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In this paper, we establish several theorems involving configurations of points and lines in 
the Euclidean plane. Our results answer questions and settle conjectures of P. Erd6s, G. Purdy, and 

G. Dirac. The principal result is that there exists an absolute constant cl so that wlaen V'n<=t~_[T], 

the number of incidences between n points and t lines is less than c~n~/3t ""/3. Using this restllt, it fol- 
lows immediately that there exists an absolute constant c2 so that if k -< ]/~, then the number of 
lines containing at least k points is less than c~n"-/k a. We then prove that there exists an absolute cons- 
tant ca so that whenever n points are placed in the plane not all on the same line, then there is one 
point on more than c,~n of the lines determined by the n points. Finally, we show that there is an ab- 
solute constant c4 so that there are less than exp (c~ }/~) sequences 2~_y~<=y2 <_... --~y~ for which 
there is a set of n points and a set/1,/~ . . . .  , l, of t lines so that / i contains ),~ points. 

I. Introduction 

E x t r e m a l  p r o b l e m s  in d i s c r e t e  g e o m e t r y  a re  a m o n g  t h e  m o s t  n a t u r a l  a n d  m o s t  
t a n t a l i z i n g  a r e a s  o f  r e s e a r c h  in c o m b i n a t o r i a l  m a t h e m a t i c s .  T h e  r e a d e r  is e n c o u r a g e d  
to c o n s u l t  P. E r d 6 s '  s u r v e y  p a p e r s  [2], [3], [4], [5] a n d  W. M o s e r ' s  s u m m a r y  [6] o f  
r ecen t  p rog re s s  o n  a w i d e  r a n g e  o f  p r o b l e m s  in th i s  a rea .  [n th i s  p a p e r ,  we c o n c e n t r a t e  
oi l  e x t r e m a l  p r o b l e m s  in  t he  E u c l i d e a n  p lane .  W e  beg in  by  e s t a b l i s h i n g  t he  f o l l o w i n g  
t h e o r e m  l i m i t i n g  t h e  n u m b e r  o f  i n c i d e n c e s  b e t w e e n  a se t  o f  n p o i n t s  a n d  a f a m i l y  o f  t 
l ines  in t h e  E u c l i d e a n  p lane .  

Theorem 1. There exists  a constant cl so that iJ '~  is' a set o f  n points and £P is a )Camily 
o f  t line,~ in the Eucfidean plane, then the number o f  hlcidences between points in ~ and 

P. E r d 6 s  [5] h a d  c o n j e c t u r e d  the  c o n c l u s i o n  o f  T h e o r e m  1 in t he  spec i a l  c a se  
t = n .  F r o m  T h e o r e m  1, we o b t a i n  as  a n  i m m e d i a t e  c o r o l l a r y  t he  f o l l o w i n g  t h e o r e m  
se t t l i ng  in t h e  a f f i rma t ive  a c o n j e c t u r e  o f  E r d 6 s  a n d  P u r d y  [5]. 
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Theorem 2. There exists  a constant c.z so that i f  ~ is a set o f  n points and ~q~ is a fami l y  

o f t  lines each containing at least k points f rom ~ where k<:l/n., then t<c2n2/k a. 

A second corollary is the tbllowing result which is a partial solution to Dirac 's  
conjecture [5]. (This result was also proved by J. Beck [1]). 

Theorem 3. There exists a constant c a > 0  so that i f  ~ is a set o f  n points, not all on 
the same lhw. and ~ is the fami l y  oral~ lines determined by ~ ,  then there exists  at least 
one point in ~ which belongs to more than can lines.fi'om 5f .  

