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Abstract

Given a graph H and an integer p, the edge blow-up Hp+1 of H is the graph
obtained from replacing each edge in H by a clique of order p + 1 where the new
vertices of the cliques are all distinct. The Turán numbers for edge blow-up of match-
ings were first studied by Erdős and Moon. In this paper, we determine the range
of the Turán numbers for edge blow-up of all bipartite graphs. Moreover, we charac-
terize the extremal graphs for edge blow-up of all non-bipartite graphs. Our results
also extend several known results, including the Turán numbers for edge blow-up of
stars, paths and cycles. The method we used can also be applied to find a family of
counter-examples to a conjecture posed by Keevash and Sudakov in 2004 concerning
the maximum number of edges not contained in any monochromatic copy of H in a
2-edge-coloring of Kn.

Key words: Turán number; edge blow-up; Keevash-Sudakov conjecture.
AMS Classifications: 05C35; 05D99.

1 Introduction

Given a family of graphs H, we say a graph G is H-free (H-free if H = {H}) if G does
not contain any copy of H ∈ H as a subgraph. The Turán number of a family of graphs
H, denote as ex(n,H), is the maximum number of edges in an H-free graph G of order
n. Denote by EX(n,H) the set of H-free graphs on n vertices with ex(n,H) edges and
call a graph in EX(n,H) an extremal graph for H. We simply use ex(n,H) and EX(n,H)
instead of ex(n, {H}) and EX(n, {H}) respectively if H = {H}.

In 1941, Turán [24] proved that the unique extremal graph without containing a clique
on p + 1 ≥ 3 vertices is the complete p-partite graph on n vertices which is balanced, in
that the partite sizes are as equal as possible. This balanced complete p-partite graph on
n vertices is the Turán graph Tp(n) and let tp(n) = e(Tp(n)) be the number of edges of
Tp(n).

Later, in 1946, Erdős and Stone [6] proved the following well-known theorem.

Theorem 1.1 (Erdős and Stone [6]) For all integers p ≥ 2 and N ≥ 1, and every
ǫ > 0, there exists an integer n0 such that every graph with n ≥ n0 vertices and at least

tp−1(n) + ǫn2

edges contains Tp(Np) as a subgraph.

∗This work is supported by the National Natural Science Foundation of China (No. 11901554) and
Science and Technology Commission of Shanghai Municipality (No. 18dz2271000, 19jc1420100)
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Let F be a family of graphs, the subchromatic number p(F) of F is defined by

p(F) = min{χ(F ) : F ∈ F} − 1,

where χ(F ) is the chromatic number of F . The classical Erdős-Stone-Simonovits theorem
[6, 9] states that

ex(n,F) =

(
1−

1

p(F)

)(
n

2

)
+ o(n2).

If F contains a bipartite graph, then p(F) = 1 and ex(n,F) = o(n2). For this de-
generate (bipartite) extremal graph problem, there is an excellent survey by Füredi and
Simonovits [11]. Let G be a graph with χ(G) = p + 1 ≥ 3. If there is an edge e such
that χ(G − {e}) = p, then we say that G is edge-critical and e is a critical edge. The
Turán numbers of edge-critical graphs are determined when n is sufficiently large. In
1968, Simonovits [21] proved the following theorem.

Theorem 1.2 (Simonovits [21]) Let G be an edge-critical graph with χ(G) = p+1 ≥ 3.
Then there exists an n0 such that if n > n0 then Tp(n) is the unique extremal graph for G
on n vertices.

Although the Turán numbers of non-bipartite graphs are asymptotically determined by
Erdős-Stone-Simonovits theorem, it is a challenge to determine the exact Turán functions
for many non-bipartite graphs, There are only few graphs whose Turán numbers were
determined exactly, including edge-critical graphs [21] and some specific graphs [4, 23, 27].

Given a graph H and an integer p ≥ 2, the edge blow-up of H, denoted by Hp+1, is
the graph obtained from replacing each edge in H by a clique of order p + 1 where the
new vertices of the cliques are all distinct. The subscript in the case of graphs indicates
the number of vertices, e.g., denote by Pk a path on k vertices, Sk a star on k vertices and
Kn1,...,np the complete p-partite graph with partite sizes n1, . . . , np. A matching in G is a
set of edges from E(G), no two of which share a common vertex, and the matching number
of G, denoted by ν(G), is the number of edges in a maximum matching. Accordingly, we
denote by M2k the disjoint union of k disjoint copies of edges.

In 1959, Erdős and Gallai [7] characterized the extremal graphs for M2k. Later, Erdős
[8] studied the extremal graphs for M3

2k and Moon [19] determined the extremal graphs

for Mp+1
2k for infinitely many values of n when p ≥ 3. After almost forty years, Erdős,

Füredi, Gould, and Gunderson [10] determined the Turán number of S3
k+1 and Chen,

Gould, Pfender, and Wei [4] determined the Turán number of Sp+1
k+1 for general p ≥ 3.

Glebov [13] determined the extremal graphs for edge blow-up of paths. Later, Liu [16]
generalized Glebov’s result to edge blow-up of paths, cycles and a class of trees. Very
recently, Wang, Hou, Liu, and Ma [25] determined the Turán numbers for edge blow-up
of a large family of trees. For other extremal results concerning edge blow-up of specific
graphs, we refer the interested readers to [14, 20, 28]. We will characterize the extremal
graphs for edge blow-up of non-partite graphs and estimate the Turán numbers of edge
blow-up of bipartite graphs. Our main theorems need some definitions, so we state them
in Section 2. As applications of our main theorems, see Sections 3 and 6, we determine
the Turán numbers of edge blow-up of complete bipartite graphs and complete graphs.

Theorem 1.3 Let Kt be the complete graph on t vertices. For p ≥ t+ 1 and sufficiently
large n, we have

ex(n,Kp+1
t ) =

(
t− 1

2

)(
n−

(
t− 1

2

))
+ tp

(
n−

(
t− 1

2

))
.

Moreover, the extremal graphs are characterized.
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Theorem 1.4 Let Ks,t be the complete bipartite graph with s ≤ t. For p ≥ 3 and suffi-
ciently large n, we have

ex(n,Kp+1
s,t ) =

(
s− 1

2

)
+ (s− 1)(n − s+ 1) + tp(n− s+ 1) + p(s, t),

where p(s, t) is a constant depending on s and t.

For a given graph H, let g(n,H) denote the maximum number of edges not contained
in any monochromatic copy of H in a 2-edge-coloring of Kn. If we color the edges of an
extremal n-vertex graph for H red and color the other edges blue, then we can see that
g(n,H) ≥ ex(n,H) for any H and n. In 2004, Keevash and Sudakov showed in [15] that
this lower bound is tight for sufficiently large n if H is edge-critical or a cycle of length
four. Hence, they posed the following conjecture.

Conjecture 1.5 (Keevash and Sudakov [15]) Let H be a given graph. If n is suffi-
ciently large, then

g(n,H) = ex(n,H).

Ma [18] and Liu-Pikhurko-Sharifzadeh [17] confirmed Conjecture 1.5 for a large family
of bipartite graphs. Our method also works for this problem. In Section 6, we will show
that Conjecture 1.5 does not hold for a large family of non-bipartite graphs. In particular,
we prove the following theorem.

Theorem 1.6 Let n be sufficiently large. Then

g(n,Kp+1
t ) = ex(n,Kp+1

t ) +

((t−1
2

)

2

)
.

The organisation of this paper is as follows. In Section 2, we introduce some definitions
and state our main theorems. In Section 3, we present several corollaries of our main the-
orems. In Section 4, we present several lemmas. In Section 5, we will prove Theorems 2.3
and 2.4. In Section 6, we deduce some results about graphs without containing a matching
with given sizes. In Section 7, we will discuss more applications of our method.

2 Main theorems

Let Kt be a complete graph on t vertices and Kt be the complement of Kt. Denote
by G∪H the vertex-disjoint union of G and H and by k ·G the vertex-disjoint union of k
copies of G. Denote by G +H the graph obtained from G ∪H by adding edges between
each vertex of G and each vertex of H.

In order to study the Turán numbers of non-bipartite graphs, Simonovits [22] defined
the decomposition family M(F) of a family of graphs F .

Definition 2.1 (Simonovits [22]) Given a family of graphs F with p(F) = p ≥ 2, let
M(F) be the family of minimal1 graphs M satisfying the following: there exist an F ∈ F
and a constant t depending on F such that F ⊆ (M ∪Kt)+Tp−1((p−1)t). We call M(F)
the decomposition family of F .

