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EXTREMAL LORENTZIAN SURFACES WITH
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KAZUYUKI HASEGAWA™ AND KOUHEI MIURA

(Received April 15, 2014, revised August 5, 2014)

Abstract. We show a congruence theorem for oriented Lorentzian surfaces with hor-
izontal reflector lifts in pseudo-Riemannian space forms of neutral signature. As a corollary,
a characterization theorem is obtained for the Lorentzian Boruvka spheres, that is, a full real
analytic null r-planar geodesic immersion with vanishing mean curvature vector field is lo-
cally congruent to the Lorentzian Boruvka sphere in a 2r-dimensional space form of neutral
signature.

1. Introduction. To study minimal surfaces in a unit sphere, the twistor lift plays an
important role. For instance, Calabi [2] proves a rigidity theorem for minimal immersions
of surfaces with genus zero in Euclidean spheres using twistor lifts. An application of the
rigidity result shows that a minimal isometric immersion of the 2-sphere into a unit sphere
is congruent to the d-th standard immersion (also called the Boruvka sphere in the unit 2d-
sphere) for a positive integer d. As a result, Boruvka spheres have horizontal twistor lifts.
Chern [4] reinterprets Calabi’s work and investigates minimal 2-spheres in a unit sphere by
using the higher order osculating spaces and higher fundamental forms. We refer to Bryant
[1] also. One of the aims in this paper is to characterize Boruvka spheres in indefinite pseudo-
Riemannian geometry, using an indefinite version of twistor lifts.

The Boruvka spheres with Lorentzian metric, a family of isometric immersions of
Lorentzian 2-sphere into the pseudo-Riemannian spheres are, via Wick rotations, constructed
from the standard immersions of Riemannian 2-sphere in Ding and Wang [5] and Miura [10].
These immersions have vanishing mean curvature vector fields, thus, these are extremal. In
this paper, we call these immersions the Lorentzian Boruvka spheres (LBSs). We focus on
the fact that the target spaces of the LBSs are always neutral. Then it is natural that we use
reflector lifts instead of twistor lifts. The notion of reflector lifts established on neutral pseudo-
Riemannian manifolds is corresponding to that of twistor lifts in Riemannian geometry. See
Jensen and Rigoli [7] for details. We see that extremal helical geodesic immersions (HGIs)
from Lorentzian surfaces into a space form have horizontal reflector lifts. Note that the LBSs
have helical geodesics. As a property of HGIs, we propose a notion of null r-planar geodesic
immersions (PGls). For a precise definition, see Definition 4.1. We provide a congruence the-
orem for oriented Lorentzian surfaces with horizontal reflector lifts. As an application of our

2010 Mathematics Subject Classification. Primary 53C50; Secondary 53C42.

Key words and phrases. Extremal Lorentzian surfaces, higher fundamental forms, reflector lifts, Boruvka
spheres.

*The first author is supported by JSPS KAKENHI Grant number 23540081.



612 K. HASEGAWA AND K. MIURA

congruence theorem, we characterize the Lorentzian Boruvka spheres as extremal Lorentzian
surfaces with null r-planar geodesic.

The paper is organized as follows. In Section 2, we prepare a general theoretical setting
and basic equations for Lorentzian surfaces. Furthermore, we investigate extremal Lorentzian
surfaces by using their isotropic higher fundamental forms and furnish several lemmas. In
Section 3, we introduce the notion of reflector lifts. A congruence theorem for oriented
Lorentzian surfaces with horizontal reflector lifts is proved. In Section 4, the definitions of
HGIs and null -PGIs are clearly stated. Moreover, based on [10], we explain the construc-
tion of LBSs briefly. Finally, in Section 5, we investigate extremal null r-planar geodesic
immersions from Lorentzian surfaces of constant Gaussian curvature and provide our main
theorem.

2. Preliminaries. Throughout this paper, all manifolds and maps are assumed to be
smooth unless otherwise mentioned. Let E be a vector bundle over a manifold M and E),
the fiber of E over a point p € M. We write T M (resp. T*M) for the tangent (resp. cotan-
gent) bundle of M. For vector bundles E, E’ over M, we denote the homomorphism bundle
whose fiber is the space of linear mappings E, to E;, by Hom(E, E’), and set End(E) :=
Hom(E, E). The space of all sections of a vector bundle E is denoted by I" (E). We denote
the space of E-valued 1-forms on M by AYE) :== I'(T*M ® E). Let ¢ : N —> Mbea
smooth map and E a vector bundle over M. The pull back bundle of E by ¢ is denoted by
@* E. In this paper, a pair (E, g¥) is a pseudo-Riemannian vector bundle if the bundle met-
ric g€ of E is nondegenerate of constant index. The set of all metric connections of E with
respect to g% is denoted by C(E, gF).

2.1. Basic definitions and equations. In this subsection, we recall some basic defi-
nitions and equations for pseudo-Riemannian manifolds and submanifolds. Let (1\71{1, 9) be an
n-dimensional pseudo-Riemannian manifold with nondegenerate metric § of constant index
t. We may denote (1\71{1, q) by A71t" for short. We say that 1\7," is of neutral signature if n = 2t,
and Lorentzian if n > 1 and ¢ = 1. If there is no confusion, we omit the dimension and index,
ie., M = 1\7," A tangent vector X to M is called spacelike if §(X, X) > 0 or X = 0, null if
§(X,X) =0and X # 0, and fimelike if (X, X) < 0.

Let R} be the n-dimensional pseudo-Euclidean space of the index ¢ with the flat standard
metric. Let (x!, ..., x"1) be the standard coordinate on R"*!. The n-dimensional pseudo-
sphere S/ (r) of the index ¢ and the radius r > 0 is defined by

t n+1
=Y e+ Y (p) = r2} :
i=1

Str) = {p e R
j=t+1

Similarly, the n-dimensional pseudohyperbolic space H/'(r) of the index ¢ and the radius
r > ( is defined by

=Y @+ Y @p)r=—r?

i=1 j=t+2

t+1 n+1
|

H}'(r) = {p eR|
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The spaces R}, S}'(r) and H/'(r) are of constant curvature 0, 1/ r? and —1/r2 respectively.
We denote the space form of constant curvature ¢ by Q}(c) which is one of R}, S}'(r) or
H(r).

From now on, we provide the basic equations for isometric immersions in pseudo-
Riemannian geometry. For more details, we refer to [15, IV, pp.163-188] in the case of
Riemannian geometry. Let (M, g) be a pseudo-Riemannian submanifold in (1\7[ ,g) isometri-
cally immersed by f. We denote the Levi-Civita connection of g (resp. g) by v (resp. V).
The mean curvature vector field of M is denoted by H. If H = 0, then M is called an ex-
tremal submanifold ([12, p. 299]). We often omit the symbol “f” for the induced objects
of the immersion f if there is no confusion for the simplicity. We define V(X)) = X1,
%(Xl, X»5) = %X,Xz and inductively fori > 3

%(Xl,Xz,...,X,')ZZ%xlg(Xz,...,Xi), and
VX1, Xa, . X)(p) =V, V(Xa, ..., X0),

where Xy € I'(TM) (1 <k <i)and p € M. We define the i-th osculating space of f by
Osco(f) =M x {0} C f#TM and for any positive integer i,

Osc(f):= | J Osci,(f), where

pPEM
Oscl, (f) :=Span{V(X1...., X0)(p) | X; € [(TM), 1 <l <k <i}.

Since f is an immersion, Osc' (f) = T'M. Therefore, there is the unique integer d > 1 such
that

o 0sc(f) G Ose! (f) G Ose?(f) & -+ G Osc(f),

e Osci(f) is a smooth subbundle of f#7 M and the induced metric is nondegenerate
of constant index foreachi =1,2,...,d,

° Oscd“( f) = Oscd( f) or Oscd+1( f) is not a pseudo-Riemannian subbundle (i.e.,
the induced symmetric tensor in Oscdt! (f) from TM is degenerate or Oscdt! (f)is
not a smooth subbundle of f#T /).

