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EXTREMAL POINTS OF A FUNCTIONAL
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(Communicated by Jeffrey B. Rauch)

Abstract. We investigate the extremal points of a functional
∫

f(∇u), for a

convex or concave function f . The admissible functions u : Ω ⊂ RN → R
are convex themselves and satisfy a condition u2 ≤ u ≤ u1. We show that
the extremal points are exactly u1 and u2 if these functions are convex and
coincide on the boundary ∂Ω. No explicit regularity condition is imposed on
f , u1, or u2.

Subsequently we discuss a number of extensions, such as the case when u1

or u2 are non-convex or do not coincide on the boundary, when the function
f also depends on u, etc.

1. Introduction

The aim of this paper is to characterize the solutions of the variational problems

inf
u∈C

∫
Ω

f(∇u) or sup
u∈C

∫
Ω

f(∇u)(1)

on a set of admissible functions

C = {u : Ω → R is convex and u2 ≤ u ≤ u1},
where Ω is a bounded subset of RN and u1, u2 : Ω → RN are convex and coincide on
∂Ω (see Section 2 for generalizations). The main theorem, Theorem 1, establishes
a connection between the convexity properties of f and the nature of the extremal
points.

This sort of problem, and in particular the convexity constraint on u, is rela-
tively rare in calculus of variations. However, certain very old problems appear to
have this form, for instance Newton’s problem of the body of minimal resistance
(see [2]—here the function f is neither convex nor concave). Also, in economy
some interesting new problems also are stated with convexity constraint; we refer
the reader to [6] and the references here for this type of applications.

For the integral in (1) to be well-defined on C we need to introduce some hypothe-
ses. We recall that any convex function on Ω is Lipschitz continuous on compact
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subsets of Ω and differentiable almost everywhere in Ω; under the additional hy-
pothesis

∇u2 is bounded a.e. on Ω,(H1)

combined with (H2) below, the set C is embedded in W 1,∞(Ω). Indeed, (H2) and
the convexity imply that

‖∇u‖L∞(Ω) ≤ ‖∇u2‖L∞(Ω) ∀u ∈ C.(2)

Under the assumptions of Theorem 1 the function f is continuous and therefore
the integral is well-defined and bounded from below on C.

We also remark here that by the results of [5] the set C is compactly imbedded
in W 1,p

loc (Ω) for any 1 ≤ p < ∞. Consequently the infimum in (3) is attained. For
a complete discussion on the continuity properties of functionals of this form, even
without any assumption on the convexity of the functions, we refer the reader to [5].

For our application, the problem reduces to

min
u∈C

∫
Ω

f(∇u)(3)

where f is convex or concave; the supremum is obtained by changing f to −f .

Theorem 1. Let u1, u2 be convex and satisfy

u1 = u2 on ∂Ω.(H2)

1. if f is strictly convex, then u = u1 is the unique solution of Problem (3);
2. if f is strictly concave, then u = u2 is the unique solution of Problem (3).

Remark. Except for the convexity constraint on the functions u, part 1 of this
theorem corresponds to a classical problem in the calculus of variations, which is
usually analysed using the Euler-Lagrange equation and methods from PDE theory.
The convexity constraint prompts us to use different techniques, which has some
interesting consequences for the regularity of the functions involved. First, we do
not need to suppose any special regularity on the function f ; in particular, f need
not be C1. Second, Theorem 1 shows that the convexity constraint eliminates part
of the regularizing effect that is commonly present in convex variational problems:
the function u1, a unique minimizer if f and u1 are both convex, need not be
smooth; if u1 is not convex (see generalizaton 2 below), then the minimizer u∗∗1
need not be smooth either, even in points where u1 and u∗∗1 do not coincide.

Proof. Denote the integral in (3) by F (u). We first prove the following lemma,
adopting the notation u ∨ v = max{u, v}. We recall that if u and v are convex,
then u ∨ v is, also.

