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Abstract. We provide lower and upper bounds for the maximal number of facets of a
d-dimensional 0/1-polytope, and for the maximal number of vertices that can appear in a
two-dimensional projection (“shadow”) of such a polytope.

1. Introduction

The combinatorics of 0/1-polytopes is at the core of many investigations of combinatorial
optimization. In fact, the field of “polyhedral combinatorics” is concerned with classes
of facets and other combinatorial structures of “special” 0/1-polytopes that are given as
the convex hulls of the characteristic vectors of solutions of certain problem classes. In
particular—just to mention one well-studied classical case—quite a lot is known about
the facet structures of traveling salesman polytopes: see [7].

Much less is known about “general” 0/1-polytopes. However, it seems that the “spe-
cial” polytopes of combinatorial optimization cannot be much simpler: so Billera and
Sarangarajan [3] have recently demonstrated that in the very special class of asymmetric
traveling salesman polytopes every 0/1-polytope is encountered as a face.

In the following, we discuss two classes of extremal problems for general 0/1-
polytopes that arise from complexity considerations in combinatorial optimization.
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1.1. The Maximal Number of Facets

The first section of the Gr¨otschel and Padberg chapter on “Polyhedral Computations” for
the traveling salesman problem [7] is titled “1.1: The number of facets of TSP polytopes
and algorithmic implications.” Gr¨otschel and Padberg note that traveling salesman poly-
topes have “many” facets. To get a better notion of “many,” estimates on the numbers
of facets of general 0/1-polytopes are required. Gr¨otschel and Padberg use a very crude
upper bound, namely, that ad-dimensional 0/1-polytope cannot have more than

f (d) ≤
(

2d

d

)
≈ 2d2

facets, since every facet is determined by a set ofd vertices. A much better bound was
given by Bárány [13, Problem 0.15*]:f (d) ≤ d! + 2d. Below—in Section 2—we
slightly improve Bárány’s bound to

f (d) ≤ d! − (d−1)! + 2(d−1)

for d ≥ 3.
Still, all the lower bounds we can offer are singly exponential. Whilef (d) ≥ 2d is

easy to see (from the cross polytopes realized as 0/1-polytopes), we obtain

f (d) ≥ (2.76)d

for all sufficiently larged.
So, what does “many facets” mean? We take the (symmetric) traveling salesman

polytopesQn
T as our benchmark, a polytope of dimensiond = n(n−3)/2 with(n−1)!/2

vertices. Forn = 8 this is a 20-dimensional polytope with 194,187≈ (1.8383)20 facets
[5], while we can construct a polytopeT20 of dimension 20 with as many as

f (20) ≥ 690,953,796≈ (2.76)20

facets. Still, the upper bound we have gives

f (20) ≤ 2,311,256,907,767,808,038≈ (8.2)20.

Similarly, in the case of 120 city problems, the TSP polytopeQ120
T has dimension

d = 7020. The number of facets of this polytope is not known; Gr¨otschel and Padberg
note that a class of more than 2·10179≈ (1.0606)d facets (“comb constraints”) is known.
At the same time, we can construct a 0/1-polytopeT7020 of the same dimension that has
more than 6·103101≈ (2.76)d facets.

1.2. The Size of a Two-Dimensional Shadow

For any class of polytopesP we have the following quantities:

M(P): The maximal number of vertices.
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H(P): The maximal number of vertices on a path that is strictly increasing with
respect to a linear function (anincreasingpath).

Hsh(P): The maximal number of vertices on a two-dimensional projection (“shadow”).

For the classPd of all d-dimensional 0/1-polytopes we have

1
2 Hsh(Pd)+ 1≤ H(Pd) ≤ M(Pd) = 2d.

(For the classP(d, n)of d-dimensional polytopes with at mostn facets the corresponding
hierarchy was analyzed in [1].)

