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In this paper, we establish several theorems involving configurations of points and lines in
the Euclidean plane. Our results answer questions and settle conjectures of P. Erdés, G. Purdy, and

G. Dirac. The principal result is that there exists an absolute constant ¢, so that when Vh=t= [g] s

the number of incidences between # points and ¢ lines is less than ¢,1>/3#%/3. Using this result, it fol-

lows immediately that there exists an absolute constant ¢, so that if kél/n, then the number of
lines containing at least & points is less than ¢, /#%/A%. We then prove that there exists an absclute cons-
tant ¢, so that whenever 7 points are placed in the plane not all on the same line, then there is one
point on more than c;n of the lines determined by the 1 points. Finally, we show that there is an ab-

solute constant ¢, so that there are less than exp (¢, V;) sequences 2=y, =y, =.. .=y, for which
there is a set of # points and a set /;. /,, ..., /, of 1 lines so that /; contains y; points.

1. Introduction

Extremal problems in discrete geometry are among the most natural and most
tantalizing areas of research in combinatorial mathematics. The reader is encouraged
to consult P. Erd8s’ survey papers [2], [3], [4], [5] and W. Moser’s summary [6] of
recent progress on a wide range of problems in this area. In this paper, we concentrate
on extremal problems in the Euclidean plane. We begin by establishing the following
theorem limiting the number of incidences between a set of # points and a family of ¢
lines in the Euclidean plane.

Theorem 1. There exists a constant ¢, so that if Z is a set of n points and & is a family
of 't lines in the Euclidean plane, then the number of incidences benween points in # and

L . . — a
fines in L is at most c;n®3t*3 whenever Yn é’i_‘:[f)].
P. Erd@s [5] had conjectured the conclusion of Theorem 1 in the special case

t=n. From Theorem |, we obtain as an immediate corollary the following theorem
settling in the affirmative a conjecture of ErdGs and Purdy [5].

* Rescarch supported in part by NSF Grants 1ISP—8011451 and MCS—8202172.
AMS subject classification (1980): 51 M 05, 05 C 35
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Theorem 2. There cxists a constant c, so that if 2 is a set of n points and & is a family
of t lines each containing at least k points from P where k=Vn, then t<cyn?/k3.

A second corollary is the following result which is a partial solution to Dirac’s
conjecture [5]. (This result was also proved by J. Beck [1]).

Theorem 3. There exists a constant ¢3=>0 so that if P is a set of r points, not all on
the same line. and ¥ is the family of all lines determined by P, then there exists at least
one point in # which belongs to more than c,n lines from L.

Let 2 be a set of # points and let £ ={/|, fy, .... [,} be a family of lines each
containing at least two points from 2. For each j=1,2, ..., let y; count the num-
ber of points from 2 which are on line /;. We may then assume that the lines have
Yi
2
is not sufficient to insure that an arbitrary nondecreasing sequence arises in this
fashion. Let £(1) count the number of distinct nondecreasing sequences y,=y,=...
...=J, determined by all possible configurations of » points in the plane. We use
Theorem 1 to prove the following result which also settles in the affirmative a con-
jecture of P. Erd8s:

1
been labelled so that v, =y,=...=y,. Then 2[ ]z’- [;] However, this condition

i=1

N .
Theorem 4. There exists a constant ¢y so that & (n)<2"" for all n=1.

2. The Covering Lemma

The principal tool used in establishing Theorem 1 is a covering lemma proved
by the authors in [7]. We assume that a pair of coordinate axes has been chosen and
when we use the term square, it will also be assumed that the sides are parallel to the
coordinate axes. The following lemma asserts the existence of a family of sgquares
covering a positive fraction of a set of n points with an additional restriction on the
number of points contained in each square. We refer the reader to [7] for the proof of
the lemma.

Lemma. Lef ry, ry be integers with ry=256 1y, and let 2 be any set of n points in the
plane. Then there exists a family 2 of squares so that:

1. No point in the plane is in the interior of more than one square;

2. Each square contains at least ¥, but no more than r, points of 2;

3. At least n/16 of the points in @ are covered by the squares in 2. |

The covering lemma will be used to localize the intersection patterns of lines.
In order to apply the lemma, we take [ull advantage of the fact that linear transfor-
mations can be applied to any configuration of points and lines. Thus whenever we
need to, we can rotate the configuration, and we can increase or decrease the slope of
the lines in the configuration.
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3. The Principal Theorem

In this section we present our principal theorem.