If f satisfies the three conditions above, we say that f is nicely curved of order d. For
i=0,1,...,d — 1, we can take the i-th normal space Ni(f) such that

Osc! 1 (f) = Osc/ (f) @ N (f),

where N'(f) is the orthogonal complement subbundle of Osc! (f) in Osc! T1(f). We denote
N(f) by N* for short. Because of Osc’(f) = M x {0} and Osc' (f) = T M, we have N° =
T M. Moreover we put N¢ := Osc?(f)* which is the orthogonal complement subbundle of
Osc? ( f)in f #T M. Notice that N? need not be contained in the osculating space Osck( D)
for an integer k > 0. Therefore we often need separate arguments for objects related to the
highest normal bundle. Then we obtain

d
T =N

i=0
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We denote the induced symmetric tensor in N' from § by ¢’. Note that g = ¢°, ¢!, ..., ¢¢

are pseudo-Riemannian, since f is nicely curved of order d. A
For a vector ¢ € f#TZVI, we denote the Ni-component of ¢ by (Z)Nt. Fori =0,1,...,
d, we define the (i + 1)st fundamental form o' ! by

X, X)) = (VXL X )Y

By definitions, we can see that «! = idry € I'(EndTM), N' = Span (Ima/*!) fori =
0,1,....,d —1and N¢ > Span (Imad“). We note that «(X,Y) = ozz(X, Y), where « is
the usual second fundamental form and X, Y € I'(T M). The following lemma is proved in a
way similar to that in [15, pp. 171-172].

LEMMA 2.1. Fora section ¢; € F(Ni) i=01,....d)and X € T,)M,
Vxto eNY& N, .
Vxti eNFlToN @ N (i=1,....d-1),
Vxta eNIT @ NI

By Lemma 2.1, we can define for ¢; € I'(NY)and X € I'(TM),

Sigii=—Txe)N (i=1,2,....d,
Vigii= (Vxe)V' (i=0,1,....d),
Tygi = (%Xfi)NtH i=0,1,....,d—1).

It is easy to check that vO=v, T)?Y =a?(X,Y) for any X, Y € I'(TM) and

st e AlHom(N', N'7Y)), ViecWN', ¢), T 'eAlHomN ! N

fori =1,2,...,d. Consequently we obtain the Frenet formulas of f:
Q2.1 VxY = VoY + 1Y,

(2.2) Vxt = =Sk +Vi&i+Thei (=1,2,...,d 1),
(2.3) Vxta = —S4¢a+ Viia,

where X,Y € I'(TM) = I'(N% and ¢; € I'(N?) fori = 1,2,...,d. We note that (2.1) is
the (usual) Gauss formula, and S is the (usual) shape operator restricted to the first normal
space N'!. We denote the normal connection by V. Then we obtain V¢ = V(1 + T4 ¢ for
any X € I'(TM) and ¢; € I'(N1). Moreover we have gi_l(ci_h Sé(g“i) = gi(T§_1§i_1, gi)
fori =1,2,...,d. We define the differentiation of N'-valued (0, k)-tensor field P by

k
(DY PY(X1, ..., Xi) = Vi (P(X1, ..., X)) — ZP(Xl,...,VXXj,...,Xk).
j=1

By a straightforward calculation, we can see the following lemma.
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LEMMA 2.2. Let f: M — Q}(c) be an isometric immersion into a space of constant
curvature c. If f is nicely curved of order d, then the following equations hold.

(2.4) RX,V)Z=c((Y,Z)X — (X, Z)Y) + Sy TYZ — S} T2 Z,
(2.5) R(X, V)G =Ty 'She — Ty Sk & + S TG — Sy Th
(i=1,2,....d 1),
(2.6) RUX, Y)a =T ' S§¢a — T 7' S5 2a,
2.7) (D' SHye = (DY S)xg; (=12,....d),
2.8) (DY Ty g = (DY T x i (=0,1,....d=1),
(2.9) SIS = sihskh g (i=23,....d)),
(2.10) Ty Ty = T, TG (i=01,....d-2),

where X, Y, Z € I'(TM), {i € I'(N'), and R(= R®) and R are the curvature tensor of the
Levi-Civita connection V(= V°) of M and V', respectively.

Lemma 2.1, (2.10) and the symmetry of T show the following corollary.
COROLLARY 2.3. Under the same assumption as in Lemma 2.2, we have
(2.11) X X)) =T o (X X)) = Ty Ty T X,
where X j € I'(TM) for j <i + 1. Moreover, o't is (i 4+ 1)-symmetric fori < d.

By virtue of Corollary 2.3, for the simplicity, we are allowed to write
xR Y = (X, XYY
T
for X, Y e '(TM)andk+1=1i+1.

The tensor field 797! € Al(Hom(N9~!, N%)) closely relates to the reduction of the
codimension of isometric immersions which are nicely curved of order d.

LEMMA 2.4. Let f : M — Q}(c) be an isometric immersion which is nicely curved
of order d. If there exists an open piece U of M such that T4~ is vanishing on U, then there
exists a totally geodesic pseudo-Riemannian submanifold P of Q7 (c) such that f(U) C P.

PROOF. By the assumption, the subbundle 69?;01 N of f*T Q is parallel with respect to
V on U, where T Q is the tangent bundle of Q7 (c). Putting P := exp? (@f;ol Ni|y), we get

this lemma, where epr is the exponential map of Q7 (c). O

2.2. Extremal Lorentzian surfaces. Let (V,(, )) be a Lorentzian vector 2-space
and (£, n) a null basis of V such that (¢, &) = (n,n) = 0 and (§, n) = n # 0. In this paper,
we say that the signature of the null basis (&, n) is positive (resp. negative), if © > 0 (resp.
n < 0). For any vector v € V, we have

1 1
(2.12) v=—(v,né+ —(v,&)n.
w ©
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It is easy to show the following lemma.

LEMMA 2.5. Let (E, g%) be a Lorentzian plane bundle over a manifold M and VE e
C(E, g%). Let (¢, n) be a local frame field of E such that g% (&, &) = ¢¥(n,n) = 0 and
gE (&, n) is nonzero constant. Then there exists a local 1-form p£ on M such that

vEE=pt @, RY (X, V)E = dp (X. V) ,
Vi =—pF @n, RV (X, V)= —dpF (X, V).
PROOF. Put A := gf(&,n) € Rand pf(X) := (1/0)gf(VEE, n). Using (2.12), we
have
ViE = gB (Vg mE + 0B (VEE Dn = 008
It is easy to obtain the other equations. o

An endomorphism J£ € I'(End (E)) is called a parahermitian structure of (E, g%), if
JE satisfies (JF)? = idg and gZ (JE(¢1), JE(£2)) = —gF (41, o) forany ¢1, &2 € T'(E).

Local null frames (£,7) on U and (¢',n') on U’ have the same signature, if
(E,mME .0y > 0on U NU' # @. Moreover we assume that (£, n) and (§/, n’) have the
same orientation. Then we note that

;e JETE L :
€ = [T E e mer] YNy

where 0 is a smooth functionon U N U’.

LEMMA 2.6. Let (E, g%) be a Lorentzian plane bundle over a manifold M and VE e
C(E, g¥). IfE is orientable, then E admits a VE -parallel parahermitian structure of (E, g%).

PROOF. Let (£, ) be an oriented local null frame on U C M of (E, ¢g¥). We can define
JE € I'(End (E)) by JE (&) := &, JE(n) := —n. Let (¢, ') be another oriented local null
frame on U’ (U NU’ # ) with the same signature of (¢, ). Defining the endomorphism J E

of Eon U’ by JE(&) := ¢, JE' (') :== —n/, we can see that JE = JE on U N U’. Since
E is orientable, J E is well-defined on M. Taking a connection form pE as in Lemma 2.5, we
see that J £ is a V£ -parallel parahermitian structure of (E, g©). O

From the proof above, we note that oriented null frames with the same signature define
the same parahermitian structure J . In particular, when the parahermitian structure J £ is
defined by oriented null frames with positive (resp. negative) signature, we call J£ positive
(resp. negative).