Let a~ be a set o f  n points and let £ a =  {11,/2 . . . . .  l,} be a family o f  lines each 
containing at least two points from :~. For  each j =  1, 2 . . . .  , t, let yj count  the num- 
ber o f  points f rom a~ which are on l ine/ j .  We may then assume that  the lines have 

i=1 K ,L l k A  ] 

is not  sufficient to insure that an arbitrary nondecreasing sequence arises in this 
fashion. Let d(n) count  the number  o f  distinct nondecreasing sequences y,<=y~_~... 
...<-y~ determined by ;all possible configurations of  n points in the plane. We use 
Theorem I to prove the following result which also settles in the affirmative a con- 
jecture o f  P. Erd6s:  

Theorem 4. There exists  a coHstant ('~ so that c, t n ) < z  " Jor all n>= 1. 

2. The Covering Lemma 

The principal tool used in establishing Theorem 1 is a covering lemma proved 
by the authors  in [7]. We assume that a pair o f  coordinate  axes has been chosen and 
when we use the term square, it will also be assumed that  the sides are parallel to the 
coordinate  axes. The following lemma asserts the existence o f  a family o f  squares 
covering a positive fraction o f  a set o f  n points with an additional restriction on the 
number  o f  points contained in each square. We refer the reader to [7] for the p roo f  o f  
the lemma. 

Lemma.  Let  I"1, r., be integers with r2=e256 q ,  and let 2~ be any set o f  n points in the 
plane. Then there exists a fitmily ~ o f  squares so that: 

1. No point in the plane is in the interior o f  more than one square; 
2. Each .vquare contains at least rl but no more than r2 points o ( ~ ;  
3. At  least n/16 o f  the pohTts in Y.P are covered by the squares in ~.  I 

The covering lemma will be used to localize the intersection patterns o f  lines. 
In order to apply the lemma, we take full advantage o f  the fact that  linear transfor- 
mations can be applied to any configuration of  points and lines. Thus whenever we 
need to, we can rotate the configuration, and we can increase or decrease the slope o f  
the lines in the configuration. 
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3. The Principal Theorem 

in this section we present our  principal theorem. 

Theorem 1. There exists a constant c 1 so that iJ'~@ is a set o f  n points and 097 is a fami ly  

o f  t lines with l /n<=t~ (n2), then the number o f  incidences between the points in ~ and 

the Ihws in ~ is less than qn"/at 2/a. 

Proof.  We will show that  the conclusion holds when q =  10% The p roo f  wilt be 
by contradict ion.  We assume the theorem is false and choose a counterexample  with 
n + t  as small as possible. We then show tha t  a large fraction of  the points  in ~ are 
incident with a large number  of  lines f rom two subsets Lea and 5",,. After  a suitable 
linear t ransformat ion ,  the lines in Lea will have slope very nearly + I and the lines in 
Lee will have slope very nearly - 1. The covering lemma will then be used to show 
that  more  pairs o f  lines cross where there is no point  o f  °M than there are pairs o f  lines 
inLe.  

Choose  a coordinate  system consisting of a horizontal  line (x-axis) and a verti- 
cal line (),-axis). Then we may assume without  loss of  generality that  all lines have 
slope in the interval ( - 1 / 2 ,  1/2). ( I f  this condit ion is not satisfied, we apply a linear 
t r ans format ion  of  the form (x, y ) ~ ( x ,  w )  where ~ is a small positive number . )  

We label the points p~, P2 . . . . .  p,, and the lines ll, I2 . . . . .  t,. Without  loss of  
generality, we may  assume that  if .], <j., ,  then the slope of / j l  is at least as large as the 
slope of  @. For  each i =  I, 2 . . . . .  n, we define the degree ofp~,  denoted di, as the 
number  o f  lines in 2 '  which contain Pl. For  each .]= 1, 2 . . . . .  t, we define the densio' 
o f  lj, denoted 3),  as the number  of  points in :a2 which are on the line /j. We let I 
denote  the total number  of  incidences between points and lines. Then 

q n "/a l "va ~_ I = .~S'di = Ya" 
i= . l  j = l  

I f  lj, and la~ are lines for  which there is some point  pi~::# c o m m o n  to both 
lines, we say ljl and I2~ have a good intersection. If  lax and @. intersect where there is 
no point  o f  o~, we say the lines have a wasted crossing. We let G denote the total  
number  of  good intersections and let W denote the total  number  of  wasted crossings. 

t ; l  ' t" 1 d ] - - -  X;,di 
.5---> ~ 2 i = ~ _  2 i - i  

i=O i = 1  

" " 1 " 1 1 1 12 "- I d~ - ~ =  d~ ~ I " - - ~ - 1  ~ ~ n'/'st 4/3. 
>= T / i n  ~ = - 3 .  

