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EXTREMAL FUNCTIONS FOR MOSER’S INEQUALITY

KAI-CHING LIN

Abstract. Let Ω be a bounded smooth domain in Rn, and u(x) a C1 function
with compact support in Ω. Moser’s inequality states that there is a constant
co, depending only on the dimension n, such that

1

|Ω|

∫
Ω

e
nω

1
n−1
n−1

u
n
n−1

dx ≤ co,

where |Ω| is the Lebesgue measure of Ω, and ωn−1 the surface area of the unit
ball in Rn. We prove in this paper that there are extremal functions for this
inequality. In other words, we show that the

sup{ 1

|Ω|

∫
Ω

e
nω

1
n−1
n−1

u
n
n−1

dx : u ∈W 1,n
o , ‖∇u‖n ≤ 1}

is attained. Earlier results include Carleson-Chang (1986, Ω is a ball in any
dimension) and Flucher (1992, Ω is any domain in 2-dimensions).

1. Introduction

Let Ω be a bounded smooth domain in Rn, and u(x) a C1 function supported
in Ω with ‖∇u‖q < n. Sobolev’s Imbedding Theorem says that if 1 ≤ q < n, then

‖u‖p ≤ C(n, q),(1)

where 1
p = 1

q −
1
n , and C(n, q) is a constant independent of the function u, as well

as the domain Ω. The imbedding is no longer valid when q = n. Indeed, there are
unbounded functions whose gradients are in Ln. However, Trudinger [14] in 1967
proved that if ‖∇u‖n ≤ 1, then u is in an exponential class. More precisely, the
integral ∫

Ω

eβou
n
n−1

dx,

is uniformly bounded, for some positive β0 depending only on dimension. Moser
[12] in 1971 then found the best exponent β0. He showed if ‖∇u‖n ≤ 1, then

1

|Ω|

∫
Ω

enω
1

n−1
n−1

u
n
n−1

dx ≤ c0,(2)

where c0 is a constant depending only on n. (ωn−1 is the surface area of the unit
ball in Rn.)

The aim of this paper is to prove the following:
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Theorem 1. There are extremal functions for Moser’s inequality (2). In other
words, the

sup{ 1

|Ω|

∫
Ω

enω
1

n−1
n−1

u
n
n−1

dx : u ∈W 1,n
o , ‖∇u‖n ≤ 1}

is attained.

The first result in this direction is due to Carleson-Chang [3], who proved in
1986 that there are extremals when Ω is a ball in any dimension. Their result came
as a surprise, since it was known at that time that no extremals exist for Sobolev’s
inequality (1) when Ω is a ball. (See an account of this in the more expository article
[10].) In 1992, M. Flucher [5] proved the same existence for any bounded smooth
domain in 2-dimensions. Though our result is an improvement, the method of the
proof relies on both heavily. The key ingredient is the use of n-Green’s functions,
the singular solutions to the n-Laplacian. As to the solvability of the corresponding
Euler equation, see Adimurthi [1] and Struwe [6].

I am indebted to Alice Chang who introduced me to this subject and who offered
some valuable suggestions. I would also like to thank Tero Kilpelainen, John Lewis,
and Tom Wolff for sharing their knowledge on p-Laplacian.

2. Outline of Proof

By W 1,n
o (Ω) we mean the Sobolev space of functions vanishing on the boundary

∂Ω with ‖∇u‖n <∞, and we denote by FΩ(u) the Moser functional∫
Ω

(
enω

1
n−1
n−1

u
n
n−1 − 1

)
dx.