Let (M 12(K ), 9) be an oriented 2-dimensional Lorentzian surface of the Gaussian cur-
vature K. Let (eq, e2) be an oriented local orthonormal frame of M such that g(e;, e;) =
(—1)78;;, where §;; is the Kronecker delta. We put

(2.13) et = %(61 +e), e_:= %(—el +e2),
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which satisfy g(e+,e+) = 0 and g(eq,e—) = 1, hence (e, e_) is a local null frame with
positive signature and the same orientation to (e1, e2). Then, by Lemma 2.5, there exists a
local 1-form p on M such that

(2.14) Ver =tp®ex, dpley,e-)=K,

where V is the Levi-Civita connection of M. By virtue of Lemma 2.6, we can take a V-
parallel parahermitian structure J € I'(End(7 M)) such that J(e+) = Zer. We call this
endomorphism J the canonical paraKdhler structure on (M 12(K ), 9).

Let f : MIZ(K ) = QF(c) be an isometric immersion. Then the mean curvature vector
field H of f is

1
H =7 (-ale, e1) +aler, e2)) = aley, e-),

where (eq, e2) and (e, e—) are local frames on M in (2.13). Thus, f is extremal if and only
ifa(es,e—) =0.

LEMMA 2.7. Let f : Mlz(K) — Q7F (c) be an extremal isometric immersion. Then,
(2.15) (D;_a®)(e;) =0, (D, o)) =0.
Moreover, if f is nicely curved of order d, then we have
(2.16) adtlEet,ey=0 (=12,....d, k+l=i+1, ki1>1).

PROOF. By (2.8), we have

(D}_a?)(e) =V, a*(€}) = 2p(e-)a’(e]) = (D} T, (e4)
=D}, T (e4) =V, T, e; =V, a*(ey.e) =0.
By a similar calculation, we obtain (Del+oz2)(e3) =0.Ifk, [ > 1,
oty =T T TR T o ey e) = 0.

This completes the proof. O

For an extremal isometric immersion f : M 12(1( ) — Q7F(c) which is nicely curved
of order d, using (2.13) and (2.16), by the equation a2(ey, e1) = a%(ez, €2) and arguments
similar to that in the proof of Lemma 2.7, we have

2.17) a (et = (V)T ot (e, €h) + ot (ehT)
) a1 () = (V21 (= @it (e, €d) + ol (ehT)) |

Noting N' is nonzerofori =1,2,...,d — 1, by (2.17), we have

(2.18) N’ = Span{a't! (e1, €5), o' T (5T} = Span{a’ T (), &' T (T},

(219) rankN'=1 or 2.
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2.3. Surfaces with isotropic higher fundamental forms. In this subsection, we
study extremal isometric immersions of Lorentzian surfaces with isotropic higher fundamen-
tal forms. The property that higher fundamental forms are isotropic is closely related to hor-
izontal reflector lifts mentioned in the next section. We provide several lemmas which are
often used in the following sections.

Let V and W be vector spaces with inner productsand g : V x --- x V — W a k-
multilinear map into W. We say that 8 is spacelike (resp. timelike) isotropic if there exists a
constant A such that (8(u*), B(u¥)) = A for any spacelike (resp. timelike) unit vectors u. For
the simplicity, we say that such a map is spacelike (resp. timelike) A-isotropic. Then we note
the following lemma.

LEMMA 2.8. Under the notation above, a k-multilinear map B is spacelike \-isotropic
if and only if B is timelike (—1)*A-isotropic. Moreover, if B is spacelike isotropic, then
(B(5), B(eX)) = 0 for all null vectore € V.

PROOF. If B is spacelike A-isotropic, then we have
(,3((v/||v||)k), ,B((v/||v||)k)) = A for any spacelike vector 0 2 v € V.

Hence we obtain the equation (x) (8 %), B(WK)) = A (v, v)* on the set of all spacelike vectors
of V, which forms nonempty open subset in V. This equation (x) holds on V, since the
function V 3 w — (B(wX), B(w*)) — A (w, w)* € R is real analytic (more precisely, it is a
polynomial in n variables w = (wy, ..., w,), where n = dim V). So, we have

(BWY), BWh)) = (=1)* A for any unit timelike vector v € V.
We can similarly see the converse and the statement for null vectors. O

By Lemma 2.8, in the case that V is indefinite, we use the term “isotropic” as “spacelike
isotropic”.

We say that the (k + 1)st fundamental form o*t1 of an isometric immersion f:M— M
is (spacelike) isotropic if aﬁ“ is A, p-isotropic at each point p € M. The function A; :
M — R defined by Ax(p) := Ak, p is called the (spacelike) isotropic function. If the isotropic
function Ak is constant on M, then o* ! is called constant Ag-isotropic. We note that okt ig

Ag-isotropic if and only if
(2.20) g (@ (e, €b), aF (AT =0

for any orthonormal tangent vectors eg, ez to M (e.g. [8, Lemma 1.1]). Moreover, in the case
that f : M12(K) — QF(c) is extremal, by (2.17), we obtain

@.21) g @, e = —g @ (er. 65). o (1, eh) =
where (e1, e2) is an orthonormal basis of T), M such that g(e;, e;) = (—l)iSij.

LEMMA 2.9. Let f : MIZ(K) — Q7 (c) be an extremal isometric immersion which is
nicely curved of order d. We assume that there exists a positive integer i (< d) such that o' *!
is Aj-isotropic. Then A; is everywhere nonzero on M if and only ifi < d. In the case of i < d,
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N' is a Lorentzian plane bundle over M. Moreover if M is oriented, then N' is orientable
and (N', ¢') admits a V'-parallel parahermitian structure J*.

PROOF. Let (e1, e2) be an orthonormal basis of T, M such that g(e;, e;) = (—l)iSij.
Noting (2.18), (2.20) and (2.21), we see that X; is equal to zero at p if and only if N;, is a
degenerate plane, a null line or zero at p. Since f is nicely curved of order d, we can see that
A; is everywhere nonzero if and only if i < d. Then N’ is a Lorentzian plane bundle over M,
since the normal vectors o/ *! (e, eé), oitl (e’2+1) span a Lorentzian plane.

When M is oriented, taking oriented local orthonormal frames (e, e2) and (ei, e’z) on an
open set U of M, we can get a function§ € C°°(U) such that e} = (cosh#)e;+(sinh)e; and
e = (sinh 0)e + (coshf)es on U The following local frames (a' ! (e, €}), o' t! (e’2+1))'and
(i t! (e}, e’zl), ot (e/2’+1)) of N' are local orthogonal frames with same orientation of N*. In
fact, we have

(ai+l(e/1’e/2i) ai+l(e/2i+l))
_ (i1 ; il it ) cosh((i + 1)0) sinh((i + 1))

(“ (e, e5)  a™(ey™) [sinh((i +1)9) cosh((i +1)0) |
Thus N’ is orientable. From Lemma 2.6, we obtain a V'-parallel parahermitian structure J*
of (N, g'). O

When f : M 12(K ) — O} (c) is extremal and nicely curved of order d, and there exists
a positive integer i(< d) such that ot s Xi-isotropic, by Lemma 2.9, we can take the
following local orthonormal frame (e2;+1, €2i4+2) of N i defined by

o't (er ), CANCADE

1
€+l = €42 =
’ N ’ NDT
where (e1, e2) is a local oriented orthonormal frame on M such that g(e;, e;) = (=1)s; I3
Moreover, noting (2.17), we put the signature ¢; := A;/|1;| € {1, —1},

(2.22) g = i(eZH—] + eri42) = %az#l(ei':l)’
V2 (V2 /Thi]
(2.23) ni = %(—eml +exig) = maf“w% :
which satisfy
9 (e2ig1, €2i41) = —&; , g'(e2it1, €2i42) =0, 9 (e2it2. €2i42) = & ,
g &) =0, g'Giom) =i, g' (nismi) = 0.
LEMMA 2.10. Let f : M12(K) — QF(c) be an extremal isometric immersion which is

nicely curved of order d. We assume that there exists a positive integer i < d such that o't

is Aj-isotropic. Then we obtain

(224) V;I(Oli-i-l(eit"‘l) = <ﬂ:,0l(X) + %d(]og |Al|)(X)) ai+1(eit+1) ,
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where (e4, e_) is a local null frame on M12(K) and p; is the connection form of V' with
respect to (&;, ;) defined by (2.22) and (2.23).