C 3 

- ' I/n. At this s ta te ,  it is impor tan t  to note that  t is In particular,  it follows that  t-=-T-O 

a l ready known to be a reasonable distance away from the boundary  value t =  I/m 
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Let YA denote the average density of a line in ,go, i.e., YA = I/t. We show that 
every line has density at least as large as .6ya. Suppose to the contrary that there are 
x t  lines which have density less than .6ya where 0 < x < l .  Let x l = m i n  {x, 1/2} 

and choose a set of  x l t  lines each of  which has density less than .6ya. Since {~) 

> t - x x  t-~ t/2-~ (n,  we know that the number of  incidences involving the remaining 
t - X x t  lines is less than cln"-/a(t-xl  t)z'% Meanwhile, the number of  incidences in- 
volving the xl t lines with small density is less than (Xa t)(.6 )'n). This requires: 

(xJ ) ( .6y) -"  cln'-'/a(t-x~t) ~/3 > 1. 

Thus there is a number xt with 0 < x t ~  I/2 for which: 

(1) . 6 x L + ( l - x 0  2/a > I. 

However, it is an easy exercise to show that there is no solution to this in- 
equality in the desired range 0 <.va :~ 1/2. The contradiction allows us to conclude that {,,) all lines have density at least as laree as .6 v.~. Since ,~ " ~ we also know that 

" ' . i = 1  2 ' 

t < n  ~. A simple computation shows that t <  10an'-'/c~, and thus t is signifi- 

cantly less than the upper bound t = [ ~ } .  Also note that if there are s lines in 2 '  having 
N / 

the same slope, then s(.6ya)::~n. A simple computation shows s<10"  t/c~, i.e., 
a very small fraction of the lines in 2" belong to any class of  parallel lines. 

Let d.~ denote the az.:,rage rk,gree of the points in ~ ,  i.e., dA=I/n.  We will 
show by a similar argument that all points in :'~ have degree at least as large as .6d A . 
To the contrary, suppose there are xn points with degree less than .6da where 
0 < x <  1. As before, let .x 1 = rain {.v, I/2} and choose a set ofx tn  points having degree 

• , we know that the number of  incidences 

involving the remaining n - x ~ n  points is less than c~(n-xjn)"-/at"/a=(l-x~)~-Ial. 
Since the number of  incidences involving the x~n points with small degree is less than 
(x~n)(.6 dA), this requires that -\'1 satisfy, inequality (1) which we have already noted 
is impossible. The contradiction shows that every point in ~ has degree at least as 
large as .6 d4. 

The next step in the proof  is to obtain a large subset ~,b* of  the points so that 
each point in :~* is incident with a large number of  lines fi'om each of two sets 2"1, 2"., 
of  lines. After a suitable linear transformation, all lines in 2"~ will have slope in the 
interval (.99~ 1.01) and all lines in £°9_ will have slope in the interval ( -1 .01 ,  --.99). 
The tight control in the angles is necessary in order to apply the covering lemma. We 
will proceed in several stages. 

<-'< ) S,,={Ij: t / 2 < j ~ t } .  Then let :~. First, let SL={/j: l - - . l= t / - }  and let 
denote the set of  points in .:2 which are incident with at least dA/100 lines from S, 
and at least dA/100 lines from Se. Partition -¢~-~o into two subsets ~ ,  ~2 where 
~ a = { p < ~ - ~ , ) :  p is incident with more lines from S~ than with S,a} and ~,, 
= ~ - ~ ' , , - ~ .  For each i=0 ,  1, 2, let [,~i{=xin where x , + x , + x . a = l .  Also for 
each i, let I~ denote the number of  incidences involving the points in ~ .  We claim 
that x0>_.l. To the contrary, suppose that x0< . l .  We proceed to a contradiction. 
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Consider the following inequalities: 

(x0n / 
(2) 1/xon -~- t ~ I, 2 )" 

(3) ( x ln  ~ t/2 ~ ( x ;n} .  