1If M ∈ M(F), then M ′ /∈ M(F) where M ′ is a proper subgraph of M .
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Thus, a graph M is in M(F) if the graph obtained from putting a copy of M (but
not any of its proper subgraphs) into a class of a large Tp(n) contains some F ∈ F . If
F ∈ F with chromatic number p+ 1, then F ⊆ Tp+1((p + 1)s) for some s ≥ 1. Therefore
the decomposition family M(F) always contains some bipartite graphs2. A deep theorem
of Simonovits [22] shows that if the decomposition family M(F) contains a linear forest3,
then the extremal graphs for F have very simple and symmetric structure (the theorem
is quite complicated, we refer the interested readers to [22] for more information). Our
theorems focus on graphs F such that M(F ) contains a matching (a matching is a linear
forest). Hence, our theorems are refinements of Simonovits’ theorem in a certain sense.
The main purpose of this paper is to determine the exact Turán numbers for new families
of graphs.

To state our main theorems and related results, we need the following result. Let
∆(G) be the maximum degree of G. Define f(ν,∆) = max{e(G) : ν(G) ≤ ν,∆(G) ≤ ∆}.
In 1972, Abbott, Hanson, and Sauer [1] determined f(k − 1, k − 1). Later Chvátal and
Hanson [5] proved the following theorem.

Theorem 2.2 (Chvátal and Hanson [5]) For every ν ≥ 1 and ∆ ≥ 1,

f(ν,∆) = ν∆+

⌊
∆

2

⌋ ⌊
ν

⌈∆/2⌉

⌋
≤ ν∆+ ν.

In 2009, basing on Gallai’s Lemma [12], Balachandran and Khare [2] gave a more
‘structural’ proof of this result. Hence they gave a simple characterization of all the cases
where the extremal graph is unique. Denote by Eν,∆ the set of the extremal graphs in
Theorem 2.2.

Eν,∆

Qs−1Tp(n− s+ 1)

Figure 1: a graph of H(n, p, s, ν,∆,B)

Let H(n, p, s) = Ks−1 + Tp(n − s + 1) and H ′(n, p, s) = Ks−1 + Tp(n − s + 1). Let
h(n, p, s) = e(H(n, p, s)) and h′(n, p, s) = e(H ′(n, p, s)). For a set of graphs B, denote by
H(n, p, s, ν,∆,B) (Figure 1) the set of graphs which are obtained by taking an H ′(n, p, s),
putting a copy of Eν,∆ ∈ Eν,∆ in one class of Tp(n− s+ 1) and putting a copy of Qs−1 ∈
EX(s − 1,B) in Ks−1. As before, we use H(n, p, s, ν,∆, B) to denote H(n, p, s, ν,∆, {B})
if B = {B}.

A covering of a graph is a set of vertices which together meet all edges of the graph.
An independent set of a graph is a set of vertices no two of which are adjacent. Similarly,
an independent covering of a bipartite graph is an independent set which meets all edges

2It is possible that the decomposition family contains non-bipartite graphs.
3A linear forest is a graph consisting of paths.
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of the bipartite graph. The minimum number of vertices in a covering of a graph F is
called the covering number of F and is denoted by β(F ).

Let F be a family of graphs containing at least one bipartite graph. We need the
following three parameters: q(F), S(F), B(F), of F to describe our main theorems.

The independent covering number q(F) of F is defined by

q(F) = min{q(F ) : F ∈ F is bipartite},

where q(F ) is the minimum order of an independent covering of F .
The independent covering family S(F) of F is the family of independent coverings of

bipartite graphs F ∈ F with order q(F).
The subgraph covering family B(F) of F is the set of subgraphs (regardless of isolated

vertices) of F ∈ F which are induced by a covering of F with order at most q(F) − 1 (if
β(F ) ≥ q(F) for each F ∈ F , then we set B(F) = {Kq}).

In the rest of this paper, given a graph G, let Gp+1 be the edge blow-up of G with
p ≥ χ(G) + 1, M = M(Gp+1), B = B(M) and q = q(M). Let k = min{dHS

(x) : x ∈
S, S ∈ S(M)}, where HS ∈ M contains S. For any connected bipartite graph G, let A
and B be its two color classes with |A| ≤ |B|. Moreover, if G is disconnected, we always
partition G into A∪B such that |A| is as small as possible. We will establish the following
theorems.

Theorem 2.3 Let G be a bipartite graph and n be sufficiently large. For p ≥ 3, we have
the following:
(i). If q = |A|, then

h′(n, p, q) + ex(q − 1,B) ≤ ex(n,Gp+1) ≤ h(n, p, q) + f(k − 1, k − 1). (1)

Furthermore, both bounds are best possible.
(ii). If q < |A|, then

ex(n,Gp+1) = h′(n, p, q) + ex(q − 1,B).

Moreover, the graphs in H(n, p, q, 0, 0,B) are the only extremal graphs for Gp+1.

Theorem 2.4 Let G be a non-bipartite graph and n be sufficiently large. For p ≥ χ(G)+1,
we have

ex(n,Gp+1) = h′(n, p, q) + ex(q − 1,B).

Moreover, the graphs in H(n, p, q, 0, 0,B) are the only extremal graphs for Gp+1.

3 Corollaries

For a given graph H with χ(H) = p+1 ≥ 3, Erdős-Stone-Simonovits theorem tells us
that the structure of the extremal graphs for H are close to the Turán graph Tp(n). More
precisely, any extremal graph for H can be obtained from Tp(n) by adding and deleting
at most o(n2) edges. The decomposition family of a forbidden graph H often helps us to
determine the fine structure of the extremal graphs for H. Hence, we need the following
lemmas concerning the extremal graphs of the decomposition family of Gp+1.

Given a graph H, a vertex split on some vertex v ∈ V (H) is defined as follows: replace
v by an independent set of size d(v) in which each vertex is adjacent to exactly one distinct
vertex in NH(v). Denote by H(H) the family of graphs that can be obtained from H by
applying a vertex split on some U ⊆ V (H). Obviously each graph in H(H) has e(H)
number of edges. Note that U could be empty, therefore H ∈ H(H). For example,
H(Pk+1) is the family of all linear forests with k edges and H(Ck) consists of Ck and all
linear forests with k edges.

The following lemma is proved in [16].
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Lemma 3.1 (Liu [16]) Given a graph G with 2 ≤ χ(G) ≤ p−1, we have M = H(G), in
particular, a matching of size e(G) is in M. In particular, if H ∈ M, then after splitting
any vertex set of H, the resulting graph also belongs to M.

Let Kn1,...,np be the complete p-partite graph with class sizes n1, . . . , np. Denote by
Kn1,...,np(n,Hn1

) the graph obtained by embedding Hn1
into the class of Kn1,...,np with

size n1.

Proposition 3.2 Let Fn1
be an extremal graph for M on n1 vertices. Then Kn1,...,np(n, Fn1

)
does not contain Gp+1 as a subgraph.

Proof. Proposition 3.2 follows directly from definition of decomposition family. �

Theorem 2.3 implies the results of Erdős [8], Moon, [19] and Simonovits [21] for edge-
blow up of matchings, results of Erdős, Füredi, Gould, and Gunderson [10] and Chen,
Gould, Pfender, and Wei [4] for edge-blow up of stars and results of Glebov [13] and Liu
[16] for edge-blow up of paths and even cycles. Theorems 2.4 implies the result of Liu
[16] for edge-blow up of odd cycles. We state those results as corollaries of Theorems 2.3
and 2.4. In the following of this section, we will deduce the above results from our main
theorems by applying Lemma 3.1.

Corollary 3.3 (Erdős [8], Moon [19] and Simonovits [21]) Let G = M2t be a match-
ing on 2t vertices and p ≥ 2. Then for sufficiently large n, we have

ex(n,Mp+1
2t ) = h(n, p, t).

Moreover, H(n, p, t) is the unique extremal graph for Mp+1
2t .

Proof. Clearly, we have M = {M2t}. Applying Theorem 2.3 with q = |A| = t, k = 1,
p ≥ 3, and B = {Kq}, the lower and upper bounds of (1) are the same. Thus we have

ex(n,Mp+1
2t ) = h(n, p, t). The proof of Corollary 3.3 for p ≥ 3 is complete. Since M

contains only a matching M2t, the proof of Theorem 2.3 implies Corollary 3.3 for p = 2
(see Corollary 7.1). �

Corollary 3.4 (Erdős, et al. [10] and Chen, et al. [4]) Let G = St+1 be a star on
t+ 1 vertices and p ≥ 2. Then, for sufficiently large n, we have

ex(n, Sp+1
t+1 ) = h(n, p, 1) + f(t− 1, t− 1).

Moreover, the extremal graphs are characterized.

