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Abstract. We show a congruence theorem for oriented Lorentzian surfaces with hor-
izontal reflector lifts in pseudo-Riemannian space forms of neutral signature. As a corollary,
a characterization theorem is obtained for the Lorentzian Boruvka spheres, that is, a full real
analytic null r-planar geodesic immersion with vanishing mean curvature vector field is lo-
cally congruent to the Lorentzian Boruvka sphere in a 2r-dimensional space form of neutral
signature.

1. Introduction. To study minimal surfaces in a unit sphere, the twistor lift plays an
important role. For instance, Calabi [2] proves a rigidity theorem for minimal immersions
of surfaces with genus zero in Euclidean spheres using twistor lifts. An application of the
rigidity result shows that a minimal isometric immersion of the 2-sphere into a unit sphere
is congruent to the d-th standard immersion (also called the Boruvka sphere in the unit 2d-
sphere) for a positive integer d . As a result, Boruvka spheres have horizontal twistor lifts.
Chern [4] reinterprets Calabi’s work and investigates minimal 2-spheres in a unit sphere by
using the higher order osculating spaces and higher fundamental forms. We refer to Bryant
[1] also. One of the aims in this paper is to characterize Boruvka spheres in indefinite pseudo-
Riemannian geometry, using an indefinite version of twistor lifts.

The Boruvka spheres with Lorentzian metric, a family of isometric immersions of
Lorentzian 2-sphere into the pseudo-Riemannian spheres are, via Wick rotations, constructed
from the standard immersions of Riemannian 2-sphere in Ding and Wang [5] and Miura [10].
These immersions have vanishing mean curvature vector fields, thus, these are extremal. In
this paper, we call these immersions the Lorentzian Boruvka spheres (LBSs). We focus on
the fact that the target spaces of the LBSs are always neutral. Then it is natural that we use
reflector lifts instead of twistor lifts. The notion of reflector lifts established on neutral pseudo-
Riemannian manifolds is corresponding to that of twistor lifts in Riemannian geometry. See
Jensen and Rigoli [7] for details. We see that extremal helical geodesic immersions (HGIs)
from Lorentzian surfaces into a space form have horizontal reflector lifts. Note that the LBSs
have helical geodesics. As a property of HGIs, we propose a notion of null r-planar geodesic
immersions (PGIs). For a precise definition, see Definition 4.1. We provide a congruence the-
orem for oriented Lorentzian surfaces with horizontal reflector lifts. As an application of our
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congruence theorem, we characterize the Lorentzian Boruvka spheres as extremal Lorentzian
surfaces with null r-planar geodesic.

The paper is organized as follows. In Section 2, we prepare a general theoretical setting
and basic equations for Lorentzian surfaces. Furthermore, we investigate extremal Lorentzian
surfaces by using their isotropic higher fundamental forms and furnish several lemmas. In
Section 3, we introduce the notion of reflector lifts. A congruence theorem for oriented
Lorentzian surfaces with horizontal reflector lifts is proved. In Section 4, the definitions of
HGIs and null r-PGIs are clearly stated. Moreover, based on [10], we explain the construc-
tion of LBSs briefly. Finally, in Section 5, we investigate extremal null r-planar geodesic
immersions from Lorentzian surfaces of constant Gaussian curvature and provide our main
theorem.

2. Preliminaries. Throughout this paper, all manifolds and maps are assumed to be
smooth unless otherwise mentioned. Let E be a vector bundle over a manifold M and Ep
the fiber of E over a point p ∈ M . We write TM (resp. T ∗M) for the tangent (resp. cotan-
gent) bundle of M . For vector bundles E, E′ over M , we denote the homomorphism bundle
whose fiber is the space of linear mappings Ep to E′

p by Hom(E,E′), and set End(E) :=
Hom(E,E). The space of all sections of a vector bundle E is denoted by Γ (E). We denote
the space of E-valued 1-forms on M by ∧1(E) := Γ (T ∗M ⊗ E). Let ϕ : N → M be a
smooth map and E a vector bundle over M . The pull back bundle of E by ϕ is denoted by
ϕ#E. In this paper, a pair (E, gE) is a pseudo-Riemannian vector bundle if the bundle met-
ric gE of E is nondegenerate of constant index. The set of all metric connections of E with
respect to gE is denoted by C(E, gE).

2.1. Basic definitions and equations. In this subsection, we recall some basic defi-
nitions and equations for pseudo-Riemannian manifolds and submanifolds. Let (˜Mn

t , g̃) be an
n-dimensional pseudo-Riemannian manifold with nondegenerate metric g̃ of constant index
t . We may denote (˜Mn

t , g̃) by ˜Mn
t for short. We say that ˜Mn

t is of neutral signature if n = 2t ,
and Lorentzian if n > 1 and t = 1. If there is no confusion, we omit the dimension and index,
i.e., ˜M = ˜Mn

t . A tangent vector X to ˜M is called spacelike if g̃(X,X) > 0 or X = 0, null if
g̃(X,X) = 0 and X �= 0, and timelike if g̃(X,X) < 0.

Let Rnt be the n-dimensional pseudo-Euclidean space of the index t with the flat standard
metric. Let (x1, . . . , xn+1) be the standard coordinate on R

n+1. The n-dimensional pseudo-
sphere Snt (r) of the index t and the radius r > 0 is defined by

Snt (r) =
{

p ∈ R
n+1
t

∣

∣

∣

∣

−
t

∑

i=1

(xi(p))2 +
n+1
∑

j=t+1

(xj (p))2 = r2
}

.

Similarly, the n-dimensional pseudohyperbolic space Hn
t (r) of the index t and the radius

r > 0 is defined by

Hn
t (r) =

{

p ∈ R
n+1
t+1

∣

∣

∣

∣

−
t+1
∑

i=1

(xi(p))2 +
n+1
∑

j=t+2

(xj (p))2 = −r2
}

.
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The spaces R
n
t , Snt (r) and Hn

t (r) are of constant curvature 0, 1/r2 and −1/r2 respectively.
We denote the space form of constant curvature c by Qnt (c) which is one of Rnt , Snt (r) or
Hn
t (r).

From now on, we provide the basic equations for isometric immersions in pseudo-
Riemannian geometry. For more details, we refer to [15, IV, pp.163–188] in the case of
Riemannian geometry. Let (M, g) be a pseudo-Riemannian submanifold in (˜M, g̃) isometri-
cally immersed by f . We denote the Levi-Civita connection of g̃ (resp. g) by ˜∇ (resp. ∇).
The mean curvature vector field of M is denoted by H . If H = 0, then M is called an ex-
tremal submanifold ([12, p. 299]). We often omit the symbol “f ” for the induced objects
of the immersion f if there is no confusion for the simplicity. We define ˜∇(X1) := X1,
˜∇(X1,X2) := ˜∇X1X2 and inductively for i ≥ 3

˜∇(X1,X2, . . . , Xi) := ˜∇X1
˜∇(X2, . . . , Xi) , and

˜∇(X1,X2, . . . , Xi)(p) := ˜∇X1p
˜∇(X2, . . . , Xi) ,

where Xk ∈ Γ (TM) (1 ≤ k ≤ i) and p ∈ M . We define the i-th osculating space of f by
Osc0(f ) := M × {0} ⊂ f #T ˜M and for any positive integer i,

Osci (f ) :=
⋃

p∈M
Oscip(f ) , where

Oscip(f ) := Span{˜∇(X1, . . . , Xk)(p) | Xl ∈ Γ (TM), 1 ≤ l ≤ k ≤ i} .
Since f is an immersion, Osc1(f ) = TM . Therefore, there is the unique integer d ≥ 1 such
that

• Osc0(f ) � Osc1(f ) � Osc2(f ) � · · · � Oscd(f ),
• Osci (f ) is a smooth subbundle of f #T ˜M and the induced metric is nondegenerate

of constant index for each i = 1, 2, . . . , d ,
• Oscd+1(f ) = Oscd(f ) or Oscd+1(f ) is not a pseudo-Riemannian subbundle (i.e.,

the induced symmetric tensor in Oscd+1(f ) from T ˜M is degenerate or Oscd+1(f ) is
not a smooth subbundle of f #T ˜M).

If f satisfies the three conditions above, we say that f is nicely curved of order d . For
i = 0, 1, . . . , d − 1, we can take the i-th normal space Ni(f ) such that

Osci+1(f ) = Osci (f )⊕Ni(f ) ,

where Ni(f ) is the orthogonal complement subbundle of Osci (f ) in Osci+1(f ). We denote
Ni(f ) by Ni for short. Because of Osc0(f ) = M × {0} and Osc1(f ) = TM , we have N0 =
TM . Moreover we put Nd := Oscd(f )⊥ which is the orthogonal complement subbundle of
Oscd (f ) in f #T ˜M . Notice that Nd need not be contained in the osculating space Osck(f )
for an integer k > 0. Therefore we often need separate arguments for objects related to the
highest normal bundle. Then we obtain

f #T ˜M =
d

⊕

i=0

Ni .
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We denote the induced symmetric tensor in Ni from g̃ by g i . Note that g = g0, g1, . . . , gd

are pseudo-Riemannian, since f is nicely curved of order d .
For a vector ζ ∈ f #T ˜M , we denote the Ni -component of ζ by (ζ )N

i
. For i = 0, 1, . . . ,

d , we define the (i + 1)st fundamental form αi+1 by

αi+1(X1, . . . , Xi+1) := (˜∇(X1, . . . , Xi+1))
Ni .