[x~,,] 
(4) V'x,n ~ t/2 ~ I, 2 )" 

If inequalities (2), (3), and (4) are satisfied, then we know: 

I,, < cl(xon)~/3r~/3 = x~/a l,  

11 "< (X a n)  (NA/lO0) + c~ (x 1 n)  ~/3 (t/2) 2/3, and 

I., < (x.2n)(d a/lO0) + cl (x~n)"/3(t/2)~/L 

Since x~/3 + x~/3 =< 2[(1 -xo)/2] 2/'~, we conclude that: 

I = I o + 11 + 12 < [x~/3 + (1 - x o ) / 1 0 0  + 2 -  ~/3(1 - x0)2/3] I. 

Thus x o must be a solution to the inequality 

(5) 1 < x~/3+(1--xo)/lOO+2-1/3(1--Xo) 2/3. 

Again, it is an easy exercise to show that inequality (2) has no solutions in the interval 
(0, .1]. (However, it does have a solution in the interval (.1, .2).) We may conclude 
that one or more of the inequalities (2), (3), and (4) does not hold. Since it is assumed 
that x0< . l ,  it is clear that at least one of  (3) and (4) is valid. In view of the obvious 
symmetry, we may therefore assume that (4) is wdid, and that at least one of (2) and 
(3) is invalid. 

Suppose first that (2)does not hold, i.e., suppose t h a t / ~ ' / < ,  Then define 

a number Y0 by t=yon~/10. Then l/Yon<=t <- n and xon<yon. Since t 

< 108n2/c a. Thus Io<c~(yon)2tat"/a< lO"I/c~< 10-~°°I. 

Now suppose that (3) is valid. Following reasoning similar to our previous 
argument, we would conclude that I~+I2<ct(x,n)~'la(t/2)~-/3+ct(x,n)21a(t/2) ~la 
<2-~/aI. Thus I=Io+I~+Ie<lO-~°°I+2-a/aI which is clearly false. It  must 
therefore be the case that when (2) is invalid, (3) is also invalid. However, in this case 
we know that xan-<yon and thus /1< 10-~°/. Also, we know that I2-<c~n'a/3(t/2) ~-ta 
+nda/lOO=2-~laI+lO-2L Together, these inequalities imply that I<2 .10-~°° I  
+2-~/aI+ 10-2I which is false. 

So it remains to consider the case where (2) and (4) are valid but (3) is not. 
In this case, we know lo<x~/aI, I~< 10-1°OL and 12<2-2/aI+ 10-2L These inequali- 
ties require that x0 satisfy the inequality: 

1 < x~/3+10-1°°+2-~/~+10 -~. 

However, there is no such number. This completes the proof  of  our claim that Xo =>. l. 

10 
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Next, let m 0 denote the maximum slope of the lines in S., and let (_7o= {IC S 1 : 

slope (l) >m0}. Also, let I70= S.,. Then, each of the points in N0 is incident with at 
least da/200 lines in U0 and at least dA/200 lines in V 0. Each line in U0 has slope greater 
than every line in V 0. Rotate the configuration so that the lines in Uo have positive 
slope and the lines in V 0 have negative slope. To simplify the inductive construction 
which follows, we set M =  101° and let no = INo[. We then observe that when i=0 ,  
we have a configuration of  points and lines satisfying the following properties. 