Lemma 1. Suppose that f is strictly convex. Let u ∈ C and suppose that θ : Ω → R
is an affine function such that the set ω = {x ∈ Ω : θ(x) > u(x)} is non-empty.
Then F (u ∨ θ) < F (u).

Proof of the lemma. Since θ∨u is equal to θ in ω and equal to u in Ω \ω, we have

δF := F (θ ∨ u)− F (u) =
∫

ω

[f(∇θ)− f(∇u)].

Define

g(ξ) = f(ξ +∇θ) − f(∇θ)− f ′(∇θ) · ξ, ∀ξ ∈ RN ,
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where for f ′(∇θ) we take any element of the subdifferential of f at the point ∇θ
(remark that ∇θ is constant on ω). Writing ϕ = u− θ, we have

δF = −
∫

ω

g(∇ϕ)

since ϕ = 0 on ∂ω implies
∫ ∇ϕ = 0.

The strict convexity of f is passed on to g; by construction we also have

g(0) = 0 = inf
ξ∈RN

g(ξ),

which implies g(ξ) > 0 for any ξ 6= 0. Hence δF < 0 which concludes the proof of
the lemma.

We now return to the proof of the theorem. Let us first assume that f is strictly
convex. Then, using the lemma, we obtain F (θ ∨ u) ≤ F (u) for any u ∈ C and any
affine function θ, the inequality being strict if θ ∨ u 6≡ u in Ω.

In particular, if v is any given function in C \ {u1}, there exists θ1 such that

v ≤ v1 := v ∨ θ1 ≤ u1 and v 6≡ v1 in Ω.

Also, since v1 and u1 are convex functions satisfying v1 ≤ u1, there exists a finite or
infinite number of affine functions (θk)k≥2 such that the sequence (vk)k≥2 defined
by vk := θk ∨ vk−1 satisfies vk ≤ u1 and vk → u1 in the uniform topology (and
therefore in W 1,p(Ω), since the functions vk are convex).

Consequently we have the sequence of inequalities

F (v) > F (v1) ≥ F (v2) ≥ · · · ≥ F (vk) → F (u1),

hence F (v) > F (u1) and this concludes case 1 of the theorem, since v is arbitrary.
If f is concave, −f is convex. Hence, using the lemma again, we get F (θ ∨ u) ≥

F (u) for any u ∈ C and any affine θ, the inequality being strict if θ ∨ u 6≡ u in Ω.
If v is any function in C \ {u2}, we can again define a finite or infinite sequence

(θk)k≥1 such that v1 := u2 ∨ θ1 satisfies u2 ≤ v1 ≤ v and u2 6= v1, and if vk :=
vk−1 ∨ θk, the sequence (vk) converges to v. We now have

F (u2) < F (v1) ≤ F (v2) ≤ · · · ≤ F (vk) → F (v)

and therefore F (u2) < F (v). This concludes the proof of the theorem.

2. Generalizations and improvements

We have given our main theorem in a simple and convenient form, but many
generalizations and improvements are possible. We give some of them here, and
also discuss the accuracy of some of the hypotheses.

1. If u1 is not convex, the conclusion of the theorem is unchanged if f is
concave, and should be changed to ‘u∗∗1 is the unique solution’ if f is convex.
Here u∗∗1 is the convex regularization of u1 (also called the Γ-regularization;
[3], Proposition 4.1). This is obvious since this function is the maximal ele-
ment in C:

u∗∗1 (x) = max{u(x); u ∈ C}, ∀x ∈ Ω,

and we can therefore replace u1 by u∗∗1 without loss of generality.
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2. If u2 is not convex, the situation is slightly more complicated if f is
concave (though the result remains if f is convex). Indeed, in that case, it is
clear from the proof that any solution u0 of problem (3) must be ‘minimal’
in the following sense: for all u ∈ C \ {u0}, there exists x ∈ Ω such that
u(x) > u0(x). On the other hand, many ‘minimal’ points can exist in C, and
there is no obvious way to decide which one minimizes F ; it is also possible
that more than one do. This situation is very similar to the usual problem of
minimizing a concave function on a convex set.

