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1. Preliminaries. Consider an nth order Chebyshevian, or disconju-
gate, differential operator L = WQ 1DWÎ1 • • • Dw„_1, where D = d/dt and 
wt G Cn(R), wt(t) > 0, i = 0 , 1 , . . . , n91 e R [4], [5]. The formal adjoint of 
L is the Chebyshevian operator L* = ( ~ l)nw~ 1JDW~_1

1 • • • DWQ1. Let 

F(s, t) = wn(s)w0(t) dtiw^) dt2w2(t2) • • • </*„__!*„_!(*„_!). 
Jt Jtl Jtn-2 

A fundamental solution for L is given by G(s, t) = F(s, t) for s ^ t, 
G(s, t) = 0 for s < t. A fundamental solution for L* is GJs, i) = G(t, s). 
To avoid cumbersome formulations results are stated for n ^ 2 (in which 
case G is continuous), unless indicated otherwise. 

By SR(T) we mean the collection of Radon measures on the locally 
compact Hausdorff space T; by 9£R0CO and 9W(T)+, the subfamilies of 
measures of compact support and of positive measures. For an open 
interval J let 9WM(7) be the set of real functions on I possessing an nth 
distribution derivative belonging to 301(7), « = 1 , 2 , . . . . For n ^ 2, if 
u e mV) then Dn~2u e ACïoc(I) and Dn~xu e BVloc(I). One shows that a 
measure u e 501(7) belongs to 9KW(1) iff Lu e 5R(7) in the following weak 
sense: There is \x e 30?(7) such that j I?<j)(t)u{dt) = J (j)(i)ix(dt) for each 
<j) e CJ(7); if this is so one says \x = Lu. Let 501J(R) consist of the functions 
in 90?"(J?) of compact support. For any interval 7 we say u e 50loO(7) if 
u e $0t£(jR) and supp(w) c: 7. Each u e 50lw(7) has integral representations 

u(s) = v(s) + 

and analogously 

F(s, t)Lu(dt), where Lv = 0 and a G I, 

u(t) = v*(t) + F(s, t)Ifu(ds), with I*v* = 0. 
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Let ker* L = {Xe 9K0(^): J wA = 0 if Lu = 0}. It is fairly standard in 
distribution theory that the following three properties are mutually 
equivalent: 

(1) A e ker* L; 
(2) (f)(t) = j G(s, t)X(ds) has compact support; 
(3) there is 0 e 2R0(K) such that L*<£ = A. 

Also, L* maps 9K5(/£) one-to-one onto ker* L. The inverse map is given by 
A H> 0, 0(0 = ƒ G(s, O^fr). 

Now let J be any interval and Q = int(7). We define the Chebyshevian 
convexity cone Jf(L, I) = {ue C(I):L(u | Q) G 5D?+(Q)}. The dual cone is 
JT*(L, /) = {A G SR0(J): J uX ^ 0 for all u G Jf(L, /)} [5], [9], [10]. The 
known characterization [4], [10] of the dual cone combined with the 
above characterization of ker* L almost gives Lemma 1 : 

LEMMA 1. (a) Let X e Wl0{I). Then X G X*(L, I) iff there is $ e Wln
00(I\ 

(j> ^ 0, X = L*</>; moreover, for such X and <\> and for u eC/f{L, I), one has 
j uX = \ (f)Lu. 

(b) L* maps y$ln
00(I)

+ one-to-one onto Jf*{L, I). (Here, as throughout, the 
superscript + denotes the positive cone in a space of functions.) 

The proof for the case that I is not open depends on a subtle application 
of Fubini's theorem and the total positivity properties of the fundamental 
solution G(s, t) [5], [7], [1]. 

2. P-extremal measures in jf*(L, I). 
DEFINITION. Let ^ be a convex cone in a linear space and let 0 ^ XeW. 

We say X is decomposable, if there is a decomposition X = Xx + X2 with 
linearly independent Al9 X1e

c&. Otherwise X is extremal in <€. If 
# c S0?o(T), T locally compact Hausdorff, then X is P-decomposable 
(v-decomposable for some v G Wl(T)) in # if there is a decomposition 
X = Xx + X2 in <& such that ƒ |A| = j IAJ + j |A2| (Af « v); otherwise X 
is P-extremal (v-extremal) in ^ . 

