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Abstract. The benefits of a recently proposed method to approximate hard optimization problems
are demonstrated on the graph partitioning problem. The performance of this new method, called
extremal optimization (EO), is compared with simulated annealing (SA) in extensive numerical
simulations. While generally a complex (NP-hard) problem, the optimization of the graph partitions
is particularly difficult for sparse graphs with average connectivities near the percolation threshold.
At this threshold, the relative error of SA for large graphs is found to diverge relative to EO at
equalized runtime. On the other hand, EO, based on the extremal dynamics of self-organized
critical systems, reproduces known results about optimal partitions at this critical point quite well.

1. Introduction

The optimization of systems with many degrees of freedom with respect to some cost function is
a frequently encountered task in physics and beyond [1]. In cases where the relation between
individual components of the system is frustrated [2], such a cost function often exhibits a
complex ‘landscape’ [3] over the space of all configurations. For growing system size, the cost
function may exhibit an exponentially increasing number of unrelated local extrema separated
by sizable barriers which makes the search for the exact, optimal solution usually unreasonably
costly. Thus, it is of great importance to develop fast and reliable methods to find near-optimal
solutions for such problems.

The observation of certain physical processes, in particular the annealing of disordered
materials, have lead to general-purpose optimization methods such as ‘simulated annealing’
(SA) [5, 6]. SA applies the formalism of equilibrium statistical mechanics and in principle
only requires the cost function as input. Thus, it is applicable to a variety of problems.
But the performance of SA is hard to assess in general, even when limited to the standard
combinatorial optimization problems. Aside from a multitude of adjustable parameters
that crucially determine the quality of SA’s performance in a particular context, typical
combinatorial optimization problems themselves possess various parameters that may change
the landscape and SA’s behaviour drastically [7].

In this paper we will explore the properties of a new general-purpose method, called
extremal optimization (EO) [4], in comparison with SA. In contrast to SA, EO is based on ideas
from non-equilibrium physics. As the basis for comparison we will use the graph partitioning
problem (GPP), a standard NP-hard combinatorial optimization problem [8] with similarities
to disordered spin systems. We find that the GPP has a critical point as a function of the
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connectivity of graphs, with a less complex phase at lower connectivities. This critical point
is related to the percolation transition of the graphs. Near this critical point, the performance
of SA markedly deteriorates while EO produces only small errors.

This paper is organized as follows: in the section 2 we describe the philosophy behind
the EO method, in section 3 we introduce the graph partitioning problem, and section 4 we
present the algorithms and the results obtained in our numerical comparison of SA and EO,
followed by conclusions in section 5.

2. Extremal optimization

EO provides an entirely new approach to optimization [4], based on the non-equilibrium
dynamics of systems exhibiting self-organized criticality (SOC) [9]. SOC often emerges
when a system is dominated by the evolution of extremely atypical degrees of freedom [10].

A simple example of such a dynamical system which inspired the development of EO is
the Bak–Sneppen model [11]. There, species are represented by a number between 0 and 1 that
indicates their ‘fitness,’ located on the sites of a lattice. The smallest number (representing the
worst adapted species) at each update is discarded and replaced with a new number drawn from
a uniform distribution on [0, 1]. Without any interactions, all the numbers in the system would
eventually become 1. But obvious interdependences between species provide constraints for
balancing the systems’ fitness with that of each species: the change of fitness in one species
impacts the fitness of an interrelated species. In the Bak–Sneppen model, the fitness values
on all sites neighbouring the smallest number at that time step are simply replaced with new
random numbers as well†. After a certain number of such updates, the system organizes itself
into a highly correlated state known as self-organized criticality (SOC) [9].

In the SOC state, almost all species have reached a fitness above a certain threshold. But
these species merely possess what is referred to as punctuated equilibrium [11, 12], because the
co-evolutionary activity is bound to return in a chain reaction where a weakened neighbour can
undermine one’s own fitness. Fluctuations that rearrange the fitness of many species abound
and can rise to the size of the system itself, making any possible configuration accessible.
Hence, such non-equilibrium systems provide a high degree of adaptation for most entities in
the system without limiting the scale of change towards even better states.