Proof. By Lemma 3.1, we have M = {M2t, St+1}. Note that the graphs in H(n, p, 1, k −
1, k − 1,K2) does not contain Sp+1

t+1 as a subgraph (by Proposition 3.2). Applying The-

orem 2.3(i) with q = |A| = 1, k = t, p ≥ 3, and B = {K1}, we have ex(n, Sp+1
t+1 ) ≤

h(n, p, 1) + f(t− 1, t− 1). The proof of Corollary 3.4 for p ≥ 3 is complete. Note that M
contains a matching. The proof of Theorem 2.3 implies4 Corollary 3.4 for p = 2. �

Corollary 3.5 (Glebov [13] and Liu [16]) Let G = Pt be a path on t vertices and
p ≥ 3. Then, for sufficiently large n, we have

ex(n, P p+1
t ) = h

(
n, p,

⌊
t

2

⌋)
+ i,

where i = 1 when t is odd and i = 0 when t is even.
4We omit the proof, since it is essentially the same as the proof of Theorem 2.3.
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Proof. By Lemma 3.1, M consists of all linear forests with t − 1 edges. For a linear
forest F in M consisting of paths Pt1 , Pt2 , . . ., Ptℓ , each covering of F has at least∑ℓ

i=1⌊ti/2⌋ ≥ (t−1)/2 vertices. If t is even, then k = 1. Since (q−1)S3∪S2 ∈ M and the
minimum non-independent coverings of linear forests with t− 1 edges is t/2 + 1, applying
Theorem 2.3(i) with q = |A| = t/2, k = 1, p ≥ 3, and B = {Kq}, the lower and upper
bounds of (1) are the same. Assume that t is odd. Then k = 2. Note that the graphs in
H(n, p, q, 1, 1,Kq) do not contain a copy of P p+1

t , where q = |A| = ⌊t/2⌋. It follows from

the upper bound of (1) that ex(n, P p+1
t ) = h(n, p, q) + 1. Thus, the proof of Corollary 3.5

is complete. �

Corollary 3.6 (Liu [16]) Let G = Ct be a cycle on t vertices. Then, for sufficiently
large n, we have the following:
(a) If t is even and p ≥ 3, then

ex(n,Cp+1
t ) = h

(
n, p,

⌊
t

2

⌋)
+ 1.

(b) If t is odd and p ≥ 4, then

ex(n,Cp+1
t ) = h

(
n, p,

⌈
t

2

⌉)
.

Proof. By Lemma 3.1, M consists of all linear forests with t edges and the cycle of
length t. Let t be even. Since the graphs in H(n, p, t/2, 1, 1,Kt/2) do not contain Cp+1

t

as a subgraph (by Proposition 3.2), applying Theorem 2.3(i) with q = |A| = t/2, k = 2,
p ≥ χ(Ct)+1 = 3 and B = {Kq}, the lower bound and the upper bound of Theorem 2.3 are
the same. The proof of Corollary 3.6(a) is complete. Let t be odd. Then Corollary 3.6(b)
follows from Theorem 2.4 with q = ⌈t/2⌉, B = {Kq}, and p ≥ χ(Ct) + 1 = 4. �

Proof of Theorem 1.3:
Proof. Let G = Kt. Denote by Sk,k the graph on 2k vertices obtained by taking two
copies of Sk and joining the centers of them with a new edge. Since each bipartite graph in
M is obtained by splitting at least t−2 vertices of Kt, we have q = t−1+

(t−2
2

)
=

(t−1
2

)
+1

(the graph F ∈ M(Kp+1
t ) consisting of St−1,t−1 and

(t−2
2

)
independent edges) and B =

{K2} (the edge joining the centers of St−1 in St−1,t−1 of F ). Applying Theorem 2.4, we

have ex(n,Kp+1
t ) =

(t−1
2

) (
n−

(t−1
2

))
+ tp

(
n−

(t−1
2

))
. Moreover, the extremal graphs are

characterized. The proof of Theorem 1.3 is complete. �

The proof of Theorem 1.4 needs more efforts, so we move it to Section 6.

4 Several technical lemmas

The following simple propositions help us to determine the extremal graphs for M.

Proposition 4.1 Let F be a bipartite graph. Then we have q(F ) = |A|.

Proof. Since A is an independent covering of F , we have q(F ) ≤ |A|. Suppose F is
connected. Then each independent covering of F must contain either all the vertices of A
or all the vertices of B. Indeed, assume that A1 ( A, B1 ( B are two non-empty vertex
sets and A1 ∪ B1 is an independent covering of F . Let A2 = A − A1 and B2 = B − B1.
Since F is connected and A1 ∪ B1 is an independent set, there is some edge between A2

and B2, contradicting that A1 ∪ B1 is a covering of F . Hence we have q(F ) = |A|. If F

7



is disconnected, the result follows easily by studying each component of F (recall that we
always partition F with |A| as small as possible). The proof is complete. �

We need the following proposition to determine the extremal graphs for Gp+1 when
k = 1 (recall definitions of S(M), q and k).

Proposition 4.2 If there is an independent covering S ∈ S(M) obtained by splitting some
vertices in G, then k = 1. Moreover, if G is bipartite with q < |A| or G is non-bipartite,
then k = 1.

Proof. Let HS ∈ M be a bipartite graph with q(HS) = q and S be an independent
covering of HS with order q. Since each vertex in S obtained by splitting a vertex in G
has degree one in HS , by definition of k, we have k = 1. Let G be a bipartite graph with
q < |A|. Then there is an x ∈ S which is obtained by splitting a vertex in G. Otherwise,
by Proposition 4.1, we have q = |A|, a contradiction. Thus, we have k = 1. Let G be a
non-bipartite graph. Then, there is an x ∈ S which is obtained by splitting a vertex in G.
Otherwise, G has an independent covering and hence is bipartite, a contradiction. The
result follows similarly as before. �

Now, we will study the Turán number of the decomposition family of Gp+1 which helps
us to determine the Turán number of Gp+1.

Lemma 4.3 Suppose that n is sufficiently large. Then we have the following.
(a). If G is bipartite with q = |A|, then

h′(n, 1, q) + ex(q − 1,B) ≤ ex(n,M) ≤ h(n, 1, q) + f(k − 1, k − 1). (2)

Furthermore, both bounds are best possible.
(b). If G is bipartite with q < |A| or G is non-bipartite, then

ex(n,M) = h′(n, 1, q) + ex(q − 1,B). (3)

Moreover, the extremal graphs are characterized.

Proof. Let H ∈ M be a bipartite graph with an independent covering S ∈ S(M) and a
vertex x ∈ S such that dH(x) = k. Let G′ be an extremal graph for M.
(a). Assume that G is bipartite and q = |A|. For the upper bound of (2), suppose that

e(G′) ≥ h(n, 1, q) + f(k − 1, k − 1) =

(
q − 1

2

)
+ (q − 1)(n− q + 1) + f(k − 1, k − 1). (4)

First, there are at most q − 1 vertices of G′ with degree at least e(G) + q. Otherwise,
by Lemma 3.1, G′ contains a copy of H1 ∈ M (H1 is a star forest5) obtained from H by
splitting all vertices of H − S, a contradiction. Suppose that the number of vertices of G′

with degree at least e(G) + q is less than q − 1. By Lemma 3.1, M contains a matching
with size e(G). Since n is sufficiently large and f(∆, ν) is a constant depending on ∆ and
ν, we have

e(G′) ≤ (q − 2)(n− 1) + f(e(G) + q, e(G))

<

(
q − 1

2

)
+ (q − 1)(n − q + 1) + f(k − 1, k − 1),

contradicting (4). Thus, there are exactly q−1 vertices of G′ with degree at least e(G)+q.
Let X be set of vertices with degree at least e(G) and G̃ = G′ − X. Then G̃ contains

5A star forest is a graph consisting of stars.
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neither Sk+1 nor M2k as a subgraph. Otherwise, by Lemma 3.1, G′ contains either a copy
of H1 ∈ M or a copy of H2 ∈ M obtained from H by splitting all vertices of H − S
and the vertex x. Hence, we have e(G̃) ≤ f(k − 1, k − 1). Then by (4), we have that
e(G̃) = f(k − 1, k − 1) and each vertex in X has degree n − 1. Moreover, it follows
from Theorem 2.2 that G̃ ∈ Ek−1,k−1. Thus we have G′ ∈ H(n, 1, q, k − 1, k − 1,Kq) or
e(G′) < h(n, 1, q) + f(k − 1, k − 1). The lower bound of (2) follows from the fact that the
graphs in H(n, 1, q, 0, 0,B) do not contain any graph in M as a subgraph (by definitions
of q and B).
(b). Now let G be a bipartite graph6 with q < |A| or be a non-partite graph. Thus,
it follows from the definitions of q and B that each graph in H(n, 1, q, 0, 0,B) does not
contain any graph in M as a subgraph. Thus we have e(G′) ≥ h′(n, 1, q) + ex(q − 1,B).
Let X be the set vertices of G′ with degree at least e(G) and G̃ = G′ −X. Similarly as
the previous arguments, we have |X| = q − 1. It follows from Proposition 4.2 that k = 1.
Hence, we have e(G̃) = 0. So we have e(G′) = h′(n, 1, q) + ex(q − 1,B). Moreover, the
extremal graphs are in H(n, 1, q, 0, 0,B). �

Lemma 4.4 Let F be a graph with a partition of vertices into p + 1 parts V (F ) = V0 ∪
V1 ∪ V2 ∪ . . . ∪ Vp satisfying the following:

(1) there exist V ′
1 ⊆ V1, . . ., V

′
p ⊆ Vp such that F [V ′

1 ∪ . . . ∪ V ′
p] = Tp(ap);

(2) |V0| = q − 1 and each vertex of V0 is adjacent to each vertex of Tp(ap);
(3) each vertex of V ′′

i = Vi \ V
′
i is adjacent to each vertex of V ′

j 6=i for i ∈ [p].
Let G be a bipartite graph with q = |A| and |V (G)| ≤ a. If there exist an i ∈ [p] and a
y ∈ V ′′

i such that one of the following holds:
(a)

∑
j 6=i ν(F [V ′′

j ]) ≥ k;
(b) ∆(F [V ′′

i ]) ≥ k;
(c) dF [V ′′

i ](y) +
∑

j 6=i ν(F [N(y) ∩ V ′′
j ]) ≥ k,

then F contains a copy of Gp+1.