By definitions, we can see that α1 = idTM ∈ Γ (EndTM), Ni = Span (Imαi+1) for i =
0, 1, . . . , d − 1 and Nd ⊃ Span (Imαd+1). We note that α(X, Y ) = α2(X, Y ), where α is
the usual second fundamental form and X,Y ∈ Γ (TM). The following lemma is proved in a
way similar to that in [15, pp. 171–172].

LEMMA 2.1. For a section ζi ∈ Γ (Ni) (i = 0, 1, . . . , d) and X ∈ TpM ,

˜∇Xζ0 ∈N0
p ⊕N1

p ,

˜∇Xζi ∈Ni−1
p ⊕Nip ⊕Ni+1

p (i = 1, . . . , d − 1) ,

˜∇Xζd ∈Nd−1
p ⊕Ndp .

By Lemma 2.1, we can define for ζi ∈ Γ (Ni) and X ∈ Γ (TM),
SiXζi := −(˜∇Xζi)Ni−1

(i = 1, 2, . . . , d) ,

∇i
Xζi := (˜∇Xζi)Ni (i = 0, 1, . . . , d) ,

T iXζi := (˜∇Xζi)Ni+1
(i = 0, 1, . . . , d − 1) .

It is easy to check that ∇0 = ∇, T 0
XY = α2(X, Y ) for any X,Y ∈ Γ (TM) and

Si ∈ ∧1(Hom(Ni,Ni−1)) , ∇i ∈ C(Ni, g i ) , T i−1 ∈ ∧1(Hom(Ni−1, Ni))

for i = 1, 2, . . . , d . Consequently we obtain the Frenet formulas of f :

˜∇XY = ∇0
XY + T 0

XY ,(2.1)

˜∇Xζi = −SiXζi + ∇i
Xζi + T iXζi (i = 1, 2, . . . , d − 1) ,(2.2)

˜∇Xζd = −SdXζd + ∇d
Xζd ,(2.3)

where X,Y ∈ Γ (TM) = Γ (N0) and ζi ∈ Γ (Ni) for i = 1, 2, . . . , d . We note that (2.1) is
the (usual) Gauss formula, and S1 is the (usual) shape operator restricted to the first normal
spaceN1. We denote the normal connection by ∇⊥. Then we obtain ∇⊥

Xζ1 = ∇1
Xζ1+T 1

Xζ1 for
any X ∈ Γ (TM) and ζ1 ∈ Γ (N1). Moreover we have g i−1(ζi−1, S

i
Xζi) = g i (T i−1

X ζi−1, ζi )

for i = 1, 2, . . . , d . We define the differentiation of Ni -valued (0, k)-tensor field P by

(DiXP)(X1, . . . , Xk) := ∇i
X(P (X1, . . . , Xk))−

k
∑

j=1

P(X1, . . . ,∇XXj , . . . , Xk) .

By a straightforward calculation, we can see the following lemma.
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LEMMA 2.2. Let f : M → Qnt (c) be an isometric immersion into a space of constant
curvature c. If f is nicely curved of order d , then the following equations hold.

R(X, Y )Z = c (〈Y,Z〉X − 〈X,Z〉Y )+ S1
XT

0
Y Z − S1

Y T
0
XZ ,(2.4)

Ri(X, Y )ζi = T i−1
X SiY ζi − T i−1

Y SiXζi + Si+1
X T iY ζi − Si+1

Y T iXζi(2.5)

(i = 1, 2, . . . , d − 1) ,

Rd(X, Y )ζd = T d−1
X SdY ζd − T d−1

Y SdXζd ,(2.6)

(Di−1
X Si)Y ζi = (Di−1

Y Si)Xζi (i = 1, 2, . . . , d) ,(2.7)

(Di+1
X T i)Y ζi = (Di+1

Y T i)Xζi (i = 0, 1, . . . , d − 1) ,(2.8)

Si−1
X SiY ζi = Si−1

Y SiXζi (i = 2, 3, . . . , d) ,(2.9)

T i+1
X T iY ζi = T i+1

Y T iXζi (i = 0, 1, . . . , d − 2) ,(2.10)

where X,Y,Z ∈ Γ (TM), ζi ∈ Γ (Ni), and R(= R0) and Ri are the curvature tensor of the
Levi-Civita connection ∇(= ∇0) of M and ∇i , respectively.

Lemma 2.1, (2.10) and the symmetry of T 0 show the following corollary.

COROLLARY 2.3. Under the same assumption as in Lemma 2.2, we have

(2.11) αi+1(X1, . . . , Xi+1) = T i−1
X1

αi(X2, . . . , Xi+1) = T i−1
X1

T i−2
X2

· · · T 0
Xi
Xi+1,

where Xj ∈ Γ (TM) for j ≤ i + 1. Moreover, αi+1 is (i + 1)-symmetric for i ≤ d .

By virtue of Corollary 2.3, for the simplicity, we are allowed to write

αi+1(Xk, Y l) := αi+1(X, . . . , X
︸ ︷︷ ︸

k

, Y, . . . , Y
︸ ︷︷ ︸

l

)

for X,Y ∈ Γ (TM) and k + l = i + 1.
The tensor field T d−1 ∈ ∧1(Hom(Nd−1, Nd )) closely relates to the reduction of the

codimension of isometric immersions which are nicely curved of order d .

LEMMA 2.4. Let f : M → Qnt (c) be an isometric immersion which is nicely curved
of order d . If there exists an open piece U of M such that T d−1 is vanishing on U , then there
exists a totally geodesic pseudo-Riemannian submanifold P of Qnt (c) such that f (U) ⊂ P .

PROOF. By the assumption, the subbundle ⊕d−1
i=0N

i of f #TQ is parallel with respect to
˜∇ on U , where TQ is the tangent bundle of Qnt (c). Putting P := expQ (⊕d−1

i=0N
i |U), we get

this lemma, where expQ is the exponential map of Qnt (c). �

2.2. Extremal Lorentzian surfaces. Let (V , 〈 , 〉) be a Lorentzian vector 2-space
and (ξ, η) a null basis of V such that 〈ξ, ξ〉 = 〈η, η〉 = 0 and 〈ξ, η〉 = μ �= 0. In this paper,
we say that the signature of the null basis (ξ, η) is positive (resp. negative), if μ > 0 (resp.
μ < 0). For any vector v ∈ V , we have

(2.12) v = 1

μ
〈v, η〉ξ + 1

μ
〈v, ξ〉η .
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It is easy to show the following lemma.

LEMMA 2.5. Let (E, gE) be a Lorentzian plane bundle over a manifoldM and ∇E ∈
C(E, gE). Let (ξ, η) be a local frame field of E such that gE(ξ, ξ) = gE(η, η) = 0 and
gE(ξ, η) is nonzero constant. Then there exists a local 1-form ρE on M such that

∇Eξ = ρE ⊗ ξ , R∇E (X, Y )ξ = dρE(X, Y )ξ ,

∇Eη = −ρE ⊗ η , R∇E (X, Y )η = −dρE(X, Y )η .
PROOF. Put λ := gE(ξ, η) ∈ R and ρE(X) := (1/λ)gE(∇E

Xξ, η). Using (2.12), we
have

∇E
Xξ = 1

λ
gE(∇E

Xξ, η)ξ + 1

λ
gE(∇E

Xξ, ξ)η = ρE(X)ξ .

It is easy to obtain the other equations. �

An endomorphism JE ∈ Γ (End (E)) is called a parahermitian structure of (E, gE), if
JE satisfies (JE)2 = idE and gE(JE(ζ1), J

E(ζ2)) = −gE(ζ1, ζ2) for any ζ1, ζ2 ∈ Γ (E).
Local null frames (ξ, η) on U and (ξ ′, η′) on U ′ have the same signature, if

〈ξ, η〉〈ξ ′, η′〉 > 0 on U ∩ U ′ �= ∅. Moreover we assume that (ξ, η) and (ξ ′, η′) have the
same orientation. Then we note that

(

ξ ′ η′) = (

ξ η
)

[
√〈ξ ′, η′〉/〈ξ, η〉eθ 0

0
√〈ξ ′, η′〉/〈ξ, η〉e−θ

]

on U ∩ U ′ ,

where θ is a smooth function on U ∩ U ′.

LEMMA 2.6. Let (E, gE) be a Lorentzian plane bundle over a manifoldM and ∇E ∈
C(E, gE). IfE is orientable, thenE admits a ∇E-parallel parahermitian structure of (E, gE).

PROOF. Let (ξ, η) be an oriented local null frame onU ⊂ M of (E, gE). We can define
JE ∈ Γ (End (E)) by JE(ξ) := ξ , JE(η) := −η. Let (ξ ′, η′) be another oriented local null
frame onU ′ (U ∩U ′ �= ∅) with the same signature of (ξ, η). Defining the endomorphism JE

′

of E on U ′ by JE
′
(ξ ′) := ξ ′, JE′

(η′) := −η′, we can see that JE = JE
′

on U ∩ U ′. Since
E is orientable, JE is well-defined onM . Taking a connection form ρE as in Lemma 2.5, we
see that JE is a ∇E-parallel parahermitian structure of (E, gE). �

From the proof above, we note that oriented null frames with the same signature define
the same parahermitian structure JE . In particular, when the parahermitian structure JE is
defined by oriented null frames with positive (resp. negative) signature, we call JE positive
(resp. negative).