Theorem 1. There exists a constant ¢, so that if P is a set of n points and ¥ is a family
S . - n - . .
of t lines with Yn =t= [2] then the number of incidences between the points in # and

the lines in & is less than ¢, n¥3t%3,

Proof. We will show that the conclusion holds when ¢, =10%, The proof will be
by contradiction. We assume the theorem is false and choose a counterexample with
n+1t as small as possible. We then show that a large fraction of the points in & are
incident with a large number of lines from two subsets &, and &,. After a suitable
linear transformation, the lines in &, will have slope very nearly -+ 1 and the lines in
£, will have slope very nearly —1. The covering lemma will then be used to show
that more pairs of lines cross where there is no point of # than there are pairs of lines
in.%.

Choose a coordinate system consisting of a horizontal line (x-axis) and a verti-
cal line {y-axis). Then we may assume without loss of generality that all lines have
slope in the interval (—1/2, 1/2). (If this condition is not satisfied, we apply a linear
transformation of the form (x, y)-(x, g)) where ¢ is a small positive number.)

We label the points p,, p,, ..., p, and the lines /4, /,, ..., {,. Without loss of
generality, we may assume that if j,</,, then the slope of /;, is at least as large as the
slope of /;,. For each i=1,2, ..., n, we define the degree of p;, denoted d;, as the
number of lines in % which contain p;. For each j=1, 2, ..., 7, we define the densiry
of /;, denoted y;. as the number of points in # which are on the line /;. We let /
denote the total number of incidences between points and lines. Then

i f
BB =l= 3d= 3y,
i=1 ji=1

If /; and /;, are lines for which there is some point p;€# common to both
lines, we say /; and /;, have a good intersection. It /; and /;, intersect where there is
no point of £, we say the lines have a wasred crossing. We let G denote the total
number of good intersections and let W denote the total number of wasted crossings.

n {
Clearly, Gzz(‘z‘) and W= W+Gg[’2]. Thus:
i=1

2 ! - n di L | 2 l n
(7]? [2):2?‘”_5-5"!"
1 a

_ 1 ( n ]2 1 n‘ _ 1 , 1 . 3 Vi3s3
= 2n ,-Zd" T2, di_E[ Ty lEg E

~

(8]
Il

3
. o o - . . .
In particular, it follows that léﬁ V. At this stage, it is important to note that 7 1s

already known to be a reasonable distance away from the boundary value 1=Vn.
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Let y, denote the average density of a line in %, i.e., y,=1/f. We show that
every line has density at least as large as .6y ,. Suppose to the contrary that there are
xt lines which have density less than .6y, where O0<x<1. Let x;=min {x, 1/2}

and choose a set of x,7 lines each of which has density less than .6y,. Since [127]

>t—x;t=t/2=n, we know that the number of incidences involving the remaining
t—xf lines is less than ¢;n*3(r — x, £)*3. Meanwhile, the number of incidences in-
volving the x,7 lines with small density is less than (x;7)(.6 y,). This requires:

ey (.63 = e 23 (1 — x,1)/% = 1.
Thus there is a number x| with 0=x;=1/2 for which:
(D bx,+(1—x)¥3 = 1.

However, it is an easy exercise to show that there is no solution to this in-
equality in the desired range O0<ux, = 1/2. The contradiction allows us to conclude that

. . . Sy n
all lines have density at least as large as .6 1. Since > (2’ ] = [9], we also know that
=1 2

R\ N . . ) L
r( 2‘4 <=n® A simple computation shows that t<10%s%/c}, and thus ¢ is signifi-
7 . L .
cantly less than the upper bound ’:[2) . Also note that if there are s lines in & having
the same slope. then s(.61,)=n. A simple computation shows s<10%1/c}, ie.,
a very small fraction of the lines in &% belong to any class of parallel lines.

Let o, denote the arcrage degree of the points in 2, ie., d,=I/n. We will
show by a similar argument that all points in # have degree at least as large as .6d,,.
To the contrary, suppose there are xn points with degree less than .64, where
O<=x<=1. Asbefore, let xy=min {x, 1/2} and choose a set of x\n points having degree

. — H—Xx\n L
less than .6 ¢, Since Vn — x, né/é[ 5 ! ], we know that the number of incidences

involving the remaining n—x,n points is less than ¢ (n—x,n)¥? ¥ =(1 —x,)*3.
Since the number of incidences involving the x,# points with small degree is less than
(v 1)(.6 d), this requires that v, satisty inequality (1) which we have already noted
is impossible. The contradiction shows that every point in 2 has degree at least as
laree as .6 4.