Proof. If k = 1, then the lemma holds trivially by definition of k and definition of
decomposition family (the graph H consisting of q− 1 stars and an isolated edges belongs
to M and F [V0 ∪ Vi′ ] contains a copy of H, where F [Vi′ ] contains an edge). Assume that
k ≥ 2, i.e., there is no independent covering S ∈ S(M) obtained by splitting some vertices
in G. Then it follows from Proposition 4.1 that q = |A| and hence k = min{dG(x) : x ∈
A or x ∈ G when |A| = |B|}. Let V ′

i = {xi,1, xi,2 . . . , xi,a} for i ∈ [p] and F ′ = F − V0.
Since each vertex of V0 is adjacent to each vertex of V ′

i , |V0| = q − 1 = |A| − 1, and
a ≥ |V (G)|, it is enough to show that F ′ contains a copy of Sp+1

k+1 with the following

property: each copy of Kp in Sp+1
k+1 without containing the center7 of Sp+1

k+1 contains at

least one vertex in ∪p
i=1V

′
i . In fact, we map the center of Sp+1

k+1 and V0 to either A of Gp+1,
or B of Gp+1 when there is a vertex x ∈ B with degree k with |A| = |B|. We will prove
the lemma in the following three cases.

Case 1.
∑

j 6=i ν(F [V ′′
j ]) ≥ k. Without loss of generality, let

∑
j 6=1 ν(F [V ′′

j ]) ≥ k. Let
{y1z1, y2z2, . . . , ykzk} be a matching in ∪j 6=1F [V ′′

j ] and

Fs = F [x1,1, ys, zs, x2,s, x3,s, . . . , xp,s]

for s ∈ [k]. Clearly, we have Fs = Kp+1 for s ∈ [k] and V (Fs) ∩ V (Ft) = {x1,1} for s 6= t.

Since x2,s ∈ ∪p
i=1V

′
i for s ∈ [k], we obtain the desired copy of Sp+1

k+1, the result follows.

6The graph G = Ft,t obtained from by taking two copies of St with t ≥ 4 and joining two leaves in
deferent St’s satisfies that q = 3 < t = |A| (splitting the vertices of the added edge).

7The center of Sp+1

k+1
is the vertex in Sp+1

k+1
with degree pk.
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Case 2. ∆(F [V ′′
i ]) ≥ k. Without loss of generality, let ∆(F [V ′′

1 ]) ≥ k, y be a vertex in
V ′′
1 with dF [V ′′

1
](y) ≥ k and x1, x2, . . . , xk be the neighbours of y in V ′′

1 . Let

Fs = F [y, xs, x2,s, x3,s, . . . , xp,s]

for s ∈ [k]. Clearly we have Fs = Kp+1 for s ∈ [k] and V (Fs) ∩ V (Ft) = {y} for s 6= t.

Since x2,s ∈ ∪p
i=1V

′
i for s ∈ [k], we obtain the desired copy of Sp+1

k+1, the result follows.

Case 3. dF [V ′′

i ](y)+
∑

j 6=i ν(F [N(y)∩V ′′
j ]) ≥ k. Without loss of generality, let dF [V ′′

1
](y)+∑

j 6=1 ν(F [N(y) ∩ V ′′
j ]) ≥ k. Let dF [V ′′

1
](y) = t < k, x1, x2, . . . , xt be the neighbours of y

in F [V ′′
1 ] and {yt+1zt+1, . . . , ykzk} be a matching in

⋃
j 6=1 F [N(y) ∩ V ′′

j ]. Let

Fs =

{
F [y, xs, x2,s, x3,s, . . . , xp,s] for s = 1, 2, . . . , t,
F [y, ys, zs, x2,s, x3,s, . . . , xp,s] for s = t+ 1, t+ 2, . . . , k.

Clearly, we have Fs = Kp+1 for s ∈ [k] and V (Fs) ∩ V (Ft) = {y} for s 6= t. Since

x2,s ∈ ∪p
i=1V

′
i for s ∈ [k], we obtain the desired copy of Sp+1

k+1, the result follows. �

Let G be a graph with a partition of the vertices into p ≥ 2 non-empty parts

V (G) = V1 ∪ V2 ∪ . . . ∪ Vp.

Let Gi = G[Vi] for i = 1, 2, . . . , p and define

Gcr = (V (G), {vivj : vi ∈ Vi, vj ∈ Vj , i 6= j}),

where “cr” denotes “crossing”. The following lemma is proved in [4].

Lemma 4.5 (Chen, Gould, Pfender, and Wei [4]) Let G be a graph on n vertices.
Suppose G is partitioned as above so that

∑

j 6=i

ν(G[Vj ]) ≤ k − 1 and ∆(G[Vi]) ≤ k − 1; (5)

dG[Vi](x) +
∑

j 6=i

ν(G[N(x) ∩ Vj]) ≤ k − 1. (6)

are satisfied for all i and for all x ∈ Vi. If G does not contain a copy of Sp+1
k+1, then

p∑

i=1

|E(Gi)| −


 ∑

1≤i<j≤p

|Vi||Vj | − |E(Gcr)|


 ≤ f(k − 1, k − 1). (7)

Moreover, if the equality holds, then

∑

1≤i<j≤p

|Vi||Vj | = |E(Gcr)|, e(G[Vi]) = f(k − 1, k − 1), e(G[Vℓ 6=i]) = 0, (8)

and G[Vi] ∈ Ek−1,k−1 for some i ∈ {1, . . . , p}. Furthermore, if
∑

j 6=i |E(Gj)| ≥ 1 for each
i ∈ {1, . . . , p}, i.e., at least two of E(G1), . . . , E(Gp) are non-empty, then

p∑

i=1

|E(Gi)| −


 ∑

1≤i<j≤p

|Vi||Vj | − |E(Gcr)|


 ≤ k2 − 2k. (9)
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Remark. By analyzing the proof of Lemma 4.5, it is not difficult to see that if the
equality holds in (7), then (8) is satisfied and G[Vi] ∈ Ek−1,k−1 (See Lemma 2.7 in [27]).
The proof of Lemma 4.5 also implies the last assertion of Lemma 4.5 (See the last sentence
of the proof of Lemma 3.2 in [4]).

In 1968, Simonovits [21] introduced the so-called progressive induction which is similar
to the mathematical induction and Euclidean algorithm and combined from them in a
certain sense.

Lemma 4.6 (Simonovits [21]) Let U = ∪∞
i=1Ui be a set of given elements, such that Ui

are disjoint finite subsets of U. Let B be a condition or property defined on U (i.e. the
elements of U may satisfy or not satisfy B). Let φ(a) be a function defined on U such that
φ(a) is a non-negative integer and
(a) if a satisfies B, then φ(a) = 0.
(b) there is an M0 such that if n > M0 and a ∈ Un then either a satisfies B or there exist
an n′ and an a′ such that

n

2
< n′ < n, a′ ∈ Un′ and φ(a) < φ(a′).

Then there exists an n0 such that if n > n0, every a ∈ Un satisfies B.

Remark. In our problems, Un is a set of extremal graphs for Gp+1 on n vertices, B is
the property defined on U concerning the number of edges or the structure of graphs.