(the term −1 in the integrand is introduced for convenience). We now describe the
outline of the proof. Let {uj} be a maximizing sequence for (2), that is, {uj} ⊂
W 1,n
o (Ω), ‖∇uj‖n ≤ 1, and FΩ(uj) tends to the supremum. We get for free from

funtional analysis that we can extract a subsequence, still denoted by {uj}, which
satisfies

‖∇uj‖n ≤ 1, uj ⇀ u weakly, and |∇u(x)|ndx ⇀ dµ weakly,(3)

where u is a function in W 1,n
o (Ω), and dµ a finite measure on Ω. Our goal is to

prove that FΩ(uj)→ FΩ(u) (u will then be an extremal).
The main difficulty in this type of problem is that the Moser funtional FΩ(u)

is not compact. In other words, there exists a sequence of functions {uj} which
satisfies all the conditions in (3), but FΩ(uj) fails to converge to FΩ(u). Here is
an example. Take Ω to be the unit ball in Rn, and define ua to be ca log 1

|x| for

a ≤ |x| ≤ 1, and a constant da for 0 ≤ |x| ≤ a, where da is chosen so that the
functions are continuous, and ca chosen so that ‖∇ua‖n = 1. It is easy to see that
as a→ 0, ua ⇀ u = 0 weakly, |∇ua(x)|ndx ⇀ δ0 = the Dirac measure at 0 weakly,
and that lim supFΩ(ua) > FΩ(0).

All is not lost, however. P. L. Lions [11] was able to show that this is the only
thing that can go wrong.

Theorem 2 (P. L. Lions). Suppose {uj} is a sequence satisfying (3). Then, either
(a) the compactness holds, i.e., FΩ(uj)→ FΩ(u); or (b) {uj} concentrates at some
point x0, i.e., uj ⇀ u = 0 weakly, and |∇u(x)|ndx ⇀ δx0 .
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This is the so-called the concentration-compactness principle for the Moser func-
tional. See Flucher [3] for another proof. So far, we haven’t used the condition that
uj is maximizing. In the following, we’ll show that maximizing sequences never
concentrate. To do this, we first quantify the concentration phenonmenon. The
following notion was introduced in Flucher [5].

Definition 1. Let x0 be a point in Ω̄. The concentration function at x0 is defined
to be

CΩ(x0) = sup{lim supFΩ(uj) : ‖∇u‖n ≤ 1, {uj} concentrates at x0}.

Obviously, we have supu FΩ(u) ≥ supxCΩ(x). And, in view of Lions’s concentra-
tion-compactness principle, it now suffices to prove

sup
u
FΩ(u) > sup

x
CΩ(x).

In fact, this was how Carleson-Chang [3] proved their theorem on a ball:

Theorem 3 (Carleson-Chang). Let B be the unit ball in Rn. Then

(a) supx CB(x) = CB(0) = e1+ 1
2 + 1

3 +···+ 1
n−1 |B|,

(b) supu FB(u) > e1+ 1
2 + 1

3 +···+ 1
n−1 |B|.

Now we switch from balls to a general domain Ω. When we do so, both the sup
of Moser functional and that of the concentration function will change. The key
observation is that the ratio of functional over concentration will only increase.

Theorem 4.

supu FΩ(u)

supxCΩ(x)
≥ supu FB(u)

supx CB(x)
.

Thus our Theorem 1 is a consequence of Lions’s Theorem 2, Carleson-Chang’s
Theorem 3 and Theorem 4. The appearance of Theorem 4 bears some resemblance
to the classical isoperimetric inequality. Indeed, somewhere in the proof, we do use
the classical isoperimetric inequality.

The proof of Theorem 4 consists of two parts: one is the comparison of the
concentration function on Ω and on the ball B; the other is the comparison of the
Moser functional on these two domains. More, precisely, we’ll prove

Theorem 5. (a) For every x in Ω, CΩ(x) = rnΩ(x)CB(0),
(b) supu FΩ(u) ≥ (supx r

n
Ω(x)) supu FB(u).

The factor (without the n-th power), rΩ(x), that appears in both formulas is
what we call the n-harmonic radius, which will depend only on the point x and the
domain Ω. It is obvious that Theorem 5 implies Theorem 4. We now digress to
define the n-Green’s functions and the n-harmonic radius.