Let (M2
1 (K), g) be an oriented 2-dimensional Lorentzian surface of the Gaussian cur-

vature K . Let (e1, e2) be an oriented local orthonormal frame of M such that g(ei, ej ) =
(−1)iδij , where δij is the Kronecker delta. We put

(2.13) e+ := 1√
2
(e1 + e2) , e− := 1√

2
(−e1 + e2) ,
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which satisfy g(e±, e±) = 0 and g(e+, e−) = 1, hence (e+, e−) is a local null frame with
positive signature and the same orientation to (e1, e2). Then, by Lemma 2.5, there exists a
local 1-form ρ on M such that

(2.14) ∇e± = ±ρ ⊗ e± , dρ(e+, e−) = K ,

where ∇ is the Levi-Civita connection of M . By virtue of Lemma 2.6, we can take a ∇-
parallel parahermitian structure J ∈ Γ (End(TM)) such that J (e±) = ±e±. We call this
endomorphism J the canonical paraKähler structure on (M2

1 (K), g).
Let f : M2

1 (K) → Qnt (c) be an isometric immersion. Then the mean curvature vector
field H of f is

H = 1

2
(−α(e1, e1)+ α(e2, e2)) = α(e+, e−) ,

where (e1, e2) and (e+, e−) are local frames on M in (2.13). Thus, f is extremal if and only
if α(e+, e−) = 0.

LEMMA 2.7. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion. Then,

(2.15) (D1
e−α

2)(e2+) = 0 , (D1
e+α

2)(e2−) = 0 .

Moreover, if f is nicely curved of order d , then we have

(2.16) αi+1(ek+, el−) = 0 (i = 1, 2, . . . , d, k + l = i + 1, k, l ≥ 1) .

PROOF. By (2.8), we have

(D1
e−α

2)(e2+)= ∇1
e−α

2(e2+)− 2ρ(e−)α2(e2+) = (D1
e−T

0)e+(e+)
= (D1

e+T
0)e−(e+) = ∇1

e+T
0
e−e+ = ∇1

e+α
2(e+, e−) = 0 .

By a similar calculation, we obtain (D1
e+α

2)(e2−) = 0. If k, l ≥ 1,

αi+1(ek+, el−) = T i−1
e+ · · · T i−k+1

e+ T i−ke− · · · T 1
e−α

2(e+, e−) = 0 .

This completes the proof. �

For an extremal isometric immersion f : M2
1 (K) → Qnt (c) which is nicely curved

of order d , using (2.13) and (2.16), by the equation α2(e1, e1) = α2(e2, e2) and arguments
similar to that in the proof of Lemma 2.7, we have

(2.17)

{

αi+1(ei+1+ ) = (
√

2)i−1
(

αi+1(e1, e
i
2)+ αi+1(ei+1

2 )
)

,

αi+1(ei+1− ) = (
√

2)i−1
( − αi+1(e1, e

i
2)+ αi+1(ei+1

2 )
)

.

Noting Ni is nonzero for i = 1, 2, . . . , d − 1, by (2.17), we have

Ni = Span{αi+1(e1, e
i
2), α

i+1(ei+1
2 )} = Span{αi+1(ei+1+ ), αi+1(ei+1− )} ,(2.18)

rankNi = 1 or 2 .(2.19)
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2.3. Surfaces with isotropic higher fundamental forms. In this subsection, we
study extremal isometric immersions of Lorentzian surfaces with isotropic higher fundamen-
tal forms. The property that higher fundamental forms are isotropic is closely related to hor-
izontal reflector lifts mentioned in the next section. We provide several lemmas which are
often used in the following sections.

Let V and W be vector spaces with inner products and β : V × · · · × V → W a k-
multilinear map into W . We say that β is spacelike (resp. timelike) isotropic if there exists a
constant λ such that 〈β(uk), β(uk)〉 = λ for any spacelike (resp. timelike) unit vectors u. For
the simplicity, we say that such a map is spacelike (resp. timelike) λ-isotropic. Then we note
the following lemma.

LEMMA 2.8. Under the notation above, a k-multilinear map β is spacelike λ-isotropic
if and only if β is timelike (−1)kλ-isotropic. Moreover, if β is spacelike isotropic, then
〈β(ek), β(ek)〉 = 0 for all null vector e ∈ V .

PROOF. If β is spacelike λ-isotropic, then we have

〈β((v/‖v‖)k), β((v/‖v‖)k)〉 = λ for any spacelike vector 0 �= v ∈ V .

Hence we obtain the equation (∗) 〈β(vk), β(vk)〉 = λ 〈v, v〉k on the set of all spacelike vectors
of V , which forms nonempty open subset in V . This equation (∗) holds on V , since the
function V � w �→ 〈β(wk), β(wk)〉 − λ 〈w,w〉k ∈ R is real analytic (more precisely, it is a
polynomial in n variables w = (w1, . . . , wn), where n = dimV ). So, we have

〈β(vk), β(vk)〉 = (−1)k λ for any unit timelike vector v ∈ V .

We can similarly see the converse and the statement for null vectors. �

By Lemma 2.8, in the case that V is indefinite, we use the term “isotropic” as “spacelike
isotropic”.

We say that the (k+1)st fundamental form αk+1 of an isometric immersion f : M → ˜M

is (spacelike) isotropic if αk+1
p is λk,p-isotropic at each point p ∈ M . The function λk :

M → R defined by λk(p) := λk,p is called the (spacelike) isotropic function. If the isotropic
function λk is constant on M , then αk+1 is called constant λk-isotropic. We note that αk+1 is
λk-isotropic if and only if

(2.20) gk(αk+1(e1, e
k
2), α

k+1(ek+1
2 )) = 0

for any orthonormal tangent vectors e1, e2 to M (e.g. [8, Lemma 1.1]). Moreover, in the case
that f : M2

1 (K) → Qnt (c) is extremal, by (2.17), we obtain

(2.21) gk(αk+1(ek+1
2 ), αk+1(ek+1

2 )) = −gk(αk+1(e1, e
k
2), α

k+1(e1, e
k
2)) = λk ,

where (e1, e2) is an orthonormal basis of TpM such that g(ei , ej ) = (−1)iδij .

LEMMA 2.9. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion which is

nicely curved of order d . We assume that there exists a positive integer i(≤ d) such that αi+1

is λi -isotropic. Then λi is everywhere nonzero onM if and only if i < d . In the case of i < d ,
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Ni is a Lorentzian plane bundle over M . Moreover if M is oriented, then Ni is orientable
and (Ni, g i ) admits a ∇i-parallel parahermitian structure J i .

PROOF. Let (e1, e2) be an orthonormal basis of TpM such that g(ei , ej ) = (−1)iδij .
Noting (2.18), (2.20) and (2.21), we see that λi is equal to zero at p if and only if Nip is a
degenerate plane, a null line or zero at p. Since f is nicely curved of order d , we can see that
λi is everywhere nonzero if and only if i < d . Then Ni is a Lorentzian plane bundle overM ,
since the normal vectors αi+1(e1, e

i
2), α

i+1(ei+1
2 ) span a Lorentzian plane.

WhenM is oriented, taking oriented local orthonormal frames (e1, e2) and (e′1, e′2) on an
open setU ofM , we can get a function θ ∈ C∞(U) such that e′1 = (cosh θ)e1+(sinh θ)e2 and
e′2 = (sinh θ)e1+(cosh θ)e2 onU . The following local frames (αi+1(e1, e

i
2), α

i+1(ei+1
2 )) and

(αi+1(e′1, e
′i
2 ), α

i+1(e′i+1
2 )) ofNi are local orthogonal frames with same orientation ofNi . In

fact, we have
(

αi+1(e′1, e
′i
2 ) αi+1(e′i+1

2 )

)

=
(

αi+1(e1, e
i
2) αi+1(ei+1

2 )

)

[

cosh((i + 1)θ) sinh((i + 1)θ)
sinh((i + 1)θ) cosh((i + 1)θ)

]

.

Thus Ni is orientable. From Lemma 2.6, we obtain a ∇i -parallel parahermitian structure J i

of (Ni, g i ). �

When f : M2
1 (K) → Qnt (c) is extremal and nicely curved of order d , and there exists

a positive integer i(< d) such that αi+1 is λi-isotropic, by Lemma 2.9, we can take the
following local orthonormal frame (e2i+1, e2i+2) of Ni defined by

e2i+1 := 1√|λi | α
i+1(e1, e

i
2) , e2i+2 := 1√|λi | α

i+1(ei+1
2 ) ,

where (e1, e2) is a local oriented orthonormal frame on M such that g(ei, ej ) = (−1)iδij .
Moreover, noting (2.17), we put the signature εi := λi/|λi | ∈ {1,−1},

ξi := 1√
2
(e2i+1 + e2i+2) = 1

(
√

2)i
√|λi |

αi+1(ei+1+ ) ,(2.22)

ηi := 1√
2
(−e2i+1 + e2i+2) = 1

(
√

2)i
√|λi |

αi+1(ei+1− ) ,(2.23)

which satisfy

g i (e2i+1, e2i+1) = −εi , g i (e2i+1, e2i+2) = 0 , g i (e2i+2, e2i+2) = εi ,

g i (ξi , ξi ) = 0 , g i (ξi , ηi) = εi , g i (ηi, ηi) = 0 .

