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1. Introduction. The theory of extremal length has been successfully applied to

conformai mappings, analytic functions of a complex variable, and in recent years

it has found application in the study of quasiconformal mappings in space. Its

application in quasiconformal mapping theory begins essentially with a theorem

proved by Gehring [G3], that the conformai capacity of a space ring R is directly

related to the extremal length of the family of curves that join the boundary

components of R. He has also shown that the conformai capacity is related to the

extremal length of a family of surfaces that separate the boundary components

of R. Gehring assumes that the separating surfaces are sufficiently smooth;

Krivov [K] establishes a similar result under the assumption that the extremal

metric is well-behaved. Under similar assumptions, other authors have dealt with

the extremal length of separating surfaces, cf. [FU, Theorem 9], [SA], and [H].

The purpose of this paper is to eliminate the need for these assumptions. Thus,

we consider the case of two disjoint compact sets C0, Cx contained in the closure

of a bounded, open, connected set G. It is proved that the conformai capacity C

of C0, Cu relative to G is related to the n\n— 1-dimensional module M of all closed

sets that separate C0 from Cx in the closure of G by

C-l/(n-l) = M_

This is accomplished by using a technique of Gehring's [Gl, Lemma 3] which

eliminates all assumptions concerning the behavior of the extremal metric. Then,

a surface-theoretic approximation theorem, first developed in [FF, 8.23], permits

the consideration of arbitrary closed separating sets.

The author wishes to thank George Springer, who suggested the problem under

consideration in this paper and who has shown a continued interest in the develop-

ment of its solution.

2. Preliminaries.

2.1. En will denote Euclidean n-space and Ln is n-dimensional Lebesgue measure.

Hausdorff k-dimensional measure in Fn will be denoted by 77" (for its definition

and properties see [F2]) and in this paper, only 771 and 77" '1 will be used. If

A <= F", then bdry A will mean the boundary of A and for x e En, 8{x, A) will be

the distance from x to A. More generally, 8{A, B) will denote the distance between
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the sets A and B. S(x, r) will stand for the open «-ball of radius r and centered at

x. If A is an ¿„-measurable subset of En, then i£p(A) will denote those functions

/for which |/|" is ¿„-integrable over A and ||/|p will be its i?p norm.

2.2. A real valued function u defined on an open set £/<= En is said to be absolutely

continuous in the sense of Tonelli (ACT) on U if it is ACT on every interval 7c U,

cf. [SS, p. 169]. Thus, the gradient of u, Vu, exists at ¿„-almost every point in U.

The following co-area formula, which was proved in [Z2], will be used frequently

throughout this paper.

2.2.1. Theorem. If A is an Ln-measurable subset of U and u is ACT on U, then

f \Vu(x)\dLn(x)= P  Hn-1[u-\s)r*A]dLx(s).
JA J-oo

Therefore,

f f(x)\Vu(x)\ dLn(x) =  P    f       f(x)dH«-\x)dLx(s)
JU J - oo Ju   '(s)

whenever fe 3?l(U).

2.3. Conformai capacity. The following will be standard notation throughout.

G is an open, bounded, connected set in Fn and C0, Cx, are disjoint compact sets

in the closure of G. We will let R = G-(C0 u Cx) and R* = R u C0 u Cx. The

conformai capacity of C0, Cx relative to the closure of G is defined as

(1) C[G, C0, Cx] = inf f \Vu\»dLn
Jb

where the infimum is taken over all functions u which are continuous on R*,

ACT on R, and assume boundary values 1 on Cx and 0 on C0. Such functions are

called admissible for C[G, C0, Cx]. Sometimes we will write C for C[G, C0, Cx].

If C0 u Cx c G and if C0 u Cx consists of only a finite number of nondegenerate

components, then the arguments of [G2, §§3-7] can be applied with only slight

modifications to prove that the infimum in (1) is attained by a unique admissible

function u which is ACT in G. (By using the methods of Chapter III in [FU], one

can prove the existence of an extremal for more general situations.) This extremal

function u satisfies the variational condition

(2) f \Vu\n~2Vu-VwdLn = 0

for any function w which is ACT on G, assumes boundary value 0 on C0 u Cx,

and for which |Vh>| e ^n(R).