EO attempts to utilize this phenomenology to obtain near-optimal solutions for
optimization problems [13]. For instance, in a spin glass system [1] we may consider as
fitness for each spin its contribution to the total energy of the system. EO would search for
ground state configurations by perturbing preferentially spins with large contributions. As in
the Bak–Sneppen model, such perturbations would be local, random rearrangements of those
poorly adapted spins, allowing for better as well as for worse outcomes at each update. In
the same way as systems exhibiting SOC get driven recurrently towards a small subset of
attractor states through a sequence of ‘avalanches’ [9, 14], EO can fluctuate widely to escape
local optima while the extremal selection process ensures recurrent approaches to many near-
optimal configurations. Especially in exploring low-temperature properties of disordered spin
systems, those qualities may help to avoid the extremely slow relaxation behaviour faced by
heat-bath-based approaches [15]. In that, EO provides an approach alternative—and apparently
equally capable [4]—to genetic algorithms, which are often the only means to illuminate those
important properties [16]. The partitioning of sparse graphs as discussed here is particularly
pertinent in preparation for similar studies on actual spin glasses.

† In the Bak–Sneppen model, the relation between species is not specified in detail. In reality, some fixed (‘quenched’)
structure may exist between any two species that determines how the adaptive change in one effects the other.
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It has been observed that many optimization problems exhibit critical points that separate
off phases with simple cases of a generally hard problem [17]. Near such a critical point,
finding solutions becomes particularly difficult for local search methods which proceed by
exploring for an existing solution some neighbourhood in configuration space. There, near-
optimal solutions become widely separated with diverging barrier heights between them. It is
not surprising that search methods based on heat-bath techniques like SA are not particularly
successful in this highly correlated state [15]. In contrast, the driven dynamics of EO does not
possess any temperature-control parameters to successively limit the scale of its fluctuations.
Our numerical results in section 4 show that EO’s performance does not diminish near such
a critical point. A non-equilibrium approach like EO may thus provide a general-purpose
optimization method that is complementary to SA: while SA has the advantage far from this
critical point, EO appears to work well ‘where thereally hard problems are’ [17].

3. Graph partitioning

To illustrate the properties of EO and its differences with SA, we focus in this paper on the
well-studied graph partitioning problem (GPP). In particular, we will consider the GPP near
a phase transition where the optimization problem becomes especially difficult and possesses
many similarities with physical systems.

3.1. Formulation of the problem

The graph (bi-)partitioning problem is easy to formulate: takeN points whereN is an even
number, let any pair of two points be connected by an edge with a certain probability, divide
the points into two sets of equal sizeN/2 such that the number of edges connecting both
sets, the ‘cutsize’m, is minimal: m = mopt. The global constraint of an equal division
of the points between the sets places this problem generally among the hardest problems in
combinatorial optimization, requiring a computational effort that would grow faster than any
power ofN to determine theexactsolution with certainty [8]. The two physically motivated
optimization methods, SA and EO, which we focus on here, usually obtainapproximate
solutions in polynomial time.

For random graphs, the GPP depends on the probabilityp with which any two points
in the system are connected. Thus,p determines the total number of edges in an instance,
L = pN(N−1)/2 on average, and its mean connectivity per point,α = p(N−1) on average.
Alternatively, we can formulate a ‘geometric’ GPP by specifyingN randomly distributed
points in the two-dimensional unit square which are connected with each other if they are
located within a distanced of one another. Then, the average expected connectivityα of such
a graph is given byα = Nπd2. This form of the GPP has the advantage of a simple graphical
representation, as shown in figure 1.