LEMMA 2.10. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion which is

nicely curved of order d . We assume that there exists a positive integer i < d such that αi+1

is λi-isotropic. Then we obtain

(2.24) ∇i
Xα

i+1(ei+1± ) =
(

±ρi(X)+ 1

2
d(log |λi |)(X)

)

αi+1(ei+1± ) ,
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where (e+, e−) is a local null frame on M2
1 (K) and ρi is the connection form of ∇i with

respect to (ξi , ηi) defined by (2.22) and (2.23).

PROOF. We obtain (2.24) by a simple calculation. �

LEMMA 2.11. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion which

is nicely curved of order d . We assume that there exists a positive integer i < d such that
αi+1 is λi -isotropic and (Diαi+1) is (i + 2)-symmetric, that is, (Die∓α

i+1)(ei+1± ) = 0. Then
we have

(Di+1
e− αi+2)(ei+2+ ) = 0 , (Di+1

e+ αi+2)(ei+2− ) = 0 .

Thus (Di+1αi+2) is (i + 3)-symmetric.

PROOF. We can prove this lemma by a simple calculation. In fact, we have

(Di+1
e− αi+2)(ei+2+ )

= ∇i+1
e− αi+2(ei+2+ )− (i + 2)ρ(e−)αi+2(ei+2+ )

= ∇i+1
e− T ie+α

i+1(ei+1+ )− (i + 2)ρ(e−)αi+2(ei+2+ )

= (Di+1
e− T i)e+α

i+1(ei+1+ )+ T ie+(D
i
e−α

i+1)(ei+1+ )

using the Codazzi equation (2.8) for T i , (2.11), (2.16) and (2.24)

= (Di+1
e+ T i)e−α

i+1(ei+1+ )

= ∇i+1
e+ αi+2(e−, ei+1+ )+ ρ(e+)αi+2(e−, ei+1+ )− T ie−∇i

e+α
i+1(ei+1+ )

= −T ie−
(

ρi(e+)+ 1

2
d(log |λi |)(e+)

)

αi+1(ei+1+ )

= −
(

ρi(e+)+ 1

2
d(log |λi |)(e+)

)

αi+2(e−, ei+1+ ) = 0 .

In a similar way, we have (Di+1
e+ αi+2)(ei+2− ) = 0. �

LEMMA 2.12. Under the same assumptions as in Lemma 2.11, if αi+1 is constant
λi -isotropic, then αi+1 is ∇i -parallel, that is, (Diαi+1) = 0.

PROOF. Since αi+1 is isotropic, g i (αi+1(ei+1+ ), αi+1(ei+1+ )) = 0. Thus we see

g i ((Die+α
i+1)(ei+1+ ), αi+1(ei+1+ ))= 1

2
e+g i (αi+1(ei+1+ ), αi+1(ei+1+ ))

−(i + 1)ρ(e+)g i (αi+1(ei+1+ ), αi+1(ei+1+ )) = 0.

Using Lemma 2.11, we obtain

g i ((Die+α
i+1)(ei+1+ ), αi+1(ei+1− ))= e+g i (αi+1(ei+1+ ), αi+1(ei+1− ))

−g i (αi+1(ei+1+ ),∇i
e+α

i+1(ei+1− ))

−(i + 1)ρ(e+)g i (αi+1(ei+1+ ), αi+1(ei+1− )) .
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By Lemma 2.10, we have

g i (αi+1(ei+1+ ),∇i
e+α

i+1(ei+1− )) = −(i + 1)ρ(e+)g i (αi+1(ei+1+ ), αi+1(ei+1− )) ,

and hence, g i ((Die+α
i+1)(ei+1+ ), αi+1(ei+1− )) = e+(2iλi ) = 0. Because of i < d ,

(αi+1(ei+1+ ), αi+1(ei+1− )) is a local frame of Ni . Hence, (Die+α
i+1)(ei+1+ ) = 0. In a simi-

lar way, we have (Die−α
i+1)(ei+1− ) = 0, thus (Diαi+1) = 0. �

LEMMA 2.13. Under the same assumptions as in Lemma 2.11, we have

ρi(X) = 1

2
(d log |λi |)(JX)+ (i + 1)ρ(X),(2.25)

(dρi)(e+, e−) = 1

2
� log |λi | + (i + 1)K,(2.26)

where ρi (resp. ρ) is the connection form of ∇i (resp. ∇) with respect to (ξi , ηi) defined by
(2.22) and (2.23) (resp. (e+, e−)), and� is the Laplace operator of M2

1 (K).

PROOF. Using Lemma 2.11 and (2.23), we have

∇i
e+ηi =

√|λi |
(

e+
(

1√|λi |
)

− 1√|λi |(i + 1)ρ(e+)
)

ηi

= −
(

1

2
d(log |λi |(J e+))+ (i + 1)ρ(e+)

)

ηi .

Noting ∇i
Xηi = −ρi(X)ηi , we have

ρi(e+) = 1

2
d(log |λi |)(J e+)+ (i + 1)ρ(e+) .

In a similar way, we get ρi(e−) = (1/2)d(log |λi |)(J e−) + (i + 1)ρ(e−). These equations
show (2.25). Using (2.25) and (dρ)(e+, e−) = K , we have (2.26). �

LEMMA 2.14. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion which

is nicely curved of order d . We assume that there exists a positive integer i ≤ d such that αi

and αi+1 are isotropic with isotropic functions λi−1 and λi respectively. In the case of i < d ,
{

T i−1
e+ ξi−1 = √|2λi/λi−1|ξi , T i−1

e− ξi−1 = 0 ,

T i−1
e+ ηi = 0 , T i−1

e− ηi−1 = √|2λi/λi−1|ηi ,
(2.27)

{

Sie+ξi = 0 , Sie−ξi = εi−1εi
√|2λi/λi−1|ξi−1 ,

Sie+ηi = εi−1εi
√|2λi/λi−1|ηi−1 , Sie−ηi = 0 ,

(2.28)

where εj := λj /|λj | (j = i − 1, i) and λ0 := 1. In the case of i = d , we have

(2.29)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Sde+α
d+1(ed+1+ ) = 0 , Sde−α

d+1(ed+1+ ) = εd−1
(
√

2)d+1λd√|λd−1| ξd−1,

Sde+α
d+1(ed+1− ) = εd−1

(
√

2)d+1λd√|λd−1| ηd−1 , Sde−α
d+1(ed+1− ) = 0 .

PROOF. We can simply prove these equations by (2.22) and (2.23). �
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For the later use, when αi and αi+1 are isotropic, we rewrite (2.28) as follows.

(2.30) Sie2
αi+1(ei+1

2 ) = λi

λi−1
αi(ei2) ,

where e2 is a spacelike unit tangent vector to M2
1 (K).

Since (2.15) in Lemma 2.7 holds, we can repeatedly use Lemma 2.11 under the assump-
tion: α2, α3, . . . , αk+1 are isotropic. Hence, Lemma 2.11, and equations (2.25) and (2.26) are
available for any i = 1, 2, . . . , k, and also Lemmas 2.12 and 2.14.

LEMMA 2.15. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion which is

nicely curved of order d . If there exists a positive integer k ≤ d such that αi+1 is λi -isotropic
for any i = 1, 2, . . . , k, then we have λ1 = (c −K)/2 and, when k > 1,

λi+1 = 1

2

(

c −
(

i + 2

2

)

K − 1

2
� log |λ1 · · · λi |

)

λi (i = 1, 2, . . . , k − 1) .

Therefore isotropic functions λ1, . . . , λk depend only on c, K and higher derivatives of K .

PROOF. By the Gauss equation (2.4), (2.27), (2.28), and λ0 = 1, we have

Ke+ = R(e+, e−)e+ = c (g(e−, e+)e+ − g(e+, e+)e−)+ S1
e+T

0
e−e+ − S1

e−T
0
e+e+

= ce+ − ε0ε12|λ1|ξ0 ,

hence λ1 = (c −K)/2, where ε0 = g(e+, e−) = 1 and ξ0 = e+. For i = 1, 2, . . . , k − 1 if
k < d , or i = 1, 2, . . . , k − 2 if k = d , by the equation (2.5) on Ni , (2.27) and (2.28),

Ri(e+, e−)ξi = T i−1
e+ Sie−ξi − T i−1

e− Sie+ξi + Si+1
e+ T ie−ξi − Si+1

e− T ie+ξi = 2

(

λi

λi−1
− λi+1

λi

)

ξi .

In the case of k = d , using (2.5) onNd−1 and (2.29), we can see that the equation above holds
for i = k − 1. On the other hand, from (2.26), we have

Ri(e+, e−)ξi =
(

1

2
� log |λi | + (i + 1)K

)

ξi (i = 1, 2, . . . , k − 1) .

Since ξi is everywhere nonzero for i = 1, 2, . . . , k < d ,

1

2
� log |λi | + (i + 1)K = 2

(

λi

λi−1
− λi+1

λi

)

.

From these equations and λ1 = (c −K)/2, we obtain for i = 1, 2, . . . , k − 1

λi+1 = 1

2

(

c − (i + 1)(i + 2)

2
K − 1

2
� log |λ1 · · · λi |

)

λi .