2.4. Integral currents. The following notion of exterior normal, which was first

introduced in [Fl, p. 48], will be used later.
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An Fn-measurable set £c£» has the unit vector n{x) as exterior normal to E

at x if, letting

S{x,r) = {y : \y-x\ < r},

S + {x, r) = S{x, r)n{y : {y-x)n{x) ^ 0}

S_(x, r) = Six, r)n{y: {y-x)-n{x) ^ 0}

a = Ln[S{x, 1)]

we have

2 lim Ln[S.{x, r) n E]/arn =1,       2 lim Ln[S+{x, r) n F]/arn = 0.
r-0 r-.0

The set of points x for which n{x) exists is called the reduced boundary of E and

will be denoted by ß{E). Obviously, ß{E) cbdry F. The importance of the exterior

normal is seen in the following general version of the Gauss-Green Theorem

[F3], [DG].

2.4.1. Theorem. If E is a bounded Ln-measurable set with Hn~1[ß{E)]<cc, then

f div/(x) dLn{x) =  f    f{x) ■ n{x) dH» " \x)
Je Jß(E)

whenever f: En -»■ Fn is continuously differentiable.

This theorem enables us to regard a bounded, open set U<=-En with

77"-*(bdry U) < oo

as an integral current mod 2 (or integral class), i.e., an integral current T with

coefficients in the group of integers mod 2, [Zl, §3.6] or [FL]. Thus, if <f> is a differen-

tial n-form of class C00, then

T{<¡>) = f <f> dLn.
Ju

The boundary ofT, dT, is defined as 8T{w) = T{duj) whenever m is an n— 1 form and

do> is its exterior derivative. Now ß{U) is a Hausdorff («— l)-rectifiable set and

therefore, 2.4.1 allows us to identify ß{U) with dT, [Zl, §3.6]. Thus, the support

of dTiscl{ß{U))^bdryU,the mass of TisM{T)=Ln{U),andM{dT) = Hn-1[ß{U)]

[Zl, §3.6].

In view of this identification the following theorem is an immediate consequence

of [Zl, 6.2] although the original version was given in [FF, 8.23]. An open set is

called a convex cell if it can be expressed as the finite intersection of open half-

spaces and an n-dimensional polyhedral set is the union of a finite number of convex

cells.

2.4.2. Theorem. If U<=En is a bounded, open set with 77n_1(bdry i7)<oo, then

there is a sequence of n-dimensional polyhedral sets F¡ such that

(i)    Pic={x:8{x,U)<i-'},

(ii)  Ln{Px)^Ln{U) asi ^oo,

(iii) 7FI-1(bdryFi)^77n-1[J8(£/)]as/->oo.
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Moreover, by employing an argument similar to that of [FL, (5.6) and (5.7)], it can

be arranged that

(iv) bdryP,<={jc : 8[x, ß(U)]<i-1}.

Of course, one could apply [FL, 5.6 and p. 170] directly after verifying that the

boundary of U in Fleming's sense is ß(U). Finally, defining the measure pt as the

restriction of 77n_1 to bdry F¡ and p. as the restriction of Hn~l to ß(U), (iii) above

and [Zl, 5.7] or [FL, 4.2] imply that

(v) pi —> p weakly as í —> co,

that is,

2.5. Frte module of a system of measures. Instead of dealing with extremal length,

we prefer to work with the module as developed in [FU].

Let Ji be the class of all Borel measures on F\ With an arbitrary system E^Jt

of measures is associated a class of nonnegative Borel functions / subject to the

condition

(3) fdpTzl       for every p e E.
Je"

We will write /a p if (3) is satisfied and /A E if (3) is satisfied for every p e E.

For 0<p<co, the module of E, MP(E), is defined as

(4) MP(E) = inf |£n p dLn:fA f|-

A statement concerning measures p e Jt is said to hold for Mp-a.e. p if the state-

ment fails to hold for only a set of measures F0 where MP(E0) = 0. The proofs of

the following statements can be found in [FU, Chapter 1].

(i)    MP(E)^MP(E') if E<=E',

(ii)   MP(E) Í 2." i Wd if F= U?. i Ei-
(iii) If ß is the completion of p and Ln(A) = 0, then ß(A) = 0 for M„-a.e. p e Jl.

