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Abstract. We provide lower and upper bounds for the maximal number of facets of a
d-dimensional @1-polytope, and for the maximal number of vertices that can appear in a
two-dimensional projection (“shadow”) of such a polytope.

1. Introduction

The combinatorics of AL-polytopesis at the core of many investigations of combinatorial
optimization. In fact, the field of “polyhedral combinatorics” is concerned with classes
of facets and other combinatorial structures of “specidl-polytopes that are given as

the convex hulls of the characteristic vectors of solutions of certain problem classes. In
particular—just to mention one well-studied classical case—quite a lot is known about
the facet structures of traveling salesman polytopes: see [7].

Much less is known about “general/ D-polytopes. However, it seems that the “spe-
cial” polytopes of combinatorial optimization cannot be much simpler: so Billera and
Sarangarajan [3] have recently demonstrated that in the very special class of asymmetric
traveling salesman polytopes everyl@polytope is encountered as a face.

In the following, we discuss two classes of extremal problems for gengdal 0
polytopes that arise from complexity considerations in combinatorial optimization.
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1.1. The Maximal Number of Facets

The first section of the @tschel and Padberg chapter on “Polyhedral Computations” for
the traveling salesman problem [7] is titled “1.1: The number of facets of TSP polytopes
and algorithmic implications.” Gxtschel and Padberg note that traveling salesman poly-
topes have “many” facets. To get a better notion of “many,” estimates on the numbers
of facets of general (-polytopes are required. Gischel and Padberg use a very crude
upper bound, namely, thattadimensional @1-polytope cannot have more than

d
f(d) < (i) ~ 2%

facets, since every facet is determined by a set wértices. A much better bound was
given by Bdrany [13, Problem 0.15*]:f (d) < d! + 2d. Below—in Section 2—we
slightly improve Bdrany’s bound to

f(d) <d! — (d-D! +2(d-1)

ford > 3.
Still, all the lower bounds we can offer are singly exponential. WHiid) > 29 is
easy to see (from the cross polytopes realized/asplytopes), we obtain

f(d) > (2.76)°

for all sufficiently larged.

So, what does “many facets” mean? We take the (symmetric) traveling salesman
polytopesQf as our benchmark, a polytope of dimensiba: n(n—3)/2 with (n—1)!/2
vertices. Fon = 8 this is a 20-dimensional polytope with 194,1871.8383%° facets
[5], while we can construct a polyto#®, of dimension 20 with as many as

f (20) > 690,953,796v (2.76)%°
facets. Still, the upper bound we have gives
f(20) < 2,311,256,907,767,808,038 (8.2)%°.

Similarly, in the case of 120 city problems, the TSP polyt&° has dimension
d = 7020. The number of facets of this polytope is not knowmt&ehel and Padberg
note that a class of more thari@'”® ~ (1.0606¢ facets (“comb constraints”) is known.
At the same time, we can construct Al&polytopeT;gz0 Of the same dimension that has
more than 6L0%101 ~ (2.76)9 facets.

1.2. The Size of a Two-Dimensional Shadow

For any class of polytopeB we have the following quantities:

M (P): The maximal number of vertices.
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H (P): The maximal number of vertices on a path that is strictly increasing with
respect to a linear function (ancreasingpath).
Hsh(P): The maximal number of vertices on a two-dimensional projection (“shadow”).

For the clas®y of all d-dimensional @1-polytopes we have
3Hsn(Pa) +1 < H(Pg) < M(Pg) = 2°.

(Forthe clas®(d, n) of d-dimensional polytopes with at mastacets the corresponding
hierarchy was analyzed in [1].)

In Section 3 we give exponential (lower and upper) bounds for the quathgitPy).

The motivation for this study comes from linear programming. The number of nonde-
generate pivots that the simplex algorithm with the shadow boundary (or Gass—Saaty)
pivot rule [4] can take on al problem is bounded by% Hsn(Pg)] from below and
Hsh(Pq) — 1 from above. This is one less than the maximal number of different basic
solutions (i.e., vertices of the polytope) that the algorithm may visit. (However, since
0/1-polytopes are in general very degenerate, this does not bound the maximal number
of pivots, or of basic solutions encountered.)