Thus we complete the proof. �

COROLLARY 2.16. Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion

which is nicely curved of order d . We assume that there exists a positive integer k(≤ d) such
that αi+1 is λi -isotropic for any i = 1, 2, . . . , k. If K is constant, then we have

λi = 1

2

(

c − i(i + 1)

2
K

)

λi−1 (i = 1, 2, . . . , k ≤ d) .
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Therefore α2, α3, . . . , αk+1 are constant isotropic, moreover, n ≥ 2k and t ≥ k. In the case
of k = d , we see that αd+1 is 0-isotropic andK = 2c/d(d + 1).

We furnish a nonexistence result on extremal Lorentzian surfaces by virtue of the corol-
lary above.

THEOREM 2.17. There are no extremal isometric immersions fromM2
1 (K) intoQnt (c)

of which all higher fundamental forms are isotropic if the constant Gaussian curvature K �=
2c/i(i + 1) for any integer i.

PROOF. For any isometric immersion f : M2
1 (K) → Qnt (c), there exists a positive

integer d such that f is nicely curved of order d . Then, by the assumptions and Lemma 2.9,
the constant isotropic function λd−1 is nonzero and λd is zero. From Corollary 2.16, we obtain
K = 2c/d(d + 1) and the proof of the theorem is completed. �

REMARK 2.18. Bryant [1] proves the nonexistence of minimal immersions from sur-
faces of constant positive Gaussian curvature K �= 2c/i(i + 1) (i ∈ N) into Sn0 (1/

√
c)

(without the isometry condition). See Calabi [2] and Wallach [16] also. The theorem above is
a pseudo-Riemannian version of [1, Theorem 1.5]. It is natural to ask whether the condition
“isotropicity” of higher fundamental forms is needed or not. We can find an extremal surface
of K = 1 (c = 1 and i = 1) whose second fundamental form is not isotropic (see the last
paragraph in Section 5).

3. Congruence theorem for immersions with horizontal reflector lifts. Let V be a
2m-dimensional vector space V with inner product 〈 , 〉 of neutral signature. A parahermitian
structure on V is an endomorphism J : V → V such that J 2 = idV and 〈JX, JY 〉 =
−〈X,Y 〉 for all X and Y ∈ V . The eigenspaces V± := Ker (J ∓ idV ) of a parahermitian
structure J arem-dimensional totally isotropic in V , which satisfy V = V+ ⊕V−. We denote
the space of all parahermitian structures on V by Z(V ).

Let (˜M, g̃) be a 2m-dimensional manifold of neutral signature. The reflector spaceZ(˜M)
is defined by

Z := Z(˜M) :=
⋃

p∈ ˜M

Z(Tp ˜M) .

Note that the reflector space is a subbundle of End(T ˜M). The bundle projection p : Z → ˜M

and the Levi-Civita connection ˜∇ on ˜M induce the decomposition TZ = T hZ ⊕ T vZ into
the horizontal subbundle T hZ and the vertical subbundle T vZ .

Let f : (M2
1 , g) → (˜M2m

m , g̃) be an isometric immersion. A section of ˜J ∈ Γ (f #Z)
is a reflector lift of f (or M), if ˜J |TM = J , where J is the canonical paraKähler structure
on M . Then, putting J⊥ := ˜J |T⊥M , we have a parahermitian structure of the normal bundle
T ⊥M . An isometric immersion f admits a horizontal reflector lift if ˜J is ˜∇-parallel, that is,
˜∇ ˜J = 0, where ˜∇ is the induced connection from the Levi-Civita connection of ˜M . By a
straightforward calculation, we have



624 K. HASEGAWA AND K. MIURA

LEMMA 3.1. The reflector lift ˜J is horizontal if and only if the (usual) second funda-
mental form α satisfies α(X, JY ) = J⊥α(X, Y ) for all X, Y ∈ TM and ∇⊥J⊥ = 0.

In Riemannian geometry, a surface with horizontal twistor lift is called superminimal.
Indeed, superminimal surfaces are minimal. The following proposition is a corresponding
result to neutral geometry.

PROPOSITION 3.2. An isometric immersion with horizontal reflector lift is extremal.

PROOF. By Lemma 3.1, α(e+, e−) = α(J e+, e−) = α(e+, J e−) = −α(e+, e−),
which gives H = α(e+, e−) = 0. �

In this section, we give a congruence theorem for isometric immersions with horizontal
reflector lifts.

LEMMA 3.3. Let f : M2
1 (K) → Q2m

m (c) be an isometric immersion which is nicely
curved of order d . If f has a horizontal reflector lift ˜J , then ˜J is Ni -preserving. Moreover
J i := ˜J |Ni ∈ End (Ni) is ∇i-parallel and J iT i−1

X ζi−1 = T i−1
JX ζi−1 for any ζi−1 ∈ Γ (Ni−1)

and i = 1, 2, . . . , d . In particular, we obtain

αi+1(X1, . . . , Xi, JXi+1) = J iαi+1(X1, . . . , Xi+1) .

PROOF. From Lemma 3.1, ˜J is N1-preserving. Putting J 1 := ˜J |N1 , we have

(∇1
XJ

1)(ζ1) = S1
X(J

1ζ1)− J (S1
Xζ1)− T 1

X(J
1ζ1)+ J⊥(T 1

Xζ1) .

Since J⊥ is (N1)⊥-preserving, we see that J 1 is ∇1-parallel, S1
X(J

1ζ1) = J (S1
Xζ1) and ˜J is

N2-preserving. If there exists a positive integer k(< d) such that J k is ∇k-parallel and ˜J is
Nk-preserving, then we can put J k := ˜J |Nk ∈ Γ (End (Nk)). Moreover,

(∇k
XJ

k)(ζk) = SkX(J
kζk)− J k−1(SkXζk)− T kX(J

kζk)+ J⊥(T kXζk) .

Since J⊥ is (Nk)⊥-preserving, we see that J k is ∇k-parallel, SkX(J
kζk) = J k−1(SkXζk) and ˜J

is Nk+1-preserving. By the inductive method, we have the lemma. �

LEMMA 3.4. Let f : M2
1 (K) → Q2m

m (c) be an isometric immersion which is nicely
curved of order d . If f has a horizontal reflector lift ˜J , then the i-th normal bundle Ni is a
Lorentzian plane bundle, and the (i+1)st fundamental form αi+1 is isotropic and the isotropic
function λi is everywhere nonzero for any i (i = 1, 2, . . . , d − 1), thus rankNd = 2(m− d).

PROOF. Let (e1, e2) be a local oriented orthonormal frame on M . Then we have

g i (αi+1(e1, e
i
2), α

i+1(ei+1
2 ))= g i (αi+1(J e2, e

i
2), α

i+1(ei+1
2 ))

= g i (J iαi+1(ei+1
2 ), αi+1(ei+1

2 )) = 0 .

Hence, αi+1 is isotropic. Thus, from Lemma 2.9, we can see that its spacelike isotropic
function is everywhere nonzero and Ni is a Lorentzian plane bundle overM . �

Let f : M2
1 (K) → Q2m

m (c) be an isometric immersion which is nicely curved of order
d . By Lemma 3.4, we can consider the local null frame (ξi , ηi) of Ni defined by (2.22) and
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(2.23) for i = 1, 2, . . . , d − 1. We see that ξi (resp. ηi ) is a (+1)- (resp. (−1)-) eigenvector
of J i by Lemma 3.3.

We obtain a congruence result on isometric immersions with horizontal reflector lift into
a space of constant curvature.

THEOREM 3.5. Let f , f : M2
1 (K) → Q2d

d (c) be isometric immersions with horizon-
tal reflector lifts from a connected oriented Lorentzian surface. If both immersions f and f
are nicely curved of order d , then there exists an isometry Φ of Q2d

d (c) such that f = Φ ◦ f .

PROOF. The corresponding objects associated with f are denoted by the symbol with
“−”, for example, T ⊥M is the normal bundle of f . Let (e+, e−) be a local frame field such
that g(e±, e±) = 0, g(e+, e−) = 1 and J e± = ±e±. We take a local frame (ξi , ηi) for any
i = 1, 2, . . . , d − 1. We define Φ : T ⊥M → T ⊥M by Φ(ξi) = ξi and Φ(ηi) = ηi for
i = 1, 2, . . . , d − 1. Since the reflector lifts of f and f are horizontal,Φ preserves the higher
fundamental forms. From Lemma 2.15, λi = λi for i = 1, 2, . . . , d − 1. By Lemma 2.10
and (2.25), all coefficients of ∇⊥ with respect to (ξ1, η1, . . . , ξd−1, ηd−1) depend only on c,
K (and i). Then we see that

Φ(∇⊥
Xξi) = ∇⊥

Xξ̄i , Φ(∇⊥
Xηi) = ∇⊥

Xη̄i ,

that is, Φ preserves the normal connections. By the congruence theorem for isometric im-
mersions into a space form (see [6], for example), we see that there exists an isometry Φ of
Q2d
d (c) such that f = Φ ◦ f . �

REMARK 3.6. An existence theorem for an extremal isometric immersion from a sim-
ply connected Lorentzian surface intoQ2d

d (c) can be found in [13]. The integrability condition
is described by the functions λ1, . . . , λd−1 in Lemma 2.15.