PROOF. We obtain (2.24) by a simple calculation. O

LEMMA 2.11. Let f : MIZ(K) — QF(c) be an extremal isometric immersion which
is nicely curved of order d. We assume that there exists a positive integer i < d such that
ot is Aj-isotropic and (D'’ t1) is (i + 2)-symmetric, that is, (Dé oty = 0. Then
we have

(D)) =0, (D) (*?) = 0.
Thus (D' 'ai*2) is (i + 3)-symmetric.
PROOF. We can prove this lemma by a simple calculation. In fact, we have
(Di+1 i+2)(ei+2)
_ Vl"rl l+2(el+2) (l + 2)p(e )al+2(el+2)
— Vl-’rlTl l+l(el+1) (l +2)p(€ )O{l+2(el+2)
(Dl-‘rlT ) al-l—l(el-‘rl)_l_Tl (Dl l+1)(ei:—1)
using the Codazzi equation (2.8) for 77, (2.11), (2.16) and (2.24)

— Véi—lai+2(e_ l+1) +p(€+)al+2(e_, l-‘rl) _ Tl Vl l+l(el+1)

= _Tei, (:Oi(e+) + Ed(log |Ai|)(e+)) z+1(ez+1)
1 .
== (pi<e+> + 5d(log |Al»|)(e+>> 2o, ) = 0.

In a similar way, we have (Di!a/*+2) (/%) = 0. O

LEMMA 2.12. Under the same assumptions as in Lemma 2.11, if o' t! is constant
Ai-isotropic, then o' 1 is Vi-parallel, that is, (D' T!) = 0.

PROOF. Since o't is isotropic, ¢ (a’+1(e’+1) a’+1(e’+1)) = 0. Thus we see
g (D, & et el h) = —e+g"(a’+1(el+1),a"“(e"“))
—(i + Dplep)g @ eFh), o)) =0
Using Lemma 2.11, we obtain
(R (G R A Cag  E N CAs Cal N Can)
P i i
—gi(al+1(el+1) Vi i+1(ei+1))

—@i + Dpler)d’ (al“(el“) o Tl thy).
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By Lemma 2.10, we have

g @, Vi M) = —( + Dplep) g @F . o (eI,
and hence, g'((D} o' ™h(eM), a'*1 (™)) = e;(24) = 0. Because of i < d,
(@ (), a1 (eT)) is a local frame of N'. Hence, (Di+ai+1)(ei_+l) = 0. In a simi-
lar way, we have (D! _o/t!) (¢! ™) = 0, thus (D'a/*+!) = 0. O

LEMMA 2.13. Under the same assumptions as in Lemma 2.11, we have
1 .
(2.25) pi(X) = E(dlogl)»il)(JX) + @+ Dp(X),

1
(2.26) (dpi)(er, e-) = SAlog|hil + (I + DK,

where p; (resp. p) is the connection form of V' (resp. V) with respect to (£;, ;) defined by
(2.22) and (2.23) (resp. (e+, e~)), and A is the Laplace operator ofMlz(K).

PROOF. Using Lemma 2.11 and (2.23), we have

i 1 1
Ve i = |)‘i|<e+ <ﬁ> - ﬁ(i + 1)P(€+)>m‘

1 .
= —<§d(10g [Ail(Jey)) + (0 + 1),0(€+))77i .
Noting Vi n; = —p; (X)n;, we have

1
piler) = sd(log|Ai(Jer) + (0 + Dplet) .

In a similar way, we get p;(e—) = (1/2)d(log|A;i|)(Je—) + (i + 1)p(e—). These equations
show (2.25). Using (2.25) and (dp)(e4+, e—) = K, we have (2.26). O

LEMMA 2.14. Let f : MIZ(K) — QF(c) be an extremal isometric immersion which
is nicely curved of order d. We assume that there exists a positive integer i < d such that o'

and o't are isotropic with isotropic functions Aj_1 and A; respectively. In the case of i < d,
227 L6 = VI2ihiclE, L6 =0,
e M =0, e Mi—1 = i/Ai—1ni,
T/ 0 Ti-! VI2hi A1
2.28) Si& =0, S, &=ei18/2hi[Mio1lEi-1,
Séﬂi =&i—1&/12hi /Xi—1lni—1 St mi =0,
where gj :== L /|Aj| (j =i —1,i) and Ao := 1. In the case of i = d, we have
(V2)" 1y
SéiadH(eiH) =0, SE (e = ego1 ————"84-1,
(2.29) VIra-1l
d d+1,d+1 (V2)"* g d d+1,d+1
Se+05 (6_ ) = Ed_lﬁnd—l P Se,a (e_ ) =0.

PROOF. We can simply prove these equations by (2.22) and (2.23). O
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For the later use, when o and '™ are isotropic, we rewrite (2.28) as follows.
o . X
1 1 i
(2.30) Sézoz”r (e’2+ ) = KO{’ (€5),
where e is a spacelike unit tangent vector to M IZ(K ).

Since (2.15) in Lemma 2.7 holds, we can repeatedly use Lemma 2.11 under the assump-

tion: a2, a3, ..., af ! are isotropic. Hence, Lemma 2.11, and equations (2.25) and (2.26) are

available forany i = 1, 2, ..., k, and also Lemmas 2.12 and 2.14.

LEMMA 2.15. Let f : Mlz(K) — QF(c) be an extremal isometric immersion which is
nicely curved of order d. If there exists a positive integer k < d such that o'tV is A;-isotropic
foranyi =1,2,...,k, then we have A1 = (c — K)/2 and, when k > 1,

et = e gy ) G=120 k- 1)
l+1_2 Cc 2 2 0g A1 i i 1=1,2,..., .

Therefore isotropic functions A1, ..., A depend only on ¢, K and higher derivatives of K.
PROOF. By the Gauss equation (2.4), (2.27), (2.28), and 1y = 1, we have
Kei = R(ey,e_)er =c(gle—,er)er —gleq,er)e—) + Sel+ Te(ze+ — Self Teo+e+
=cey — 0€12[A160

hence A1 = (¢ — K)/2, where ¢g = g(e4,e—) = land &y = e4. Fori =1,2,...,k — 1if
k<d,ori=1,2,...,k—2if k = d, by the equation (2.5) on N’, (2.27) and (2.28),

. o o . . A Aiad
Riler et = TS 6 = 0180, 6 4+ ST 6 - STl =2 (2 - 2t )
11— 1

In the case of k = d, using (2.5) on N d=1 and (2.29), we can see that the equation above holds
fori = k — 1. On the other hand, from (2.26), we have

R'(ey, e )& = (%Alogml + (i + 1)1<) & (=1,2,....k—1).

Since &; is everywhere nonzero fori = 1,2, ...,k <d,

| Ao M
§A10g|Ai|+(i+l)K=2< i ’“).

Ai—1 A
From these equations and A; = (¢ — K)/2, we obtainfori =1,2,...,k— 1
1 @+DGE+2) 1
Aitl = > <c— fl{ - EAlong ---Ai|) Ai.
Thus we complete the proof. O

COROLLARY 2.16. Let f : Mlz(K) — QF(c) be an extremal isometric immersion
which is nicely curved of order d. We assume that there exists a positive integer k(< d) such
that &'tV is Ai-isotropic for anyi = 1,2, ..., k. If K is constant, then we have

1 i+ 1
)\,.=§<c_’(’;r )K>Ai_1 (i=1,2,....k<d).
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Therefore a2, a3, ..., " are constant isotropic, moreover,n > 2k andt > k. In the case

of k = d, we see that a®*" is 0-isotropic and K = 2¢/d(d + 1).