{ 1 A set :~i of  at least ni points where n ;= . ln  1 -2-~- / '2- i  
• M )  " 

2. A set U~ of lines with positive slope. 
3. A set V,. of  lines with negative slope. 
4. IOil<=t~ and ]gi[~tl where t i=t/2 I+1. 
5. Each point in ~i  is incident with at least e~ lines from U~ and at least e i 

/ 2 )  ' 
lines from V i where dA l----~- 

We say that a point pE~z is closed when it is incident with less than e j M  
lines from U z with slope greater than 1/2, and it is incident with less than e j M  lines 
from V~ with slope less than - 1/2. Dually, we say that p is open if it is incident with 
le.~< than eJM lines from U~ with slope less than ]/-5/2 and it is incident with less than 
eJM lines from l/s with slope greater than - 1/3-/2. We hope to find some linear trans- 
formation of the form (x, y)-+(x, my) so that there are at least n j M  points in ~ i  
which are neither open nor closed. If  we can find such a transformation, we terminate 
this inductive construction. 

Suppose that there is no transformation which results in at least n / M  points 
which are neither open nor closed. Then we choose a transformation fo~ which the 
number of  open points is as nearly equal to the number of closed points as possible. 
In this case, there are at least (n l -2nJM) /2  open points and at least (n~-2njM)/2  
closed points. 

To continue the construction, we will either choose Ca +~ to be the set of  open 
points or the set of  closed points. With either choice, we note that I~a~+a!=>n~+~ 

( 2 V+I 
=( . In)  [ l - ~ - J  2 - i - L  The choice is determined by the distribution of lines. I f  

less than half the lines in U~(.J Vi have slope greater than 1 in absolute value, we 
choose then open points and set Ui + a = {/E U~ : slope (l) > 1 } and Vi+ ~ = {/E Vi: slope (l) 
< - 1 } .  On the other hand, if at least half the lines have slope greater than 1 in 
absolute value, we choose the closed points and set U~+x={IEU~: slope ( / )<1} 
and Vi+a = {/E Vi: slope ( / ) > - 1 } .  In either case, the desired inequalities hold for 
ti + 1 = t J2. 

Now we pause to observe that the number of  incidences J~ between the points 
in ~a and the lines in Ui satisfies J~n~e~. Now suppose that i is relatively small, 

2 ]  i 1 
say i~30.  Then 1 - - - ~ j  _->~-~ and 2 ~ M .  Furthermore, we must have t~ 

~ ] / ~ .  For if ti<]/7/,  then Ji<ct(nl)2/a(nl/~")~-/a=c~ni. This in turn implies that 

dA ( 2 ]i da C1 n-1/at 2/a> ca , i.e, c~<2 .10  a which is 
c~ > el = ~ 1 - - ~ J  ~ 20-00 2000 = 20 000 
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false. On the other hand,  we mus ta l sohave te -<_ / '~} .  For i f l ' ~ ' | < t , ,  then 10 -a* 
k - - !  \ - - 1  

< 3 . 1 0  z -10" .10a2  i ~ f f ' n ' ( '  )z 1 - . , ~ 7  n" < ~ - n r  t c~ < t~ ct ~" This 
requires c16<10 "a which is false. 

Since V n ~ t i ~  , we know that Ji<cl(rti)2/a(t~) "-/a, and thus hie i 

<q(nl)2/a(ti) ~"/~. Substituting, we obtain the inequality:  

2 ]4ila 200 
2 i/a l - - ~ - )  < (.1)1/a221 a. 

A simple calculation shows that  this inequality fails if i ~  30. So we conclude 
that  our  a lgori thm terminates  af ter  i steps where i<30 .  We obtain a set o f  at  least 
n j M  points which are neither open nor closed. 

Divide the quadran t  [0 °, 90*] into M sectors ~ ,  c% . . . . .  c( M of  equal size. 
Divide [ - 9 0  °, 0 °] into/3~,/3~ . . . .  ,/~M similarly. Then for each point  p which is neither 
open nor  closed, we can choose a pair  (~;, ilk) so that :  

1. p is incident with at least e~/M"- lines passing through p at an angle belonging 
to sector ~j and with at least e j M  ~ lines passing through p at an angle 
belonging to sector  fl~. 