Definition 2. Let x0 be a point in Ω. The n-Green’s function G = Gx0 = GΩ,x0

on Ω with pole at x0 is the singular solution to the n-Laplacian:

∆nG = Div(|∇G|n−2∇G) = δx0 in Ω,(4)

G = 0 on ∂Ω.

In terms of distributions, equation (4) means∫
Ω

|∇G|n−2∇G · ∇φdx = φ(x0),(5)
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for every compactly supported smooth function φ(x) on Ω. Of course, when n = 2,
the 2-Laplacian is the usual Laplacian, and 2-Green’s function is the usual Green’s
function. In higher dimensions, the existence and uniqueness of this G is also well-
known, see [6] and [7], for example. The n-Green’s function on the ball B with pole

at the origin is G0 = −ω−
1

n−1

n−1 log |x|, and for general domain we have the following
asymptotic expansion:

Gx0(x) = −ω−
1

n−1

n−1 log |x− x0| −Hx0(x),(6)

where Hx0(x) is a continuous function on Ω and is C1,α in Ω \ {x0}.

Definition 3. The n-harmonic radius at x0 is defined to be

rΩ(x0) = e−ω
1

n−1
n−1

Hx0 (x0).

Remark 1. When n = 2, and Ω simply-connected, one can use the invariance of
Green’s functions under conformal mappings to see that the n-harmonic radius is
nothing but |f ′(0)|, where f(z) is a conformal mapping from the unit disc to Ω
with f(0) = x0. See [2].

Remark 2. In higher dimensions, n-Green’s functions are invariant under Möbius
transformations. (The usual Green’s functions are not.) As a consequence, one can
compute the conformal radius at x0 ∈ B as 1− |x0|2.

We return to the discussion of the proof of our Theorem 1, which now reduces to
that of Theorem 5. To prove Theorem 5, we’ll need to transplant functions, either
from a general domain Ω to a ball, or from a ball to Ω. In doing so, we have to keep
the functions in the same class, i.e., ‖∇u‖n ≤ 1, and, at the same time, to obtain
a relation between the functional on the two domains. For the direction from Ω to
Ω∗(the symmetrized domain of Ω, which is a ball), the classical rearrangement u∗

is the main tool. (See [7].) Recall that |{u∗ > t}| = |{u > t}|, and

Theorem 6. For u ∈W 1,n
0 (Ω), we have

(a) ‖∇u∗‖Ln(Ω∗) ≤ ‖∇u‖Ln(Ω),
(b) FΩ∗(u

∗) = FΩ(u).

For the other direction, from B to the unit ball Ω, we use the n-harmonic trans-
plantation, which is defined via the level sets of n-Green’s functions.

Definition 4. Let x0 be a point in Ω, and v0 a decreasing, radial function on B.
The n-harmonic transplantation of v0 on Ω at x0 is defined to be vx0 = vΩ,x0 =

v0 ◦G−1
B,0 ◦GΩ,x0 .

So, vx0 has the same level sets as Gx0 does. Furthermore, vx0 and v0 agree on
the corresponding level sets of Gx0 and G0. The analogous result to Theorem 6,
when we move functions from B to Ω, is:

Theorem 7. For a radial, decreasing function v0 in W 1,n
0 (B), we have

(a) ‖∇vx0‖Ln(Ω) = ‖∇v0‖Ln(B),
(b) FΩ(vx0) ≥ rnΩ(x0)FB(v0).

We will prove some properties about n-Green’s functions in the next section.
The proofs of Theorems 7 and 5 are presented in the last section.
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3. n-Green’s Functions

We develop in this section some important properties about the n-Green’s func-
tion.

Lemma 1. Let G = Gx0(x).
(a) ∫

{G<t}
|∇G|n dx = t for every t,

(b) ∫
∂{G>t}

|∇G|n−1 dx = 1 for every t.