We furnish a nonexistence result on extremal Lorentzian surfaces by virtue of the corol-
lary above.

THEOREM 2.17. There are no extremal isometric immersions from MIZ(K) into QF (c)
of which all higher fundamental forms are isotropic if the constant Gaussian curvature K #
2¢/i(i 4+ 1) for any integeri.

PROOF. For any isometric immersion f : M12(K ) — Q7F(c), there exists a positive
integer d such that f is nicely curved of order d. Then, by the assumptions and Lemma 2.9,
the constant isotropic function A4_1 is nonzero and A, is zero. From Corollary 2.16, we obtain
K =2c¢/d(d + 1) and the proof of the theorem is completed. O

REMARK 2.18. Bryant [1] proves the nonexistence of minimal immersions from sur-
faces of constant positive Gaussian curvature K # 2c¢/i(i + 1) (i € N) into Sg(l /A/€)
(without the isometry condition). See Calabi [2] and Wallach [16] also. The theorem above is
a pseudo-Riemannian version of [1, Theorem 1.5]. It is natural to ask whether the condition
“isotropicity” of higher fundamental forms is needed or not. We can find an extremal surface
of K =1(c = 1andi = 1) whose second fundamental form is not isotropic (see the last
paragraph in Section 5).

3. Congruence theorem for immersions with horizontal reflector lifts. Let V be a
2m-dimensional vector space V with inner product (, ) of neutral signature. A parahermitian
structure on V is an endomorphism J : V — V such that J? = idy and (JX,JY) =
—(X,Y) forall X and Y € V. The eigenspaces V4 := Ker(J F idy) of a parahermitian
structure J are m-dimensional totally isotropic in V, which satisfy V = V; @ V_. We denote
the space of all parahermitian structures on V by Z(V).

Let (1\71 , ) be a 2m-dimensional manifold of neutral signature. The reflector space Z (1\71 )
is defined by

Z:=ZWM):= ) z(1,M).
peM

Note that the reflector space is a subbundle of End(T M). The bundle projection p : Z — M
and the Levi-Civita connection V on M induce the decomposition TZ = T"Z @ T Z into
the horizontal subbundle 7" Z and the vertical subbundle T° Z

Let f : (M?,g) — (M,%lm, '7) be an isometric immersion. A section of J e r(ftz
is a reflector lift of f (or M), if J] lTm = J, where J is the canonical paraKéhler structure
on M. Then, putting J+ := =7 | 7137, We have a parahermitian structure of the normal bundle
T M. An isometric immersion f admits a horizontal reflector lift if Jis V- parallel that is,
Vi = 0, where V is the induced connection from the Levi-Civita connection of M. By a
straightforward calculation, we have
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LEMMA 3.1. The reflector lift 7T is horizontal if and only if the (usual) second funda-
mental form « satisfies (X, JY) = J*ta(X,Y) forall X,Y € TM and V*J+ = 0.

In Riemannian geometry, a surface with horizontal twistor lift is called superminimal.
Indeed, superminimal surfaces are minimal. The following proposition is a corresponding
result to neutral geometry.

PROPOSITION 3.2. An isometric immersion with horizontal reflector lift is extremal.

PROOF. By Lemma 3.1, a(ey,e_) = a(Jeq,e—) = aleq,Je—) = —aleq,e_),
which gives H = a(e4,e_) = 0. O

In this section, we give a congruence theorem for isometric immersions with horizontal
reflector lifts.

LEMMA 3.3. Let f : MZ(K) — sz (c) be an isometric immersion which is nicely
curved of order d. If f has a horizontal reﬂector lift 7, then J is N'-preserving. Moreover
= J|N, € End (N') is Vi-parallel and J' T’ 1;, 1=T% C, | forany ¢;_y € T'(N'™1)
andz =1,2,...,d. In particular, we obtain
X X X i) = T X X))
PROOF. From Lemma 3.1, J is N'-preserving. Putting J! := 7|N1, we have
(VI D@D = Sy (U6 = T (Sx 1) = Tx(J'¢0) + T H(Tx ) -

Since J+ is (N1)L- preserving, we see that J! is V!-parallel, S J'o) = J(S Z1) and Jis
N 2-plreselrvmg If there exists a posmve integer k(< d) such that J¥ is V¥-parallel and T is
-preservmg, then we can put J k=7 |yt € I'(End (N ky). Moreover,

(VT = Sk (T — 1Sk o) — Ty (TFa0) + T (Tx 4 -
Since J1 is (Nk)L-preserVing, we see that J* is Vk-parallel, S;(chk) = Jk_l(Sé‘(;k) and J
is N*¥*1_preserving. By the inductive method, we have the lemma. O

LEMMA 3.4. Let f : MIZ(K) — Q,2n’” (c) be an isometric immersion which is nicely
curved of order d. If f has a horizontal reflector lift J, then the i-th normal bundle N' is a
i+1

Lorentzian plane bundle, and the (i 4 1)st fundamental form o' ™" is isotropic and the isotropic

function A; is everywhere nonzero foranyi (i =1,2,...,d — 1), thus rank N¢ = 2(m — d).
PROOF. Let (eq, e2) be a local oriented orthonormal frame on M. Then we have
gi(ai-'l‘l(el’ eé)’ C(l+l(€l+1)) — gi (ai+1 (Jez, elz) C(l+l(€l+1))
=g (Jl l+1(el+1) al-‘rl(el-'rl)) — 0

Hence, al Tl s isotropic. Thus, from Lemma 2.9, we can see that its spacelike isotropic
function is everywhere nonzero and N' is a Lorentzian plane bundle over M. O

Letf: M 12(K ) — Q%{” (c) be an isometric immersion which is nicely curved of order
d. By Lemma 3.4, we can consider the local null frame (£;, n;) of N’ defined by (2.22) and
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(2.23)fori =1,2,...,d — 1. We see that & (resp. n;) is a (+1)- (resp. (—1)-) eigenvector
of J' by Lemma 3.3.

We obtain a congruence result on isometric immersions with horizontal reflector lift into
a space of constant curvature.

THEOREM 3.5. Let f, 7 : MIZ(K) — Q(zld (¢) be isometric immersions with horizon-
tal reflector lifts from a connected oriented Lorentzian surface. If both immersions f and f
are nicely curved of order d, then there exists an isometry @ of Qéd (c) suchthat f = ® o f.

PROOF. The corresponding objects associated with f are denoted by the symbol with
—”, for example, T M is the normal bundle of 7 Let (e4+, e—) be a local frame field such
that g(e+,e+) = 0, g(e+,e—) = 1 and Jex = Fes. We take a local frame (§;, n;) for any
i=1,2,...,d—1 Wedefine® : T*M — TLM by &(&) = & and & (n;) = 7; for
i=1,2,...,d— 1. Since the reflector lifts of f and 7 are horizontal, @ preserves the higher
fundamental forms. From Lemma 2.15, A; = A; fori = 1,2,...,d — 1. By Lemma 2.10
and (2.25), all coefficients of VL with respect to (§1, 01, ..., &4—1, nd—1) depend only on c,
K (and i). Then we see that

13

O(Vy&) =VIixE, ®&(Vin) = Vigm,

that is, @ preserves the normal connections. By the congruence theorem for isometric im-
mersions into a space form (see [6], for example), we see that there exists an isometry @ of
0%(c) suchthat f = @ o f. O

REMARK 3.6. An existence theorem for an extremal isometric immersion from a sim-
ply connected Lorentzian surface into Qfld (c) can be found in [13]. The integrability condition
is described by the functions Aq, ..., Ay—1 in Lemma 2.15.