5 Proof of the main theorems

Proof of Theorem 2.3 (i):
Proof. We will prove that, for sufficiently large n,

h′(n, p, q) + ex(q − 1,B) ≤ ex(n,Gp+1) ≤ h(n, p, q) + f(k − 1, k − 1) (10)

and if ex(n,Gp+1) = h(n, p, q) + f(k − 1, k − 1), then EX(n,Gp+1) = H(n, p, q, k − 1, k −
1,Kq). Lemma 4.3 together with Proposition 3.2 implies the lower bound of (10). We will
prove the upper bound of (10) by Lemma 4.6. Suppose Fn is an extremal graph for Gp+1.
It will be shown that, if n is sufficiently large, then e(Fn) ≤ h(n, p, q) + f(k − 1, k − 1).
Let Hn ∈ H(n, p, q, k − 1, k − 1,Kq). Clearly, e(Hn) = h(n, p, q) + f(k − 1, k − 1). If
e(Fn) < e(Hn), then we are done. Let

e(Fn) ≥ e(Hn). (11)

Let Un be the set of extremal graphs for Gp+1 on n vertices and B be the property defined
on U stating that e(Fn) ≤ e(Hn) and equality holds if and only if Fn ∈ H(n, p, q, k −
1, k − 1,Kq). Define φ(Fn) = max{e(Fn) − e(Hn), 0}. Then φ(Fn) is a non-negative
integer. According to Lemma 4.6, it is enough to show that if e(Fn) ≥ e(Hn), then either
Fn ∈ H(n, p, q, k − 1, k − 1,Kq) or there exists an n′ ∈ (n/2, n) such that φ(Fn′) > φ(Fn)
when n is sufficiently large.

Now, we will find a subgraph of Fn satisfying the conditions of Lemma 4.5. Since
e(Hn) ≥ tp(n), by Theorem 1.1 and (11), there is an n1 such that if n > n1, then Fn

contains Tp(n2p) (n2 is sufficiently large) as a subgraph. Since 2 ≤ χ(G) ≤ p−1, it follows
from Lemma 3.1 that M contains a matching M2k1 , where k1 = e(G). Each partite class of
Tp(n2p) contains no copy of M2k1 . Otherwise, it follows from definition of decomposition
family that Fn contains a copy of Gp+1, a contradiction. Let {x1y1, x2y2, . . . , xs1ys1} be a
maximum matching in one class, say B′

1, of Tp(n2p) and let B̃1 = B′
1−{x1, y1, . . . , xs1 , ys1}.
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Then there is no edge in Fn[B̃1]. Hence there is an induced subgraph Tp(n3p) (n3 = n2−2k1
is sufficiently large) of Fn with partite sets B1, B2, . . . , Bp obtained by deleting 2k1 vertices
of each class of Tp(n2p).

Let c be a sufficiently small constant and S = V (Fn) \ V (Tp(n3p)). Let T0 = Tp(n3p).
For i ≥ 1, we will define vertices xi ∈ S and graphs Ti recursively. If there is a u ∈
S \ {x1, . . . , xi−1} which has at least c2in3 neighbors in each class of Ti−1, then let xi = u
and define Ti as a subgraph of Ti−1 which is isomorphic to Tp(c

2in3p). By the definition,
we get that {x1, . . . , xi} together with Ti form a complete (p+1)-partite graph. We claim
i ≤ q − 1. Otherwise, we easily find a copy of Tq ⊆ Fn with V (Tq) = Bq

1 ∪ . . . ∪Bq
p. Thus

the induced subgraph of Fn on Bq
1 ∪{x1, x2, . . . , xq} is a graph with q+ c2qn3 vertices and

at least c2qn3q edges. Since

c2qn3q >

(
q − 1

2

)
+ (q − 1)(c2qn3 + 1) + f(k − 1, k − 1),

by Lemma 4.3, this induced subgraph contains a copy of M ∈ M provided n3 is large
enough. Note that each vertex of this induced subgraph is adjacent to each vertex of
Bq

2 ∪ . . . ∪ Bq
p. By definition of decomposition family, Sn contains a copy of Gp+1, a

contradiction.
Now, suppose the above process ends at Tℓ with 0 ≤ ℓ ≤ q−1. Denote by x1, x2, . . . , xℓ

the vertices joining to all the vertices of Tℓ. Let B
ℓ
1, . . . , B

ℓ
p be the classes of Tℓ. Partition

the remaining vertices into the following vertex sets: Let x ∈ V (Fn)\(V (Tℓ)∪{x1, . . . , xℓ}).
If there exists i ∈ [p] such that x is adjacent to less than c2ℓ+2n3 vertices of Bℓ

i and is
adjacent to at least (1 − c)c2ℓn3 vertices of Bℓ

j for j 6= i, then let x ∈ Cℓ
i . If there exists

i ∈ [p] such that x is adjacent to less than c2ℓ+2n3 vertices of Bℓ
i and is adjacent to less

than (1− c)c2ℓn3 vertices of some of Bℓ
j with j 6= i, then let x ∈ D. Obviously,

Cℓ
1 ∪ . . . ∪ Cℓ

p ∪D

is a partition of V (Fn) \ (V (Tℓ) ∪ {x1, . . . , xℓ}). Since M contains a matching with size
k1 and each vertex of Cℓ

i is adjacent to less than c2ℓ+2n3 vertices of Bℓ
i , there are at

least c2ℓn3(1 − c2k1) vertices of Bℓ
i which are not adjacent to any vertices of Cℓ

i . Indeed,
there are at most k1 independent edges in Bℓ

i ∪ Cℓ
i . Otherwise, since each vertex in Cℓ

i

is adjacent to at least (1 − c)c2ℓn3 of Bℓ
j 6=i, it is easy to see that Fn contains a copy of

Gp+1, a contradiction. Consider the edges joining Bℓ
i and Cℓ

i and select a maximal set
of independent edges, say x1y1, . . . , xtyt, xi′ ∈ Bℓ

i , yi′ ∈ Cℓ
i , 1 ≤ i′ ≤ t ≤ k1, among

them, then the number of vertices of Bℓ
i joining to at least one of y1, y2, . . . , yt is less than

c2ℓ+2n3q, and the remaining vertices of Bℓ
i are not adjacent to any vertices of Ci by the

maximality of x1y1, . . . , xtyt. Hence we can move c2ℓ+2n3k1 vertices of Bℓ
i to Cℓ

i , obtain
B′

i and C ′
i such that B′

i ⊆ Bℓ
i , C

ℓ
i ⊆ C ′

i, and there is no edge between B′
i and C ′

i. Let
n4 = (1−c2k1)c

2ℓn3. We conclude that T ′
ℓ = Tp(n4p) with classes B′

1, . . . , B
′
p is an induced

subgraph of Fn satisfying the following conditions:
Let F̂ = Fn − T ′

ℓ. The vertices of F̂ can be partitioned into p + 2 classes C ′
1, . . . , C

′
p,

D and E such that

• each x ∈ E is adjacent to each vertex of T ′
ℓ and |E| = ℓ;

• if x ∈ C ′
i then x is adjacent to at least (1 − c − c2k1)c

2ℓn3 vertices of B′
j 6=i and is

adjacent to no vertex of B′
i;

• if x ∈ D, then there are two different classes, B′
i and B′

j , of T
′
ℓ such that x is adjacent

to less than c2ℓ+2n3 vertices of B′
i and less than (1− c)c2ℓn3 vertices of B′

j .
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Denote by eF the number of the edges joining F̂ and T ′
ℓ. Clearly, we have

e(Fn) = e(T ′
ℓ) + eF + e(F̂ ). (12)

Select an induced copy of T ′
ℓ in Hn, let Hn−n4p = Hn − T ′

ℓ and eT be the number of edges
of Hn joining T ′

ℓ and Hn−n4p. Then, we have

e(Hn) = e(T ′
ℓ) + eT + e(Hn−n4p). (13)

Since F̂ does not contain a copy of Gp+1, we have e(F̂ ) ≤ e(Fn−n4p), where Fn−n4p is an
extremal graph for Gp+1 on n− n4p vertices. By (12) and (13), we have

φ(Fn) = e(Fn)− e(Hn) = e(T ′
ℓ)− e(T ′

ℓ) + (eF − eT ) + e(F̂ )− e(Hn−n4p)

≤ (eF − eT ) + e(Fn−n4p)− e(Hn−n4p)

= (eF − eT ) + φ(Fn−n4p).

If eF − eT < 0, then φ(Fn) < φ(Fn−n4p). Since n − n4p > n/2, we are done. Hence, we
may assume that eF − eT ≥ 0. Recall that n4 = (1 − c2k1)c

2ℓn3. Since c is sufficiently
small, we have

eF − eT ≤ℓ · n4p+ (n− ℓ− n4p− |D|) · n4(p − 1)

+ |D| ·
(
n4(p− 2) + (1− c)c2ℓn3 + c2ℓ+2n3

)

− ((q − 1) · n4p+ (n− q + 1− n4p) · n4(p − 1))

≤(ℓ− (q − 1))n4 + (c2(k1 + 1)− c))c2ℓn3|D|

≤0,

with the equality holds if and only if |D| = 0, ℓ = q − 1, and each vertex of C ′
i is

adjacent to each vertex of B′
j 6=i. Note that Tp(n − q + 1 − n4p) has more edges than

any other p-chromatic graph on n − q + 1 − n4p vertices. It follows from Lemmas 4.4
and 4.5, that e(Fn) ≤ h(n, p, q) + f(k − 1, k − 1) with equality holds if and only if Fn ∈
H(n, p, q, k − 1, k − 1,Kq) (If each graph in H(n, p, q, k − 1, k − 1,Kq) contains a copy of
Gp+1, then we have e(Fn) < h(n, p, q) + f(k − 1, k − 1)). The proof is complete. �

Proofs of Theorem 2.3(ii) and Theorem 2.4:
Proof. The proof is essentially the same as the proof of Theorem 2.3(i) and we sketch
the proof as follows. Let Fn be an extremal graph for Gp+1. Applying Lemma 4.3(b) and
Proposition 3.2, we obtained that

e(Fn) ≥ h′(n, p, q) + ex(q − 1,B). (14)

By Theorem 1.1, Fn contains a copy of Tp(n1p). Since M contains a matching, as previous
arguments, by progressive induction (Lemma 4.6), Fn can be partitioned into ∪p

i=1(B
′
i ∪

C ′
i) ∪E with |E| = q − 1 satisfies the following.

