extremal length A(I';) we introduce the quadratic differential

0y =[2(z—b) (z —b~1)] de2. 2.1)

Since the function g, in E, given by

R

¢y(z) = branch off at, (2.2)

0

integration within E,, maps E, conformally onto a rectangle with horizontal sides

g(C*), ¢,(C7), the metric

& )
- (2.3)

0:(2) =

is extremal for I';, and a curve y€I'; is of shortest g,-length if and only if y satis-
fies the differential equation ¢,<0. Denoting this shortest g,-length within Iy (which
equals twice the g,-length of either of the segments [—1, 0], [b, 1] after having ex-
tended g, continuously to the full unit disk) by L; and the o,-length of the segment
[0, b} by H, we obtain

. L _ L

ATy = 2 = 24
(I%) A, o) H, (2.4)
Similarly, the extremal length A(I',) of the family I', of curves joining the two seg-

ments [—1,0] and [b,1] in B, is given by

Hb_
L,

ML) =77=271(T%). (2.5)

Lrmuma 1. For 0<b<l, AT';) decreases strictly and A(T',) increases strictly in b.

Proof. For 0<b,<b<]1, I';,<T;, and thus
13 — 672906 Acia mathematica. 118. Imprimé le 19 juin 1967,
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ML) = A5, g5) = ATs,, @) <AT,) (2.6)

The last inequality in (2.6) is strict unless g, is extremal for I';,. g,, however, is not
almost everywhere a constant multiple of g, which is extremal for I';, since g, is
bounded near z=b5, while g, > as z—>b; in E,, by (2.1) and (2.3). Hence the last
inequality in (2.6) is indeed strict. The statement about A(I;) then follows from (2.5).

For —1<a<0 we denote by I';, the family of curves which have both end-
points on C which lie up to the endpoints in B, —{b}, and which separate the boundary
segment S, of E, from the point b € (0, 1). For 0 <a <b€ (0, 1) we denote by Iy, the family
of closed curves in E, which do not pass through b and which separate S, U {b} from C.

LeEmMaA 2. For a€(—1,0], AT,)=A(T;) and g, ts extremal for 'y, for a €[0, 8],
MTy) =4 AT and g, is extremal for T,

To prove the first statement we observe that a€(—1,0] implies I, < I'z, < Iy,
whence

MTop) S A(Tap) <AT). (2.7)

On the other hand, the g,-length of y €T, is at least twice the g,-distance } L, be-
tween C and the segment (0,b) of the real axis since each y meets that segment.
‘2 L;Z

Hence ATan) > AT, 0) = ( E” A E )

=A%) (2.8)

(2.7) and (2.8) together give the first equality of Lemma 2 and the extremality of
0, for T'z;. To obtain the second statement of Lemma 2 we observe first that in E,

k-4
@(2) = f (branch of ¢}), integration within E,,
1}

has for periods only integral multiples of 2H, whence exp [inH;'g,(2)] is a function
in E, which, moreover, maps E, conformally onto an annulus. Thus mH, Loy is ex-

tremal metric for I',,, the family of curves separating the two boundary components
of E,, and

M) =g == 77— M) (2.9)

With nH;%, also g, is extremal for I',, and a similar reasoning as above in proving
the first part of Lemma 2 yields: with a€[0,b], g, is extremal metric for any I, and
AMT,,) = A(Ty,), so with (2.9) also the second assertion of Lemma 2 follows.
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3. Lemma 3. Let G E, be a doubly connected domain containing the point b>0
and having C as one boundary component; let T'y be the family of curves which have both
endpoints on C, which lie up o the endpoinis in G and which separate the complementary
component X< E of G from b; let T’y be the family of closed curves in G which separate
C and KU {b}. Then

(i) AT5)=A(Tos) with equality if and only if G is an E, for some a€(—1,0);
(i) AT,) = AMTos) with equality if and only if G is an E, for some a€[0,b).

Proof. I. ¥From T', =TIy, and T, =Ty, we obtain at once the two inequalities stated

in Lemma 3.

II. Assume now

AT3) = AT%0). (3.1)

Since A(T3) = AT, 05) = AML0p, 05) = A(T'0s), (3.1) implies first of all that g, is extremal
for I';. G is conformally equivalent to some E,, —1<a<0; let the function g with
g(b)>0 and ¢g(C)=C map G conformally onto that E,. The conformal invariance of

extremal length gives with Lemma 2 the relation
ML) = MI';) = ML, 009) = MTo.00)s

and from Lemma 1 we obtain
g(b)=». (3.2)

Putting k(z)=[2(z—b) (z—b")]"! and applying the transformation z=g(w), the
quadratic differential ¢, in" £, has in G the expression

hlg(w)] ¢*(w) dw?, weG;

the metric p(w)=|A[g(w)]|* - ¢’'(w)| is thus also extremal for T';, and from the already
observed extremality of g,(w)=|h(w)|t together with the continuity of both p and g,
in G—{b} we obtain with some positive constant ¢ the relation

|hlg(a)llt 19’ )| =e- [hw)}, weGUC. (3.3)

Using the fact that Afg(w)] g’*(w) as well as h(w) is regular analytic in [G— {b}] UC we
conclude from (3.3) for some complex number c¢+0 the relation

kg(w)] g% (w) =c h(w), w€EGU C. (3.4)
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From h[g(w)] g'%(w) dw®>0 and h(w)dw?®>0 on each line element of C, from the in-

variance of C under g and from (3.4) we conclude ¢>0, and from

[ it 1wl = [ 1ot1 = [ [atsanit ool Il =Iel - [ b
c c c c

we conclude |c|=1, thus ¢=1, and the conformal map g satisfies in G—{b} the dif-

ferential equation

2, _ gw)glw) = bl [b7 —g(w)]
g%(w) = wlo =5 6 =w) (3.5)

Letting w—b in (3.5) and observing (3.2) we obtain g'%(b)=g'(b) which leads to
g'®)=1 (3.6)
since ¢'(w)=+0 in G.

The most elementary way to determine g from (3.5) near b under the conditions
(3.2), (3.8) is to represent g(w)—b by the Taylor series w—b+ > s c,(w—b)" and to
compare coefficients. A simple computation gives ¢, =0 for n>2. Hence g(w) =w near
b, and g is the identity in G.

This proves: if A(I';)=A(I'o») then G =E, for some a€(—1,0].

III. Reasoning similarly as above in II. one obtains the condition for equality

in Lemma 3 (ii) as stated.

4. Proof of Theorem 1. Let B>0 be a point of R, and let fE, be such that
f(B)>0. We denote by I'z, 5 the family of curves having both endpoints on C, lying
up to the endpoints in R,, and separating B from C,={z;|z]|=r}; we denote by I'z:»
the family of closed curves in R, separating C and C,U {B} Putting f(R,)=6 and
using the notation of Lemma 3 we have by conformal invariance of extremal length

and by the lemmata 2 and 3
A(Fc,p,(x)) =AM _am, (D,(B)) = }-(F;c,;s) = }»(rf,w)) = A(F(;.I(B)) = Z'(Ff,(B))’ (4.1)
and similarly ‘
4 Ml 5) =MLam. ¥, ) = ML'r:8) = UTsm) = U0, 18)) = ¢ MLy ())- (4.2)
From (4.1) and (4.2), the relation
,(B)<[(B)<Y(B)

follows (Lemma 1) which with (1.1) is the first statement of Theorem 1. The equal-



EXTREMAL ELEMENTS IN CONFORMAL MAPPINGS OF AN ANNULUS 199

ity f(B)=®,B) gives the equality A(T'}s)=A4(l0,s) in (4.1) which, again by Lemma
3, implies that g=®,0f ! is the identity or that f=®,; similarly the equality f(B)=
W,(B) implies f=%,. This proves Theorem 1.