3. It is not necessary for f to be strictly convex or concave, except that
if it is not, the minimizer is usually not unique (but u1 or u2 are minimizers
as stated in the theorem; this can be easily proved by using an approximation
argument on f , for instance). The extreme case is obtained when f is affine;
here F is constant on the set C, since u = u1 on ∂Ω implies

∫ ∇u =
∫ ∇u1.

If f is neither convex nor concave, as happens for the Newton functional
for instance, the situation is much more complicated. We refer the reader
to [2] for the statement of the problem, and to [1] for an interesting non-
symmetry result. A first contribution towards a complete characterization of
the solution is to be given in [4].

4. One can also consider f depending also on u, for instance by minimizing∫
f(u,∇u) on C. A simple generalization of the main theorem is as follows:

Lemma 2. Assume hypothesis (H2) and consider the problem

inf
u∈C

∫
Ω

f(u,∇u).

Then,
(a) if f(u, p) is nondecreasing with respect to u and convex with respect to p,

then u = u1 is a minimizer;
(b) if f(u, p) is nonincreasing with respect to u and concave with respect to

p, then u = u2 is a minimizer;
In both cases, the minimizer is unique if f(u, p) is strictly monotone with
respect to u or strictly convex or concave with respect to p.

This follows directly with the same proof, since Lemma 1 is still true in
these cases.

5. Ω may be unbounded; in that case, condition (H2) should be changed to
either

lim
x∈Ω,x→∞

|u1(x) − u2(x)| = 0,

which is the natural generalization of (H2), or

lim
x∈Ω,x→∞

|∇u2(x)| = +∞.

If this last condition is satisfied, then for any affine function θ and any u ∈ C,
the set {u < θ} is bounded so the proof is similar.

6. The hypothesis (H2) is crucial, since for instance, if we just assume u1

and u2 to be affine functions, one may have either u1 > u2 or u1 < u2 in Ω
just by adding a constant to one of them; but adding a constant to u does
not change F (u), hence there is no way to compare F (u1) and F (u2) in this
example. (Many thanks to A. Damlamian for this counterexample.)
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Hence, if u1 6= u2 on some part of ∂Ω, a minimizer u different from u1 and
u2 could exist in C. It is still possible to give some information if f is strictly
convex. Since the inequality of u1 and u2 on the boundary implies that ∇u
is not bounded on C, we need to impose restrictions on f in order to ensure
that F (u) is finite for all u ∈ C. One can suppose that f is bounded from
below; but it appears that the condition

∃c1, c2 > 0, ∀ξ ∈ RN , f(ξ) > −c1 − c2 |ξ|(4)

is sufficient even to ensure inf F > −∞, since for any convex function u,∫
Ω

|∇u| ≤ 2Ndiam(Ω)N−1 oscΩ u

where we adopt the notation oscu = supu − inf u. This follows from consid-
ering the integral of |∂u/∂x1| in the direction of x1. Since u is convex the
oscillation of u ∈ C is bounded by supu1 − inf u2.

Lemma 3. Assume that f is strictly convex, but hypothesis (H2) is not satisfied.
Then for any minimizer u of F on the set C and any given point x ∈ Ω, either
u(x) = u∗∗1 (x) or for any affine function θ satisfying θ(x) = u(x) and θ ≤ u we
have

∃y ∈ ∂Ω, u1(y) > θ(y) > u2(y).(5)

This lemma generalizes the main theorem (for f convex) and can be proved the
same way: just observe that if condition (5) is not satisfied, then there exists an
ε > 0 such that the affine function θ + ε satisfies the conditions of Lemma 1 with
respect to u, hence u is not minimal.
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