It is known that geometric graphs are harder to optimize than random graphs [18]. The
characteristics of the GPP for random and geometric graphs at low connectivity appear to be
very different due to the dominance of long loops and short loops, respectively, and we present
results for both types of graphs here. In fact, in the case of random graphs the structure is locally
tree-like which allows for a mean-field treatment that yields exact results [19–21]. In turn, the
geometric case corresponds to continuum percolation of ‘soft’ (overlapping) circles for which
precise numerical results exist [22]. Finally, we also try to determine the average ground state
energy of a dilute ferromagnetic system on a cubic lattice at fixed (zero) magnetization, which
amounts to the equal partitioning of ‘up’ and ‘down’ spins while minimizing the interface
between both types [20]. Here, each vertex of the lattice holds a±-spin, and any two nearest-
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(a) (b)

Figure 1. Two random geometric graphs,N = 500, withα = 4 (a) andα = 8 (b) in an optimized
configuration found by EO. Atα = 4 the graph barely percolates, with merely one ‘bad’ edge
(between points of opposite sets, masked by diamonds) connecting a set of 250 round points with
a set of 250 square points, thusmopt = 1. For the denser graph in (b), EO reduced the cutsize to
mopt = 13.

neighbour spins either possess a ferromagnetic coupling of unit strength or are unconnected.
The probability that a coupling exists is fixed such that the average connectivity of the system
is α.

3.2. Graph partitioning and percolation

Like many other optimization problems, the GPP exhibits a critical point as a function of
its parameters [17]. In case of the GPP we observe this critical point as a function of the
connectivityα of graphs, with the cutsizemopt as the order parameter. In fact, the critical
point of partitioning is closely linked to the percolation threshold of graphs. In our numerical
simulations we proceed by averaging over many instances of a class of graphs and try to
reproduce well known results from the corresponding percolation problem. Of course, using
stochastic optimization methods (instead of cluster enumeration) is neither an efficient nor a
precise means to determine percolation thresholds. But in turn we also obtain some valuable
information about the scaling behaviour of the average cost〈mopt〉 for optimal partitions near
the threshold that goes beyond the percolating properties of these graphs.

We note, in accordance with [23], that the critical point separates between hard cases
and easy-to-solve cases of the GPP. The transition is related to the corresponding percolation
problem for the graphs in the following manner: if the mean connectivityα is very small,
the graph ofN points consists mainly of disconnected, small clusters or isolated points which
can be enumerated and sorted into two equal partitions in polynomial time with no edges
between them (mopt = 0). If α is large and the probability that any two points are connected
is p = O(1), almost all points are connected into one giant cluster withmopt = O(N2), and
almost any partition leads to an acceptable solution. But whenp = O(1/N), i.e.α = O(1),
the distribution of cluster sizes is broad, and the partitioning problem becomes nontrivial.
Obviously, as soon as a cluster of size> N/2 appears,mopt must be positive. In this sense,
we observe forN →∞ a sharp, percolation-like transition at anαcrit with the cutsizemopt as
the order parameter.

For random graphs it is known that a cluster of sizeN exists forα > 1 [19], but only
for α > αc = 2 ln 2 ≈ 1.386 do we find a cluster of size> N/2 [20]. Geometric graphs in
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D = 2 are known to percolate at aboutα = 4.5 [22], and we would expectαc for the GPP to
be slightly larger than that. Also, the dilute ferromagnet should exhibit a non-trivial energy
when the fraction of occupied bonds reaches slightly beyond the critical pointpc ≈ 0.2488 for
bond percolation on a cubic (D = 3) lattice [24], i.e. for connectivitiesα > 2Dpc ≈ 1.493.

4. Numerical experiments

4.1. SA algorithm

In SA [5], we try to minimize a global cost function given byf = m+µ(P1−P2)
2, whereP1

andP2 are the number of points in the respective sets. Allowing the size of the sets to fluctuate
is required to improve SA’s performance in outcome and computational time at the cost of an
arbitrary parameterµ to be determined. Then, starting at a ‘temperature’T0, the annealing
schedule proceeds withlN trial Monte Carlo steps onf by tentatively moving a randomly
chosen point from one set to the other (which changesm) to equilibrate the system. This move
is accepted, iff improves or if the Boltzmann factor exp[(fold − fnew)/T ] is larger than a
randomly drawn number between 0 and 1. Otherwise the move is rejected and the process
continues with another randomly chosen point. After that, we setTi = Ti−1(1−ε), equilibrate
again forlN trials, and so on, until the MC acceptance rate drops belowAstopforK consecutive
temperature levels. At this point the optimization process can be considered ‘frozen’ and the
configuration should be near-optimal,m ≈ mopt (and balanced,P1 = P2). While SA is
intuitive, controlled, and of very general applicability, its performance in practice is strongly
dependent on the multitude of parameters which have to be arduously tuned. For us it is thus
expedient (and most unbiased!) to rely on an extensive study of SA for graph partitioning [18]
which determinedµ = 0.05,T0 = 2.5, ε = 0.04,Astop= 2%, andK = 5. [18] setl = 16,
but performance improved noticeably for our choice,l = 64.