4. Lorentzian Boruvka spheres. Hereafter, we provide examples of isometric im-
mersions with horizontal reflector lifts. First of all, we recall a notion of helical geodesic
immersions in pseudo-Riemannian geometry.

Let ¢ be a unit speed spacelike curve of a pseudo-Riemannian manifold N. For a positive

integer d and positive constants 1, ..., kg—1, the curve c is a helix of type A = (d; k1, ...,
Kd—1; €1, ..., &q), if ¢ satisfies the Frenet-Serre formula:

Veci = —gi_18iki—1ci—1 +kiciy1 (i =1,2,...,d),
where V is the Levi-Civita connection of N, ¢y, ..., cq4 is an orthonomal frame field along

c, & = {ci,ci)y € {l,—1}, 60 = ko = kg = 0 and cp = cg4+1 = 0. We call the integer d
the order of c. A helix of order one is a spacelike (resp. timelike) geodesic of N, if e1 = +1
(resp. €1 = —1).

Let f : M — N be an isometric immersion between pseudo-Riemannian manifolds.
The immersion f is a spacelike (resp. timelike) helical geodesic immersion (HGI) of type
A, if f maps arbitrary unit speed spacelike (resp. timelike) geodesic ¥ of M into a helix
of type A which is independent of y. This notion is a generalization in pseudo-Riemannian
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geometry of that in Sakamoto [14]. In [9], the second author proves the following conditions
are equivalent in the case that the domain of f is indefinite.

(1) fisaspacelike HGI of type A = (d; k1, ..., Kd—1; €1, - - -, €d)-
(2) f is atimelike HGI oftypez =(d: k1, ..., ka—1; (=Dler, ..., (=D9y).

Hence we call such immersions HGIs for short. We shall introduce the following notions.

DEFINITION 4.1. An submanifold L of a space form (Q7 (c), §) is said to be torally
geodesic if the Levi-Civita connection V of Q7 (c) naturally induces an affine connectionon L,
that is, %XY € I'(TL) forany X, Y € I'(T L). Furthermore, if the pullback j*7 is identically
vanishing on L, it makes L a null r-plane of Q}(c), where r = dimL and j : L — Q}(c)
is the inclusion map. A null curve ¢ on Q(c) is null r-planar, if there is a null r-plane L of
Q7 (c) such that Im (c) C L. An isometric immersion f : M — Q7 (c) between indefinite
pseudo-Riemannian manifolds is a null r-planar geodesic immersion (PGI), if there exists a
positive integer r such that, for each null geodesic y of M, the null curve f oy is null r-planar
in Q7 (c). If anull r-PGI f is not a null g-PGI for any ¢ < r, we say that f is a null proper
r-PGI.

Notice that a null r-plane L in QF (c) is contained a null rp-plane L (ro := min{n—t¢, 1}).
Therefore any null 7-PGI is null ro-planar geodesic. For example, any HGIs f : M — QF(c)
are null ro-planar geodesic ([9, Theorem D]). In general, the converse is not held. See [11]
for details. Simpler examples are totally umbilic isometric immersions, which are null proper
1-PGIs, since the immersions map null geodesics of submanifolds to null geodesics in the
ambient space. We deal with this notion in the last section.

In Riemannian geometry, typical examples of HGIs are the standard minimal immersion
of compact rank one symmetric spaces. In the case of the n-dimensional sphere, associated
with each positive integer d, there exists an isometric minimal immersion ¥, 4 : S"(r(d)) —
5@ where S"(r(d)) := S§(r(d)), S™@ := §™@) (1), and the radius r(d) and the dimen-
sion m(d) are given as follows.

dd+n—1 d+n—2)
r(d):,/%, m(d):(2d+n—l)%—l

The immersion v, 4 is called the d-th standard minimal immersion of S” (r(d)) and (space-
like) HGI of type A, g4 := (d;«1,...,k4—1; +1,...,+1), where 1, ..., kg—1 are certain
positive constants. In the case of n = 2, these immersions are called the Boruvka spheres.

In [10], the second author constructs, associated with each the d-th standard minimal

immersion of S"(r(d)), an extremal isometric immersion ¥, 4 ; of S} (r(d)) into Sl’;'x) =
Sl"gx) (1) for arbitrary t = 1, ..., n, where the index /(d) is a certain integer (see [10] for de-

tails). In the case of (n, t) = (2, 1), the integer [(d) is equal to d. The constructed immersion
Yudr (@ =1,...,n—1)is aspacelike HGI of type A, 4 and ¥, 4., is a timelike HGI of type
Zn,d ([10]). See also [5] for a construction of harmonic maps of 512 into a space of constant
sectional curvature one.
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We recall the d-th standard minimal immersions of S2(r(d)) into the unit sphere. Let
A2 be the Laplacian on S2. It is well-known that all eigenvalues are given by gy = d(d + 1)
for any nonnegative integer d and the dimension of the eigenspace V; of A corresponding
to the eigenvalue g is 2d + 1. Taking an orthonormal basis fi, ..., fag+1 of V; with respect
to the L2-inner product:

g(f1, f2) = /52 fihdvg, fi, e Vg,

where dvg> is proportional to the volume element of $? and normalized in such a way that
[2dvg = dimVy = 2d + 1, we can see (f1)? + -+ + (faa+1)* = 1 on S?, and identify
V; = R+, Then the d-th standard minimal immersion ¥ 4 : $2(r(d)) — S?¢ c R?+ s
given by

V2.4 = (f1,--., f2a+1) © X1/r(d) »
where yj is the homothetic transformation in R” defined by xx(v) := kv for v € R". We
remark that the d-th eigenspace V; of § C R3 is given by

Va={Plg | P € Hi(R>},

where H;(R3) is the space of homogeneous harmonic polynomials of degree d on R and
P/ is the restriction of P to $? C R3.

We summarize the construction of extremal immersions obtained in [10] as follows. Let
F[x] := F[x1, x2, x3] be the polynomial algebra in variables x1, x2, x3, where F is the set of
all complex numbers C or real numbers R, Fy[x] the space of homogeneous polynomials of
degree d, and AR? = —812 + 822 + 832 the Laplacian on R?. Putting

Hy(R3) := (P € Ry[x] | AgyP =0},

we see dim Hd(R?) = 2d + 1. Moreover, we can see that Asf(Plsf) =dd+ 1)P|S% for P €
H; (R%), where Sl2 C R? is the unit Lorentzian 2-sphere, and A 52 is the Laplacian of Slz. Let

p1 be the ring endomorphism on C[x] defined by p; (1) := 1, p1(x1) := /=1 x1, p1(x;) := x;
(i =2,3). We call p a (1-)Wick rotation, which satisfies p1(P) € Hy(R) & /—THy(R})
forany P € Hy (R3). We can take a basis P_g, ..., Py of Hy(R?) such that

(P_g)* + -+ (P0)* = (x7 + x5 + 337,
p1(P) € V=THy(R3) (i < 0) and p1(P;) € Hy(R3) (i > 0). We note that (p1(P_q))* +

o+ (p1(P))? = (=] + x5+ x)? Putting Q; i= —v/=1p1(P) (i < 0) and pi(P;)
(i = 0), we have abasis Q_g4, ..., Qg of Hd(R?) such that
—(0-)? = = (Q-D* + (Q0)* + (Q)* + -+ (Qa)* = (—x] + x5 +xD7.

We define the indefinite scalar product g; on Hy (R? ) by
91(Qi, Q) = ¢€idij ,
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where &; = —1 (d < 0), &; = +1 (d > 0) and identify Hy(R}) = R3*™". Then we can
obtain the extremal isometric immersion into the unit neutral 2d-sphere:
V2d1 = (Q-dlg. - Qals) © Xiyriay ST () — 53¢ C R

The immersion Y2 41 is called the Lorentzian Boruvka sphere (LBS) in de throughout this
paper. We can see explicite representations for ¥2 4,1 (d = 2, 3) in [9, Examples 3.5, 3.6].