(iv) If/e i?"(Fn), then/is ß integrable for Mp-a.e. peJt.

(v)   If ||/i—/||p -* 0, then there is a subsequence/^ such that

|/ —/I dp-^0       for Afp-a.e. /x e ^#.
Ji"

(vi) If E^Ji, then M„(E) = 0 if and only if there is a nonnegative Borel function

/e ¿ep such that

f dp = oo       for every (ie£.
Je"

(vii) If p> 1 and E<=-Jt, then there is a nonnegative Borel function / such that

f   pdLn = Mp(E)
Je"

and ¡fdp^ 1 for A7„-a.e. /a e F.
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For the applications in this paper, the measures p are complete (in fact, they are

the restrictions of Hausdorff measure to compact sets) and for such measures, we

have the following

2.5.1 Theorem. If p^2, E1cE2c ■ ■ ■ are sets of complete measures, and

E=[J Ei, then

MP{E) = lim Mp{Ed.
Í-. 00

Proof. In view of (i) above, observe that the limit exists and is dominated by

MP{E). Therefore, only the case where the limit is finite needs to be considered.

For each /', let/ be the Borel function associated with F¡ as in (vii) above. Clark-

son's inequality [C] states, for any i and j,

(5)    f   m^"dLn+\   \âzâPdLnu2^ f    |/|"dFn + 2-1 f    \f\pdLn.
Je" I    ¿ Je" \    ¿ Je" Je"

If i >j, then 2 "x • (/ +/) A p for Mp-a.e. p e E¡. Therefore, because of (5),

I/-/I
(6) f.Je"

dLn á 2-1Mp(Fi)-2-1Mp(F;).

The right side of (6) tends to zero as i, j -> oo with / >j and therefore, there is a

nonnegative function/such that j|/— /||p —>• 0. Thus, from the above properties of

module (especially (v)), we have that /a p for Mp-a.e. p e E. This implies

Mp{E) ̂  f   fp dLn = lim Mp(Et)
Je" t-><*>

which is all that is required to prove.

3. Module of separating sets and conformai capacity. In this section we will

establish the relationship between conformai capacity and arbitrary closed separat-

ing sets. G, R*, R, Ci, and C0 will be as defined in §2.3.

We will say that a set a <= En separates C0 from Cx in R* if a n R is closed in R

and if there are disjoint sets A and B which are open in R* — a such that

R* — o = A u B, C0<=A, and C^B. Let S denote the class of all sets that separate

C0 from C1 in R*. With every o e S, associate a complete measure p in the following

way: for every 77""^measurable set A^En, define

p{A) = Hn-\AnanR).

From the properties of Hausdorff measure, it is clear that the Borel sets of Fn

are /n-measurable and therefore the module of 2 can be as defined as in 2.5. Thus,

for ri' = n\n— 1,

Mn,(Z) = inf j£n/*'dFn:/as}

where/a S means that/is a nonnegative Borel function on En such that

I fdH"-1 £ 1        for every a eS.
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3.1. As in [VI, 2.3] it can be shown that if S' denotes those aeS for which

77" -\a n F) = oo, then M„.(27)=0.

3.2. Lemma. Let u be an admissible function for C[G, C0, Cx] (see 2.3) and let

Sc[0, 1] be an Lx-measurable set. IfE.(S) = {u'1(s) : s e S} and A/n-[S(S)] = 0, then

Lx(S) = 0.

Proof. Since A/„[2(5)] = 0, (vi) of 2.5 provides a nonnegative Borel function

fe SCn' such that

fdHn~1 = oo       for every se S.
Ju' 1(s)nB

However, Holder's inequality and the co-area formula (2.2.1) imply

oo > f /| V«| dLn ̂  f f f(x) dH»-\x) dLx(s)
Jr Jo Ju   1(s)^r

and therefore Lx(S)=0.

3.3. Theorem. Mn.(Z)^C[G, C0, Cx]-lln-\

Proof. Choose £ > 0 and let / be any function for which /a S. Let u be an

admissible function for C=C[G, C0, Cx] such that

Í \MndLn
Jr

< C+i

R* is connected since G is and therefore it is clear that u  l(s) e 2 for all 0 < s < 1.