Remark. If b;(B)<b<b;(B), there are obviously functions f€ g}, with f(B) =b; one
such function is obtained applying to @, the linear transformation which leaves ¢ and
the real axis invariant and carries b,(B) to b; that functioh, as we shall see later
(Theorem 9), is actually the unique solution of the problem P, (B;b).

As a trivial consequence of Theorem 1 we note the

CoROLLARY. The problems P, (B;b;(B)) and Py, (B;b,(B)) have both the unique
solution ®,; the problems P..(B; b/(B)) and Pp,.(B; b,(B)) have both the unique solution 'V,.

5. We turn now to the problem P, (B;b) for b;(B)<b<by(B). We put A=
{(a, b);—1l<a<b,0<b<1}, and associate with each point (a,b) €4 the quadratic

differential

oy (b~1—0b) (z—a)z—a™)

= 2
b b—ai—a de— b = b OF AF0

=0 =02 (z—b)"2(2—b"1)"2dz® for a=0. (6.1)
We call R,, the rational function o,/d2* and observe

Ropl2) d2® = Ry(z") [d(7)] (5.2)

_ 2 _1 b 1—bd
b 1—b bbl+b—al—a

With Zy for a0,

=lim Z, = le2___7) for a=0, (56.3)
a—0

R,, has at b the principal part (z—58)"%+ Z,(z—b)"".

Any maximal curve (maximal as a point set) on which ¢, <0 is called a fra-
jectory of o,. Because a and b are real and because of (5.2), all trajectories of o,
are symmetric to the real axis and to C; C itself is also a trajectory. For ¢ =+0, the
open segment K between ¢ and O is a trajectory of o, there is also one other
non-closed trajectory K& of o, in E which has the limit point @ at both ends; all
but the just mentioned trajectories K$), K& in E are closed curves separating b and C.
For a=0, the trajectories of oy, in E consist of the non-Euclidean circles about b.
Each point of E, except the point b, and except the points a, 0 for a=0, is con-

tained in exactly one trajectory of o,
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For a+0, we but K, =KQUKZU{a}u{0}; Ko denotes the non-Euclidean
circle about b through 0; for convenience we put K@ =0, K& =Ko, —{0}. In each
case, K, is the closure of the union of the trajectories of ¢, with limit point a.

E—-K, has two components, a simply connected domain G;,3b and a doubly
connected domain G7, having C on the boundary. The reduced modulus(!) of G, at
b is called M,,, the modulus(®) of G, is called Mj,.

We denote by R},(z) the branch in the interior of B — K3 which is positive on
the segment (b,1) of the real axis, and put correspondingly o3, = B}, (z) dz. The periods
of fol, in G;, are integral multiples of 274, the periods of f¢i, in G;, are integral
multiples of ik;, where A7, is the |R,|'-length of C. This gives immediately an
analytic expression for the function ¢* mapping G,, conformally onto & disk about
the origin and for the function ¢** mapping G, onto a concentric annulus about the
origin. With z,=K_, 0 (b,1) we have

2

q*(z)=expj o}y, integration within Gy, (5.4)

2y
and ¢*(b) =0 in particular, and

2

q**(z) =exp [%f o‘}'{b], integration within G,. (6.5)
ab Jzg ‘

Denoting further by ki, the |R,|*-length of the segment of the negative real axis
within G7,, and by k;, the reduced |R,|*-length of the segment of the positive real

axis on the left of b within G,,, i.e.

b-e
ki, = lim {f | Rop() |} da + log e}, (5.6)
e—>0+ max (a,0)
min(a,®
kop= f | Bopl() | da, (6.7)
we have M,= @, M;b=@. (5.8)
2ﬂ hab

6. We compare the decomposition of E by K,, with the decomposition by other

ccontinua. K,db will be a continuum in £ which contains 0 and separates b€ (0, 1) and

(1) The reduced modulus of a simply connected domain @' at b€ G’ is (2 7:)_1 log ¢, when ¢
maps G conformally onto a disk of radius ¢ about the origin with @(b)=0, |@’(b)|=1.

(%) The modulus of a doubly connected domain G” is (2 Jz)_1 log t’[t’, when ¢ maps G” conform-
ally onto an annulus t'<|wl <t
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C.-E—K, has several components; G'(K,) is the simply connected component con-
taining b, G''(K,) is the doubly connected component having C on the boundary.
M'(K,,b) is the reduced modulus of G'(K,) at b, M"(K,) is the modulus of G"(K,).
We shall use(!) ([2], Theorem 1)

THEOREM 2. Let b€ (0, 1) be fiwed; let 0 € K, be a continuum in E separating b and C.
Then for any a€(—1,b) we have

(270)* M'(K,, b) + by M"(K,) < (27)* Moy + ks Moy (6.1)

equality in (6.1) is possible for at most one value ay€ (—1,b), and equality for a, implies
Kb = .K @o,b"

THEOREM 3. Let a, b be fized with —1<a<b, 0<b<1; let K,;,30 be a proper
subcontinuum of K,y; let g map Gy, = E — K, conformally into E, with g(b) =b and g(C)=C.
Then (i) |¢g'®)|<1; (ii) |g'(d)|=1 implies that both G4, and Gy, are invariant under g.

Proof. I. K=E—g(@,;) is the bounded complementary component of g(G,) with
respect to the complex plane, thus 0€ K and K is compact and connected. Further,
(K, — Ky) is connected, and so is its closure which has at least one point in com-
mon with K. Thus K=KU [closure of g¢(K.,—K,)] is conected, it is also compact
being the union of two compact sets. K further separates g(G.,)3b and ¢(GQ,) whence
K separates b and (, we may write thus K, for K, and we have g(Gsy) =G (K,),
g(Gzp) =G"(K;). The conformal invariance of the modulus M, of G5, gives My, =
M"(K,), and from the statement (6.1) in Theorem 2 now follows the inequality

M'(K,,b)— M., <O. (6.2)

The left side of (6.2), however, equals (27) ' log |¢'(b)|, which proves part (i) of
Theorem 3.

II. Suppose now |¢'(b)]=1. In this case we have in (6.1) equality, and by the
second statement of Theorem 2 thus necessarily K,=K,. Thus g(G,;) is the compo-

nent of E— K, which contains b whence g(Gy,) =Gas, similarly g(Gs)=Gss, proving
Theorem 3 part (ii).

7. We call G(K,,) the family of functions which map G, =E —K,, conformally
into B, with g(b)=b, 9(0)=C, |¢'(b)| =1, and we want to determine the elements of

(2) Closely related results are given in Jenkins [3].
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®(K,,). We first introduce general coordinates related to (5.4), (5.5) in G, —{b} and
in G, as follows.
t*(z) =log ¢*(z) modulo 23, z€Gg, —{b}, (7.1)

L 2) = Z—‘;% log ¢**(z) modulo thy,, 2€Gy,. (7.2)

The conformal self-maps of G, with fixed point b are precisely the maps
X+, ¢ real, (7.3)
and the conformal self-maps of G, with C fixed are precisely the maps
>+ i9", 9" real (7.4)

The map (7.3) is called ©'-shift of G, (along the trajectories of o), the map (7.4)
is called 9"-shift of G, (along the trajectories of o).