The next step in the proof is to obtain a large subset 2* of the points so that
each point in 2" is incident with a large number of lines from each of two sets &, £,
of lines. After a suitable linear transformation, all lines in %, will have slope in the
interval (.99, 1.01) and all lines in £, will have slope in the interval (—1.01, —.99).
The tight control in the angies is necessary in order to apply the covering lemma. We
will proceed in scveral stages.

First, let S,={/;: 1=/=¢2} and let S,={/;: 1/2<j=t}. Then let 2,
denote the set of points in ¥ which are incident with at least d,/100 lines from S,
and at least /100 lines from §,. Partition 2 — 2, into two subsets 2,, 2, where
P ={peP—P,: p is incident wit:s more lines from S; than with S,} and 2,
=P —-P,~»,. Foreach i=0, 1,2, let |#|=x;n where x,+x,+x,=1. Also for
each 7, let /; denote the number of incidences involving the points in 2;. We claim
that x,=.l. To the contrary, suppose that x,=<.1. We proceed to a contradiction.
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Consider the following inequalities:

2 Vxon =1

JIA

1)

3 Vxm =12 = [xlzn].
4) Vagn = 12 = [Xz”].

If inequalities (2), (3), and (4) are satisfied, then we know:
Ty =< ey(xon)?323 = x%3p,
Iy = (x;n)(d 4/100) + ¢, (x, n)>3(1/2)¥3,  and
I, < (x,0)(d 4/ 100) + ¢, (x,0)2/3 (1] 2)%/3.
Since x4 x33=2[(1 —x,)/2]¥%, we conclude that:
I= I+ L+ 1, < [x33P (1 —x)/ 10042731 — x,)4] 1.
Thus x, must be a solution to the inequality
) 1 < xFP+(1—x0)/100+ 27 H3(1 — x,)%3.

Again, it is an easy exercise to show that inequality (2) has no solutions in the interval
(0, .1]. (However, it does have a solution in the interval (.1, 2).) We may conclude
that one or more of the inequalities (2), (3), and (4) does not hold. Since it is assumed
that xy—<.1, it is clear that at least one of (3) and (4) is valid. In view of the obvious
symmetry, we may therefore assume that (4) is valid, and that at least one of (2) and
(3) is invalid.

Suppose first that (2) does not hold, i.e., suppose that [xgn]<t. Then define
a number y, by r=y2n%10. Then Vyn=t= (y2°n
<10%%/c2. Thus Ij<cy(yan)2/3r2/8<10%/ci<10-100],

and xgu<y,n. Since t

Now suppose that (3) is valid. Following reasoning similar to our previous
argument, we would conclude that I+ /,<c,(x;n)23(2/2)234 ¢ (xqn)%3(1/2)%/3
<273 Thus I=Iy+ 1L+ 1L,<1071742-13] which is clearly false. It must
therefore be the case that when (2) is invalid, (3) is also invalid. However, in this case
we know that x,n<y,n and thus /;<1073%], Also, we know that [,<c, n*3(/2)%3
+nd,/100=27%3[410"2]. Together, these inequalities imply that I<2.10-100]
+27231+1072] which is false.

So it remains to consider the case where (2) and (4) are valid but (3) is not.
In this case, we know Jo<x¥3I, I; <10719°], and [I,<2%3I+10-2I. These inequali-
ties require that x, satisfy the inequality:

1 < X33 4107100 2-2/3. [0—2,

However, there is no such number. This completes the proof of our claim that x,=.1.

10
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Next, let m, denote the maximum slope of the lines in S, and let Uy=1{/€ S;:
slope (/) =myg}. Also, let V,=3S,. Then, each of the points in #, is incident with at
least d ,/200 lines in U, and at least d ,/200 lines in V. Each line in U, has slope greater
than every line in ¥,. Rotate the configuration so that the lines in U, have positive
slope and the lines in ¥, have negative slope. To simplify the inductive construction
which follows, we set M=10" and let n,=(%,]. We then observe that when /=0,
we have a configuration of points and lines satisfying the following properties.

2

A set 2; of at least n; points where m=.1n (1 _ﬁ) 2,

—

A set U; of lines with positive slope.
A set V; of lines with negative slope.
|Ui|=t; and |V;|=¢; where 1;=1¢/2'7.
Each point in 2, is incident with at least ¢; lines from U, and at least ¢;
. d i
lines from V; where c’;zﬁ[l~é—].