2. The  angle between ~-i and flk is at least 30 ~ and at most  150 °. 

O<1 / ~2 //7 
J 

J C< M 

', 
\ 

tim \ "\ 30 ° -~ O <- qSO ° 

Fig. 1 

I t  follows f rom the pigeonhole principle, that  there is some pair (~j0,/3j,,) 
o f  sectors so tha t  there is a subset  ~ *  containing at  least n j M  3 points  which satisfy 
these two condit ions for (~j0, fij0). Ro ta te  the configurat ion so that  the x-axis is 
midway between these two sectors and then apply a linear t ransformat ion  so that  the 
sectors are centered on the lines with slope + 1 and - 1. Note  that  e jMZ~clA/M 3. 

10" 
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So we now have a set ~*  of at least n / M  a points each which is incident with at least 
d4 /M a lines from a set £~'~ of lines each of which have slope in the interval (.99, 1.01) 
and with at least d a / M  a lines from a set L/'~ of  lines each of which has slope in the 
interval ( -  1.0l, - .99) .  

Now we are ready to apply tile covering lemma. We set r2=da/2M a and 
q = d A / M  ~. We then cover at least n/16M a of the points in ,~* with squares contain- 
ing at least r~ but no more than r2 points from ~*.  Now consider a square Q of  this 
covering. Q is partitioned into four triangles by its diagonals. At least one of  these 
triangles contains at least r~/4 points from ~*. Choose one such triangle and call it T. 
For each point pE T, there are least dA/M a lines from cS~ which contain p. At most r. 2 
of  these lines pass through other points of . ~  which belong to Q. So there are at 
least d a / M  ~ -  r,a=dA/2M a lines in £ 0  which contain p but do not contain any other 
point of  N~' inside Q. We can make a similar observation for the lines from ~,.,. 

\ 

\ 

/ 
/ "  

Fig. 2 

Now suppose that p, p'E T and that these lines not containing other points of  
~*  A Q have been chosen for each of the two points. Then regardless of  the location 
o f p  and p '  inside 7", there are at least d~/4M ~ wasted crossings produced by these lines. 

Thus each T p r o d u c e s a t l e a s t [ r ~ 4 ] d J / 4 M  6 " - "  wasted crossings. Since there are a t  
\ - -  / 

least n/16Mar.,, squares, we conclude that the total number of wasted crossings, 
which we denote by W, satisfies: 

,, (r l /4 / n ,, 
W ~ 16Mar,at 2 )-4-M--¢ > .-=~,~dL >= ~ l . s c ~ n - l t  2 -~ t 2, M "  

since c~> 101~°=M 15. The inequality w > t  'a is a contradiction since it implies that 
there are more wasted crossings than there are pairs of  lines. With this observation, 
the proof of  Theorem 1 is complete. II 

Before we close this section we comment that the special case of Theorem 1 
when t = n ,  namely that the number of  incidences between n points and n lines is at 
most c~n 4/3 was conjectured by ErdSs and Purdy [5]. 
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4. Consequences  of  the Principal  Theorem 

We begin this section with the following result which follows immediately  
f rom Theorem 1. 

Theorem 2. Thereex i s tSacons tan t  e2so t h a t ( f  2 ~ k ~ l / n  and cj, is a fami ly  o f  t 
lines each eontainhtg at least k points f rom a set ~ o f  n points, then t <c2n'Z/k 3. 

Proof.  Set c.,= c~ where c~ is the absolute cons tant  in Theorem 1. Then suppose that  
tbr  some k with 2<=k~_I/~, there is a family o f  t=c~n~/k a lines each containing at  
least k points f rom a set o f n  points. Then the number  of  incidences is at  least c~n"/k 2. ("/ Fur thermore ,  since k=>2, t:~ 2 and since k<-_l/m t~}':n. Thus,  

C 3 I1 ~ ~ .~ 2/3 
k 2  "~ Cl112/312/3 ~ C . / I : ~ ; : : / - -  / - -  • I, k3 ) /(' " 

The contradict ion completes  the proof,  i 

P. Erd6s conjectured the result in Theorem 2 when k = V ' n  and this special 
case was settled by the authors  in [7]. Erd6s also conjectured Theorem 2 when k 
= ~/n/2". In addit ion,  Crof t  and Erd6s also conjectured that  for every ~ > 0  and 
every k = 2 ,  there exists a constant  n(e, k) so that  when n=>n(~, k), the number  o f  
lines each containing at least k points is less than ~n2/k " .Theorern 2 shows that  this 
last conjecture is also valid. 