• Fn[∪
p
i=1B

′
i] = Tp(n4p);

• each vertex of E is adjacent to each vertex of Tp(n4p);

• each vertex of C ′
i is adjacent to each vertex of B′

j 6=i;

• e(Fn[E]) ≤ ex(q − 1,B).

It follows from Proposition 4.2 that k = 1, and hence there is no edge in B′
i∪C ′

i for i ∈ [p].
Thus, by (14), the result follows similarly as the proof of Theorem 2.3(i). �
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6 Proof of Theorem 1.4

We say a graph is factor-critical if ν(G) = ν(G− {v}) = ⌊|V (G)|/2⌋ for all v ∈ V (G).
Clearly, a factor-critical n-vertex graph has odd number of vertices and a matching on
n− 1 vertices. We need the following well-known lemma of Gallai.

Lemma 6.1 (Gallai [12]) If graph G is connected and ν(G − {v}) = ν(G) for each
v ∈ V (G), then G is factor-critical.

Denote by Ks,t(a, b) be the graph obtained from taking a copy of Ks,t and splitting a
and b vertices in the partite sets of Ks,t with sizes s and t respectively.

By Theorem 2.2, we have

f(k − 1, k − 1) =

{
k2 − k, for odd k;
k2 − 3k/2, for even k.

(15)

Define

g(k − 1, k − 1) =

{
(2k2 − 3k − 1)/2, for odd k;
k2 − 2k + 1, for even k.

Lemma 6.2 Let F = {St+1,M2t,K2,t−1(0, i) : i = 0, 1, . . . , t − 1} with t ≥ 3. If n is
sufficiently large, then

ex(n,F) = g(t− 1, t− 1).

Proof. Let G be an extremal graph for F . Clearly, by Theorem 2.2, we have e(G) ≤
f(t−1, t−1). Thus e(G) is a constant depending on t. Now we do not consider the isolated
vertices ofG. Let F1 = Kt∪Kt−1 when t is even and F2 = Kt∪(Kt−E(S3∪Mt−3)) when t is
odd. Then F1 and F2 are F-free with g(t−1, t−1) edges. Thus we have e(G) ≥ g(t−1, t−1).
From Theorem 2.2 and t ≥ 3, easy calculations show that f(t− 1, t− 2) ≤ g(t − 1, t− 1)
and f(t−2, t−1) ≤ g(t−1, t−1). Hence we may suppose ∆(G) = t−1 and ν(G) = t−1.

Let s(G) be the number of components of G which are stars. We choose G with s(G)
as large as possible. First we will show that each component of G is either factor-critical
or a star. Suppose for contrary that there is a component C of G which is neither factor-
critical nor a star. Choose x ∈ V (C) such that ν(C − {x}) = ν(C)− 1. If dG(x) = t− 1,
then ∆(G−{x}) ≤ t−2, as otherwise G contains a copy of K2,t−1(0, i) with 0 ≤ i ≤ t−1.
Thus from (15), we have

e(G− {x}) ≤

{
f(t− 2, t− 2) = (t− 1)2 − 3(t− 1)/2, for odd t;
f(t− 2, t− 2) = (t− 1)2 − (t− 1), for even t.

Hence e(G) ≤ (t− 1)2 − 3(t− 1)/2 + (t− 1) ≤ (2t2 − 5t+3)/2 < (2t2 − 3t− 1)/2 for odd t
and e(G) ≤ (t−1)2 for even t. In both cases, we are done. Now assume that dG(x) ≤ t−2.
Let G′ be the graph consisting of vertex-disjoint union of G − {x} and a copy of St−1.
Then G′ is F-free but with s(G′) > s(G) and e(G′) ≥ e(G), a contradiction to our choice
of G. Thus each component of G is either factor-critical or a star.

If G contains an St-component, then let G′ = G − St. Since G is F-free, we have
ν(G′) ≤ t − 2 and ∆(G′) ≤ t − 2. The result follows similarly as the last paragraph (by
(15) and e(St) = t− 1). Since G is an extremal graph, we may suppose that each star of
G is St−1.

Now, we may suppose that C1, C2, . . . , Cm are the components of G such that Ci are
factor-critical. Moreover, suppose that ∆(C1) = t− 1 and ∆(Ci) ≤ t− 2 for i = 2, . . . ,m.
Let V (Ci) = ni and let s = s(G) be the number of St−1-components of G. Hence, we have

e(Ci) ≤ min

{(
ni

2

)
,

⌊
(t− 2)ni

2

⌋}
for i = 2, . . . ,m.
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Since n1 ≥ 2⌊t/2⌋ + 1 (by ∆(C1) = t − 1 and n1 is odd), by ν(G) = t − 1, we have
ni ≤ 2⌈t/2⌉−1. If ni = t for some i = 2, . . . ,m, then t is odd and m = 2. Hence G consists
of two components with on t vertices. Since C1 and C2 are factor-critical graphs with
∆(C1) = t−1 and ∆(C2) = t−2, we have e(G) ≤ (t(t−1)+(t−2)t−1)/2 = (2t2−3t−1)/2.
The result follows. Thus we may suppose ni ≤ t − 1 and hence e(Ci) =

(
ni

2

)
by the

maximality of G for i = 2, . . . ,m. Let ℓ be the number of vertices in C1 with degree t− 1.
Since G does not contain a copy of K2,t−1(0, i) for 0 ≤ i ≤ t − 1, the vertices of G with
degree t− 1 form a clique in G and ℓ ≤ t. Thus, we have

e(C1) ≤ min

{(
ℓ

2

)
+ ℓ(t− ℓ) +

(
n1 − ℓ

2

)
,

⌊
ℓ(t− 1) + (n1 − ℓ)(t− 2)

2

⌋}
. (16)

Hence,

e(G) = max

{
e(C1) +

m∑

i=2

(
ni

2

)
+ s(t− 2) :

m∑

i=1

⌊ni/2⌋ + s = t− 1

}
.

We will estimate e(G) by considering e(Ci)/ν(Ci) for each component of G in following
two cases:

(1). t is odd. Since ni ≤ t − 2 for i = 2, . . . ,m, it is easy to see that e(G) attains
its maximum when n1 = t (ℓ = t), m = 1 and s = ⌊t/2⌋.8 Hence, e(G) ≤ t(t − 1)/2 +
⌊t/2⌋(t − 2) = (t− 1)2 < (2t2 − 3t− 1)/2, we are done.

(2). t is even. Then, e(G) attains its maximum when n1 = 2t− 1 and ℓ = t, or n1 = t
and n2 = t − 1. Thus e(G) ≤ t(t − 1)/2 + (t − 1)(t − 2)/2 = (t − 1)2. The proof of the
lemma is complete. �

To establish the lower bound of Theorem 1.4, we need the following graphs. For even t
with t ≥ 6, let X = {x1, . . . , xt−1} and Y = {y1, . . . , yt−1}. Set X1 = {x1, x2 . . . , xt/2−1},
Y1 = {y1, y2, . . . , yt/2−1}, X2 = {xt/2, xt/2+1, . . . , xt−2} and Y2 = {yt/2, yt/2+1, . . . , yt−2}.
The graph H2t−1 is obtained as following:

• Taking two vertex-disjoint copies of Kt−1 with vertex sets X and Y respectively;

• adding a matching with size t/2 − 1 between X1 and Y1, a cycle of length t − 2
between X2 and Y2 and the edge xt−1yt−1;

• adding a new vertex z and joining it to each vertex of X1 and Y1;

• deleting a matching with size t/2 − 1 between X1 and X2 and between Y1 and Y2

respectively.

For t = 4, let H7 be graph obtained from vertex-disjoint union of copies of K4 and K3 by
deleting an edge of K4 and joining the incident vertices of the deleted edge to K3 by two
independent edges.

Proposition 6.3 Let t ≥ 4 be even and K(t) = {Ka,b(0, c) : a + b = t + 1, and a ≥
3 or c = 0}. Then H2t−1 is K(t)-free.