4. Lorentzian Boruvka spheres. Hereafter, we provide examples of isometric im-
mersions with horizontal reflector lifts. First of all, we recall a notion of helical geodesic
immersions in pseudo-Riemannian geometry.

Let c be a unit speed spacelike curve of a pseudo-Riemannian manifoldN . For a positive
integer d and positive constants κ1, . . . , κd−1, the curve c is a helix of type Λ = (d; κ1, . . . ,

κd−1; ε1, . . . , εd ), if c satisfies the Frenet-Serre formula:

∇c′ci = −εi−1εiκi−1ci−1 + κici+1 (i = 1, 2, . . . , d) ,

where ∇ is the Levi-Civita connection of N , c1, . . . , cd is an orthonomal frame field along
c, εi = 〈ci , ci〉 ∈ {1,−1}, ε0 = κ0 = κd = 0 and c0 = cd+1 = 0. We call the integer d
the order of c. A helix of order one is a spacelike (resp. timelike) geodesic of N , if ε1 = +1
(resp. ε1 = −1).

Let f : M → N be an isometric immersion between pseudo-Riemannian manifolds.
The immersion f is a spacelike (resp. timelike) helical geodesic immersion (HGI) of type
Λ, if f maps arbitrary unit speed spacelike (resp. timelike) geodesic γ of M into a helix
of type Λ which is independent of γ . This notion is a generalization in pseudo-Riemannian
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geometry of that in Sakamoto [14]. In [9], the second author proves the following conditions
are equivalent in the case that the domain of f is indefinite.

(1) f is a spacelike HGI of type Λ = (d; κ1, . . . , κd−1; ε1, . . . , εd).
(2) f is a timelike HGI of type Λ = (d; κ1, . . . , κd−1; (−1)1ε1, . . . , (−1)dεd).

Hence we call such immersions HGIs for short. We shall introduce the following notions.

DEFINITION 4.1. An submanifold L of a space form (Qnt (c), g̃) is said to be totally
geodesic if the Levi-Civita connection ˜∇ ofQnt (c) naturally induces an affine connection onL,
that is, ˜∇XY ∈ Γ (T L) for anyX,Y ∈ Γ (T L). Furthermore, if the pullback j∗g̃ is identically
vanishing on L, it makes L a null r-plane of Qnt (c), where r = dimL and j : L ↪→ Qnt (c)

is the inclusion map. A null curve c on Qnt (c) is null r-planar, if there is a null r-plane L of
Qnt (c) such that Im (c) ⊂ L. An isometric immersion f : M → Qnt (c) between indefinite
pseudo-Riemannian manifolds is a null r-planar geodesic immersion (PGI), if there exists a
positive integer r such that, for each null geodesic γ ofM , the null curve f ◦γ is null r-planar
in Qnt (c). If a null r-PGI f is not a null q-PGI for any q < r , we say that f is a null proper
r-PGI.

Notice that a null r-planeL inQnt (c) is contained a null r0-planeL (r0 := min{n− t, t}).
Therefore any null r-PGI is null r0-planar geodesic. For example, any HGIs f : M → Qnt (c)

are null r0-planar geodesic ([9, Theorem D]). In general, the converse is not held. See [11]
for details. Simpler examples are totally umbilic isometric immersions, which are null proper
1-PGIs, since the immersions map null geodesics of submanifolds to null geodesics in the
ambient space. We deal with this notion in the last section.

In Riemannian geometry, typical examples of HGIs are the standard minimal immersion
of compact rank one symmetric spaces. In the case of the n-dimensional sphere, associated
with each positive integer d , there exists an isometric minimal immersion ψn,d : Sn(r(d)) →
Sm(d), where Sn(r(d)) := Sn0 (r(d)), S

m(d) := Sm(d)(1), and the radius r(d) and the dimen-
sion m(d) are given as follows.

r(d) =
√

d(d + n− 1)

n
, m(d) = (2d + n− 1)

(d + n− 2)!
d!(n− 1)! − 1 .

The immersion ψn,d is called the d-th standard minimal immersion of Sn(r(d)) and (space-
like) HGI of type Λn,d := (d; κ1, . . . , κd−1; +1, . . . ,+1), where κ1, . . . , κd−1 are certain
positive constants. In the case of n = 2, these immersions are called the Boruvka spheres.

In [10], the second author constructs, associated with each the d-th standard minimal
immersion of Sn(r(d)), an extremal isometric immersion ψn,d,t of Snt (r(d)) into Sm(d)l(d) :=
S
m(d)
l(d) (1) for arbitrary t = 1, . . . , n, where the index l(d) is a certain integer (see [10] for de-

tails). In the case of (n, t) = (2, 1), the integer l(d) is equal to d . The constructed immersion
ψn,d,t (t = 1, . . . , n− 1) is a spacelike HGI of typeΛn,d and ψn,d,n is a timelike HGI of type
Λn,d ([10]). See also [5] for a construction of harmonic maps of S2

1 into a space of constant
sectional curvature one.
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We recall the d-th standard minimal immersions of S2(r(d)) into the unit sphere. Let
�S2 be the Laplacian on S2. It is well-known that all eigenvalues are given by μd = d(d+ 1)
for any nonnegative integer d and the dimension of the eigenspace Vd of �S2 corresponding
to the eigenvalue μd is 2d+ 1. Taking an orthonormal basis f1, . . . , f2d+1 of Vd with respect
to the L2-inner product:

g(f1, f2) :=
∫

S2
f1 f2 dνS2 , f1, f2 ∈ Vd ,

where dνS2 is proportional to the volume element of S2 and normalized in such a way that
∫

S2 dνS2 = dimVd = 2d + 1, we can see (f1)
2 + · · · + (f2d+1)

2 = 1 on S2, and identify
Vd ∼= R

2d+1. Then the d-th standard minimal immersion ψ2,d : S2(r(d)) → S2d ⊂ R
2d+1 is

given by

ψ2,d := (f1, . . . , f2d+1) ◦ χ1/r(d) ,

where χk is the homothetic transformation in R
n defined by χk(v) := kv for v ∈ R

n. We
remark that the d-th eigenspace Vd of S2 ⊂ R

3 is given by

Vd = {P |S2 | P ∈ Hd(R3)} ,
where Hd(R3) is the space of homogeneous harmonic polynomials of degree d on R

3 and
P |S2 is the restriction of P to S2 ⊂ R

3.
We summarize the construction of extremal immersions obtained in [10] as follows. Let

F[x] := F[x1, x2, x3] be the polynomial algebra in variables x1, x2, x3, where F is the set of
all complex numbers C or real numbers R, Fd [x] the space of homogeneous polynomials of
degree d , and �

R
3
1

:= −∂2
1 + ∂2

2 + ∂2
3 the Laplacian on R

3
1. Putting

Hd(R
3
1) := {P ∈ Rd [x] | �

R
3
1
P = 0} ,

we see dimHd(R3
1) = 2d+1. Moreover, we can see that�S2

1
(P |S2

1
) = d(d+1)P |S2

1
for P ∈

Hd(R
3
1), where S2

1 ⊂ R
3
1 is the unit Lorentzian 2-sphere, and �S2

1
is the Laplacian of S2

1 . Let

ρ1 be the ring endomorphism on C[x] defined by ρ1(1) := 1, ρ1(x1) := √−1 x1, ρ1(xi) := xi

(i = 2, 3). We call ρ1 a (1-)Wick rotation, which satisfies ρ1(P ) ∈ Hd(R
3
1) ⊕ √−1Hd(R3

1)

for any P ∈ Hd(R3). We can take a basis P−d , . . . , Pd of Hd(R3) such that

(P−d )2 + · · · + (Pd)
2 = (x2

1 + x2
2 + x2

3)
d ,

ρ1(Pi) ∈ √−1Hd(R3
1) (i < 0) and ρ1(Pi) ∈ Hd(R

3
1) (i ≥ 0). We note that (ρ1(P−d ))2 +

· · · + (ρ1(Pd))
2 = (−x2

1 + x2
2 + x2

3)
d . Putting Qi := −√−1ρ1(Pi) (i < 0) and ρ1(Pi)

(i ≥ 0), we have a basis Q−d , . . . ,Qd of Hd(R3
1) such that

−(Q−d )2 − · · · − (Q−1)
2 + (Q0)

2 + (Q1)
2 + · · · + (Qd)

2 = (−x2
1 + x2

2 + x2
3)
d .

We define the indefinite scalar product g1 on Hd(R3
1) by

g1(Qi,Qj ) := εiδij ,
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where εi = −1 (d < 0), εi = +1 (d ≥ 0) and identify Hd(R3
1)

∼= R
2d+1
d . Then we can

obtain the extremal isometric immersion into the unit neutral 2d-sphere:

ψ2,d,1 := (Q−d |S2
1
, . . . ,Qd |S2

1
) ◦ χ1/r(d) : S2

1 (r(d)) → S2d
d ⊂ R

2d+1
d .

The immersion ψ2,d,1 is called the Lorentzian Boruvka sphere (LBS) in S2d
d throughout this

paper. We can see explicite representations for ψ2,d,1 (d = 2, 3) in [9, Examples 3.5, 3.6].
Composing homotheties and anti-isometries of S2

1 (r(d)) and S2d
d , we can obtain extremal

immersions from Q2
1(Kd) to Q2d

d (c), where Kd := 2c/d(d + 1) and c �= 0. We denote this
immersion by φd,c. This immersion also is referred to as LBS in Q2d

d (c).
An isometric immersion f : M → Qnt (c) is said to be full in Qnt (c), if there exist no

totally geodesic submanifoldsN ofQnt (c) such that f (M) ⊂ N and dimN < n. We can give
the following.