Theorem 3. There exist* a constant c a > 0  so that i f  ~ is a set o f  n points not all 
on the same line and £e is the Jamily o f  all lines determined by ~ ,  then there is at &ast 
one point in .~ which belongs to more than c~n o f  the l#les in 5 a. 

Proof.  We show that  the theorem holds l\~r c:~= 10-7cg G where c., is the absolute 
constant  in Theorem 2. Suppose to the contrary  that  ~ = {p~, P2 . . . . .  p,} is a set o f  n 
points not  all on the same line, 2# = {lx, Ix . . . . .  t,} is the family of  all lines de termined 
by, but that  no point  belongs to more  than can lines in c~¢. For  each j =  1, 2 . . . .  , t, 
let 3'~ count  the number  of  points on line lj. For  each i =  1, 2 . . . . .  n, let d~ count  
the number  o f  lines containing p~. Then d:~c::t  for each i. We may then write the 
J\~llowing inequalities. 

: ' I  > 2 " i = > 4 ' :  
.i=l i=1 -]-~-, and 

, v  3'j = . dz ------ czn' .  
j = l  /=1  

1 

Next,  let M =  100cz z. Split the Suin .~3,~- into four terms:  
j = l  

_ :  = ) j ,  . = = y j .  

2~=Vj ~ M  M ~ y j < ~ n  ~ / ~ y j  < n  '-'/3 n / ~/ 
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First, we show that  S,<n2/10.  To the contrary suppose that  $1 ~n2/10. For  
each ,/ '=2, 3 . . . . .  M - 1  suppose there are s) lines containing j points. Then 
AI - -  1 c, F/2 n2 
~ '  sTJ-~T6- .  It follows that there is some j with 2<=j<=M - 1 so that  s j =  > 10--Ma. 

j '=2 
rl g Kl 2 El 2 

These sj lines account  for at least 10-~Q-5-./> 10Ma ~ 107e,~ 2~can 2 incidences which 

is a contradiction. Thus Sl<nZ/10. 
We next show that $2<n~/10. For each i->O with M T <  }In, let t~ count  the 

number  o f  lines containing at least M2 ~ but less than M2 ~+~ points. Then ti 
<c2n'~/Ma23~. Since these lines contain at most M - 2  i+~ points, it follows that 

C 2 n 3i ~C.) i l  2 tt 2 
S,.< ~ _ _ , ~ ( M . 2 i + 1 ) 2 =  - < _ _ ,  

i = o  - M 10 
Next, we show that S:;<n'-'/10. Suppose there are t o lines containing at least 

( n  but less than n ~/3 points, and that t0>0. Then t0>c21/n so Sa<c21/n.l?/a 
=c.,n ~v6. We claim that  cdTUm<n2/10, i.e., 10c.,<n */6. To see that this claim is 
valid, suppose that 1 0 q ~ n  ~;~. Then 10Gc~>n so ca(lO6c~)=,l-~can~di for 
each i =  1,2 . . . . .  n. This is a contradiction since each d~ is a positive integer. This 
completes the p roo f  o f  our  claim that c2nU/I~-<n"/lO. We conclude that  Sa<n"/lO. 