(c) The sets {G > t} form a sequence of approximately small balls of radii ρt =

rΩ(x0)e−ω
1

n−1
n−1

t. In other words, B(x0, ρt − rt) ⊂ {G > t} ⊂ B(x0, ρt + rt), with
rt/ρt → 0 as t→∞. In particular,

lim
t→∞

|{G > t}|

αne
−nω

1
n−1
n−1

t

= rnΩ(x0),

where αn is the volume of the unit ball in Rn. (d) On the set {G = t}, we have

|∇G(x)| = ω
−1
n−1

n−1

1

ρt
+ O(1) uniformly, as t→∞.

Proof. (a) Choose a smooth approximation of the function φ(x) = inf{G(y), t} in
equation (5).

(b) follows from equation (4) via an integration by parts.
(c) Solving for |x− x0| in (6), we get

|x− x0| = e−ω
1

n−1
n−1

te−ω
1

n−1
n−1

Hx0 (x) = e−ω
1

n−1
n−1

te−ω
1

n−1
n−1

Hx0 (x0)

+(e−ω
1

n−1
n−1

Hx0 (x) − e−ω
1

n−1
n−1

Hx0 (x0))e−ω
1

n−1
n−1

t = ρt + rt.

It is easy to see that rt/ρt → 0 as t→∞, by the continuity of Hx0(x) at x0.
(d) On {G = t}, we have

|∇G(x)| = | − ω
−1
n−1

n−1

x− x0

|x− x0|2
−∇Hx0(x)| = ω

−1
n−1

n−1

1

ρt
+O(1),

by the C1,α property of Hx0(x) in Ω \ {x0} and (c).

Lemma 2. For domains Ω in Rn,

sup
x
rΩ(x) ≤ sup

x
rΩ∗(x) = rΩ∗(0).

Proof. We have from (c) of Lemma 1:

rnΩ(x) = lim
t→∞

|{GΩ,x > t}|

αne
−nω

1
n−1
n−1

t

,

and

rnΩ∗(0) = lim
t→∞

|{GΩ∗,0 > t}|

αne
−nω

1
n−1
n−1

t

.

(GΩ∗,0 is the n-Green’s function on Ω∗ with pole at 0.)
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Now we compare the two sets, {GΩ,x > t} and {GΩ∗,0 > t}. Part (a) of Lemma 1
and Theorem 6 implies

t =

∫
{GΩ,x<t}

|∇GΩ,x|n dx ≥
∫
{G∗

Ω,x
<t}
|∇G∗Ω,x|n dx ≥

∫
{vt<t}

|∇vt|n dx,

where vt is the n-harmonic function sharing the same boundary values as G∗Ω,x
on {G∗Ω,x < t}, and the last inequality is Dirichlet’s principle. This vt must be a
constant multiple of GΩ∗,0, say, vt = λtGΩ∗,0. So, we have

t ≥
∫
{GΩ∗,0<t/λt}

λnt |∇vt|n dx = tλn−1
t .

Hence λt ≤ 1. Therefore,

rnΩ(x) = lim
t→∞

|{GΩ,x > t}|

αne
−nω

1
n−1
n−1

t

,= lim
t→∞

|{G∗Ω,x > t}|

αne
−nω

1
n−1
n−1

t

= lim
t→∞

|{GΩ∗,0 > t/λt}|

αne
−nω

1
n−1
n−1

t

≤ lim
t→∞

|{GΩ∗,0 > t/λt}|

αne
−nω

1
n−1
n−1

t/λt

= rnΩ∗(0). 2

Lemma 3. For every 0 < r ≤ 1, we have

1

(ω
1

n−1

n−1r)
n

∫
∂{G>−ω

− 1
n−1

n−1
log r}

1

|∇G| ds ≥ r
n
Ω(x0),

and the inequality tends to be an equality, as r → 0.

Proof. The isoperimetric inequality for domains A in Rn says that

|A| ≤ αnω
− n
n−1

n−1

(∫
∂A

ds

) n
n−1

.