In Section 3 we give exponential (lower and upper) bounds for the quantityHsh(Pd).
The motivation for this study comes from linear programming. The number of nonde-
generate pivots that the simplex algorithm with the shadow boundary (or Gass–Saaty)
pivot rule [4] can take on a 0/1 problem is bounded byd 1

2 Hsh(Pd)e from below and
Hsh(Pd) − 1 from above. This is one less than the maximal number of different basic
solutions (i.e., vertices of the polytope) that the algorithm may visit. (However, since
0/1-polytopes are in general very degenerate, this does not bound the maximal number
of pivots, or of basic solutions encountered.)

Is there any polynomial augmentation method on 0/1-polytopes? This is of interest
since edge paths of polynomial length can be constructed from any augmentation oracle
(i.e., a subroutine that provides a “better” vertex for any nonoptimal input, as in [11]) that
would output only augmentation vectors that correspond to edges. Is thereanystrategy
that on a 0/1-polytope would need only a polynomial number of nondegenerate pivots?

2. The Maximal Number of Facets

Let f (d) be the largest number of facets of ad-dimensional 0/1-polytope. It is easy
to see that it is sufficient to considerd-dimensional 0/1-polytopes that are subsets of
Rd. We call a 0/1-polytopeP ⊆ Rd centeredif ( 1

2, . . . ,
1
2) is in its interior. Let f ′(d)

be the largest number of facets of a centeredd-dimensional 0/1-polytope; we have
f ′(d) ≤ f (d) for all d, by definition. For small dimensions we have the following
values (derived below):

f ′(d) = f (d) = 2d for d ≤ 4,
40≤ f ′(5) ≤ f (5) ≤ 104,

121≤ f ′(6) ≤ f (6) ≤ 610.

We use the following “direct sum” construction.

Proposition 2.1. For i ∈ {1, 2} let Pi = conv(Vi ) ⊆ Rdi be di -dimensional centered
0/1-polytopes. Then there is a centered(d1+ d2)-dimensional0/1-polytope, denoted

P1⊕ P2 := conv(V1)⊕ conv(V2) ⊆ Rd1+d2,

called thedirect sumof V1 and V2, that has

fd1+d2−1(P1⊕ P2) = fd1−1(P1) · fd2−1(P2)

facets.
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Proof. We use the embedded 0/1-cubes

conv({x ∈ {0, 1}d1+d2: x1 = x2 = · · · = xd1 = xd1+1}) =: C′d2
∼= Cd2,

conv({x ∈ {0, 1}d1+d2: 1− xd1 = xd1+1 = · · · = xd1+d2}) =: C′d1
∼= Cd1

in the (d1 + d2)-dimensional 0/1-cube that are positioned in two orthogonal affine
subspaces ofRd1+d2 which intersect in( 1

2, . . . ,
1
2). Lifting P1 andP2 to 0/1-subpolytopes

of C′d1
(resp.C′d2

) we obtain the usual “free sum” construction for polytopes (see [8] and
[9]) as a construction for centered 0/1-polytopes.

Starting fromC1 = [0, 1] ⊆ R and f ′(1) = f (1) = 2 we thus obtain ad-dimensional
0/1-polytope

C1′
d := C1⊕ C1⊕ · · · ⊕ C1

with 2d facets that realizes thed-dimensional cross polytope as a 0/1-polytope:

C1
d
∼= conv({e1, . . . ,ed, 1− e1, . . . ,1− ed})

= conv

({∑
i∈A

ei : |A| ∈ {1, d − 1}
})

.

This yields

f (d) ≥ f ′(d) ≥ 2d

for all d. The fact that equalityf (d) = 2d holds ford ≤ 4 is checked by complete
enumeration. Such an enumeration (not complete) also provided the example that proves
f ′(5) ≥ 40, here given as PORTA-input:

DIM = 5

CONV˙SECTION

0 0 0 0 0

1 0 1 0 0

1 1 1 0 0

0 1 0 1 0

0 1 1 1 0

0 0 1 0 1

0 0 1 1 1

1 0 0 1 0

1 0 0 1 1

0 1 0 0 1

1 1 0 0 1

1 1 1 1 1

END

Ford = 6, 7, and 8 the polytopes with the most facets that we know are obtained by
the following construction:

Sd :=


either|A| ∈ {1, d − 1},∑

i∈A

ei or |A| > 0 is even andA ⊆ {1, 2, . . . , bd/2c},
or |A| > 0 is even andA ⊆ {bd/2c + 1, . . . ,d}.
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By computing the convex hull ofS10, which is indeed 10-dimensional, we find 10,829≈
(2.531971631)10 facets.