We observe further that (*(z) and Z**(z) may be defined continuously also on the
boundary of G, and G, respectively provided that the two shores of the horizontal
boundary segment S, (of G, for a <0, G, for a>0) are distinguished. The shift maps
(7.3), (7.4) are then continuous also on the boundary. If near K& we restrict J(*(2)
within (—x, n) and §¢**(z) within (—3% kg, 3 hup) then (*(z)=(**(z) on K, and
that common value is a conformal map of K®. This is immediate from the fact that

in the unit disk slit along the segment (—1,b]

l(z) = f | ots, (7.5)

2ap
integration within the slit disk, is a (single-valued) function.

With a given K, we distinguish two cases.

Case I. K, is a subset of the real axis. We will then use for K, also the nota-
tion K,(0, 0).

Case II. K,, is not a subset of the real axis. Then the curved part K& =K, n K3
has positive |R,,|*-length less than min(27, kg). K& may or may not be connected
(i.e. may or may not stretch out from a in both directions along part of K&); we
call &, or 9. respectively the |R,[t-length of the component of K3} starting out

from a into the upper or lower half plane. Either of &,, #_ may vanish, but

0<19++19_=f ol Owlt <min (22, A). (7.6)
Kab

In this case we use for K,, also the notation K, (3.,8-).
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8. LEmMMA 4. Let K, =K (0., 0_) be given; let gs, —O_ <O <9, be the function in
G, =E — K, with the following properties:

(i) g(d)=b, (ii) the restriction of gy to both Gy, and Gy is a D-shift along the trajectories
of 6., (i) with ¢ of (1.5), '

Llgs(@] =C() +4  for 2€KGH—-KG. (8.1)
Then gs is a conformal map of G, into E, leaving C invariant with gy(b) =e'.

Proof. g is apparently conformal in both G, and G, leaving these two domains
invariant and satisfying ¢'()=¢'>. We conclude from (8.1) and (7.6) the relation
9s(KH —KB)< K): the shift is too short to carry a point of K3 — K& away from
K@ to the real axis. Further the equality (8.1) is valid also near K& — K% choosing
near this set in G, for {* and in G, for {** the principal value { of (7.5), thus g, is
also conformal on K2 — K& mapping this set onto a piece of K&. This proves the
lemma.

We will call the conformal map gs the 9-shift of G,,. gs shifts also the conti-
nuum K in an obvious sense by ¥.

9. To complement Theorem 3 we prove

TEEOREM 4. Let K =K (5., 9_) be given; let B(K,,) be the family of conformal maps
g of Gp=E—Ky, into By with g(b)=b, g(C)=C, |¢'(b)| =1. Then &(K,,) consists of the -
shifts of Gy with —9_ <9 <P, if, i particular, 3_ =0=17,, then &(K_,,) consists just of
the identity.

Remark. Theorem 4 is of Schwarz’ Lemma type; if K,, is short [K,,=K(0,0)],
the fact that a function has derivative of modulus 1 at a particular point implies
that the function has its derivative even identically equal to 1. We refrain, however,

here from pursuing this aspect of Theorem 4.

Proof of Theorem 4. The inclusion &(K,,)>{gs; & <P <&, g is P-shift of G}
follows from Lemma 4. Let now g€®(K,,). Theorem 3 (ii) gives g(Gsp) = Guv, 9(Gap) =
G, which implies: the restriction of g to @, is a ©'-shift and the restriction of g to
G, is a ' -shift, 9 and & both real. Let us consider the case —1<a<0: [a, 0]
is contained in the boundary of Gy, ki, <27 We may assume

' =0€[-9., —9_+2n).

If the open interval (—3 Ay, +9_, ko —9,) is shifted by & €., 2n—9_) it
will overlap with the open interval (} k3,, 27t — } k5,), thus such a ¢'-shift will move
at least one point 2’ of (K, —K,) N K& [on which set JC*(2) € (— 3 kop +9-, 3 oy —94)
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mod 2x] to a-point of the half open segment (a, 0] on the real axis [on the two shores of
which segment J(*(z) € (4 Aoy, 27 — L kap) mod 2], However, 2’ is a point of G, which is
a common boundary point of G, and G, while for ¢’ € (#,, 2x —9_) the 9 -shift moves
z' to a point which is not a boundary point of G%,. Therefore the restriction of
gEG(K,,) to G, cannot be a ¢’ -shift for &’ € (9, 2 — &_) since g(G7,) = Gop. Hence G(K,,) =
{90 —9_<9<9,}, and for §_=0=49,, G(K,,) consists only of the identity g,. This
proves Theorem 4 in the case —1<a<0. A similar reasoning applies in the case
0<a<b, while for a=0 the only functions leaving Gy, and b or Gy, and C invariant
are the non-Euclidean rotations about b, in which case Theorem 4 is elementary.
Theorem 4 has the

CoROLLARY. Let —l<a,<a,<b, 0<b<]l; let K, , and K,, , be proper subcon-
tinua of K,, , and K, , respectively such that these two subcontinua both contain the point 0.
Then there is no conformal map of G,, ,=E —K,, , onto G,, , = E —K,, , which leaves b and C

fized, unless Gy, y =G, ,.

Proof. Assuming, on the contrary, for G, ,+ G, , the existence of a conformal
map g¢,, of G, , onto G, , with g,5(b) =b, 9,,(C)=C, and putting g3;' =g,,, we obtain
from Theorem 4 ‘the contradictory statements |gi2(b)] <1 and [g21(8) | =[g21(b)| < 1 since
clearly g, ¢ §(K,,,) and gy ¢ B(K,, ).

The problem P, (B;b) was solved in the corollary of Theorem 1 for b=b,(B)
and b=0b;(B). In the remaining cases, P, (B;b) is solved by

THEOREM 5. Let B>0 be a point of R, ={2; 0<r<|z| <1} and let b,(B) <b < b;(B).
Then

(i) there is a unique a,€(—1,b) such that R,—{B} can be mapped conformally onto

some B — (Ka, » U {b}) by a function of F,, moreover, |a,| <a(r);
(ii) the |Ray 0| -length 29 5., of the curved part K&, of Ko, , above is positive;

(iii) +f f,€%, maps R,—{B} conformally onto @,—{b} where G,=E—K, and K,=
Ko, o(0 5. 5, D5, ») are symmetric to the real axis, f € F,(B; b) implies |f'(B)| < fo(B);

(iv) if f€F(B;b) and {(B)=b>0,|f(B)|=1 if and only if f=gsof, with |#| <835,
where gy s the ¥-shift of G,.

Proof. If a,is such that R,—{B} can be mapped conformally onto £ — (K, o U {b})
by a function f €, then from the strict inequality b,(B) < b < b7(B) together with f(C)=C
we infer f(R,)=+=®(R,) as well as f(R,) +¥(R,). K., o« then neither contains the segment
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[ —a(r), 0] nor the segment [0, a(r)] which gives |a,|<a(r) as well as the positivity of the
| Roy,v|*-length of K& ,; @,<b since b€ E —Ka . There is at most one such a,, by the
corollary of Theorem 4; that there is actually one such a, will be shown later (Theorem
6) by a direct construction [which also will give f, of (iii) above]. This proves (i)'and
(ii). (iii) is immediate from Theorem 3 (i), observing that the funection f, (which is sym-
metric to the real axis) has positive derivative at B. (iv) is immediate from Theorem 4.