Hence, by Holder's inequality and 2.2.1, we have

(¡EnPdLny\c + ̂  à (lpdLn)  '(/JV.I-Ä,) "

^ jj\Vu\dLn

^  f f        fdH»-\x)dLx(s)^ 1.
Jo   Ju" 1(S)

Since e is arbitrary,

f /n'i/Ln ä C"1"1-1

which is also true for the infimum over all/AS, and thus the result follows.

3.4. The opposite inequality will be established by means of a sequence of

approximations and we will begin by first assuming that C0 u Cx consists only of a

finite number of nondegenerate continua and that C0udcG. We will also assume

initially that 7T'1"1(bdry G)<oo.
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Let Kbe an open connected set such that G=>cl F=> V=>C0 u Cx and let v he the

extremal function for C[V, C0, CJ (see 2.3). Since v satisfies the variational

condition (2), the proof of the following lemma is very similar to that of Lemma 3

in [G3] and will not be given here. It is possible to obtain a stronger result, but

the following is sufficient for our purposes. Recall from 2.4 the definition of an

n-dimensional polyhedral set.

3.5. Lemma. Let tr be the boundary of an n-dimensional polyhedral set P (F nor

necessarily contained in V) such that C0^P and C^F" —clF. Then n separates

C0 from Cx in V and

L Vi;|',-1dFn ^ 2bC[V,C0,C1]
»0»

whenever 0<b< 8{n, C0 u Cj) and where n{b) = {x : 8{x, it)<b}.

3.6. Remark. In Lemmas 3.7 and 3.8, the integral average,/, of |Vy|n_1 will

be used. Thus, defining Yu=0 on the complement of V, for each r>0 we have

f{x) = a{r)^\       \Vv{y)\»-i dLn¡(y)

where a{r)=Ln[S{x, /■)]. It is well known that/ is continuous and that

fr-+\Vv\n-1Ln-a.e.       asr^O.

Also, by a result of K. T. Smith [S] and Lebesgue's dominated convergence

theorem, ||/||n- -» || IV^"-1^. as r -+0 and consequently, ||/r— |Vi7|n-1||n- ->0.

3.7. Lemma. With -n as in 3.5,

/dT/""1^ C[K,C0,Cx]1
whenever r<8{jr, C0 u Cx).

Proof. Choose b > 0, r > 0 so that b + r < 8{n, C0 U CJ. If 77y denotes the trans-

lation of 77 through the vector y, then Fubini's Theorem and 3.5 imply

f    f{x)dLn{x) = a{r)-'\        f     \Vv{x+y)\^dLn{x)dLn{y)

(7) =*{r)~1 f        f      | Vv{x) | » -1 dLn{x) dLn{y)
JS(0,r) Jny(b)

^ 2bC[V, C0, CJ

since 7Tj, satisfies the conditions of 3.5. In addition to this, if d{x) = 8{x, tr), then

| Vd| = 1 Fn-a.e. on F"-77 [F4, (3) of 4.8] and therefore 2.2.1 gives

(8) f     fr{x) dLn{x) =  f f        fr{x)dH-\x)dL1{s).
Jn(b) Jo Ji    '(S)
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Let F(s) denote the inner integral on the right. Since/ is continuous on En and tt

is the boundary of a polyhedral set, it is clear that

limF(i) = 2 í frdHn-\
s-0 Jn

Hence, from (7) and (8) we have

C[V, C0, Cx] ̂  lim(26)-1 f F(s)dLx(s) = f fTdH-\
6->0 Jo Jn

3.8. Lemma. IfL is the class of sets that separate C0j'rom Cx in G, then

f      IVt^-1 dH^1 ^ C[V, C0, Cx]
JonR

for Af„.-a.e. a e S.

Proof. Select <r e 2 and let U be that part of a partition of G - a that contains

C0. Since Hn~1(bdry G)<co by assumption, by appealing to 3.1 we can take

TTn_1(bdry C/)<co. Recall that G=>cl Kand that Vv=0 on the complement of V.

Hence, we can choose r0 so small that the support of/0 is contained in G (and

therefore for all r á r0) and r0<8 (bdry U, C0 u Cx).