G

We say that a point p€&; is closed when it is incident with less than e,/M
lines from U; with slope greater than 1/2, and it is incident with less than e;/M lines
from V, with slope less than —1/2. Dually, we say that p is open if it is incident with

les< than e,/M lines from U, with slope less than }3/2 and it is incident with less than

e;/M lines from V; with slope greater than — }3/2. We hope to find some linear trans-
formation of the form (x, y)—(x, my) so that there are at least n,/M points in &;
which are neither open nor closed. If we can find such a transformation, we terminate
this inductive construction.

Suppose that there is no transformation which results in at least n,/M points
which are neither open nor closed. Then we choose a transformation for which the
number of open points is as nearly equal to the number of closed points as possible.
In this case, there are at least (n,—2n,/M)/2 open points and at least (r;—2n,/M)/2
closed points.

To continue the construction, we will either choose 2, ., ; to be the set of open
points or the set of closed points. With either choice, we note that |2;.,/=n,,,

i+1
=(.1n) []—724—) 27171 The choice is determined by the distribution of lines. If

less than half the lines in U;UV; have slope greater than 1 in absolute value, we
choose then open points and set U;,,={/€ U;: slope(/)=>1}and V,,,={{€V;:slope (/)
< —1}. On the other hand, if at least half the lines have slope greater than 1 in
absolute value, we choose the closed points and set U,.,={l€U;: slope (/)<1}
and V,,.,={lcV;: slope(I)>—1}. In either case, the desired inequalities hold for
L1 =1/2.

Now we pause to observe that the number of incidences J; between the points
in #; and the lines in U; satisfies J;=n;e;. Now suppose that i is relatively small,

2y 1 .
say i=30. Then [1 ——] =70 and 2'=M. Furthermore, we must have ¢
=Vn,. Forif t,<Vn;, then Ji<c,(n; )2/3(r11/°)‘”3—cln This in turn implies that
dA [ 2 ] =_—A4 dy 12 BT 9.7 S it

=250\ = 37) =00 2000 " = 30000 °

ie, ¢?=<2.-10* which is
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false. On the other hand, we must also have rié['g]. For if [’;_"J<ti, then 10718
2 I 2 ]f,i A G L (0 [2 108 .
RIS TEST ST R (“V YU SE e w Ty e This

requires <102 which is false.

. —_— n. o) o
Since Vn,-é,é[z'], we know that J,<c(n)¥3(1)*®, and thus ne;

<, (m;)?3(1;)23. Substituting, we obtain the inequality:

4i/3
zs/s[l_i] v 200
M (1)’

A simple calculation shows that this inequality fails if /= 30. So we conclude
that our algorithm terminates after 7 steps where i<30. We obtain a set of at least
n;/M points which are neither open nor closed.

Divide the quadrant [0°, 90°] into M sectors oy, a,, ..., oy of equal size.
Divide [-90°, 0°] into B, fBs, ..., Ba similarly. Then for each point p which is neither
open nor closed, we can choose a pair («;, ff;) so that:

1. pisincident with at least ¢;/M 2 lines passing through p at an angle belonging
to sector o; and with at least e;/M?® lines passing through p at an angle
belonging to sector fi,.

2. The angle between a; and f, is at least 30° and at most 150°.

ol NN e o iaoe

Fig. |

It follows from the pigeonhole principle, that there is some pair (x;,, f;,)
of sectors so that there is a subset #* containing at least n,/M?3 points which satisfy
these two conditions for (a;,, §;). Rotate the configuration so that the x-axis is
midway between these two sectors and then apply a linear transformation so that the
sectors are centered on the lines with slope +1 and —1. Note that e /M?2=d, /M3

10*
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So we now have a set 2% of at least n/M? points each which is incident with at least
d,/M?® lines from a set %, of lines each of which have slope in the interval (.99, 1.01)
and with at least d /M3 lines from a set ¥, of lines each of which has slope in the
interval (—1.01, —.99).