PROPOSITION 4.2. Let f : M2
1 (K) → Qnt (c) be a HGI of order d of an oriented

Lorentzian surface. If f is extremal, then f is nicely curved of order d and there exists a
totally geodesic submanifold P of Qnt (c) such that P is isometric to Q2d

d (c) and f (M) is
full in P . Let f ′ be the isometric immersion such that f = ι ◦ f ′, where ι is the inclusion
P ↪→ Qnt (c). Then, f ′ : M2

1 (K) → P admits a horizontal reflector lift, and K is constant.
Moreover αi+1 is nonzero constant isotropic for i = 1, . . . , d − 1, and αd+1 is identically
vanishing.

PROOF. Let f : M2
1 (K) → Qnt (c) be a HGI of type (d; κ1, . . . , κd−1; ε1, . . . , εd) and

nicely curved of order m. In the case of d = 1, since f is totally geodesic, the assertion
follows. Thus we may assume that d ≥ 2.

Let u ∈ TpM be a spacelike unit tangent vector to M at p ∈ M and γ a geodesic such
that γ (0) = p and γ ′(0) = u. From the Frenet-Serre formula of c := f ◦ γ , ˜∇Uc1 = κ1c2,
where U := c′. From the Frenet formula of f ,

˜∇Uc1 = ∇Uc1 + T 0
Uc1 = α2(U2) .

Thus we have κ1c2 = α2(U2). So α2 is nonzero (ε2κ
2
1 )-constant isotropic by the arbitrarity

of spacelike unit tangent vector u. From Lemma 2.9, we see that N1 is a Lorentzian plane
bundle overM , therefore,m ≥ 2.

We assume that there exists an integer k (2 ≤ k ≤ min{d,m}) such that κ1 · · · κi−1ci =
αi(Ui) for any i (2 ≤ i ≤ k). Then αi is nonzero (εiκ2

1 · · · κ2
i−1)-constant isotropic by the

arbitrarity of spacelike unit tangent vector u and ci ∈ Ni−1. Thus, by virtue of Lemma
2.9, Ni−1 is a Lorentzian plane bundles on M and admit a parahermitian structure J i−1.
Furthermore, from the Frenet-Serre formula of c,

˜∇Uci = −εi−1εiκi−1ci−1 + κici+1 ,

and, from the Frenet formula of f ,

˜∇Uci = −Si−1
U ci + ∇i−1

U ci + T i−1
U ci .
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Since αi is constant isotropic for i = 2, . . . , k, using Lemma 2.12, we obtain ∇i−1
U ci = 0.

Moreover, the equation (2.30) gives Si−1
U ci = εi−1εiκi−1ci−1, thus we have T i−1

U ci = κici+1,
hence αi+1(Ui+1) = κ1 · · · κici+1.

In the case of k = min{d,m} = d , by definition, κd = 0. Thus, we can see αd+1 = 0,
that is, T d = 0, which implies that m = d and, using Lemma 2.4, there exists the totally
geodesic submanifold P such that P is isometric to Q2d

d (c) and f (M) is full in P . On the
other hand, if k = min{d,m} = m, then κm has zeros by Lemma 2.9, hence κm = 0. By
a similar way, we obtain the same conclusion. Since P is totally geodesic in Qnt (c), the ∇i-
parallel parahermitian structure J i on Ni is also one on the i-th normal bundle Ni

′
of f ′ for

any i (i = 1, 2, . . . , d − 1). We can define J⊥ ∈ Γ (End(T ⊥M)) by

J⊥ :=
d−1
⊕

i=1

J i .

Then we can check α(X, JY ) = J⊥α(X, Y ) and ∇⊥J⊥ = 0. By Lemma 3.1, f ′ admits
horizontal reflector lift ˜J := J ⊕ J⊥.

Since the second fundamental form α2 is (ε2κ
2
1 )-constant isotropic, using Lemma 2.15,

we see that M is of constant Gaussian curvature. �

In Riemannian case, the Boruvka spheres ψ2,d : S2(r(d)) → S2d are superminimal,
that is, these have horizontal twistor lifts. Note that the LBS φd,c : Q2

1(Kd) → Q2d
d (c)

is an extremal HGI of order d ([10, Proposition 3.8.]) and nicely curved of order d from
Proposition 4.2. Therefore, Proposition 4.2 for the LBSs corresponds to the result above for
Boruvka spheres. We summarize as follows.

COROLLARY 4.3. The Lorentzian Boruvka sphere φd,c : Q2
1(Kd) → Q2d

d (c) is nicely
curved of order d and has a horizontal reflector lift.

5. Extremal surfaces with null r-planar geodesics. In this section, we prove our
main result in this paper:

THEOREM 5.1. Let f : M2
1 (K) → Qnt (c) be an extremal null r-planar geodesic

immersion from an oriented connected Lorentzian surface of constant Gaussian curvature K
and c nonzero. If f is real analytic and full, then f is locally congruent to the Lorentzian
Boruvka sphere φr,c with K = 2c/r(r + 1), n = 2r and t = r . Moreover the order r is
proper.

The proof requires a few technical steps which show that the highest normal bundle is
zero. Notice that, in general, the highest normal bundle need not be contained in the i-th
osculating space of an isometric immersion for a positive integer i.

Let f : M2
1 (K) → Qnt (c) be an extremal isometric immersion which is nicely curved of

order d . Thus, we obtain the decomposition f #TQ = ⊕d
i=0N

i , where N0 = TM and Ni is
the i-th normal bundle for i > 0. Put, for i = 0, 1, . . . , d ,

ξ̂i := αi+1(ei+1+ ) , η̂i := αi+1(ei+1− ) ,
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where e± = (±e1 + e2)/
√

2 and (e1, e2) is a local oriented orthonormal frame such that
g(ei , ej ) = (−1)iδij . Then we see Ni = Span {ξ̂i , η̂i} for i = 1, . . . , d − 1 from (2.18) and
note that Span {ξ̂d , η̂d} ⊂ Nd = (Oscd(f ))⊥. We inductively define higher derivatives of
αd+1 with respect to ∇d by

(Dd(1)αd+1)(X1,X2, . . . , Xd+2) := (DdX1
αd+1)(X2, . . . , Xd+2) ,

(Dd(k)αd+1)(X1,X2, . . . , Xd+k+1) := (DdX1
(Dd(k−1)αd+1))(X2, . . . , Xd+k+1)

for any positive integer k.
Set c := f ◦ γ for a null geodesic γ of M . Then we get

˜∇(ċ1) = ċ , ˜∇(ċ2) = α2(ċ2) , ˜∇(ċ3) = f 3
c,2

˜∇(ċ2)+ α3(ċ3) ,

where ċ is the tangent vector field of c and f 3
c,2 is a function along c. We inductively obtain

(5.1) ˜∇(ċk+1) =
k

∑

i=2

f k+1
c,i

˜∇(ċi)+ αk+1(ċk+1) (k = 0, 1, . . . , d) ,

where f k+1
c,i is a function along c. By a simple calculation, we have

LEMMA 5.2. For any nonnegative integer k,

˜∇(ċd+k+1) =
d+k
∑

i=2

f d+k+1
c,i

˜∇(ċi)+ (Dd(k)αd+1)(ċd+k+1) ,

where f d+k+1
c,i is a function along a null curve c = f ◦ γ as above.

Hereafter, when not specified otherwise, we work under the assumption that
f : M2

1 (K) → Qnt (c) is an extremal null r-PGI which is nicely curved of order d .

LEMMA 5.3. For any nonnegative integers i, j ,

g̃(ξ̂i , ξ̂j ) = 0, g̃(η̂i , η̂j ) = 0 .

PROOF. By Lemma 5.2, (5.1) and the definition of null r-PGI, this lemma holds. �

PROPOSITION 5.4. If M2
1 (K) is oriented, then Ni is an orientable Lorentzian plane

bundle, thusNi admits a ∇i-parallel parahermitian structure J i of (Ni, g i ) for i = 1, . . . , d−
1. Moreover, the (i + 1)st fundamental form αi+1 is λi -isotropic for i = 1, . . . , d , where
λi := g i (ξ̂i , η̂i)/2i . In particular, λ1, . . . , λd−1 are non-vanishing and λd has zeros on M .