By applying 2.4.2 to the set U, we obtain a sequence of «-dimensional polyhedral

sets F¡. Let 7r( = bdry F¡. From properties (i), (ii), and (iv) of 2.4.2 it is clear that

eventually Co^Fi and Cx <=Fn- el F¡. Thus Lemma 3.7 applies to 77¡ for all large

i. Now, /3(i/)<=bdry [/<=(bdry G) u a and since the support of/ is contained in

G for all r ^ r0, it is clear that

(9) í/a'77n-1^í     fidH«-1       for all r ^ r0.
Ja J/UIO

Since/ is continuous, (v) of 2.4.2 and 3.7 imply

f     / dH'1-1 = lim f  / dH"-1 ^ C[V, C0, Cx]       for r Ú r0.
Jß(.U) f-«ijl|

Thus, from (9), we have

(10) £ / OTF1"1 ̂  C[V, C0, CJ       for r ^ r0.

In light of the fact that ||/-1 Vt'l"-1^. -> 0 as r -> 0 (3.6), the result follows from

(iv)and(v)of2.5and(10).

3.9. Lemma. Let u be the extremal function for C[G, C0, Cx] (see 3.4 and 2.3).

Then for A7„-a.e. a e E,

f      IV«!"-1 dH"'1 Z C[G, C0, Cj] = C.
J<jns
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Proof. Let V{ be a sequence of open connected sets such that

G => cl Vi + 1 ■=> Vi + 1 => el Vi =» Vi = C0 u d

and G= (J K¡. Let vt be the extremal function for C[K¡, C0, Cj] = Ci.

We will first show that C¡ -> C as / -> oo. Recall that C<oo. If f>j, then the

restriction of v¡ to Ky is an admissible function for V¡ and thus, so is 2~1-{vl + vj).

As in the proof of 2.5.1, an application of Clarkson's inequality [C] gives

oo f p
Jr I

Vvt-VVj
dLn^\Ci-\Cj       fori>j.

Since C( is a monotonically increasing sequence bounded above by C, (11) implies

the existence of a vector-valued function /such that

(12) f |V/j¡-/|ndFn^0       asi-
Jr

•oo.

In fact, since C0 u Cx consists only of a finite number of nondegenerate continua,

an argument similar to that of [G2, p. 362] shows that there is an admissible function

«' such that Vw'=/ F„-a.e. on R. Thus, (12) shows that

(13) lim q = C.
t-* 00

This also implies that u' is the extremal function for C, i.e., u' = u.

Since f |Vr>,| — |Vi/| ||„->0 as /->oo, there is a subsequence of \Vvt\ (which

will still be denoted by |Vi\|) such that |Vt>¡| -*■ \Vu\ Ln-a.e. and therefore that

IV^il""1 -> |Vii|B_1L„-a.e. on R. This fact, along with

|||V,i|B-||n.^H|VM|— ||n.

leads to

I |Vi>,|n-*1-|Vw|B-1|"'->0       as/-*oo.

Thus, with (iv) and (v) of 2.5, we have (for another subsequence)

(14) lim f      |Vi;i|n-1d77n-1 = í      IV«!""1 dTF1"1       for Mn-a.e. a eS.
t-"*> Jar\R Jo-nB

Lemma 3.8 states that for each i,

/Jcr\R

|Vi>1|n-1d/ín-1 ^ C¡ for AfB-a.e. aeS,

and therefore, the result follows from (13), (14), and (ii) of 2.5.

3.10. Theorem. If G is a bounded, open, connected set, if C0 u d consists of

only a finite number of nondegenerate continua, and if C0 u C^G, then

MB-(S) = C[G, C0, Ci]-1'»"1.
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Proof. If it were the case that 77" " *(bdry G) < oo, then the result would follow

immediately from 3.3 and 3.9. For, if we let/= |Vw|n_1- C~\ where u is the extre-

mal for C, then by 3.9 there is 20<=2 such that/A 20 and Af„.(20) = M„-(2). Hence,

by 3.3,

c-i/n-i ^ ji/n,(E) £  f p' dLn = C"1'"-1.

In order to eliminate the assumption T7n_1(bdry G)<oo, select a sequence of

open, connected sets Vi<=Vac--- such that C0v CX<=VX, 7Tn_1(bdry Kj)<oo,

and G= \J Vt. As in the proof of 3.9, let t>, be the extremal for C[VU CQ, CX] = Q

and again we have

(15) Q-+C, || |Vpi|»-1-|V«|»-1||B.->0       asi->oo.