4.2. EO algorithm

In EO [4], each pointi obtains a ‘fitness’λi = gi/(gi + bi) wheregi andbi are the number of
‘good’ and ‘bad’ edges that connect that point within its set and across the partition, respectively.
(We fix λi = 1 for isolated points.) Of course, pointi has an individual connectivity of
αi = gi + bi while the overall mean connectivity of a graph is given byα = ∑i αi/N . The
current cutsize is given bym =∑i bi/2. At all times, an ordered listλ1 6 λ2 6 · · · 6 λN is
maintained whereλn is the fitness of the point with thenth rank in the list.

At each update we draw two numbers, 16 n1, n2 6 N , from a probability distribution

P(n) ∼ n−τ . (1)

Then we pick the points which are elementsn1 andn2 of the rank-ordered list of fitnesses. (We
repeat a drawing ofn2 until we obtain a point that is from the opposite set thann1.) These two
points swap setsno matter whatthe resulting new cutsizem may be, in notable distinction to
the (temperature-) scale-dependent Monte Carlo update in SA. Then, these two points, and all
points they are connected to (2α on average), re-evaluate their fitnessλ. Finally, the ranked
list of λ is reordered using a ‘heap’ at a computational cost∝ α lnN , and the process is started
again. We repeat this process for a number of update steps per run that rises linearly with
system size, and we store the best result generated along the way. Note that no scales are
introduced into the process, since the selection follows a scale-free power-law distribution
P(n) and since—unlike in a heat bath—all moves are accepted, allowing for fluctuations
on all scales. Instead of a global cost function, the rank-ordered list of fitnesses provides
the information about optimal configurations. This information emerges in a self-organized
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Figure 2. Typical runtime comparison of SA and EO for the ferromagnet on a 200 MHz Pentium.
Runtimes generally rise∝ N , fall with the connectivityα for SA (filled symbols), but rise∝ α for
EO (unfilled symbols). Circles refer to an average runtime of graphs withN = 512= 83 points,
squares toN = 1728= 123, diamonds toN = 4096= 163, and triangles toN = 8000= 203.

manner merely by selecting with a biasagainstbadly adapted points, instead of ‘breeding’
better ones [11].

There is merely one parameter, the exponentτ in the probability distribution in
equation (1), that controls the selection process and optimizes the performance of EO. In
initial studies, we determinedτ = 1.4 as the optimal value for all graphs. It is intuitive that
such an optimal value ofτ should exist: ifτ is too small, points would be picked purely at
random with no gradient towards a good partition, while ifτ is too large, only a small number
of points with particularly bad fitness would be chosen over and over again, confining the
system to a poor local optimum. It is a surprising numerical result that this value ofτ appears
to be rather universal, independent ofN , α, and the type of graph considered.

4.3. Testbed of graphs

In our numerical simulations we have generated random and 2D geometric graphs of varying
connectivity by choosingp or d, respectively. For any instance of a graph labelled by a
‘connectivityα’, the actual connectivity not only varies from point to point, but also the mean
connectivity of such graphs follows a normal distribution. (In particular for geometric graphs
it is shifted to lower values due to the loss of connectivity at the boundaries.) ForN = 500,
1000, 2000, 4000, 8000, and 16 000, we varied the connectivity betweenα = 1.25 andα = 5
for random graphs, andα = 4 andα = 10 for geometric graphs. Then, for eachαwe generated
16 different instances of graphs, identical for SA and EO. On each instance, we performed
eight (32) optimization runs for random (geometric) graphs, both for EO and SA. For each run,
we used a new random seed to establish an initial partition of the points. SA’s runs terminate
when the system freezes. We terminated EO-runs after 200N updates, leading to a comparable
runtime for both methods.