Now we are ready to apply the covering lemma. We set r,=d,/2M? and
ri=d,/M?* We then cover at least n/16 M3 of the points in #* with squares contain-
ing at least r; but no more than r, points from #”. Now consider a square Q of this
covering. Q is partitioned into four triangles by its diagonals. At least one of these
triangles contains at least r,/4 points from £*. Choose one such triangle and call it T.
For each point p€ T, there are least d,/M?® lines from %, which contain p. At most r,
of these lines pass through other points of #* which belong to Q. So there are at
least dA/M3—r2:dA/2M3lmes in %, which contain p butdo not contain any other
point of #* inside Q. We can make a similar observation for the lines from 2,

Now suppose that p, p’¢ T and that these lines not containing other points of
2*MQ have been chosen for each of the two points. Then regardless of the location
of p and p’ inside T, there are at least d%/4 M*® wasted crossings produced by these lines.

Thus each 7 produces at least ("12/4] d3/4M*® wasted crossings. Since there are at

least n/16M?3r, squares, we conclude that the total number of wasted crossings,
which we denote by W, satisfies:

n r1/4] &, ,
W 6M3r2[ 2 )am® Ml’dA =

II‘/

nTig =

bl

Ml’ 2

since ¢ =101 = M The inequality w=/* is a contradiction since it implies that
there are more wasted crossings than there are pairs of lines. With this observation,
the proof of Theorem 1 is complete. §

Before we close this section we comment that the special case of Theorem 1
when ¢t=n, namely that the number of incidences between n points and # lines is at
most ¢, n** was conjectured by Erd8s and Purdy [5].
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4. Consequences of the Principal Theorem

We begin this section with the following result which follows immediately
from Theorem 1.

Theorem 2. There exists a constant ¢, so that if 2=k=Vn and & is a SJamily of t
lines each containing at least k points from a set P of n points, then t<con*fk®.

Proof. Set ¢,=c§ where ¢, is the absolute constant in Theorem 1. Then suppose that
for some k with 2=k =}n, thereis a family of t=c?n*k® lines each containing at
least k points from a set of # points. Then the number of incidences is at least ¢in?/k2.

. n . — —
Furthermore, since k=2, 15(2) and since k=Vn, 1=Va. Thus,

3.3 3,2\ 2/3 32

cin” /3 ,: o oaafcin® ¢y n®
- < o nrh = ('1113'3[——] =—5.
k k?

The contradiction completes the proof. J

P. Erdds conjectured the result in Theorem 2 when k=Vn and this special
case was settled by the authors in [7]. Erd@s also conjectured Theorem 2 when k
=¥n/2* In addition, Croft and Erdds also conjectured that for every ¢>0 and
every k=2, there exists a constant n(e, k) so that when n=n(e, k), the number of
lines each containing at least & points is less than en®/k%. Theorem 2 shows that this
last conjecture is also valid.

Theorem 3. There exists a constant ¢,=0 so that if 2 is a set of n points not all
on the same line and L is the family of all lines determined by P, then there is at least
one point in P which belongs to more than cqn of the lines in £ .

Proof. We show that the theorem holds for ¢;=1077¢; % where ¢, is the absolute
constant in Theorem 2. Suppose to the contrary that 2= {p,, ps, ..., pa} is a set of n
points not all on the same line, ¥ =1{/,, /,, .... /,} is the family of all lines determined
by, but that no point belongs to more than ¢y lines in %. For each j=1,2, ..., ¢,
Jet y; count the number of points on line /;. For each i=1,2, ..., n, let d; count
the number of lines containing p;. Then d;=c,n for each i. We may then write the
following inequalities.

t r N 2

; ¥ # 4n*
PR Y["’]z[ ]>— and
=0T o m\2 2 10’ °

t n

2y = 2hd = egn
j=1 i=1

1

Next, let M=100cj. Split the sum 3 )3 into four terms:

=

S, = Z'Myf; Se= 2 ¥y Sy= >y oand S;= 3 vk

2=y; - M=y, <Vn Vazy; <nt3
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First, we show that S,<n?/10. To the contrary suppose that S,=n?/10. For
each j=2,3,..,M—1 suppose there are s; lines containing j points. Then

ML oon? . . . , :
,é; UUESTR It tollows that there is some j with 2=j=M —1 so that SiIZT0M"

2

These s; lines account for at least T07 c®
Cy

Iy

]O’.;VI3'j> IOHM3 =¢,n* incidences which
is a contradiction. Thus S, <n?/10.

We next show that S,<n?/10. For each i=0 with M2i<Vn, let 1, count the
number of lines containing at least M2' but less than M2i*! points. Then 7,
<eyn?/M32%. Since these lines contain at most M -2°T1 points, it follows that
S S etn¥ (M 241y 8cyn* _w?