Composing homotheties and anti-isometries of 512 (r(d)) and 29, we can obtain extremal
immersions from Q%(Kd) to Qfld(c), where Ky := 2c¢/d(d + 1) and ¢ # 0. We denote this
immersion by ¢4 .. This immersion also is referred to as LBS in Qfld (c).

An isometric immersion f : M — QF(c) is said to be full in Qf(c), if there exist no
totally geodesic submanifolds N of Q} (c) such that f(M) C N anddim N < n. We can give
the following.

PROPOSITION 4.2. Let f : MIZ(K) — Q7 (c) be a HGI of order d of an oriented
Lorentzian surface. If f is extremal, then f is nicely curved of order d and there exists a
totally geodesic submanifold P of Q}(c) such that P is isometric to Qfld(c) and f(M) is
full in P. Let f' be the isometric immersion such that f = to f', where ( is the inclusion
P < QF(c). Then, " : Mlz(K) — P admits a horizontal reflector lift, and K is constant.
i+1 d+1 s identically

Moreover o is nonzero constant isotropic fori = 1,...,d — 1, and o

vanishing.

PROOF. Let f : MIZ(K) — Q7 (c) be a HGI of type (d; k1, ..., kq—1; €1, ..., &q4) and
nicely curved of order m. In the case of d = 1, since f is totally geodesic, the assertion
follows. Thus we may assume that d > 2.

Let u € T, M be a spacelike unit tangent vector to M at p € M and y a geodesic such
that y (0) = p and y’(0) = u. From the Frenet-Serre formula of ¢ := f o y, Vyer = kica,
where U := ¢/. From the Frenet formula of f,

Vuer = Vyer + Ther = o> (U?).

Thus we have k1c; = a?(U?). So a? is nonzero (sgxf)-constant isotropic by the arbitrarity
of spacelike unit tangent vector u. From Lemma 2.9, we see that N'! is a Lorentzian plane
bundle over M, therefore, m > 2.

We assume that there exists an integer k (2 < k < min{d, m}) such thatxy---x;_j¢c; =
ol (U forany i (2 < i < k). Then o is nonzero (g;k} - - - k> |)-constant isotropic by the
arbitrarity of spacelike unit tangent vector u and ¢; € N'~!. Thus, by virtue of Lemma
2.9, N'~! is a Lorentzian plane bundles on M and admit a parahermitian structure Ji~!,
Furthermore, from the Frenet-Serre formula of ¢,

Vuci = —gi—18iki—1¢i—1 + KiCit1,
and, from the Frenet formula of f,

Vyei = —Sb_lci + V{,‘lci + Tb_lci .
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Since o' is constant isotropic for i = 2, ..., k, using Lemma 2.12, we obtain V{,‘lci = 0.
Moreover, the equation (2.30) gives Sb_lci = &i_1&iKki—1ci—1, thus we have Té_lci = KiCi+1,
hence o' TN (U = iy -+ kiciqt.

In the case of k = min{d, m} = d, by definition, k; = 0. Thus, we can see adtl = 0,
that is, T¢ = 0, which implies that m = d and, using Lemma 2.4, there exists the totally
geodesic submanifold P such that P is isometric to Qid(c) and f(M) is full in P. On the
other hand, if k¥ = min{d, m} = m, then «,, has zeros by Lemma 2.9, hence «,, = 0. By
a similar way, we obtain the same conclusion. Since P is totally geodesic in Q" (c), the Vi-
parallel parahermitian structure J' on N' is also one on the i-th normal bundle N " of S/ for
anyi (i =1,2,...,d —1). We can define J*- € I'(End(T+M)) by

Then we can check (X, JY) = Jta(X,Y) and V1J+ = 0. By Lemma 3.1, f admits
horizontal reflector lift J := J & JL.

Since the second fundamental form «? is (szkf)-constant isotropic, using Lemma 2.15,
we see that M is of constant Gaussian curvature. O

In Riemannian case, the Boruvka spheres 2 4 : S2(r(d)) — S* are superminimal,
that is, these have horizontal twistor lifts. Note that the LBS ¢4 : Q%(Kd) — Qg‘l(c)
is an extremal HGI of order d ([10, Proposition 3.8.]) and nicely curved of order d from
Proposition 4.2. Therefore, Proposition 4.2 for the LBSs corresponds to the result above for
Boruvka spheres. We summarize as follows.

COROLLARY 4.3. The Lorentzian Boruvka sphere ¢gq  : Q%(Kd) — Qfld (c) is nicely
curved of order d and has a horizontal reflector lift.

5. Extremal surfaces with null -planar geodesics. In this section, we prove our
main result in this paper:

THEOREM 5.1. Let f : Mlz(K) — QF(c) be an extremal null r-planar geodesic
immersion from an oriented connected Lorentzian surface of constant Gaussian curvature K
and ¢ nonzero. If f is real analytic and full, then f is locally congruent to the Lorentzian
Boruvka sphere ¢, with K = 2¢c/r(r + 1), n = 2r and t = r. Moreover the order r is
proper.

The proof requires a few technical steps which show that the highest normal bundle is
zero. Notice that, in general, the highest normal bundle need not be contained in the i-th
osculating space of an isometric immersion for a positive integer i.

Letf: M 12(1( ) — Q7 (c) be an extremal isometric immersion which is nicely curved of
order d. Thus, we obtain the decomposition f#*7Q = @& N’, where N® = TM and N' is
the i-th normal bundle fori > 0. Put, fori =0, 1,...,d,

E =o', Hi=a ),
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where e+ = (Fe; + e2)/ V2 and (e1, e2) is a local oriented orthonormal frame such that
g(ei,e;) = (—=1)';j. Then we see N’ = Span {§;, #;} fori = 1,...,d — 1 from (2.18) and
note that Span {éd, fa) € N% = (Osc?(f)t. We inductively define higher derivatives of
ot with respect to V¥ by

(DD (X1, X2, ..., Xap) := (D%, @) (Xa, ..., Xat2),
(DO (X1, Xa, .., Xapigr) i= (Dg, (DY V™)Xo, Xagagn)

for any positive integer k.
Set ¢ := f oy for anull geodesic y of M. Then we get

Veh=e¢. V=, V&) =L+ @),

where ¢ is the tangent vector field of ¢ and f, 3 » is a function along c. We inductively obtain

(5.1) V(ekty = ijfjl%(c'i)jua"“(c'k“) k=0,1,...,d),

k+1 -

where f_"" is a function along c. By a simple calculation, we have

LEMMA 5.2. For any nonnegative integer k,

d+k
d+k+l) Z fcf;‘rk-i-lv(él) + (Dd(k)ad+l)(éd+k+l) ,

where ffli'Hc'Irl is a function along a null curve ¢ = f o y as above.

Hereafter, when not specified otherwise, we work under the assumption that
f:M 12(K ) = Q7 (c) is an extremal null 7-PGI which is nicely curved of order d.

LEMMA 5.3. For any nonnegative integers i, j,
§E.E) =0, GHi.Ap=0.
PROOF. By Lemma 5.2, (5.1) and the definition of null »-PGI, this lemma holds. O

PROPOSITION 5.4. IfMlz(K) is oriented, then N' is an orientable Lorentzian plane
bundle, thus N' admits a V' -parallel parahermitian structure J' of (N', ¢") fori = 1,...,d—
1. Moreover, the (i + 1)st fundamental form altl s Ai-isotropic fori = 1,...,d, where
A= gi(éi, ﬁi)/2i. In particular, A1, . .., Ag—1 are non-vanishing and Ay has zeros on M.