In higher dimensions,d ≥ 9, both R. Seidel and one of the referees noted that it is
better to take a “random” polytope. By computing the convex hull of a set of 88 random
0/1-vectors inRd we found a centered polytopeR10 having 26,286≈ (2.7667661)10

facets. For the coordinates and data of our best examples of 0/1-polytopes with many
facets, includingR10, we refer to [10].

Taking an appropriate direct sum

Td :=
⊕
bd/10c

R10⊕
⊕

d mod10

C1

we obtain the following.

Corollary 2.2. For d ≥ 0 we have

f (d) ≥ f ′(d) ≥ (26,286)bd/10c2d mod10.

Thus f(d) > (2.76)d for all sufficiently large d.

Upper bounds forf (d) can be obtained from a volume argument due to B´arány [13,
p. 25, Problem 0.15*] that we slightly refine with

Theorem 2.3. The maximal number of facets f(d) of a d-dimensional0/1-polytope
satisfies

f (d) ≤ d! − (d−1)! + 2(d−1) for d ≥ 3.

Proof. Let P be ad-dimensional 0/1-polytope. We can obtain conv({0, 1}d) from P
by successive addition of 0/1-vertices, thus destroying all but the “trivial” facets ofP.
However, whenever a facetFi of P is “destroyed” a cone overFi is added. This cone
is ad-dimensional 0/1-polytope, whence its volume is at least 1/d!. Since the process
stops at thed-dimensional 0/1-cube with 2d facets and volume 1, we get

fd−1(P) ≤ 2d + d! (1− vol(P)). (1)

On the other hand,P can be triangulated without new vertices, say intot simplices of
dimensiond. Each of these simplices has volume at least 1/d!, hence

t ≤ d! vol(P).

Each simplex hasd+ 1 facets. The dual graph of the triangulation is connected; it hast
nodes, hence at leastt − 1 edges. From this we get that at least 2(t − 1) simplex facets
are between simplices, so at mostt (d + 1)− 2(t − 1) simplex facets are in the surface
of P. Since each facet ofP is a union of simplex facets, we obtain

fd−1(P) ≤ t (d − 1)+ 2

and hence

fd−1(P) ≤ 2+ (d − 1)d! vol(P). (2)
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Addition of (2) to the(d−1)-fold of (1) cancels the summands that involve the volume;
we obtain

d fd−1(P) ≤ 2+ 2d(d−1)+ (d−1)d!.

Division byd and rounding down the right-hand side (since the left-hand side is integral)
yields the result.

3. The Complexity of Two-Dimensional Shadows

The fact thatH(Pd), the maximal number of vertices on an increasing path, is exponential
already follows from the fact that there are 0/1-polytopes with exponentially many
vertices, such that any two vertices are adjacent. So, for any generic linear function there
is an increasing path through all the vertices. For an example “occurring in nature” (where
the natural place for polytopes is combinatorial optimization) putP := conv(V) ⊆ Rk2

,
with

V := {xxt : x ∈ {0, 1}k, xk = 1}.
This yields theboolean quadric polytopeor cut polytope Pof dimensiond < k2 with
2k−1 vertices, of which any two are adjacent [2]. In fact, for anyyyt , zzt ∈ V we can
find a linear functionx 7→ at x such thatat y = at z= 0, butat x 6= 0 for anyx ∈ {0, 1}k
with xk = 1 andx 6= y, z. The scalar product withaat defines a linear function on P,
where

〈aat , xxt 〉 :=
k∑

i=1

k∑
j=1

(aat )i j (xxt )i j =
(

k∑
i=1

ai xi

)(
k∑

j=1

aj xj

)
= (at x)2 ≥ 0,

with equality if and only ifx = y or x = z. This gives usH(Pd) ≥ 2
√

d. See below for
an improvement that yields a genuinely exponential lower bound.