Thus, for a subsequence

(16) lim f     ¡Vv,]»-1 dH*'1 = f     \Vu\n'1dHn-1       for Mn-a.e. a e2.
i-»oo JcnR JanR

For each j, every er e 2 separates C0 from Ci in K¡, and thus applying 3.9 with Vt

replacing G, we have

Í      IVutl"'"1 í/FT"-1 ̂  f       ¡VVil"-1 dH"-1 ^ d       for Mn-a.e. a e 2.
JanR JanVi

(Observe that 3.9, with K¡ replacing G, applies only to 2(, which are those sets that

separate C0 from Ci in Vt. However, a class in S which is M„-zero relative to

2, is Mn.-zero relative to 2.) Hence, in view of (15) and (16),

(17) f     IV«!"-1 dH*-1 è C for ATn-a.e. <re2
Jíjnfí

which, as we have seen from above, is sufficient to establish the theorem.

3.11. Corollary. With the hypotheses of 3.10, and if u is the extremal for

C[G, C0, Cx), then

(i)    0^u(x)^lforallxeG,

00   icnR IVmI"-1 dH"'^C[G, C0, Cx]for Mn-a.e. a e2,

(iii) /,-ilf)|V«|-irf/i»-i = C[G, Co, Cx],forLx-a.e.se[0, 1].

Proof. By truncating u at levels 1 and 0 if necessary, a new admissible function

would be formed whose gradient would be bounded above by the gradient of u.

However, the extremal is unique and thus (i) follows, (ii) is just a restatement of

(17).
In order to prove (iii), let

F(S) =  f IVmI""1 JTF1"1       forLi-a.e. s,
Ju'   Ht)
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and observe that since G is connected, u~1{s)el¡ whenever 0<í<1. Thus, (ii)

above and 3.2 imply that F{s) jg C for Fj-a.e. s e [0, 1]. However, (i) and an appli-

cation of 2.2.1 give

C= f |VM|"dLn= ¡1F{s)dL1{s)
Jr Jo

which implies that F{s) = C for F^a.e. s e [0, 1].

3.12. Remark. The following observation has some interest in view of Theorem

2 of [G2].

7n addition to the hypotheses 0/3.11, assume that Hn~1{Co) = 0. Then there is a

point x0 e C0 such that

lim sup |V«(x)| = oo.
x-*xo

For if this were not the case, then, since C0 is compact, there would be a constant

K>0 and an open set U such that G-C^cl U=>U=>C0 and |Vi/|n_1<Ä'Ln-a.e.

on U. Choose e>0. Since 77n_1(C0)=0, C0 can be covered by a countable number

of open n-balls F¡ such that

(18) \jBiCU   and   2 7F1"1 (bdry Bt) < eK~x.

Since C0 is compact, a finite number of the F¡ will cover C0, say Bu B2,..., Bk.

According to (vi) of 2.5, there is a nonnegative Borel function/e ^Cn'{R) such that

(ii) of 3.11 fails to hold for only those o e X for which

f     fdHn-x = oo.
JanR

By employing 2.2.1, we can replace each n-ball Bt, i= 1, 2,..., k, by a slightly

larger one B[ such that

f  /dT/""1 < oo       where S't = bdry B[,
Jsí

|Víi|"-1<J¡:A,»-1-a.e. on S[, and (18) still holds. Now let a = bdry {{J B¡). Then

o e S and (ii) of 3.11 implies that C[G, C0, C1]<e, which means that it is zero since

£ is arbitrary. This would mean that V« = 0 L„-a.e. on G. That is, since G is con-

nected and u is ACT on G, u would be constant, a contradiction.

In the following theorem, we will consider the general case of two disjoint com-

pact sets C0 and d which are contained in the closure of an open, bounded,

connected set G.