10. We turn now to the construction of the function f, in Theorem 5 (iii).

With two positive parameters s,2 we consider the pentagon P containing the
half-strip {z; Rz <0, 0<Jz <z} the sides of which are the following segments parallel
to the axes:

{z; — 00 <Me<0,Jz=m}, {25 — 00 <Re<h,Jz=0},
{2 Re=0,0<Jz<s}, {z;0<Ne<h, Jz =35},

and the closed segment between s, im (degenerate to the point ix for s=x when P
is degenerate to a half strip); the sides of P form the angle 0 at oo, the angles /2
at h and h+is; for s<z the sides form the angles 37n/2 at is and =/2 at im, for
8>g the sides form the angles n/2 at is and 37/2 at im, for s=m at is=in the
angle n is formed.

‘The function mapping the upper half plane conformally onto P with oo, —1,+1

corresponding in this order to the boundary points oo, h,h+is of P is

—int [ t—x di .

p(w) =i —— ———, integrand >0 for i< —1, (10.1)
max, | Y VE—1

where x>1, y>1 correspond to the remaining vertices of P with angles 37/2, /2 in

that order (s+x), and x=y>1 corresponds to the vertex iw of P (s=n). P is deter-

mined by the pair (s, k), 0<s, k< oo, as well as by the pair (z,y), 1<z,y< oo. The

correspondence between (x,y) and (s, k) is one-one, and we have the expressions

s—f V —il/1 (10.2)

min(z, ) _
and h= f st _db (10.3)
1 y—t V-

or alternatively

¥ _ max@.v) y [ + ¢
:f {Vx t Vt z} f gt di 104
max(z, ¥) yti Vtz 1 y+t Vtz
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In calculating partial derivatives of A, (10.3) is more convenient if z <y and (10.4) is

more convenient if x>y.

11. LemMa 5. The mapping @ (x, y) > (8, k) is a sense preserving homeomorphism of
(1, e2) x (1, o0) omio (0, 00} x (0, e0).

Proof. We saw already that ¢ maps (1, o0) x (1, o) onto (0, o) X (0, o) in a one-
one fashion. From (10.2), (10.3) we infer the continuity of ¢. By the Jordan curve
theorem it then follows that any neighbourhood of a point (z, y,) is mapped by ¢ onto a
neighbourhood of the image point (sy, ko), thus the inverse ¢! is also continuous. ¢ is
sense preserving since it is sense preserving on the line x=y: that line is mapped
onto the line s=s while x<y corresponds to s<xz and z>y corresponds to s> .

We will see, however, in addition that for x4y the partial derivatives of s,k
with respect to z,y are continuous with positive Jacobian J(x, y) =s, k, —s, h,; further
applying the map (s, h)—~(s—n) (1 —log |s —x|), k) =(s’, &) near s =z, and applying the
maps (¢, )~ (& +y,y—2) = (&,7) and (§,7)~ (& 7(1 — log|5])) = («', ") near the line s =y,
a direct calculation (which we omit) shows that the partial derivatives of (s',%') with
respect to (2, y') are continuous near z’ >2, y’' =0 corresponding to z =y >1, and that
the Jacobian of (z',y’)~(s', k') is positive there, which proves the lemma again.

We put

Az, y)=[(x—t)(y—t) 1 —t)]" % for 0<t2<1, (11.1)

B(t; z,y) =[(x—¢t) (y —¢t) ((2—1)]"? for *>1 with ¢ ¢ [min (z,y), max (z,y)], (11.2)

1 1

Az, y) =f 1A(t; @, y)dt, A*(z,y) =f

-t
;Tt A (t, x, y) dt. (113)

) -1 -1
Abbreviating f + f by §
max (T, ¥) — o0 max (z, ¥)

we put further for z+y

min (z, ¥) -1
Be= [ Bempa-§  Beznyd (11.4)
1 max (. ¥)
min (z, ) x—t
and B¥x,y)= f ;—t B(t;z,y)dt for z<y,
L —

-1 z—t
= f p— Bt:z,y)dt for xz>y. (11.5)

max(z,y) Y
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Denoting partial derivatives by subscripts we obtain from (10.2)
;=3 A(x,y), s,=—}A%,y), (11.6)
and from (10.3), (104) for z=+y
h;=% B(x,y), h,= —1 B, y). (11.7)
The Jacobian J(z,y)=s.h,—s,h, of the map (x,y)—>(s, k) for x+y is given by
4J(w,y) = — Az, y) B*(z,y) + A*(z,y) Bz, y). (11.8)

Observing that for some #,€(—1,1) and for some fz, where {z€(1,2) for <y and
tp€(x, + oo]U[— o0, —1) for >y, we have

x_tA x_tB
A*(x, y)= A(x,y), Bz, y)= B(z, y),
(=, ) y—t, (, y) (z, y) s (=, )

and we obtain from (11.8)

—@’+—“’;‘£“)>0 for z+y. (11.9)

4J(x,y)=A(x,y)B(x,y)( iy

12. Before constructing the function f, of Theorem 5 (iii) we will consider still
further auxiliary maps. We start from the unit disk slit along the segment [ —af(r), 0]
of the real axis with the point b;(B) removed, which is ®,(R,— {B}), B>0. We map the
upper half of the unit disk conformally onto the upper half plane so that the points +1,
—1, b;(B) go into the points —1, +1, oo in that order. Let & and 8, 1 <a< B, be the
points corresponding to —a(r) and O respectively. Choosing the parameter d €[«, 3] and
mapping the upper half plane by

(T =0 dt
C<w)_m+fﬁ Vit—a) ¢—p) VE—-1

, integrand >0 for t< —1,

we obtain a hexagon H; which is degenerate to a pentagon as considered in section
10 for d =« (with x=0a, y=F) and for § =8 (with =48, y =«), and which is otherwise
such a pentagon slit along the segment [{(d),77] of the imaginary axis. We denote
the parameters x,y of this pentagon thus corresponding to Hs by z(d), y(d), and that
pentagon itself by P=P,,. Writing s(P), i{(P) for the other pair of parameters s,
determining P and putting |
! o—t dt
salHo) =|2(1) —¢(~ 1| = f_l = =

(12.1)



208 F. HUCKEMANN

~1 dt

a(Hes) = —¢(1)| = 12.2
for the corresponding sides of Hj, we see that z(d), y(0) satisfy the equations
sy(Hs) =8(Py,), hu(Hs)=h(Py). (12.3)

By (12.1), sy(H,) is strictly increasing in 6€[«, f] from sy(H,) <7 to sy(Hp)>m,
so the equation sy(H;)=n determines a unique number §,€ («, §), and sy(Hs)<x for
O € o, 8y), su(Hs)>m for S € (dy, B]. Since the partial derivatives (11.6), (11.7) of s(P,,),
h(P,,) with respect to x,y are continuous for =y we obtain differentiating (12.3) with
respect to d

su(Hs) = 8,(Py) 2'(8) + 8,(Py) y'(9)

hia(Hs) = ho(Py) &'(0) + hy(P) y'(9), 8+, (12.4)

the dash denoting differentiation with respect to &, right-sided at d=uc, left-sided
at §=0.