Proof. Clearly H7 is K(4)-free. Let t ≥ 6. It is not hard to check that H2t−1 does not
contain a complete bipartite graph on at least t+ 1 vertices, i.e., H2t−1 does not contain
a copy of Ka,b(0, 0) with a+ b = t+ 1. Suppose that H2t−1 contains a copy of Ka,b(0, c)
with a+ b = t+ 1, a ≥ 3 and c > 0. Then H2t−1 contains a copy of Ka,b−c. Let A and B
be the classes of Ka,b−c with sizes a and b− c respectively. Clearly, we have

|V (Ka,b(0, c))| = a+ b− c+ ac = t+ 1 + (a− 1)c. (17)

8There are other possible values of n1, m and s.
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If b − c = 1, then c = t − a. By a ≥ 3 and t ≥ 6, we have |V (Ka,b(0, c))| = t+ 1 + (a −
1)(t − a) ≥ 2t > |V (H2t−1)|, a contradiction. We may suppose that b − c ≥ 2. Assume
that t ≥ 8. Let z be the vertex in definition of H2t−1. We will find contradictions in the
following two cases.

Case 1. A ⊆ X∪{z} or A ⊆ Y ∪{z}. Without loss of generality, let A ⊆ X∪{z}. Since
a ≥ 3, it is obviously that each vertex of B belongs to X∪{z} (any three vertices of A∪{z}
have no common neighbours in Y ). Note that the complement graph of H2t−1[X ∪ {z}]
is connected. H2t−1[X ∪ {z}] contains no complete bipartite graph on at least t vertices.
Thus we have a + b − c ≤ t − 1, i.e., c ≥ 2. Recall that a ≥ 3. (a). c ≥ 4, or c = 3 and
a ≥ 4. Then there are at most t+ c+ 2(a− 1) < t+ 1 + (a− 1)c vertices incident with a
copy of Ka,b(0, c) with A ⊆ X ∪ {z}, a contradiction . (b). c = 2. Then a+ b− c = t− 1.
If z /∈ V (Ka,b−c), then V (Ka,b−c) = X. Note that there is a matching between X1 and X2

in the complement graph of H2t−1. There are at most ⌊a/2⌋ vertices of X2 belonging to
A. Hence there are at most t− 1 + 2⌊a/2⌋ + ⌈a/2⌉ < t+ 1 + 2(a− 1) (by a ≥ 3) vertices
incident with a copy of Ka,b(0, c) with A ⊆ X ∪ {z}, a contradiction. If z ∈ V (Ka,b−c),
then an easy observation shows that Ka,b−c = Kt−2,1, a contradiction to b − c ≥ 2. (c)
c = 3 and a = 3. Then a+ b− c = t− 2. Clearly, A consists of z and two vertices of X2,
otherwise we have |V (Ka,b−c)| < t+3+ 2+ 2 = t+7, a contradiction to (17). Now, since
t ≥ 8, A has at most t− 6 common neighbors in X and hence a+ b− c ≤ t− 3. This final
contradiction completes our proof for Case 1.

Case 2. A ∩X 6= ∅ and A ∩ Y 6= ∅.

If z ∈ A, then |A∩X| = |A∩Y | = 1, and hence a = 3, b−c = 2 and c = t−4. Thus by
(17) and t ≥ 8, we have |V (Ka,b(0, c))| = t+1+2(t−4) ≥ 2t > |V (H2t−1)|, a contradiction.
Let z /∈ A. Now, without loss of generality, we may suppose that |A∩X| ≥ 2. Recall that
any three vertices of X have no common neighbors in Y . It follows from b − c ≥ 2 that
|A ∩ X| = 2 and 1 ≤ |A ∩ Y | ≤ 2. If |A ∩ Y | = 1, then a = 3 and b − c = 2 for t = 8
and a = 3 and 2 ≤ b − c ≤ 3 for t ≥ 10. Thus c = t − 4 for t = 8 and c ≥ t − 5 for
t ≥ 10. By (17), we have |V (Ka,b(0, c))| = t + 1 + 2c ≥ 2t > |V (H2t−1)|, a contradiction.
If |A ∩ Y | = 2, then a = 4, b − c = 2 and c = t − 5. By (17) and t ≥ 8, we have
|V (Ka,b(0, c))| = t+1+3(t−5) = 4t−14 ≥ 2t > |V (H2t−1)|, which is also a contradiction.
The proof of Case 2 is complete.

Let t = 6. Recall that b − c ≥ 2. Consider Ka,b−c = K4,2, Ka,b−c = K3,2 and
Ka,b−c = K3,3 respectively, it is easy to see that H11 is K(6)-free. The proof is complete.
�

Now, we are ready for the proof of Theorem 1.4.

Proof of Theorem 1.4:
Proof. Let s ≤ t. If t ≤ 2, then Ks,t is a star or C4. The result follows by Corollaries 3.4
and 3.6. Thus we can assume that t ≥ 3. Let F1 ∈ H(n, p, s, t − 1, t − 1, Ss−1) be the
graph obtained from taking a copy of H ′(n, p, s), embedding a copy of H2t−1 when t is
even (two vertex-disjoint copies of Kt when t is odd respectively.) in one class of the copy
of T (n− s+ 1) in H ′(n, p, s) and embedding an extremal graph for Ss−1 on s− 1 vertices
in the copy of Ks−1 in H ′(n, p, s). Let F2 be the graph obtained from taking a copy of
H(n, p, s) and embedding an extremal graph in Lemma 6.2 into one class of the copy of
T (n− s+ 1) in H(n, p, s).

Lemma 3.1 implies that M(Kp+1
s,t ) = {Ks,t(i, j) : 0 ≤ i ≤ s, 0 ≤ j ≤ t}. Careful

observation shows that after deleting any s − 1 vertices, say X, of any M ∈ M(Kp+1
s,t )

with Ss−1 * M [X], the obtained graph satisfies one of the following:

• contains a copy of Mt;
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• contains a copy of St;

• contains a copy of Ka,b with a+ b = t+ 1;

• contains a copy of Ka,b(0, c) with a + b = t + 1, where a ≥ 3 when s 6= t − 1, and
a ≥ 2 when s = t− 1; or

• has at least 2t vertices.

Thus, by Proposition 3.2, if s 6= t− 1, then both F1 and F2 are Kp+1
s,t -free; if s = t− 1,

then F2 is Kp+1
s,t -free. Hence, we have e(G) ≥ max{e(F1), e(F2)} and if s = t − 1, then

e(G) ≥ e(F2)
Let Fn be an extremal graph for Kp+1

s,t . Then, by the last paragraph, we have

e(Fn) ≥ h(n, p, s) + f(t− 1, t− 1)−

⌈
s− 1

2

⌉
+ i, (18)

where i = 1 if s = t is even and i = 0 otherwise. By Theorem 1.1, Fn contains a copy of
Tp(n1p). Since M contains a matching, as previous arguments in Section 5, by progressive
induction (Lemma 4.6), Fn can be partitioned into ∪p

i=1(B
′
i ∪C ′

i) ∪E with |B′
i ∪C ′

i| = n′
i

and |E| = s− 1 satisfies the following.

• Fn[∪
p
i=1B

′
i] = Tp(n4p) is an induced subgraph of Fn;

• each vertex of E is adjacent to each vertex of Fn[∪
p
i=1B

′
i];

• each vertex of C ′
i is adjacent to each vertex of B′

j 6=i.

If two of E(Fn[C
′
i]) are non-empty, then by (9) in Lemma 4.5, we have e(Fn) ≤ h(n, p, s)+

t2 − 2t, a contradiction to (18). Thus, we may assume that E(Fn[B
′
i ∪C ′

i]) are empty for
i = 2, . . . , p. Hence by Proposition 3.2, we have e(Fn[B

′
1∪C ′

1]) ≤ ex(n′
1+s−1,M(Kp+1

s,t )).

Claim. Let p(s, t) = ex(n,M(Kp+1
s,t ))− h′(n, 1, s). Then there exists an n0 such that

p(s, t) depends on s and t, when n ≥ n0.

Proof. Let F be an extremal graph for M(Kp+1
s,t ) and n ≥ n0. Clearly, H(n, 1, s) is

M(Kp+1
s,t )-free, and hence e(F ) ≥ (s − 1)(n − s + 1). Note that M(Kp+1

s,t ) contains s
vertex-disjoint copies of St+1. There is a set of vertices X such that each vertex in X
has degree at least n − c(s, t), where c(s, t) is a constant. Let Y be the isolated vertices
of V (F ) − X and Z = V (F ) − X − Y . Note that there is a large complete bipartite
graph between X and Y (by n ≥ n0). Since F is an extremal graph, F [X,Y ] is a complete
bipartite graph. Let p(s, t) = e(F [X])+e(F [Z])−(|X||Z|−e(F [X,Z])). The result follows
since e(F [X]), e(F [Z]) e(F [X,Z]), |X| and |Z| depend on s and t. �

Thus, since n1 is sufficiently large, it follows from the claim that

e(Fn) ≤ max



(s − 1)(n − s+ 1) + p(s, t) +

∑

i 6=j

n′
in

′
j :

p∑

i=1

n′
i = n− s+ 1



 . (19)

Embedding an extremal graph forM(Kp+1
s,t ) on n1 vertices in the partite set ofKn1,...,np

with size n1, where n1 = ⌈(n−s+1)/p⌉+s−1 and ni ∈ {⌈(n−s+1)/p⌉, ⌊(n−s+1)/p⌋},
by Proposition 3.2, we have

ex(n,Kp+1
s,t ) ≥ ex(n1,M(Kp+1

s,t )) +
∑

i 6=j

ninj = h′(n, p, s) + p(s, t).