Is there any polynomial augmentation method ga-polytopes? This is of interest
since edge paths of polynomial length can be constructed from any augmentation oracle
(i.e., a subroutine that provides a “better” vertex for any nonoptimal input, as in [11]) that
would output only augmentation vectors that correspond to edges. |saimgs&rategy
that on a @1-polytope would need only a polynomial number of nondegenerate pivots?

2. The Maximal Number of Facets

Let f(d) be the largest number of facets ofladimensional @1-polytope. It is easy
to see that it is sufficient to considdrdimensional @1-polytopes that are subsets of
RY. We call a Q1-polytopeP < RY centeredf (3, ..., 3) is in its interior. Letf’(d)
be the largest number of facets of a centededimensional @1-polytope; we have
f’(d) < f(d) for all d, by definition. For small dimensions we have the following
values (derived below):
f/(d) = f(d)= 2¢ for d <4,
40< /(5 < f(5) <104
121< f/(6) < f(6) <610

We use the following “direct sum” construction.

Proposition 2.1. Fori € {1,2} let B = con\V;) € R% be d-dimensional centered
0/1-polytopesThen there is a centered; + d,)-dimensionaD/1-polytope denoted

P1 @ P, := conMV;) @ conv(V,) C R%Fe%,
called thedirect sumof V; and \4, that has
fo+d—1(PL® Po) = fg_1(Py) - fg,—1(P2)

facets
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Proof. We use the embeddedDcubes
conv({x € {0, 1}%+%: x; = X = -+ = Xg, = Xgp41}) =: C} = Cq,,
conu({x € {0, B%H%: 1 — Xy = Xgy11 =+ = Xgp4,}) =2 CJ, = Ca,
in the (d; + dy)-dimensional @1-cube that are positioned in two orthogonal affine
subspaces @&%*+% which intersect ir{%, R %). Lifting P, andP,to 0/1-subpolytopes

of Cg, (resp.Cy,) we obtain the usual “free sum” construction for polytopes (see [8] and
[9]) as a construction for centeredBpolytopes. |

Starting fromC; = [0, 1] € Randf’(1) = f (1) = 2 we thus obtain d-dimensional
0/1-polytope
Ci=CioCi@d---®C
with 29 facets that realizes triedimensional cross polytope as Al@polytope:

CdAgCon\({el’"'7ed71_e17"'71_ed})

= conv({Za: |Al € {1,d — 1}}) )

ieA
This yields
f(d) > f'(d) > 2

for all d. The fact that equalityf (d) = 29 holds ford < 4 is checked by complete
enumeration. Such an enumeration (not complete) also provided the example that proves
f’(5) > 40, here given as PORTA-input:

DIM = 5

CONV SECTION

000O00O0

P OFRPPFPFOOOOLPRLPR
PP OOOO«RrPFrPFrOo
OO0 O0OOkrR kP PF OPRLPR
OO FrPFPPFRPOFRPF OO
P PP ORFRPRFROOORO

-
-
-
-
-

END

Ford = 6, 7, and 8 the polytopes with the most facets that we know are obtained by
the following construction:

either|A| € {1,d — 1},
S = Za or|Al > OisevenandA C {1,2,...,d/2]},
icA
or|A|l > OisevenandA C {|d/2] +1,...,d}.
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By computing the convex hull &4, which is indeed 10-dimensional, we find 10,829
(2.53197163119 facets.

In higher dimensiong > 9, both R. Seidel and one of the referees noted that it is
better to take a “random” polytope. By computing the convex hull of a set of 88 random
0/1-vectors inRY we found a centered polytofe,o having 26,286~ (2.7667663°
facets. For the coordinates and data of our best exampleslgbd@lytopes with many
facets, includingRyo, we refer to [10].

Taking an appropriate direct sum

Ty = @ Rio® @ C1

1d/10] d mod10

we obtain the following.

Corollary 2.2. Ford > Owe have
f(d) > f'(d) > (26,286)4/10 2d mod10
Thus f(d) > (2.76)9 for all sufficiently large d

Upper bounds foif (d) can be obtained from a volume argument due aéBy [13,
p. 25, Problem 0.15*] that we slightly refine with

Theorem 2.3. The maximal number of facetqd) of a d-dimensional/1-polytope
satisfies

f(d) <d! —d-1!+2(d-1) for d>3.