Solving (12.4) for 2’,y’ and observing sy(Hs)=A(x, B), hu(Hs)= B(x, f) we obtain
from (11.6), (11.7) and observing (11.8), (11.9) for (8), y(8) with € [«, 8] — {d,} the
system of differential equations
Az, y) B(a, f) — A(a, f) B*(z, )

A*(z,y) B(z,y) — A(x, y) B*(z, y) °

A*(z,y) B(z, y)— A(z, y) B*(z, y)

=2

with the boundary conditions
o) =a, yo)=p zB)=p y(B)=a (12.6)
The denominator in (12.5), equal to 4 J(z,y), is positive.

13. We put @Q={(z, y); z>1, y>1}, Q={(x, y); a<z<B, a<y<p}, I={(x y);
x=y>1},1,=1n@Q,, and we shall determine some properties of the functions z(d), ¥(d)
considering the differential equation (12.5) in @ —1.

With the notation
B(z,y) . B*(z,y)

s x’ =
Azy OV Ty

M(z,y)= (13.1)

and the abbreviations A(z,y)=4, A*(x,y)=A* A(a, f)=a, B(x,y)=B, B*x,y) =
B(a, B)=b, M(z,y)= M, M*(z,y)=M", M(x, f)=m [the notation a=A(x, §), b=B( ac,ﬂ)
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will be used only in this section where a confusion with the different previous mean-
ing of the symbols ¢ and b as in g, is not to be feared], the differential equation
(12.5) gets the form

a m— M* , a m—M
_— Y =9
A M- M*

=2 Y= (x,y)EQ—L. (13.2)
The expressions 4, B, M are symmetric in x and y; M(x,y) is the extremal distance
between the segments [—1,1], [min (z, y), max (x,y)] in the upper half plane, thus
M(z,y) =m for (x,y) € Q, 1, with equality only at («, 8) and (8, «). We have M — M*=
AV A* 14T >0 for (x,y)€Q—1, and we notice M — oo and M*— oo as (z, y) tends to a
point of I. While (13.2) is not defined on I, the direction dy/dz prescribed by (13.2)

in @—1 has limiting value +1 on ! as is seen upon a little consideration.

Lemma 6. For 6€[a, ], the function Y(0) is strictly decreasing from f to « with
y'(6) <0 in (x, 8o) U (89, B)- '

Proof. (12.6) gives already y(x)=pg, y(f)=«, so we have merely to show that
y(0) is strictly decreasing with negative derivative in (a, dp) U (4, B)-

From (12.5) or (13.2) we have immediately

¥(@)=2=2(f), ¥(@=0=y(p) (13.3)

Since M, M* havé on @ —1 continuous first order partial derivatives with respect to
z and y we obtain from (12.5) using (13.3)

" j— 1 2 . —-— . .
V@)= 57 5 @9 D~ 0Byl -2 (13.4)

At (x,y) = (e, ) we have from (11.1) through (11.4)

0 LI | 1
g =1 - A = —1 .
ax A(x:y) 2f_1 O('*tA(t, “:ﬂ)dt 20(—t0
0 R | 1
d 2B =_1 - Bt = -1 .
an o (z, y) 23€ﬂ pomar B(t; e, §) dt Jory

with suitable € (—1,1) and suitable #, € (8, co]U[— oo, —1). Therefore

¢=—J§( 1 1 )ab<0

A1 a—ty, oa—t

2 @b - o Bay))

whence from (13.4)
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Y (x) <O. (13.5)
In a similar way we obtain

¥ (8)>0. (13.6)

(13.3), (13.5), (13.6) show that y'(6)<O0 on the rigth of « near « and on the left of
B near B, and Lemma 6 is proved once it is shown that y'(d) never vanishes in
(¢, 89) U (8, B) since (x(d),y(d)) €l only for =4, Assuming now that y'(6) vanishes
somewhere in (x,d,) we denote by &, the smallest zero of ¥’ in («, §,) so that y'(d) <0
for 8€ (e, 8,). Since M*< M, (13.2) gives «'(,) >0; thus on the left of §; and near
8y, #(8) is increasing and y(d) is decreasing whence the extremal distance M([z(d), y(d)]
is increasing at 6,, and from (13.2) the contradiction y'(6)>0 near J, on the left of
8, would follow. Therefore indeed y'(6)<O0 for 6€(wx,d,), and similarly y'(6)<O0 for
0 € (0y, f) is obtained. This proves the lemma.

LemMA 7. There is a (unique) number 8y € (a, y) such that sign x'(8) = sign (6yz — 0)
for 6€[a, 8,); there is a (unique) number 8z, € (8y, B) such that sign x'(8) = sign (0 — 02;) for
G € (9, 1.

Proof. We saw already Mj = M*[x(d), y(8)]—> oo for d—3d. From (13.2), (13.3) we

conclude that z'(d) vanishes at least once in (a,d,) and once in (Jy, f). On the other

hand, a simple calculation gives

. oM*
sign oy =sign (z—y), (2, y)€EQ—I (13.7)

whence, by (13.2), #'(8,) =0 for 6,€ (e, 8,) U (6o, f) implies that z’ is strictly decreasing
or strictly increasing at 8, as y(d,) —#(3,) is positive or megative, ie. as §,€ (e, §) or
02 € (Jg, B). The lemma follows.

LEMMA 8. The curve ys={(z,y); x=x(8), y=y(8), a <O <} lies up to the initial
point v, = (a, B) and the terminal point yg= (B, &) in the interior of Qy; its slope dy/dz is a
continuous function of & [assuming the value + oo exactly twice continuously at 6 =61, and

0 = 0z;); Ys passes at 3y through the line | with slope +1.

Intuitively, Lemma 8 says that the curve y; has the shape of a question-mark
intersecting its tangent I at s from left and above to right and below. It might
seem surprising that x(d) is not monotonic in [a, 8], and is at 8, decreasing just as
fast as ().

Proof. The piece {(z,y);z=2x(5), y =y(d), x<<d:;} of ys on which z(J) is strictly
increasing and y(8) is strictly decreasing [Lemmata 6 and 7] lies up to the initial
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point (a, f) in the open triangle A; with vertices («, 8), («, «), (8, 8). Since ys, is (Lemma. 6)
a point of the open segment between (a,a), (8, ), the curve y; cannot leave A; for
81:<8<6y (Lemma 7). Similarly it is seen that the piece {(z,¥); x==(d), ¥ =¥(5),
8o <0<f} lies within the bpen triangle A, with vertices (8, f), (a, &), (B, «), thus the
first statement of Lemma 8 holds. The continuity of the slope dy/dx is obvious for
d+4,, and for §=4, it follows from lim,. s, (dy/dx) =1 which fact was remarked before
Lemma 6. The third statement of Lemma 8 is now obvious.

14, In order to construct the function f, of Theorem 5 we use the following nota-
tion. ©,, »>1, is the function mapping the upper half of the unit disk conformally
onto the upper half plane with the boundary correspondence @,(+1)= —1, @,(—1)=
+1, 0:0)=3. With 1<, <x, and 2, <0<y, {u.x:6=Cx, x;0 is the function defined
in the upper half plane by

2 t—6 dt

”1.”2-' = G + 2
beurcale) =i v V(E—2) ¢ —25) VE—1

integrand >0 fort< —1, (14.1)

mapping the upper half plane onto a hexagon which is degenerate to a pentagon for
d=1ux, and d=u, [Cf. section 12.]