REMARK. All nonzero X in J T * ( L , ƒ) are decomposable. 

LEMMA 2. Ler 0 ^ A G ^ c 5R0(T). TVierc A = Ax + A2 w a P-decom-
position in %> iff there are two nonconstant functions hieL1(\X\), 0 ^ Ai5 

^i + h2 = 1 a.e. |A| and Xt = h^Xs^ (i = 1,2). ƒ« particular, if X is 
\X\-extremal in ^ then X is P-extremal in <$. 

DEFINITIONS. An r-fold zero of feWln(I) is defined as usual for 
0 ^ r S n — 2. Any maximal interval on which/vanishes will be termed 
a zero-interval and is counted as w-fold zero. If f(t) = f'{t) = • • • = 

fn~2\t) = 0, let A = / « " - " ( f - ) , B = / ( W _ 1 V + ). If AB > 0 then * is an 
(n — l)-fold zero off; if AB ^ 0 the multiplicity is n. The total number of 

file:///X/-extremal
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zeroes of ƒ is denoted by Zn(f I). Let si < s2 < • • • < sp. We denote by 
S(L, sl9 . . . , sp) the space of Chebyshevian L-splines with knots s1,. . . , sp, 
i.e. of functions u e 9W"(JR) for which Lu has support contained in 
{sl5 . . . , Sp}. The space of Chebyshevian L*-splines of compact support 
with knots sl9 . . . , sp is denoted by S0(L*, s l5 . . . , sp). It consists of 
functions 0 of the form (f)(t) = £* a.G(^, f) where £^ = 1 atw(^) = 0 
whenever u e ker L. Finally let 5"(/I) denote the number of sign changes 
of the Radon measure X in 9W0(J). Cf. [5], [6], [7], [8] for results relating 
to these definitions. 

We can now state the central result of this paper. 

THEOREM 1. (i) Let st < s2 < • • * < sp and *i ^ f2 = ' ' ' = tP-n-i be 
any reals selected subject to p ^ n + 1 and 

(4) si + i < tt< si+n,i = 1,. . .,p - n - 1; 
(5) each distinct tt occurs with even multiplicity not larger than n — 1. 
Then there is a Chebyshevian L*-spline (j), unique up to a positive factor, 

satisfying 
(6) cl>eSo(L*,su...,Sp)\(t>*0. 
(7) Zw((/>, (sl9 Sp)) = p — n — 1 and </> vanishes at each distinct tt 

according to the multiplicity of its occurrence. 
Moreover, one such function can be explicitly represented by the 

(extended) determinant 

(8) <Ht) = G*(Su •••* Sn' Sn+U ' • " • V - i ' SP\ (t^ti). 
VI» • • • •> rn-> h> • • • » tp_n_x, t J 

The rt are any reals satisfying rx < • • • < rn < sx. 
(ii) Let XeWl0(I), X # 0 and S~(X) < oo. Then X is P-extremal in 

X*(L, I) iff X = clfcj) for some c > 0 and </> as in (i). In particular X has 
finite support, j uX = Yfi= x «,-wfô), where ajc are the coefficients obtained 
when expanding (8) along the last column. The at alternate in sign. 

For the G* notation, see [5]. If/7 = n + 1, then 0 is an (unnormalized) 
2?-spline. The proof of part (i) of the theorem is not hard using known facts 
about Chebyshevian splines. The proof of part (ii) depends on the follow­
ing two lemmas, the first of which is a result of the variation diminishing 
type. 

LEMMA 3. Suppose M is a kth order Chebyshevian differential operator, 
§ G 90?o(JR). Let [a, b~\ be the smallest closed interval containing supp((/>). 
Then k + Z\<j), (a, b)) ^ S~(M^). 

This lemma implies, e.g., that if (j) is as in Theorem 1, then S~(L*(j)) = 
p — 1, i.e., the discrete masses of L*0 at the st alternate in sign. 
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Using Lemma 1, the decomposition of A e Jf *(L, J) can be dealt with 
in part by considering </>(*) = J G(s, t)X{ds) in 5015W+ • Here, the following 
lemma is needed. 