For the dilute ferromagnet, we fixed the number of couplings to obtain a specific average
connectivityα. Those couplings were then placed on random links between nearest-neighbour
spins to generate an instance. We used 16 instances, and 16 runs for each, at connectivities
1.6 6 α 6 4. Here, we only used 100N updates for EO, and the temperature length of 16N
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recommended in [18] but with a higher starting temperature for SA to optimize performance
at a comparable runtime for both methods, as shown in figure 2.

4.4. Evaluation of results

4.4.1. Comparison of EO and SA.We evaluate the performance of SA and EO separately.
For each method, we only take its best result for each instance and average those best results at
any given connectivityα to obtain the mean cutsize for that method as a function ofα andN .
To compare EO and SA, we determine the relative error of SA with respect to the best result
found by either method forα > αc. Figures 3(a)–(c) show how the error of SA diverges with
increasingN near toαc for each class of graphs.

Depending on the type of graph under consideration, the quality of the SA results may
vary. The data for random graphs in figure 3(a) only shows a relatively weak deficit in SA’s
performance relative to EO. Nearαc = 2 ln 2= 1.386, SA’s relative error remains modest, and
only grows very weakly with increasingN . For large connectivitiesα, SA quickly becomes
the superior method for random graphs, which may be due to their increasingly homogeneous
structure (i.e. low barriers between optima) that does not favour EO’s large fluctuations. On the
other hand, the averages obtained by EO appear to be very smooth (see the scaling in figure 4(a))
whereas the apparent noise in figure 3(a) indicates large variations between instances for the
SA results.

The very rugged structure of geometric graphs near the percolation threshold,αc ≈ 4.5
(see figure 1(a)), is most problematic for SA, leading to huge errors which appear to increase
linearly withN . Barriers between optima are high within each graph, now favouring EO’s
propensity for large fluctuations. On the scale of figure 3(b), error bars attached to the data
(which we have generally omitted) would hardly be significant. But experience shows that
both methods exhibit large variations in results between instances which is in large part due to
actual variations in the structure between geometric graphs.

The results for the dilute ferromagnet exhibit a mix of the two previous cases. Since the
points are arranged on aD = 3-lattice, the structure of these graphs is definitely geometrical,
but local connectivities are limited to the 2D = 6 nearest neighbours that each point possesses.
Again, SA’s error is huge and appears to diverge about linearly near the threshold,αc ≈ 1.5.
But due to the limited rage of connectivities, graphs soon become rather homogeneous for
increasingα which in turn appears to favour SA away from the transition, especially for larger
graphs. (For largerN , any local structure gets quickly averaged out due to the local limits on
the connectivity, whereas an unlimited range of local structures can emerge in the geometric
graphs above.)

4.4.2. Scaling of EO-data near the transition.For the data obtained with EO, we make an
ansatz

〈mopt〉 ∼ Nν (α − αc)
β (2)

to scale the data for allN onto a single curve, as shown in figures 4(a)–(c). From the scaling
ansatz we can extract an estimate forαc to compare with percolation results as a measure of
the accuracy of the data obtained with EO. Furthermore, we also obtain a numerical estimates
for the exponentsν andβ which characterize the transition. The exponentν, describing the
finite-size scaling behaviour, could be infered from general, global properties of a class of
graphs. For instance,ν = 1 for random graphs because any global property of these graphs is
extensive [20]. On the other hand, the exponentβ, describing the scaling of the order parameter
near the transition, is related to the intricate structure of the interface needed to separate points
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(a)

(b)

(c)

Figure 3. Plot of the error of SA relative to the best result found on (a) random graphs, (b) geometric
graphs, and (c) the dilute ferromagnet as a function of the mean connectivityα. While the error
nearαc only increases slowly for random graphs, it appears to increase linearly withN for the
ferromagnet and for geometric graphs. At fixed but large connectivities, SA increasingly gains on
EO for risingN .
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(a)

(b)

(c)

Figure 4. Scaling plot of the data from EO according to equation (2) for (a) random graphs, (b)
geometric graphs, and (c) the dilute ferromagnet as function of the mean connectivityα. The
scaling parameters and fits are discussed in the text.
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into equal-sized partitions. Thus, we would expectβ to be non-trivial even for random graphs.
(To our knowledge, no previous predictions for these exponents exist.)