Consider the annulus R, with the point B>0 of R, distinguished. With ®,(R,)=
E_y¢, ©(B)=b,(B), the number f=§(r, B)>1 is uniquely determined by the requi-
rement @b, (B)]=co; let @p—a(r)]=a=alr, B)>1. Let {,44s(1)=h+is where h=
h(r, B;§)>0, s=s(r,B;0)>0. There is a unique pair (z,y) with x=x(r, B;d)€[«, f]
and y=y(r, B; 6)€[a, §] such that {, , ,(1)=h+is (Lemmata 5, 8), and by Lemma 6
the correspondence between 0 €[w, f] and y€ [«, 8] is homeomorphic for fixed 7, B. We
put further @,'(co) =5 with b=b(r, B; 8) and @, (x) =a with a =a(r, B; §), and we shall
see (Lemma 9) that @,b depend likewise homeomorphically upon & for fixed r, B.

THEOREM 6. Let there be given the annulus R, and a point B>0 of R, Lei «
and B, both depending on r and B, be as above, and let b* € [b;(B), b7(B)] be given. Then
there is a umique 0*€{e, f1 such that b*=b(r, B; 6*) with the above function b{r, B;$);
further with a*=x(r, B; §%), y* =y(r, B; 0%), a*=a(r, B; 6*), depending each on r, B,d as
above, the funclion f,» mapping R, conformally onto the domain E ~K, e symmetric to

the real axis and maximizing |f (B)| within the class (B, b*) is given in the upper half
of R, through
fb# = @;‘1 OC;}, us; Isoé',x_ ,;;,;.06),30@,.

Proof. We prove first that for any € [«, 8] with corresponding z, y, b, a the ana-
lytic function f, given in the upper half of R, by
14 - 672906 Acta mathematica. 118. Imprimé le 20 juin 1967.
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fo=0;087%:20005,60050D, (14.2)

maps R, conformally onto @=FE—K,, where K30 is a continuum symmetric to the
real axis on K, [cf. section 5 for the definition of K,]. The statement is obvious for
0=o since then, by (12.6), f,=®, in (14.2), it is also obvious for 4 =7 since then
the right side of (14.2) equals ©;'0l5%.50Lx 550050 ®, which by (5 5=C_s0p equals
000500, =Y, because ©;'00; is the map z—(z+a(r))/(1+a(r)z). So let now
0€(x, §). Since f, of (14.2) is real on the intersection of R, with the real axis it is
sufficient to show that the set X omitted in the upper half unit disk by f,(B;), where
R; is the upper half of R,, lies on a trajectory of o, <0 and has a as a limit point.

K is the image by ©,'0f,,.. of the segment [{, s s(d), in) =ks by which the
corresponding hexagon Hs={, 5,5000P,(R) and pentagon (. ,.,00z0D.(R;) differ.
ks lies on a trajectory o <O of the quadratic differential o =1-d(? and the transforma-
tion @ =¢;Y%..(C) gives o the expression

O-z 1 .
= —— . 14,
0= 5y 5190 (14.3)
With y=3(} 1 +b)=yb), 0<b<l, (14.4)
b—z 1-0bz
=1|2==
we have 0, (2) 2[1—bz+b-—z]’ (14.5)

and the application of the transformation z=0,'(®) to (14.3) gives ¢ after a simple
calculation the form o, of (5.1) where a=®;'(z), therefore the set K omitted in the
upper half unit disk by f,(R;) is indeed the piece of the trajectory o,, <0 between
a and ©,'0l;%.,00,45(0). By the Theorems 3 and 4, the conformal map f, given in
R/ by (14.2) is the unique function positive at B>0 and symmetric to the real axis
which maximizes |f,(B)| within §,(B;b). To complete the proof of Theorem 6 it re-
mains to show that for any b*€[b;(B),b;(B)] there is a unique 6*€[wx, 8] such that
b(r, B; 6*)=1b*

Let there be given b*€[b;(B),b;(B)]. (14.4) determines uniquely »*=y(b*), and
y*€[o, p] since y[b,(B)]=p and y[b;(B)]=a; y*€[«, f] determines (Lemma 6) uniquely
0*€[a, f], and thus for fixed r and B the equation b* =b(r, B; §) is satisfied for exactly
one ¢*€[a, B]. This concludes the proof. '

We remark that a*=a(r, B; §*), which is uniquely determined also by b*, is the
unique a,« whose existence was asserted in Theorem 5 but not proved there. Denoting
for fixed r, B, the functions a(r, B;d) and b(r, B; ) simply by a(é) and &(8) we prove
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LeEMMA 9. The derivatives a'(0), b'(8) exist and are continuous for € [«, B1— {do},
with @' (6)>0 in [x, 8;) U (dy, B] and b'(8) >0 in (a, 8y) U (5, B)-

Proof. I. Since y'(6) is continuous in {u, §,) U (J,, f] the assertion for b(d) is im-
mediate from Lemma 6 and (14.4).

II. The continuity of a'(6) in [e«;dy) U (6, f] is again obvious. For x=+y, the
relation ¢ =0;'(x) has, by (14.5), the form
b—a 1-—ab

2x=1_ab+ b—a’ (14.6)

and using (14.4) we obtain from (14.6) the relation a*(x—y) — 2a(zy—1)+ (x—y)=0;

since |a|<1 and since from x(d,) =y(d,) follows a(d,) =0 we have explicitly

a=

7@ 1=V =D~ D), €l 80U (0. Bl. a(d0)=0. (14.7)

We consider first the case a<8<d,. Since then z<y we have from (14.7)

—_ — 2
a 1_1/(’0?/ 1)_1 (14.8)
y—= y—=

whence the statements
@'(8)>0 and %xyy__xl>

are equivalent for a <d<d;. So it is sufficient to prove
(4=2) 1 @y —1)— @y —1) 1= =2 =2~ )~y @ —1)>0
Y s Y Y s Y Y y

or equivalently, using (12.5) and observing the positivity of the denominator there,

the relation
A(e, B) - B**(z, y) — B(ex, ) A**(z,y) >0 (14.9)

where B*¥(z, y) = (2" —1) [B(z,y) — B*(z,y)] — (y* —2") B¥(, y),
Az, y) = ("~ 1) [A(x, y) — A*(x, Y)] — (¥* —2") A*(, y)-
From (11.3), (11.4), (11.5) we obtain

Bt z,y)

dt,
y—t

B(x,y)— B*(=x,y)=(y— x)L
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VA 2,
A(x,y)—A*(x,y)=(y—x)f <L) — 9 g
-1 Y t
whence with 22—1—(y+2) (x—¢t)=ty+x)—xy—1

By -y—a) [ GO by a
U ty+a)—ay—1

Az, y)dt.
. y—t (2, 9)

Az, y)=(y—2)
Using again (11.3), (11.4) we obtain with a suitable value f,€(—1,1) and a suitable

value ¢ € (1, x)
A(a, B) B**(z, y) — B(a, p) A**(2, y)

=w—mP@ﬁ¥3£iAmmB@w—Mﬂﬁ?ﬂ51Mm&Amm}
y—1t Yy—i
(14.10)

and both factors of the second term in (14.10) are positive. So (14.9) is indeed correct

whence a’(6) >0 for a<d<d,.

III. Reasoning similarly as in II. above one concludes also &'(6) >0 for d,<d <p.

This proves the lemma.