PROOF. From (2.18) and (2.19), we can see that rankNi = 1 or 2 for i = 1, 2, . . . , d −
1. Thus, by virtue of Lemma 5.3, μi := g i (ξ̂i , η̂i ) must be nonvanishing on M for i =
1, . . . , d−1. Therefore we can see thatNi is an orientable Lorentzian plane bundle and, using
Lemma 2.6, admits a ∇i-parallel parahermitian structure J i of (Ni, g i ) for i = 1, . . . , d − 1.
Note that μd := gd (ξ̂d , η̂d ) has zeros on M . We can see that αi+1 is (μi/2i )-isotropic for
i = 1, . . . , d . In fact, from

ξ̂i = (
√

2)i−1(αi+1(e1, e
i
2)+ αi+1(ei+1

2 )
)

,
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η̂i = (
√

2)i−1( − αi+1(e1, e
i
2)+ αi+1(ei+1

2 )
)

and Lemma 5.3 again, we obtain g i (αi+1(e1, e
i
2), α

i+1(ei+1
2 )) = 0. By the arbitrarity of

a local oriented orthonormal frame (e1, e2), αi+1 is spacelike (μi/2i )-isotropic for i =
1, . . . , d . �

For a vector bundleE with a bundle connection ∇E overM2
1 (K) and an E-valued (0, l)-

tensor field Q, we note the Ricci identity

(DE(DEQ))(X, Y,X1, . . . , Xl)− (DE(DEQ))(Y,X,X1, . . . , Xl)

= RE(X, Y )Q(X1, . . . , Xl)−
l

∑

i=1

Q(X1, . . . , R(X, Y )Xi, . . . , Xl) ,

where an E-valued (0, l + 1)-tensor field (DEQ) is defined by

(DEQ)(X,X1 . . . , Xl) := ∇E
X(Q(X1, . . . , Xl))−

l
∑

i=1

Q(X1, . . . ,∇XXi, . . . , Xl) .

We put for any positive integer k

ξ̂d+k := (Dd(k)αd+1)(ed+k+1+ ) , η̂d+k := (Dd(k)αd+1)(ed+k+1− ) ,

which are in Oscd+k+1(f ) ∩Nd . Then we have

LEMMA 5.5. For any positive integer k,

(Dd(k)αd+1)(e∓, ed+k± ) ∈ Oscd+k−1(f ) .

PROOF. In the case of k = 1, we see, in Lemma 2.11,

(Dd(1)αd+1)(e∓, ed+1± ) = (Dde∓α
d+1)(ed+1± ) = 0 ∈ Oscd(f ) .

For k ≥ 2, we assume that

(Dd(k−1)αd+1)(e∓, ed+k−1± ) ∈ Oscd+k−2(f ) .

By the Ricci identity,

(Dd(k)αd+1)(e−, ed+k+ )= (Dd(k)αd+1)(e+, e−, ed+k−1+ )

+Rd(e−, e+)(Dd(k−2)αd+1)(ed+k−1+ )

−(d + k − 1)(dρ)(e−, e+)(Dd(k−2)αd+1)(ed+k−1+ ) .

On the R.H.S. in the equation above, we get, using (2.6) for the 2nd term,

(the 1st term)= ∇d
e+(D

d(k−1)αd−1)(e−, ed+k−1+ )

−(d + k − 2)ρ(e+)(Dd(k−1)αd−1)(e−, ed+k−1+ ) ∈ Oscd+k−1(f ) ,

(the 2nd term)= T d−1
e− Sde+ ξ̂d+k−2 − T d−1

e+ Sde− ξ̂d+k−2 ∈ Oscd (f ) ,

(the 3rd term)= (d + k − 1)Kξd+k−2 ∈ Oscd+k−1(f ) .

So we have (Dd(k)αd+1)(e−, ed+k+ ) ∈ Oscd+k−1(f ). By a similar calculation, we obtain
(Dd(k)αd+1)(e+, ed+k− ) ∈ Oscd+k−1(f ). We finish the proof of this lemma. �
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From the lemma above, we have

LEMMA 5.6. For any nonnegative integer k,

Osck(f ) = Span {ξ̂l, η̂l | l = 0, 1, . . . , k} .
Differentiating sections ξ̂d+k, η̂d+k of Nd , we obtain some lemmas on Nd .

LEMMA 5.7. For any nonnegative integer k,

∇d
e+ ξ̂d+k = ξ̂d+k+1 + (d + k + 1)ρ(e+)ξ̂d+k ,

∇d
e− η̂d+k = η̂d+k+1 − (d + k + 1)ρ(e−)η̂d+k .

PROOF. By definition and a simple calculation, we can prove this lemma. �

LEMMA 5.8. If g̃(ζd, ξ̂d ) = g̃(ζd, η̂d ) = 0 for a vector ζd ∈ Nd , then SdXζd = 0 for
any X ∈ TM .

PROOF. We note that Sd ∈ ∧1Hom (Nd,Nd−1) and (ξ̂d−1, η̂d−1) is a local null frame
of Nd−1 with gd−1(ξ̂d−1, η̂d−1) = μd−1 �= 0. Using αd+1(e±, ed∓) = 0, we have

Sde+ζd =μ−1
d−1

(

gd−1(Sde+ζd , η̂d−1)ξ̂d−1 + gd−1(Sde+ζd, ξ̂d−1)η̂d−1
)

=μ−1
d−1g

d−1(ζd, ξ̂d )η̂d−1 .

We similarly get Sde−ζd = μ−1
d−1g

d−1(ζd, η̂d )ξ̂d−1 which shows SdXζd = 0 for any X ∈
TM . �

LEMMA 5.9. IfM2
1 (K) is of constant curvatureK , then we obtain for any nonnegative

integer k,
gd (ξ̂d , η̂d+k) = gd(η̂d , ξ̂d+k) = 0 .

PROOF. Since K is constant, we obtain λd = 0 by Corollary 2.16. Thus we see
g̃(ξ̂d , η̂d ) = 0. For a positive integer k, we assume that

gd (ξ̂d , η̂d+k−1) = gd (η̂d , ξ̂d+k−1) = 0.

Then we have

gd (ξ̂d , η̂d+k)= gd (ξ̂d ,∇d
e− η̂d+k−1 + (d + k)ρ(e−)η̂d+k−1)

= e−gd (ξ̂d , η̂d+k−1)− gd (∇d
e− ξ̂d , η̂d+k−1)

= −gd (∇d
e− ξ̂d , η̂d+k−1) ,

noting that ∇d
e− ξ̂d = (d + 1)ρ(e−)ξ̂d from Lemma 2.11,

= −(d + 1)ρ(e−)gd (ξ̂d , η̂d+k−1) = 0 .

Hence we prove gd (ξ̂d , η̂d+k) = 0 for any k ≥ 0. In a similar way, we get gd (η̂d , ξ̂d+k) = 0
for any k ≥ 0. �

Put, for any point p of M2
1 (K),

Wp := Span {(ξ̂d+k)p, (η̂d+k)p | k is any nonnegative integer} ⊂ Ndp .
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From Lemmas 5.3, 5.8 and 5.9, we have

LEMMA 5.10. If K is constant, then SdXξ̂d+k = SdXη̂d+k = 0 for any nonnegative
integer k and X ∈ TpM (p ∈ M).

For an isometric immersion f : M → Qnt (c) and p ∈ M , we put

Osc∞
p (f ) :=

∞
⋃

i=0

Oscip(f ) ⊂ (f #TQ)p .

PROOF OF THEOREM 5.1. Let f : M2
1 (K) → Qnt (c) be nicely curved of order d . From

Proposition 5.4, we see that N1, . . . , Nd−1 are orientable Lorentzian subbundles of f #TQ.
Since f is full and real analytic, there exists a point p ∈ M such that Osc∞

p (f ) =
(f #TQ)p . Thus, we can take a open subset U around p in M such that

Osc∞(f )|U = f #TQ|U .
OnU , from Lemma 5.6, we can seeNd = Span {ξd+k, ηd+k | k ≥ 0}. Using Lemma 5.10, we
have Sd = 0 on U , if and only if αd+1 = 0 on U . Thus ⊕d−1

i=0N
i = Oscd(f ) = Osc∞(f ) =

TQ on U . So, rankNd = n − 2d = 0, that is, n = 2d . Then, since all vector bundle
N0(= TM),N1, . . . , Nd−1 are Lorentzian plane bundles, we also get t = d . Hence we have
r ≤ min{n− t, t} = d .

Taking a null geodesic γ of M such that γ (0) = p ∈ M and γ̇ (0) = e+,p = (ξ0)p and
putting c+ := f ◦ γ , we obtain by (5.1) and αd+1 = 0

Span{∇(ċ+i )p | i ≥ 1} = Span{(ξ̂0)p, (ξ̂1)p, . . . , (ξ̂d−1)p}
and its dimension is equal to d . It implies that c+ is proper d-planar, hence r ≥ d . So we have
r = d . Since we can similarly see that any null geodesic of M is proper r-planar in Qnt (c), f
is null proper r-PG.

By virtue of Corollary 2.16, α2, . . . , αr are (nonzero) isotropic and K = 2c/r(r + 1).
From Proposition 5.4, we can put the reflector lift ˜J := ⊕r−1

i=0J
i of f . Using (2.1)–(2.3),

(2.27) and (2.28), we get (˜∇e± ˜J )(ξi) = (˜∇e± ˜J )(ηi) = 0 for i = 0, 1, . . . , r − 1, that is, ˜J is
horizontal. By virtue of Theorem 3.5 and Corollary 4.3 , we complete the proof of Theorem
5.1. �

In Riemannian geometry, Calabi shows that a full minimal isometric immersion f :
M2(K) → Sn satisfies n = 2d and is congruent to the Boruvka sphere ψ2,d , in the case that
M is of genus zero and of constant Gaussian curvature. As we see in Theorem 5.1, to obtain
a corresponding result in pseudo-Riemannian geometry, we need the additional assumption
“null r-PG”. There exist extremal isometric immersions which are not null r-PG for any
r > 0. For example, see [3, Theorem 5.1.(b)].
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