For random graphs in figure 4(a), the scaling ansatz in equation (2) is particularly
convincing. We verify thatν = 1 and obtainβ = 1.2. From the fit we also obtainαc ≈ 1.30,
just slightly below the exact value of 1.38 [20]. The fit produces an error of about±0.1 in
the determination ofβ, which would ignore any error received through the limited number
of instances averaged over, or any bias due to the shortcomings of EO to approach the exact
optima. A satisfactory fit in turn would indicate that such errors should be negligible.

For geometric graphs in figure 4(b), we found the best scaling forν = 0.6. Since we
used only 16 different instances to average over at eachN andα, the data gets very noisy for
larger connectivities due to large fluctuations in the optimal cutsizes between those instances
and/or EO’s inability to find good approximations. We chose to fit only points up toα = 7
and obtainedβ = 1.4 andαc ≈ 4.1, even smaller than the critical value for percolation, 4.5.
Obviously, the obtained values are very poor, but at least indicate EO’s ability to approximate
the optimal cutsizes with bounded error near the transition.

The data for the dilute ferromagnet in figure 4(c) appears to scale well forν = 0.75. Since
EO’s performance is falling behind that of SA forα > 3 we only fit to smaller values ofα and
obtainβ = 1.15 andαc = 1.55, as desired just slightly larger than the value for percolation,
1.49. We estimate the error from the fit for each of these values to be about±0.05.

4.4.3. Fixed-valence graphs.Finally, we have also performed a study on graphs where points
are linked at random, but where the connectivityα at each pointis fixed. These graphs have
been investigated previously theoretically [20, 25] and numerically using SA [26]. Whileα

is now fixed to be an integer, we cannot tune ourselves arbitrarily close to a critical point.
Furthermore, the problem is non-trivial only whenα > 3. These graphs have the property that
at a givenα andN the optimal cutsizes between instances vary little, and only few instances
are needed to determine〈mopt〉 with good accuracy.

In our simulations we found that for larger values ofα, SA and EO both confirm the
results in [26] quite well. But forα = 3, the lowest non-trivial connectivity, we did observe
significant differences between EO and the study in [26]. Banavaret al found by averaging
five instances each at various values ofN (4506 N 6 4000), a normalized average energy

E = −1 +
4〈mopt〉
αN

(3)

of −0.840, presumably correct to the digits given. We found by averaging over 32 instances,
using eight EO runs on each, forN = 1024, 2048, and 4096 thatE = −0.844± 0.001. But
this result is still significantly higher than some theoretical predictions [20, 25], and we will
investigate whether longer runtimes may further reduce the cutsizes for these graphs [27].

5. Conclusions

In this paper we have demonstrated that EO, a new optimization method derived from non-
equilibrium physics, may provide excellent results exactly where SA fails. While further
studies will be necessary to understand (and possibly, predict) the behaviour of EO, we have
used it here to analyse the phase transition in the NP-hard graph partitioning problem. The
results illustrate convincingly the advantages of EO and produce a new set of scaling exponents
for this transition for a variety of different graphs.
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[19] Erdös P and Ŕenyi A 1973The Art of Countinged J Spencer (Cambridge, MA: MIT Press)
[20] Mezard M and Parisi G 1987Europhys. Lett.3 1067

Wong K Y M andSherrington D 1987J. Phys. A: Math. Gen.20L793
[21] Janson S, Knuth D E, Luczak T and Pittel B 1993Random Struct. Algorithms4 233–358
[22] Balberg I 1985Phys. Rev.B 31R4053
[23] Fu Y T and Anderson P W 1986J. Phys. A: Math. Gen.191605
[24] Stauffer D and Aharony A 1992Percolation Theory(London: Taylor and Francis)
[25] Wong K Y M andSherrington D 1987J. Phys. A: Math. Gen.20L793

Wong K Y M, Sherrington D, Mottishaw P, Dewar R and De Dominicis C 1988J. Phys. A: Math. Gen.21L99
[26] Banavar J R, Sherrington D and Sourlas N 1987J. Phys. A: Math. Gen.20L1
[27] Boettcher S and Percus A G inpreparation