LEMMA 4. Suppose (j> e 9Jto(R)+ and <t> nas on^y zeroes of order n — 1 
except unbounded zero-intervals. Let f e SDtoOR) have all the zeroes of (j), 
counting multiplicities, then there is s > 0 such that (/) + af *z 0 for 
\a\ ^ a. 

3. Applications. We first characterize those data sets (xh yi)k
i=1 which 

permit a generalized convex interpolation. Cf. [1] for some results and 
history. Let xx < x2 < * * * < xk in the following. 

LEMMA 5. S0(L*, xl9 . . . , xk)
+ is spanned by its extremal elements. 

THEOREM 2. ij/ e S0(L*, xu . . . , xk) is extremal in S0(L*, xu . . . , xk)
+ 

iff *A = c0, c > 0, VWV/J </> as in (8), ^^ . . . , sp being any consecutive points 
among the xt. 

The proof uses Lemmas 1 and 2. The foundations which allow to 
conclude the next theorem from the preceding results are in [1]. This 
result considerably improves earlier ones by T. Popoviciu and by the 
author. 

THEOREM 3. A set of data points (xt, u0(xi))^1 admits of ue Jf(L, ƒ), 
I ID {xjf=1, such that uiXi) = u0(xt), i = 1, . . . , k, ijfj w0L*</> ^ Qfor all 
(j) occurring in (8) (this integral is a finite sum, cfi Theorem 1 (ii)), with 
sl9 . . . , sp any consecutive ones among the xh i = 1, . . . , k. 

In the author's thesis [1] it is shown that, if a generalized convex 
interpolation exists, all such interpolations lie between two extremal ones, 
which are Chebyshevian L-splines with at most k/2 knots, on (xl9 xk). 

Next we deal with characterization of best uniform approximation by 
generalized convex functions. In [1] it is shown that such approximations 
exist on a compact interval. 

THEOREM 4. Let T be a compact Hausdorff space, <6 a cone in 9Jt(T), 
and 5* the unit ball of the B-space 9K(T) = C(T)*. Let A e <€, A ^ 0. Then 
A/||A|| is an extreme point of # n S* iff A is P-extremal in <€. 

L. de Branges in [3] proved the "only if" part (in the form provided by 
Lemma 3) for the case of a vv*-closed linear subspace # . Theorem 4 gives: 

THEOREM 5. Let u0 $ J f (L, ƒ), ƒ a compact interval. Then there is a 
function (/) as in Theorem 1, (8) such that if u$ Jf(L, I), then u is a best 
approximation for u0 from JT(L, ƒ) in the uniform norm iff 

(9) \(u - «o)L*0/||LVII = I I K - H O I L ; 
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(10) \uL*4> = ULu = 0. 

Equivalently\ u e J f (L, I) is a best approximation for u0 iff 
(11) u(st) = u0(Si) + (-If-1 ||u - t/olloo (i = 1, • • • ,/>); 
(12) on [sl9 Sp] u is the unique Chebyshevian L-spline with simple knots 

at the distinct tt (zeroes of (j>) satisfying (11). 

REMARKS. The alternation and uniqueness conditions in the last 
theorem, established for approximation by functions satisfying Lu ^ 0, 
are seen to strongly resemble the Chebyshevian alternation and unique­
ness theorem, valid for approximation by functions satisfying Lu = 0. 
Suppose Lu = 0 and (11) holds with p = n + 1, i.e. u is a best approxi­
mation to u0 in ker L and the last sign of the error u — u0 on the alternant 
{st, . . . , sp} is " + ". Theorem 5 implies that u is also the best approxi­
mation to u0 in Jf(L, ƒ). 

Only for n ^ 2 does the condition of Theorem 3 reduce to a finite 
system of linear inequalities in the u0(xt) (if « S 2, then (4) implies that 
p = n + 1). Our results also imply that no such system can be found for 
n > 2. 

Portions of this paper were presented at the Symposium on Approxi­
mation Theory, held in Austin, Texas, January, 1973 [2]. 
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