PROOF. From (2.18) and (2.19), we can see that rank N': = lor2fori =1,2,...,d —
1. Thus, by virtue of Lemma 5.3, u; := gi(éi, 7;) must be nonvanishing on M for i =
1,...,d—1. Therefore we can see that N i is an orientable Lorentzian plane bundle and, using
Lemma 2.6, admits a Vi-parallel parahermitian structure J i of (N i gi) fori=1,...,d—1.
Note that ug = gd (éd, nq) has zeros on M. We can see that ot s (i /2i)-isotropic for
i=1,...,d. In fact, from

§i=WD (@t e e) +at ()
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i =W2) ! ( —a't(e, eé) + ai+1(ei+1))
and Lemma 5.3 again, we obtain ¢ Tt (e, e2) ot’+1(el+1)) = 0. By the arbitrarity of
a local oriented orthonormal frame (eq, ¢3), altl s spacelike (u; /2i )-isotropic for i =

I,...,d. O

For a vector bundle E with a bundle connection VE over M 12(K ) and an E-valued (0, [)-
tensor field O, we note the Ricci identity

(DE(DEO)(X,Y, X1,..., X)) — (DE(DEO)Y, X, X1,..., X))

=REX,V)Q(X1,.... X)) —ZQ(Xl,...,R(X, X ....X»,
i=1

where an E-valued (0, [ + 1)-tensor field (DF Q) is defined by

(DEQX, X1 ..., Xp) i= VR (Q(X1, ..., X)) = Y QX1 ..., Vx Xi, ..., X))
i=1
We put for any positive integer k

(Dd(k)ad-i-l)(ei-‘rk-‘rl) (Dd(k)ad+l)(eti+k+l),

Eqrk = o Ndtk =
which are in Osc?*+1(£) N N?. Then we have
LEMMA 5.5. Forany positive integer k,
(Dd(k)ad+l)(e$’ed+k) € Osc?Hk=1(f).
PROOF. Inthe case of k = 1, we see, in Lemma 2.11,
(Dd(l)O(d+1)(e¥ ed+1) _ (Dg;ocdH)(edH) —0e0sc?(f).
For k > 2, we assume that
(Dd(k—l)ad+1)(e d+k 1y € Oscd+h=2(f).
By the Ricci identity,
(D40 +y (o ei+k) — (DR (o, e, ei+k )
+Rd(e_, e.,.)(Dd(k 2)(¥d+1)(€i+k_1)
—(d +k = D(dp)(e—. e)(DU D).
On the R.H.S. in the equation above, we get, using (2.6) for the 2nd term,
(the 1st term) = Vd (Dd(k D= 1)(e_ d+k— l)
~d+k~ 2)p(e+><Dd<k Dad=h e, 1) € 0sc™ (1)
(the 2nd term) = T/ ~'S¢ Egpp 0 — T 7'SE Eqppn € Oscd f).
(the 3rd term) = (d + k — 1)K &g4x—> € Osc?TF=1(f).

So we have (D?®gd+1y(e_, d+k) € Oscdtk= l( f). By a similar calculation, we obtain
(DB gd+y (e, 1) € Oscd+k '(f). We finish the proof of this lemma. O
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From the lemma above, we have
LEMMA 5.6. For any nonnegative integer k,
Osc(f) = Span{&, 7 |1 =0,1,...,k}.

Differentiating sections §d+k, Nd+k of N 4 we obtain some lemmas on N¥.
LEMMA 5.7. For any nonnegative integer k,

Ve Eqpk=Eapr1 + d+k+ Dplepars.,

VY Atk = Ratirt — (d +k + 1D ple=)fas -
PROOF. By definition and a simple calculation, we can prove this lemma. O

LEMMA 5.8. Ifq(¢q, éd) = §(¢a, Na) = O for a vector g € N, then Si{d = 0 for
any X € TM.

PROOF. We note that S¢ € A'Hom (N4, N4~ 1) and (§d_1, Nd—1) is a local null frame
of N~ with g*~' (E4-1, fla—1) = pa—1 # 0. Using a’* (e, e4) = 0, we have

Sifd = u;il(gd_l(Si;d, fd—1)Ed—1 + gd_l(Sde, éd—l)ﬁd—l)
= w197 Cas E) a1 -

We similarly get Sf_ ta = /L;llgd_l(é% ﬁd)éd_l which shows Sf(;“d = 0 for any X €
TM. O

LEMMA 5.9. IfMlz(K) is of constant curvature K , then we obtain for any nonnegative
integer k,
9% Ga. flai) = 9% (fa. §a+1) = 0.
PROOF. Since K is constant, we obtain A; = 0 by Corollary 2.16. Thus we see
E(éd, n4) = 0. For a positive integer k, we assume that

9 Ea, flask—1) = 9 (Ra, Ea-k—1) = 0.
Then we have
9% Ea. fasi) = 9% Ea. VE Hagk—1 + (d + k) ple=)fdri—1)
=e_g% (€, Nasr—1) — 99 (VY &4, Rasr—1)
=—g' (V¢ &4, fari—1)
noting that Vié‘d =+ l)p(e_)é‘d from Lemma 2.11,
= —(d+ Dp(e=)g"Ea. fark—1) = 0.

Hence we prove g¢ (4, Hasi) = 0 for any k > 0. In a similar way, we get ¢ (4, Eii) =0
for any k > 0. O

Put, for any point p of M IZ(K ),

Wy, := Span {(§d+k)p, (Nd+k)p | k is any nonnegative integer} C Nl‘f .
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From Lemmas 5.3, 5.8 and 5.9, we have

LEMMA 5.10. If K is constant, then S§§d+k = S;lfﬁ,u_k = 0 for any nonnegative
integerk and X € TyM (p € M).

For an isometric immersion f : M — Q7 (c) and p € M, we put

Osc¥(f) := | JOsch(f) C (f T Q).

i=0

PROOF OF THEOREM 5.1. Let f : MIZ(K) — Q7 (c) be nicely curved of order d. From
Proposition 5.4, we see that N 1 .., N9! are orientable Lorentzian subbundles of f #r 0.

Since f is full and real analytic, there exists a point p € M such that Osc;’f’( f) =
(f*T Q) p- Thus, we can take a open subset U around p in M such that

Osc®(f)lu = A TOly .

On U, from Lemma 5.6, we can see N9 = Span {& 4k, Na+k | k = 0}. Using Lemma 5.10, we
have S¢ = 0 on U, if and only ifa9t! = 0 on U. Thus EB?;&N" = Oscd(f) = 0sc®(f) =
TQ onU. So, rank N9 = n — 2d = 0, that is, n = 2d. Then, since all vector bundle
NO(= ™), N1, ..., N9=1 are Lorentzian plane bundles, we also get + = d. Hence we have
r <min{n —t,t} =d.

Taking a null geodesic y of M such that y(0) = p € M and y(0) = ey , = (§0)p and
putting ¢ := f o y, we obtain by (5.1) and ¢+ =0

Span{V(cy'), | i = 1} = Span{(&0)p, €1)ps - - -, (Ea—1)p}

and its dimension is equal to d. It implies that c is proper d-planar, hence r > d. So we have
r = d. Since we can similarly see that any null geodesic of M is proper r-planar in Q7 (c), f
is null proper r-PG.

By virtue of Corollary 2.16, o2, ..., a" are (nonzero) isotropic and K = 2¢/r(r + 1).
From Proposition 5.4, we can put the reflector lift J = Gaf;éJ " of f. Using (2.1)~(2.3),
(2.27) and (2.28), we get (Vo, ))(&) = (Voo ))(i) =0 fori = 0,1,...,r — 1, thatis, J is
horizontal. By virtue of Theorem 3.5 and Corollary 4.3 , we complete the proof of Theorem
5.1. O

In Riemannian geometry, Calabi shows that a full minimal isometric immersion f :
M 2(K ) — S" satisfies n = 2d and is congruent to the Boruvka sphere ¥ 4, in the case that
M is of genus zero and of constant Gaussian curvature. As we see in Theorem 5.1, to obtain
a corresponding result in pseudo-Riemannian geometry, we need the additional assumption
“null 7-PG”. There exist extremal isometric immersions which are not null r-PG for any
r > 0. For example, see [3, Theorem 5.1.(b)].
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