S MR T M o

Next, we show that S,<n?/10. Suppose there are ¢, lines containing at least
Vn but less than n*3 points, and that 1,=0. Then fy=c,/n so S,<cy¥n-n*?
=c,ntV%. We claim that c¢;n'®=n¥10, ie., 10c,<n'%. To see that this claim is
valid, suppose that 10c,z=nV% Then 10%$=n so ¢;(10%)=.1=c;n=d;, for
each i=1,2,....n This is a contradiction since each d; is a positive integer. This
completes the proof of our claim that c,n''*<n?/10. We conclude that S;<n?/10.

Since 8,4+ Sy+ S;+ S,=4r¥10, we are left to conclude that S,=#%/10.
For each i=0. let &; count the number of lines which contain at least n*32f but less
than #232'+1 points. We claim that u,=2nV327" for each i=0. To see that this is
true, suppose that L,, L,, ... L, are lines each containing at least n¥32" points.
Then for each j=1,2, ..., there are n*32'—j+1 points on L; which do not

M;
belong to any L, with 1=k<j. Therefore > n*32'~j+[=n. Summing, we ob-
tain (being generous) u;=2n1/327", i=0

On the other hand, we observe that u,=0 whenever #¥®2'>c,n. To see
that this is true, observe that if there is a line containing more than cgn points, then
any point not on the line has more than ¢yn lines passing through it.

Now let o be the least integer for which #2/32*+!=c,n. Then 2*=cynl’

<4 @&
It follows that we must have 2 uyn*/®2%¥+:z= S, =n?/10, and thus S;= 2> 8.n*%2
) . i=0 o o . = '
=8. 322 —1)==16.1%32%=2 16 - cyn®. This Is a contradiction since it requires
¢g=>1/160. With this observation, the proof is complete. §i

Theorem 3 is a partial solution to an old problem of Dirac [5] who conjectured
that there is always a point on at least (17/2) —c lines. It also shows that # points not
all on the same line determine at least ¢y different angles. Corradi, Hajnal and Erdds
conjecture that » points not on the same line determine at least n —2 different angles.

Finally, we turn our attention to the following problem. Let £(n) denote the
number of distinct nondecreasing sequences 1, =1y,=...=y, for which there 1s a set
2 of n points and a family ¥ ={/,./,,.... 1} of t lines so that /; contains y; points
from # for each j=1,2, ...t

Theorem 4. There exists a constant ¢, so that o’“’(n)<2“ﬁ forall n=1.

Proof. We show that the theorem is valid when ¢;=3c¢, where ¢, 1s the absolute
constant in Theorem 2. To count the number of sequences associated with configura-
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tion of points and lines, we first choose the value of 7, the number of lines, as an integer
. (n .

not exceeding [2] Foreach i=1,2,3, ..., logn, we then let s; denote the number of
lines which are to contain at least 2° but less than 2°*! points. The nonnegative num-
bers 5y, 55, ..., Siogn SUM to £ so the number of different choices for the sequence of
t+logn—1

logn—1 ‘ :
of nondecreasing integers with 2'=y;=y;, _,<2*. Clearly, the number of such

5;'s is at most ( ] For each i, we choose a sequence y;, Vi1, oo Yjrg—1

sequences is at most [S’;;ZJ. Therefore, we can write:
n I—i—logn—l) ‘°g"(s-+2i)
&(n) = R N
(n) [2 ]( logn—1 ,»gl 2f

[n](H—log n—l] _ l12(n‘—+logn] - . pRloen chVE
2 logn—1 log n

Now

Now let / be an integer for which 2i<2}'n. Then s;=10c¢,1%2% and
10c,1%/23'=100- 2. Therefore,

10c,n* _
[s,.+2f) 2o T4 [100c2n'2]‘“"
5i = 9i = i
It follows that

s;+2! 100¢c, n2y? e¥n
H(zf]< H(2;)<2"

ir2i<2yn HE Y

On the other hand, consider an integer i for which 2)n =2'=n. In this case,
we have the trivial inequality s;<2n/2!<2', Thus

2n Y 2

[si+2") N [100-22"]2"
. - - _— .
2! 2n n

7
1t follows that

2n

i [s,.+2] = ]I (—100'2“ ]zi < J7 (10002207277 = peel™
j=0

—_ ,' -
i:2Yn=2i=n 2 i:2Yn=2izn n i
Combining these inequalities, we obtain the desired result & (n)<2352v". 1
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