Since S~+S,a+Sa+S4>4n" / IO,  we are left to conclude that S4>nZ/10. 
For each i=>0, let z h count  the number  o f  lines which contain at least n~/a21 but less 
than n2/a2 ~+~ points. We claim that ui<2nl/a2 -i for each i=>0. To see that  this is 
true, suppose that L~, L2, ..., L,, are lines each containing at least n2/Z2 ~ points. 
Then for each ,/.=1, 2 . . . .  , u~ there are n2/a2 ~- . /+1 points on L i which do not  

II i 

belong to any L~, with 1Nk%/ .  Therefore ,~  n - ' ; a2 ; - j+  1 ~n.  Summing, we ob- 
tain (being generous) u~2na/a2 -i. J=" 

On the other hand, we observe that u~=0 whenever n"/aT>can. To see 
that  this is true, observe that if there is a line containing more than can points, then 
any point  not on the line has more than can lines passing through it. 

Now let ~ be the least integer for which n"/a2~+l>can. Then 2"~cat?/~. 

It follows that we must  have ~ uin~/a2 ''i +'>= S 4>n~/lO, and thus Sa----- ~ 8.  n~/a2 i 
i=O i=0 

= 8.  115/a(2" +1 _ I ) ~ 16.1r5"32= ~ 16. can 2. This is a contradict ion since it requires 
ca>1/160.  With this observation,  the p roo f  is complete. II 

Theorem 3 is a partial solution to an old probtem o f  Dirac [5] who conjectured 
that  there is always a point  on at least ( n / 2 ) - c  lines. It also shows that  n points not  
all on the same line determine at least can different angles. Corr~idi, Hajnal  and Erd6s 
conjecture that  n points not on the same line determine at least n - 2  different angles. 

Finally, we turn our  attention to the following problem. Let ~(n) denote the 
number  o f  distinct nondecreasing sequences .vl ~3 '~> ... <=Y, for which there is a set 
.,a@ o f  n points and a family £~ = {ll, l,e . . . . .  1,} o f  t lines so t ha t / j  contains yj points 
f rom :~ for each ./ '=1, 2, ..., t. 

Theorem 4. There exists a constant ca so that ~ ( n ) < 2  q¢7 for  all n-~ l. 

Proof.  We show that the theorem is valid when c4=3c,a where c,, is the absolute 
constant  in Theorem 2. To count  the number o f  sequences associated with conligura- 
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tion of points and lines, we first choose the value of t, the number of lines, as an integer {,,} not exceeding 2 " For each i=  1, 2, 3 . . . . .  log n, we then let s~ denote the number of  

lines which are to contain at least 2 ~ but less than 2 i+t points. The nonnegative num- 
bers .v~, .h . . . . .  S%g,, sum to t so the number of  different choices for the sequence of  

/ t + l o g  n-- 1) 
sis is at most I, log n -  i . For each i, we choose a sequence yj, yj+a, ..., Yj+.~-I 
of  nondecreasing integers with 2~rj~jS.+~,_a<2~+L Clearly, the number of such 

sequences is at most ( s~2~) .  Therefore wecan  write: 

Now 

~(n) ~ ( 2 )  ( t  + l °g  n -  1 ) tly' (si~/2;) . 
log n - 1 i=l 

Now let i be an integer for which 2;<2~'7. Then si<10c.,ne/2 a~ and 
lOc.,nz/2ai>= I00-2 i. Therefore, 

(lOc.an"- ] 
{si~2~ } [ ~ - t - 2 "  [,00c~,,2]e, 

• < < 1  2 ~i ) "  
It follows that 

/:~,<~_¢7,1, - i:2,< ¢; 

On the other hand, consider an integer i for which 2V)7~_2i~n. In this case, 
we have the trivial inequality si<2n/21<2 i. Thus 

2n , 21 / "~. 
(,,+2;1 < U T  / < 

2n ' 2' ) [ ~7_ J ' n ' " 

It R)llows that 

i : 2 g n ~ 2 i ~ n  

2n 

/7 [l°°" 2~'/~r /~ (1000.2"-a)fT'*-' 2 ¢°f; < <C ~ • 

i:2¢;~.,_<-,, I. n ) j=o 

-,ac2¢7, Combining these inequalities, we obtain the desired result 6"(n) < z  . 1 
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