3.1. A Lower Bound for Hsh(Pd)

We give a proof for a lower bound on the maximal number of extremal vertices in the
two-dimensional shadow of a 0/1-polytope. It relies on a special projection of thed-cube
Cd onto a regular grid. We choose a suitable subset of the projected points that lies in
convex position.

We consider the following projectionπ : Rd → R2 for d = 3k and k a positive
integer: The firstk coordinatesxi are projected to(2i−1, 0) for 1≤ i ≤ k. The remaining
2k coordinatesxi are projected to(0, 2i−(k+1)) for k + 1 ≤ i ≤ d. By π we obtain a
bijection between the vertices of thed-cube and the vertices of a 2k×22k integer gridG.

Now we take the subset of vertices ofCd which corresponds to the subsetS of the
grid with

S= {(i, i 2) | 0≤ i ≤ 2k − 1} ∪ {(2k − 1− i, 22k − 3− i 2) | 0≤ i ≤ 2k − 1} ⊆ G.
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Fig. 1. The subsetP of the 22 × 24 grid.

S is the set of grid points of a standard parabola, together with a rotated copy (see
Fig. 1).

It is obvious that this subset yields a projection with all vertices being extremal, and
since|P| = 2·2k we have a lower bound for the maximal number of extremal vertices in
the two-dimensional projection of ad-dimensional 0/1-polytopeHsh(Pd) ≥ 2k+1. This
bound may be refined either by using the slightly less growing convex functioni 7→ (i

2

)
instead of the parabola, or by simply using the fact that the least significant bit (LSB) in
the bit representation ofi (resp.i 2) is the same and the second LSB ofi 2 is always 0,
which we can use to squeeze the number of bits required to represent the parabola and
its mirror image, givend ≥ 4. This yields

Theorem 3.1. The maximal number of extremal vertices Hsh(Pd)of the two-dimensional
shadow of a d-dimensional0/1-polytope is bounded from below for d≥ 4 by

2b(d+5)/3c ≤ Hsh(Pd).

We would like to mention a rather similar, although more indirect, method to show
asymptotically the same lower bound. For this, projectCd for d = 2k to a regular 2k×2k

grid with projection vectors(2i , 0) and(0, 2i ) for i = 0, . . . , k− 1. Using Satz 4.1.9 of

Table 1. A comparison of the lower bound valid for alld, an explicit construction
given by the projection vectors(2i , 2d−i−1) for i = 0, . . . ,d − 1 that we could only
calculate up tod = 12, and the upper bound as given by Corollary 3.3, where the

minimization step was done explicitly.

Dimension Lower bound Construction Upper bound
d (for all d, Theorem 3.1) (for smalld only) (Corollary 3.3)

1 — 2 4
2 — 4 6
3 — 6 10
4 8 10 16
5 8 14 24
6 8 18 38
7 16 22 58
8 16 32 88
9 16 42 138

10 32 52 210
11 32 66 320
12 32 82 500
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[12] we find a convex polygon with(12/(2π)2/3)n2/3+ O(n1/3 logn) extremal vertices
on the grid, wheren = 2k.

However, comparison of the explicit calculations for certain grid sizes as worked out
by Thiele with the bound given by Theorem 3.1 shows no substantial difference, while
there are constructions that yield much better lower bounds (see Table 1).

The same technique as shown above can be used to prove a truly exponential lower
bound forH(Pd), as was pointed out by one referee: Take a projection of the(d = 10k)-
dimensional cube to the 2k × 22k × 23k × 24k integer grid and choose 2k vertices on the
grid which are the vertices of a cyclic 4-polytope. The convex hull of the preimages of
these is a 2-neighborly 0/1-polytope, and soH(Pd) > 2d/10.