If we take A to be {G > −ω
1

n−1

n−1 log r}, then we have

|A| ≤ αnω
− n
n−1

n−1

(∫
∂A

|∇G|
n−1
n

1

|∇G|n−1
n

ds

) n
n−1

≤ αnω
− n
n−1

n−1

{(∫
∂A

|∇G|n−1 ds

) 1
n
(∫

∂A

1

|∇G| ds
)n−1

n

} n
n−1

= αnω
− n
n−1

n−1

∫
∂A

1

|∇G| ds.

On the other hand, we can estimate |A| from below in terms of rΩ(x0). Since

GA,x0(x) = GΩ,x0(x)+ω
1

n−1

n−1 log r, we have HA,x0(x) = HΩ,x0(x)−ω
1

n−1

n−1 log r. Thus
rA(x0) = r · rΩ(x0). And Lemma 2 gives

|A| ≥ αnrnA(x0) = αnr
n · rnΩ(x0).

Combining these two inequalities gives the one in the lemma. Furthermore, we
have from Lemma 1,

1

|∇G| ∼ ω
1

n−1

n−1r · rΩ(x0), and

|{G = −ω
1

n−1

n−1 log r}| ∼ ωn−1r
n−1rn−1

Ω (x0),

as r→ 0. The asymptotic equality then follows.
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4. Proofs of Theorems

Proof of Theorem 7. (a). By the co-area formula (see [2]), the definition of vx0

(which yields ∇vx0 = |∇v0|
|∇GB,0|∇Gx0), and part (b) of Lemma 1, we have

‖∇vx0‖nLn(Ω) =

∫
Ω

|∇vx0 |n dx =

∫ ∞
0

∫
∂{vx0>t}

|∇vx0 |n−1 ds dt

=

∫ ∞
0

|∇v0|n−1

|∇GB,0|n−1

∫
∂{vx0>t}

|∇Gx0 |n−1 ds dt =

∫ ∞
0

|∇v0|n−1

|∇GB,0|n−1
dt.

The last integral is independent of domains, so it is equal to ‖∇v0‖nLn(B).

(b) We let f(t) = enω
1

n−1
n−1

t
n
n−1 − 1. Again, by the co-area formula,

FΩ(vx0) =

∫ ∞
0

∫
∂{vx0>t}

f(t)

|∇vx0 |
ds dt

=

∫ ∞
0

f(t)

∫
∂{vx0>t}

|∇GB,0(v(t))|
|∇v0(z(t))|

1

|∇Gx0 |
ds dt

=

∫ ∞
0

f(t)
|∇GB,0(z(t))|
|∇v0(z(t))|

∫
∂{G>GB,0(z(t))}

1

|∇G|ds dt,

=

∫ ∞
0

f(t)

 1

ω
1

n−1

n−1 |z(t)|

( 1

ωn−1|z(t)|n−1

)

×
(∫

∂{v0>t}

1

|∇v0|
ds

)(∫
∂{G>GB,0(z(t))}

1

|∇G| ds
)
dt

=

∫ ∞
0

f(t)

(∫
∂{v0>t}

1

|∇v0|
ds

)(
1

ω
n
n−1

n−1 |z(t)|n

∫
∂{G>GB,0(z(t))}

1

|∇G|ds
)
dt

≥ rnΩ(x0)

∫ ∞
0

f(t)

∫
∂{v0>t}

1

|∇v0|
ds dt = rnΩ(x0)

∫
B

f(v0)dx = rnΩ(x0)FB(v0).

In the above formulas, z(t) is a point in B such that v0(z(t)) = t.

Proof of Theorem 5. We prove part (b) first. Let v0(x) be an extremal function
which realizes supu FB(u), as assured by Carleson-Chang’s Theorem 3. We may
assume this v0(x) is radial and decreasing on B, by Theorem 6. Now, Theorem 7
says every conformal rearrangement vx0 satisfies FΩ(vx0) ≥ rnΩ(x0)FB(v0). Taking
the supremum over x0 in B gives us (b).