Combining with (19), we have ex(n,Kp+1
s,t ) = h′(n, p, s)+p(s, t). The proof of Theorem 1.4

is complete. �
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7 Conclusion

By similar method as the proof of Theorem 2.3, one can obtain the following corollary.

Corollary 7.1 Let F be a family of graphs with p(F) = p ≥ 2. If M(F) = {M2s}, then

ex(n,F) = h(n, p, s),

provided n is sufficiently large. Moreover, the unique graph in H(n, p, s, 0, 0,Ks) is the
extremal graph for F .

Remark. There are many interesting graphs that belong to the graphs set of Corol-
lary 7.1, including the Petersen graph, vertex-disjoint union of cliques with same order
and the dodecahedron D20.

In Theorem 1.4, we do not determine ex(n,M(Kp+1
s,t )). So we may pose the following

conjecture.

Conjecture 7.2 Let n ≥ s+ 2t and p ≥ 3. Then

ex(n,M(Kp+1
s,t )) = h(n, 1, s) + f(t− 1, t− 1) −

⌈
s− 1

2

⌉
+ i,

where i = 1 if s = t is even and i = 0 otherwise.

Now we will find a large family of non-bipartite graphs which are counter-examples for
Conjecture 1.5 9. First, we need a lemma proved in [26] (also see Lemma 3.2 in [15]). If
an edge e is not contained in any monochromatic copy of a given graph H, then we call
e being NIM-H. If a subgraph G of Kn consists of NIM-H edges, then we call G being
NIM-H.

Lemma 7.3 Let p ≥ 2, t ≥ 1 be given integers and H be a given graph. Then there
exists an integer n0 = n0(p, t,H) such that if G is an NIM-H graph on n ≥ n0 vertices
containing at least tp(n) edges, then G contains a blue (or red) copy of Tp(tp) such that
the edges inside each class are red (or blue), where t ≥ |V (H)|.

Now we present the following theorem disproving Conjecture 1.5.

Theorem 7.4 Let G be a bipartite graph with q < |A| or a non-bipartite graph with
2 ≤ χ(G) ≤ p− 1. Let n be sufficiently large. Then the following hold:
(a). If B = {Kq}, then

g(n,Gp+1) = ex(n,Gp+1).

(b). If B 6= {Kq}, then

g(n,Gp+1) = ex(n,Gp+1) +

(
q − 1

2

)
− ex(q − 1,B).

In particular, we have

g(n,Kp+1
t ) = ex(n,Kp+1

t ) +

((t−1
2

)

2

)
.

9Chen, Ma, Qiu and Yuan [3] independently found different counter-examples for Conjecture 1.5.

18



Proof. The proof is essentially the same as the proof of Theorem 2.3(ii) and Theorem 2.4.
Hence we sketch the proof as follows. Let Fn be an extremal NIM-Gp+1 graph. Clearly,
we have e(Fn) ≥ ex(n,Gp+1) ≥ tp(n). Without loss of generality, by Lemma 7.3, Fn

contains a blue copy of Tp(t0p) such that the edges inside each class are red, where t0 is
sufficiently large. SinceM contains a matching, as previous arguments, by Proposition 4.2,
Lemmas 4.3(b) and 4.6, Fn can be partitioned into (∪p

i=1(Bi ∪ Ci)) ∪ E with |E| = q − 1
satisfying the following;

• Fn[∪
p
i=1Bi] = Tp(tp) ⊆ Tp(t0p), where t ≤ t0 is sufficiently large;

• each vertex of E is adjacent to each vertex of Tp(tp) by a blue edge in Fn;

• each vertex of Ci is adjacent to each vertex of Bj 6=i (not necessary colored by blue);

• there is no NIM-edge (blue edge) in Fn[Bi ∪ Ci] for i ∈ [p];

• the blue edges inside E are at most ex(q − 1,B).

Thus, we have
e(Fn) ≤ h′(n, p, q) + e(Fn[E]) ≤ h(n, p, q). (20)

We divide the following proof into two cases.

(a). B = {Kq}.

Clearly, by Theorem 2.3(ii) and Theorem 2.4, we have g(n,Gp+1) ≥ ex(n,Gp+1) =
h(n, p, q). By |E| = q − 1 and (20), we have e(Fn) ≤ h(n, p, q), and hence g(n,Gp+1) =
ex(n,Gp+1), the result follows.

(b). B 6= {Kq}.

Fist, we present lower bound of g(n,Gp+1). We color a copy of H ′(n, p, q) in Kn

blue and color other edges red. Clearly, each blue edge is an NIM-edge. Note that
q − 1 < |V (Gp+1)|. The red edges inside Kq−1 of H ′(n, p, q) are NIM-edges. Thus we
have g(n,Gp+1) ≥ h(n, p, q). Combining with (20), we have g(n,Gp+1) = h(n, p, q), i.e,
g(n,Gp+1) = ex(n,Gp+1) +

(q−1
2

)
− ex(q − 1,B). Note that

(q−1
2

)
− ex(q − 1,B) > 0 when

B 6= {Kq}. Thus we find counter-examples for Conjecture 1.5. �

Basing on Theorem 7.4, we may pose the revised conjecture.

Conjecture 7.5 Let n be sufficiently large. Then there exist a constant hG depending on
G such that g(n,G) = ex(n, g) + hG.
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A Proof of Lemma 7.3

We need the following well-known theorems. The first one due to Ramsey is one of
the most important results in combinatorics.

Theorem A.1 (Ramsey) For every t there exists N = R(t) such that every 2-coloring
of the edges of KN has a monochromatic Kt subgraph.

In 1954, Kövári, Sós, and Turán proved the following theorem.

Theorem A.2 (Kövári, Sós, and Turán) .

ex(n,Kt,t) = O(n2− 1

t ).

Now we are ready to prove Lemma 7.3.
Proof. Since G is an NIM-H graph on n vertices containing at least tp(n) edges, by
Theorem 1.1, G contains Tp(Np) as a subgraph with a vertex partition V1∪ . . .∪Vp, where
N is a large constant depending on Theorems A.1, A.2, and p.

Claim 1. There exists a constant m(t) depending on t such that for any two disjoint
vertex sets U, V of Kn with |V | = |U | = m(t), there is a monochromatic copy of Kt,t

between U and V .

Proof. Without lose of generality, suppose that there are at least 1
2m(t)2 red edges

between U and V . Since 1
2m(t)2 ≥ O(2m(t))2−

1

t when m(t) is large, the result follows
from Theorem A.2. �

Claim 2. Any two monochromatic copies of Kℓ with ℓ ≥ m(t) in different classes of
Tp(Np) have the same color.

Proof. Let ℓ ≥ m(t). Suppose that there are a red copy of Kℓ in V1 and a blue copy
of Kℓ in V2. Then it follows from Claim 1 that there is a monochromatic copy of Kt,t

between the red Kℓ and the blue Kℓ. Since t ≥ |V (H)|, the edges of Kt,t are contained
in a monochromatic copy of H, contradicting that G is an NIM-H graph. The proof is
complete. �

Applying Theorem A.1, there is monochromatic copy of Km0(t) in each class of Tp(Np).
By Claim 2, those p monochromatic copies of Km0(t) have the same color, say red. Let
G′ be the subgraph of G induced by those p copies of Kt. Then G′ has a vertex partition
V (G′) = V ′

1∪. . .∪V
′
p such that V ′

i ⊂ Vi for each i ∈ [p]. We say a pair of disjoint vertex sets
is monochromatic (red/blue) if all the edges between them have the same color (red/blue).

We will find a copy of Tp(tp) with the property what we need by defining a sequence of
graphs. Let G0 = G′. By Claim 1, we can define Gi+1 from Gi by taking mi+1(t) vertices
of each class of Gi such that the number of monochromatic pairs in the classes of Gi+1 is
least i+1, where mi+1(t) < mi(t) is a sufficiently large constant depending Theorem A.2.
Note that there are

(
p
2

)
pairs of vertex sets between V1, . . . , Vp. Since the edges between

different classes of G(p2) are NIM-edges, G(p2) has the property needed in the lemma with
t = m(p2)

(t). The proof is complete. �
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