15. We investigate now which f,(B) for b€ [b,(B), b;(B)] is maximal. We place
R, into the w-plane; after having ©; continued analytically into the full slit disk
E_,¢ we place @gzo® (R,), which is the extended plane slit along the segments [—1, 1],
{a, f] of the real axis, into the ©-plane, and f,(R,) into the z-plane. In f,(R,) we take
the quadratic differential o, determined in the last section; since a and b depend both
on 6€{x, f] and since f,(R,) lies in the z-plane we write now os, for o, in f,(R,).
For the analytic expression obtained from oj, by application of f;' we write o5, 4,
and for the analytic expression obtained from o4;, by application of ®z0®, (or from
6s;2 by application of {;5359(;.,:;00,) We write 0sg. 0s 2, 050, 05w are different ex-
pressions of the same quadratic differential.

We choose gg >0 large and denote by Fse(0e) the area of the disk |@|<gg in
the metric |0sq/d®?|}; similarly we choose g,>0, g,>0 both small and denote by
Fs.(0;) and Fs,,(g,) Tespectively the area of E—{z; |z —b|<p,} in the metric |0, .[dz?|}
and of R,—{w;|w—b;(B)|<p,} in the metric |as,,/dw?|}.
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The equality Fs,.(0,) = Fs.0(00) = Fs,1,(00) (15.1)

relates the three numbers g,, gg, 0, in such a way that one of them determines the
two others and that the conditions p,—~0, gg— o, p,—0 are equivalent. From now on

we will have these three numbers always related by (15.1). The relation

f3(B) = lim % (15.2)
e,—>0 0w
as well as the relations

d 1 1

Rl D = lim =D,, 15.3

dw [®ﬁ°q)r('w)] w~B ¢,~000 0Op ! ( )
d [ 1 ] . 1
a1 = lim -D 15.4)
dz Cu.lﬁ;doc:c.y;zo@y(z) z=b 000" 0: 2 (

follow. Observing that the right side of (6.1) is the at b reduced area of the unit
disk in the metric |gs./d2?|* we have

lin% [Fs.2(0.) + 27 log o.] = (27)* Mgy + ks Mgy, (15.5)
o,

which gives with (15.1) the relation
Fs0(00)=@2nm)® My, + k3 Moy —27 log g, +0(1) for gg->oo. (15.6)
Subtracting 2 log g in (15.6) and taking the limit we obtain with (15.4)

— 27 log Dy =(27)" My + ha Mg, — lim [Fs0 (0e) — 270 log ge) (15.7)

eg—®
which becomes with (15.2), (15.3) after addition of 2z log D,

27 log fo(B)=(2x)* Mgy + ko My + 25 log D, — lim [Fs.6(0e) — 27 log ge]. (15.8)
[ I
dt

2]
The functi a-®='+f o~ ’
e function Cupis(O) =1 8 Vie—a) ¢—p) VE-1

integrand >0 for {< —1, maps the upper half plane onto the hexagon Hy; the inte-

grand being a branch of olg; we get thus in the notation of section 12

lim [Fs¢(00) — 27 log pe]

09—

=28y(Hy) * hy(Hs) + 2ﬂf

“{ t—8 1 1
8

Vit—a)t—p)Ve—1 ¢
and we have finally from (15.8), (15.9)

} dt—2x log B, (15.9)
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27 log f5(B) = (27)2 My + hap May — 2 su(Hs) - hu(Hs)

* t—4 11
B —~ldt+2xlog(D,-p). (15.10
2nfﬁ {Va—a) —p) Ve-1 t} t+2xlog (D). (15.10)

16. In order to find the maximal value of (15.10) in &€ [b/(B), b;(B)] we will use
several properties of the functions M,,, My,.

LeEMMA 10. The map (a,b)—> (M., Mz,) is continuous on
A4={(a,b); ~1<a<b,0<b<1}.
We omit the easy proof. (The lemma is amply contained in Theorem 8 of [2].)

LeMMa 11. The partial derivatives (0/0a) M,,, (9/8a) My, are continuous on A
except on the line a =0; the partial derivatives (9/9b) M ,,, (8/0b) My are continuous on A.

This is part of Lemma 7 of [2].
LEMMA 12. (27)® (9/0a) M, +ha (0/0a) My, =0 on A except on the line a=0.

With the continuity of (9/da) M,,, (0/6a) Mz, for a=+0 the lemma is immediate
from Theorem 2 part (i) of [2].

LEmMmA 13. (27) (9/0b) M, + hos (2/0b) Moy = —2n Z,, on A where Zy, is given in
(5.3).

This is Theorem 5 of [2].

Lemma 14. The equation Z,,=0 defines on A an implicit function a =4j(b) where
0<b<V2-1, with lim, §(b) =0, lims—,y5—1(b) = — 1, §(b) has a continuous always nega-
tive derivative on 0<b<)2—1.

This follows at once from Lemma 5 of [2]; it may be obtained also from (5.3).
Denoting by 4*={(a,d); (a,b) €4, Z,, =0} the graph of j we have

LEMMA 15. On A—A* Z,, has the sign of a—j(b) if bE(0,V2—1), and Z,>0 if
bE[ﬁ—l, 1); in particular, Z, >0 if a>0 on A.

This follows from (5.3) using e.g. the explicit expression
j(b)= — (sinh B — Vsinh® g —1) (sinh? 8 — Vsinh? § —1)

where sinh §=1 (5"*—b) for b€(0, V2—1), which expression is given in (8.1) of [2].
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17. Let €[« f1—1{8,}- Since then z+y and a=0;%z)+0 we obtain differen-
tiating (15.10) with respect to § (using Lemma 10 and the continuity of o' =da/dd,
=db/dd} the relation

/26

;5 log f5(B)= [(275)2 My, + 13 MZb]

” " d
+[(2ﬂ) Mab+hab bM:;b] b'+2kabMab;l'6
1 dt
a) (t—p) VE-1

”
kab

(17.1)

d o
2 t_i:s [SH(Hﬁ} . hH(Ha)}‘f' 2n f,g V(t—-

To simplify (17.1) we use the
LeMMA 16. For d€[a, B]—{d,},

d

‘ ® 1 dt
Koo My 35 Hio = 35 [sH(Ha>~hg(Ha>]+nfﬁ T

2 (—p) VA-1

(17.2)

Proof. We notice
hy(Hs)
2sp(Hy)

by =2s5(H;) and Mgy,=

Thus the left side of (17.2) has also the form

hH(Hé) SH(HG) sg{Hs) - 78 hH(Hd) ‘*‘ﬂf Voo dt (17.3)

oz) t—pB) Vir -
from (12.1), (12.2), it is seen that (17.8) is actually independent of 5. Choosing in
(17.3) for & the value § we obtain therefore with (12.1) and (12.2) for the left side
of (17.2) also the expression

1 1 f (B—1) 1 dt
1 V(E~a) t-p Vi-2 h Vie—a) G—p) VE-1
_fl (B—1 1 f 1 dt
1 Vite—a) ¢~B) VI—2 J1 Vie—a) (t—p) ViE—1
dt
174
8 Vi—o) (t—B) ViE— (174)
The transformation
u=f®—w———~_l___ dt integrand > 0 for t>§ (17.5)
8 Vit—a) t—B) VE=T' 8 ’ '
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maps the upper half ®-plane onto the rectangle 0 <Ru<w,;, 0<Ju<w, with

“’=r 1 dt >0 w=‘ 1 dt -0
Y hiVa-yB-nVe-1 0 JaVe-n G- Vi-e

where {2w,, 2im,} is a set of fundamental periods of the elliptic function @(x) inverse
to u(®) of (17.5). Putting

_ J‘ o 1 dt
R P Vit—a) (t—p) VE—1

€ (0, w,), (17.6)