3.2. An Upper Bound for Hsh(Pd)

We derive upper bounds forHsh(Pd) by relating this to a problem on set systems.
A collection of setsS ⊆ 2[d] is said to have property (SYM) if the pairs(A\B, B\A)

are distinct for allA, B ∈ S with A 6= B. We define

X(d) = max{|S|: S ⊆ 2[d] satisfies (SYM)}.
We note that the projection of ad-dimensional 0/1-polytope is described by a col-

lection ofd pointsP = {p1, . . . , pd} in the plane. Ifpi is the image of the unit vector
ei ∈ Rd, then the image of a general 0/1-vector with supportS isP(S) =∑i∈S pi . This
defines a collection of at most 2d points

2P := {P(S) | S⊆ [d]}.
If g(P, d) is the largest number of points in 2P in convex position, then

Hsh(Pd) = max
P

g(P, d).

For subsetsS1, S2 ⊆ [d], the vector joiningP(S1) andP(S2) is

P(S2)− P(S1) = P(S2\S1)− P(S1\S2)

which corresponds to the ordered pair(S2\S1, S1\S2), and at most two copies of such
a vector can appear in any (strictly convex) polygon with vertices in 2P . In fact, by
discarding half the vertices of the polygon, we ensure that each vector joining pairs
of vertices appears exactly once. Then the subsets corresponding to the vertices of the
polygon satisfy (SYM). We have thus shown that the functionsHsh(Pd) and X(d) are
related by

Hsh(Pd)

2
≤ X(d).

Thus it suffices to find an upper bound forX(d) in order to boundHsh(Pd). We first
establish the following simple bound forX(d): If S ⊆ 2[d] satisfies (SYM) and|S| = k,
thenk(k − 1) ≤ 3d, since the total number of disjoint pairs of subsets(A, B) in [d] is
3d. HenceX(d) ≤ 2 3d/2. We improve this bound in the following result.
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Theorem 3.2.

X(d) ≤ (1+
√

3) 2d(log 3/ log 6).

Corollary 3.3.

Hsh(Pd) ≤ 2(1+
√

3) 2d(log 3/log 6).

Proof. LetS ⊆ 2[d] be a collection of sets satisfying (SYM). For ak-subsetT ⊆ [d],
let N(T) be the number of pairs(A, B) with A, B ∈ S and A\B, B\A ⊆ T . Let
T̄ = [d]\T be the complement ofT and letm= 2d−k. We countN(T) by partitioningS
into subcollectionsS1, . . . ,Sm in such a way thatA, B ∈ Si if and only if A∩T̄ = B∩T̄ .
ThusA, B ∈ Si implies thatA\B, B\A ⊆ T . If |Si | = di , then

d1(d1− 1)+ · · · + dm(dm − 1) = N(T) ≤ 3k,

since the number of disjoint pairs of subsets inT is at most 3k. Thus, using the arithmetic-
geometric mean inequality twice, we get

|S| = d1+ · · · + dm

= (d1− 1
2)+ · · · + (dm − 1

2)+
m

2

= m

(
1
2 +

(d1− 1
2)+ · · · + (dm − 1

2)

m

)

≤ m

 1
2 +

√
(d1− 1

2)
2+ · · · + (dm − 1

2)
2

m


= m

2
+√m

√
d1(d1− 1)+ · · · + dm(dm − 1)+ m

4

≤ m

2
+√m

√
3k + m

4

≤ m+
√

3km

= 2d−k +
√

2d−k3k.

The right-hand side is minimized when 3k = 2d−k. Hence choosingk = dd log 2/log 6e
we get

|S| ≤ (1+
√

3) 2d log 3/ log 6

as desired.

We conjecture thatX(d) = 2(1/2+o(1))d. A lower bound of the order of 2d/2 can
be constructed forX(d) by relating this problem to the existence of Sidon sets in the
following sense. ASidon setis a set of integers such that all pairs have distinct sums.
By associating a setS ⊆ [d] with the number 1+∑i∈S 2i−1, we get a one-to-one
correspondence between the subsets of [d] and the elements of [2d]. Then, given a Sidon
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subset of [2d], the corresponding collection of sets in [d] satisfy (SYM). A Sidon subset
of [2d] of size 2d/2−c25d/16 has been constructed in [6]. While the lower bound forX(d)
does not reveal any further information on the shadow vertex problem, it is of interest in
its own right.
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