3.13. Theorem. Mn.{?,) = C[G, C0, CJ-1*"1.

Proof. In view of 3.3, we may assume that C= C[G, CQ, CJ ^0. For each positive

integer / let

K0{i) = cl{x : 8{x, C0)<(2/)"1} and

770(/) = {x: 8{x,C0)<i-1}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1967] EXTREMAL LENGTH AND CONFORMAL CAPACITY 471

Define Kx(i) and Hx(i) similarly and let G¡ = G u 770(0 u Hx(i). Since G is con-

nected, it is clear that G¡ is open and connected and notice that A'o(i') u Kx(i)

consists only of a finite number of nondegenerate continua. We will consider only

those i for which K0(i) and Kx(i) are disjoint. Thus, let vt be the extremal function

for C¡ = C[Gi, K0(i), Kx(i)] and observe that if i>j, then the restriction of v¡ to

Gj is an admissible function for C(. Finally, let 2, be those sets a that separate

K0(i) from Kx(i) in G¡ and subject to the condition that a n [770(i) u Hx(i)] = 0.

The purpose for this requirement is that now an A/„-null class in 2, is also Mn-

null in 2. It is clear that "L^Y,^ ■ ■ -, 2¡<=2 for all i, and

(19) 0^ = 2.
i= 1

Since C¡ is a monotonically decreasing sequence bounded below by C, we can

employ again part of the argument of 3.9 to find a vector-valued function / such

that

im  f    |Vt;i-/|'la'Fn = 0
->oo Jeu

lim
f

and therefore, for a subsequence,

(20) Hm|||Vol|"-»-|/|-»|..-0.
i-*co

Hence, if L = lim^œ C¡, ft-IVp,!»-1-^1, and g-|/|"_1-L-1 then (v) of 2.5

provides another subsequence such that

(21) lim f     gidHn'1=¡     gdH"-1        for M„-a.e. a
i— °° JanR JanR

62.

Now by employing 3.11 with G, C0, Cx replaced by G¡, K0(i), Kx(i) respectively,

we have for each i,

(22) f     gid^-^l for A7„-a.e. ae2¡.
JanR

Therefore, (ii) of 2.5, (19), and (21) imply

(23) f     gdHn'1^l for Afn.-a.e. a e 2.
JanR

Since vt is the extremal for Ct, (ii) of 3.11 and 3.3 show that, for each /,

f   (gi)n'dLn=Cr^-\
Je"

Thus, with (20), (22), and (23), we have

C-1"1-1 ê UrnCf1'"-1 = lim f   (gi)n'dLn = f   gn'dLn ̂  A/(2).
¡-»oo ¡-.oo Je" Je"

Theorem 3.3 gives the opposite inequality, and thus the proof is complete.

We will conclude with a result concerning null sets for conformai capacity.
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3.14. Theorem. Suppose C0 and Cx are disjoint compact sets in the closure of

G. 7/F<=G-(C0 u CJ is a compact set with Hn-\E) = 0, then

C[G, Co, CJ = C[G-E, Co, CJ.

Proof. The topological dimension of Fis no more than n —2 since 77n_1(F) = 0

and therefore, G — E is connected. Thus, the right hand side of the equality has

meaning. Clearly,

(24) C[G, C0, CJ g; C[G-E, C0, CJ.

The opposite inequality will be established by considering separating sets. Let X*

be those sets that separate C0 from Cx in

[(G-F)-(C0uC1)]u[C0uCJ

and let X be those that separate C0 from C\ in R*. In light of (24) and 3.13 it is

sufficient to prove

(25) Mn-(S) £ MB.(S*).

To this end, let /be a function for which /a X. In order to establish (25), we need

only show/A X*. Choose a* eX* and notice that a* u FeX. Thus,

f       /d/7"-1 ^ 1

and since 77" "1(F) = 0,

Í   fdH"-1 ^ 1.

This shows that/a X* and consequently, proves the theorem.

If G is compactified Fn, Bagby has shown that C[G, C0, CJ = Mn{Y) where Y

is the family of all arcs that meet both C0 and Cx (Ph.D. thesis, Harvard Univ.,

Cambridge, Mass., 1966). By using 3.13, [FU], and [W] one can show that this

result is valid when G is an open, bounded, connected set and CoU^c: G.

(Moreover, if C0 u Cx^cl G, the result is also valid if certain conditions are im-

posed on the tangential behavior of (bdry G) n (C0 u CJ.) Thus, if Y* is the

family of arcs that join C0 to d in G — E, then 3.14 implies

Mn{Y*) = Mn{Y).

This result was obtained by Väisälä [V2] in the case where C0 and Cj are non-

degenerate continua.
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