O(u) has simple poles at u= +u, modulo periods, with residue —1 at +u, and
residue +1 at —u,, Applying the transformation (17.5) to (17.4) we obtain (17.4)

in the form
W +iw,

oy J;im,+wx [B—0(u)] du—% (O f [8—O(w)] du + 7 o, (7.7

Wy @

the path of integration in (17.7) being always a straight line segment. The elliptic
function B—®(u) has in terms of Weierstrass’ function {(u)=u"1-+0(®) near u=0,
corresponding to the period parallelogram with vertices + w,=tiw,, the expression
B—0u)= (v —ue) = {(u+Uos) + 2L (o) (17.8)
since both sides of (17.8) vanish at u=0 and the difference of the two sides is an
elliptic function without poles. (17.8) now gives
iog+w; fwgt U g,
f [~ 0O)] du=wl'25(uw)+f [C(u) = {(u + wy)] du;

log 10— Ugg

taking into account that ((u)—((iw,) and {(u+ w,)—(lwy+ w,) are odd functions of

% —iw, we obtain with the usual notation ((iw,)~{(iw,+w;)= —1m,
iwg+wy
f [8—0(m)]du=2[w;," {(¥e) = 71 U] (17.9)
iwg
Similarly we obtain
1 Wy +Hiwg 1 ®,H w3~ Uy 1 0+t Uy,
3 [ﬂ—@(u)]dwwz-zauww;f cwdn—} | ) du
w, Wy~ Ugy W1+ Ugy

which becomes applying Cauchy’s integral theorem to the rectangle with vertices
Wyt U, 0y T Wyt Uy in which {(u) is regular,

1 w,+u°°

Tfml+ w:[‘B _ @(u)] du= 0y 2 é-(uoo) + %f [C(u) —{(u+ iwz)] du

tJw @3- Ugg
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from which, reasoning similarly as before (17.9), one obtains with the usual notation
Llon) = Loy +twp) = —1ims

Wy +iw,
1] [8—O(u)] du=2[wy{(uc) — Ny %es ] (17.10)

¢ Jo,

Inserting (17.9), (17.10) into (17.7) and observing that (17.7) and the left side of
(17.2) are identical we obtain

) ) i ) d 0 1 dt
B, M., % k T [su(Hs) -hH(Ha)]+nfﬂ V(?:OC) t—p) VE—1

=2 0a[01 {(Ueo) =11 Uoo] — 2 03 [0g {(Ueo) = Natheo] + Tl

=[2w 3~ 2wen; T 7] Ueo, (17.11)

and the last term in (17.11) vanishes by Legendre’s relation about the additive periods
of the function {(u). This proves Lemma 16.

18. LEmMMA 17. Let 3€(x, B)—{8,}; let a=a(r, B;8) and b=0b(r, B;) be as in
Theorem 6. Then

sign (Zdé log ]‘,',(B)) =gign (- Z,). (18.1)

Proof. In (17.1), the factor of @’ vanishes by Lemma 12; the factor of b’ equals
—2nZ, by Lemma 13, and the remaining terms vanish by Lemma 16. Thus we have

d , b ,
75108 fo(B) = —Zyp 75, 0€[a, f] — {00}, (18.2)
and (18.1) follows from (18.2) by Lemma 9.

TrEOREM 7. Let B> 0 be a point of the annulus R, and let ®(R,)=E_, 4, P(B)=
b,(B). Then the problem P..(B) has the following solution:

() of Z_s0y.5:8 =0, @, is the only function of F, satisfying
@;(B) =max |{'(B)] (18.3)
Fe@r
and any @€F, with |¢'(B)|=®,(B) has the form @(z)=¢?D(z) with y real;

(i) of Z_op, 0.8 <0, there is in the previous notation a unique o €(a, B) such that
Z 1,+ =0 where a*=(r, B; §*)<0,b* =b(r, B; §*); 8* <6, and f, . satisfies
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f»+(B)=max |f(B)|; (18.4)
feGr

any p€F, with |@'(B)|=fs+(B) has the form
P(2)=€"gs[fo+(2)], y real, (18.5)
where gy 18 the D-shift of section 8 with |3|<d* and

0<0+=J‘a+ ot d =1h,','+b+<7t;
« V- (B—t)VE-1 2

further any @ of (18.5) is in F, and has |¢'(B)|=fo+(B);

(iii) the cases (i) and (ii) above mean geometrically: case (i) corresponds to f—a<
b,(B) and case (ii) corresponds to B — a>by(B).

Proof. Let 8,€(x,f) and put a,=a(r, B;§,), b, =b(r, B; §,). Since both a and b are
strictly increasing (Lemma 9) in 6, Z,,, >0 implies Z(d)=Z.¢, 56y, 0¢.5:6 >0 for
8, <0 < fB: by Lemma 15, Z,, >0 above and Z,, < 0 below 4*; by Lemma 14, 4* has negative
slope. For 8, 6,, fs(B) (which is positive) as function of § is at §; therefore increasing,
decreasing or stationary with strict maximum as Z,,;, is negative, positive or zero (Lemma
17). At 0y, fo(B) is decreasing in by Lemma 17 and the mean value theorem since
a(r, B;8,) =0 and Z; p¢. 5.6,) >0 by Lemma 15, and since Z(d) is continuous in 4.
Thus either Z(8)>>0 in [a, f] or else there is exactly one value 6" € («, d,) with Z(6*)=0
and Z(6)<0 for a<d<dé' and Z(5)>0 for 6" <6<pB. In the former case [Z(x)>0],
f»(B) attains its maximal value in [b;(B), b7(B)] only at b(r, B; &) =b,(B); in the latter
case [Z(x) <0],f,(B) attains its maximal value only at b" =b(r, B; §*). Thus in case
(i) of Theorem 7 we do have (18.3), and in case (ii) we have the unicity of 6% and
the validity of (18.4); the remaining statements in the cases (i); (ii) follow readily

from Theorems 4 and 5; statement (iii) is obtained upon simple computation.

19. The solution of the problems P, (B) and P, (B;b) is much simpler. Since
any argumentation in solving these problems is similar to or even easier than some
reasoning encountered above we shall give below the relevant statements refraining

from proofs.

TEEOREM 8. Let E.; be the unit disk slit along the segment [c, d] with —1<e<
d<1, and let d<b<1; let b be a function mapping E,; conformally into the unit disk
E and satisfying h(b) =0 as well as W(C)=C where C is the circumference of E. Then
|A'(6)| =1 with equality if and only if b is a mon-Euclidean rotation about b.
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CoroLLARY. If in addition 0€[c,d], and if h satisfies also ME,)< E,=E —{0},
then [1'(b)|=1 implies that h is the identity.

THEOREM 9. Let B>0 be a point of the annulus R,; let H,, b,(B)<b<b;(B), be
the function mapping R, conformally onto B, with d<b, H,(B) =b, H,(1) =1, let f € F,(B; b)
with f(B)>0. Then |]"(B)|>H,§(B) with equality if and only if f=H,.

TaeorEM 10. With B> 0 as above, let { €, with {(B)>0. Then |f (B)| = V/(B) with
equality if and only if f="Y,, where W, is given in section 2.

20. Final remark. It might be of interest to find out extremal properties of the
functions Fj(z) Hy "(z) with 0<y<1 and F,=gs0f, where g, is a -shift (section 8)
and f, is given by (14.2). This might lead to the determination of the range of f'(B)
for f€F,, f(B)=b.
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