To prove (a), we first take a concentrating sequence {vj} on B which realizes
CB(0). Theorem 7 gives us a sequence {vj,x0} on Ω. The same argument for proving
(a) of Theorem 7 yields∫

{GΩ,x0<t}
|∇vj,x0 |n dx =

∫
{GB,0<t}

|∇vj |n dx,
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which tends to 0, as j →∞, for every t. So {vj,x0} concentrates at x0. Futhermore,
as in the proof of (b) of Theorem 7, we have

FΩ(vj,x0) =

∫ ∞
0

f(t)

(∫
∂{vj>t}

1

|∇vj |
ds

)

×
(

1

ω
n
n−1

n−1 |zj(t)|n

∫
∂{Gx0>G(zj(t))}

1

|∇Gx0 |
ds

)
dt.

The second inner integral converges to rnΩ(x0) uniformly in t, as j → ∞, by
Lemma 3. And the rest of the integral is nothing but FB(vj). So, FΩ(vj,x0) →
rnΩ(x0)CB(0). This gives CΩ(x0) ≥ rnΩ(x0)CB(0).

For the other direction of (a), take a sequence {uj} on Ω realizing CΩ(x0). We
first argue that that uj must behave like λjGx0 off {x0}, where λj → 0. To see
this, note the sets {uj > 1} are contained in balls B(x0, rj), with rj → 0. We then
replace uj on Aj = {uj ≤ 1} by an n-harmonic function which agrees with uj on
∂Aj . (We still call the new sequence {uj}.) This will not increase the norm of the
gradient, by Dirichlet’s principle. Futhermore, if we fix a point y 6= x0, and set
λj = uj(y)/Gx0(y), then λj → 0, and uj/λj → Gx0 locally uniformly off x0. To
see the last statement, take a compact set K, containing y, but not x0. Harnack’s
inequality (see [4]) says that the sequence {uj/λj} is uniformly bounded on K, so
it is equicontinuous on K. Hence it converges uniformly on K. The limit must be
n-harmonic, and equal to Gx0 .

Next, we obtain from Theorem 6 the sequence of symmetrized functions u∗j on
Ω∗, which satisfies ‖∇u∗j‖Ln(Ω∗) ≤ 1, and FΩ∗(u

∗
j ) = FΩ(uj). It is easy to see

that {u∗j} concentrates at 0. To get the conformal factor rnΩ(x0), we would like
to dilate uj(x) to u∗j(

x
rΩ(x0) ). This will not change the norm of the gradient, and

the functional will have the desired conformal factor. However, the new function
u∗j(

x
rΩ(x0) ) is supported on the set 1/rΩ(x0)·Ω∗, which is larger than the unit ball B.

To remedy the situation, we take the part of u∗j , where u∗j > 1, over to the unit ball
B, and dilate it so that it matches with λjGB,0. (The latter is defined on the rest of
B.) In other words, we are defining a function vj on B, so that vj(z) = λjGB,0(z)
for values ≤ 1; and vj(z) = u∗j(ηjz) for values > 1, where ηj is chosen so that the
two pieces fit together. Notice, by part (c) of Lemma 1, that the radii of of the sets

{u∗j > 1} and {λjGB,0 > 1} are asymptotically equal to rΩ(x0) exp(−ω
1

n−1

n−1
1
λj

) and

exp(−ω
1

n−1

n−1
1
λj

), respectively. So, ηj → rΩ(x0), as j →∞.

The sequence {vj} concentrates at 0, and ‖∇vj‖Ln(B) ≤ ‖∇uj‖Ln(Ω) ≤ 1. More-
over, we have

lim
j→∞

FΩ(uj) = lim
j→∞

∫
{uj>1}

f(uj) dx = lim
j→∞

∫
{u∗
j
>1}

f(u∗j) dx

lim
j→∞

∫
{u∗j (x)>1}

f(vj(x/ηj)) dx = lim
j→∞

ηnj

∫
{v∗j (x)>1}

f(vj(x)) dx

= rnΩ(x0) lim
j→∞

FB(vj) ≤ rnΩ(x0)CB(0).

This proves the other half of (a). The proof of Theorem 5 is now complete.
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