Proof. Let P be ad-dimensional @1-polytope. We can obtain co®, 1}%) from P
by successive addition of/@-vertices, thus destroying all but the “trivial” facets Bf
However, whenever a fac& of P is “destroyed” a cone ovef; is added. This cone
is ad-dimensional @1-polytope, whence its volume is at leagtl Since the process
stops at thel-dimensional @1-cube with 2l facets and volume 1, we get

fa_1(P) < 2d + d! (1 — vol(P)). D

On the other hand? can be triangulated without new vertices, say ingimplices of
dimensiond. Each of these simplices has volume at legsii thence

t < dlvol(P).

Each simplex had + 1 facets. The dual graph of the triangulation is connected; it has
nodes, hence at least- 1 edges. From this we get that at lea@t2 1) simplex facets
are between simplices, so at mb&l + 1) — 2(t — 1) simplex facets are in the surface
of P. Since each facet d? is a union of simplex facets, we obtain

fa—1(P) <t(d—-1)+2

and hence
fa_1(P) <2+ (d — Dd!vol(P). 2
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Addition of (2) to the(d — 1)-fold of (1) cancels the summands that involve the volume;
we obtain

dfy_1(P) <2+ 2d(d—-1) + (d—Dyd!.

Division byd and rounding down the right-hand side (since the left-hand side is integral)
yields the result. O

3. The Complexity of Two-Dimensional Shadows

The factthat (Py), the maximal number of vertices on an increasing path, is exponential
already follows from the fact that there arg¢l@polytopes with exponentially many
vertices, such that any two vertices are adjacent. So, for any generic linear function there
is an increasing path through all the vertices. For an example “occurring in nature” (where
the natural place for polytopes is combinatorial optimization)put= conuV) < R¥,

with

Vo= {xxt: x € {0, ¥, x = 1}.

This yields theboolean quadric polytoper cut polytope Pof dimensiond < k? with
2%=1 vertices, of which any two are adjacent [2]. In fact, for ang, zZ € V we can
find a linear functiorx — a'x such that'y = a'z = 0, buta‘x = 0 for anyx e {0, 1}
with xx = 1 andx # vy, z. The scalar product witha' defines a linear function on P,
where

Kk K k
(aa', xxt) == ZZ(aa‘)ij (xxhyij = (Zaixi) (Z anj> = (a'x)? > 0,
=1

i=1 j=1 i=1
with equality if and only ifx = y or x = z. This gives usH (Pg) > 2V4. See below for
an improvement that yields a genuinely exponential lower bound.

3.1. A Lower Bound for Eh(Py)

We give a proof for a lower bound on the maximal number of extremal vertices in the
two-dimensional shadow of & 0-polytope. It relies on a special projection of theube
Cgy onto a regular grid. We choose a suitable subset of the projected points that lies in
convex position.

We consider the following projection: RY — R? for d = 3k andk a positive
integer: The firsk coordinates; are projected t62' —1, 0) for 1 < i < k. The remaining
2k coordinatess; are projected t@0, 2 ~®+D) for k + 1 < i < d. By = we obtain a
bijection between the vertices of tHecube and the vertices of & 2 2% integer gridG.

Now we take the subset of vertices ©f which corresponds to the subsebf the
grid with

S={{,i»)|0<i<2—1nuf{-1-i,2%-3-i)|0<i<*-11CG.
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Fig. 1. The subseP of the 2 x 2* grid.

Sis the set of grid points of a standard parabola, together with a rotated copy (see
Fig. 1).

It is obvious that this subset yields a projection with all vertices being extremal, and
since|P| = 2. 2K we have a lower bound for the maximal number of extremal vertices in
the two-dimensional projection ofdxdimensional @1-polytopeHsn(Py) > 2¢+1, This
bound may be refined either by using the slightly less growing convex furictisr('z)
instead of the parabola, or by simply using the fact that the least significant bit (LSB) in
the bit representation of(resp.i?) is the same and the second LSBi &is always 0,
which we can use to squeeze the number of bits required to represent the parabola and
its mirror image, giverd > 4. This yields

Theorem 3.1. The maximal number of extremal verticeg,#y) of the two-dimensional
shadow of a d-dimension@) 1-polytope is bounded from below for>d 4 by

2LAHD/3) < Hy(Py).

We would like to mention a rather similar, although more indirect, method to show
asymptotically the same lower bound. For this, profgcfor d = 2k to a regular 5 2k
grid with projection vectorg2', 0) and(0, 2') fori =0, ...,k — 1. Using Satz 4.1.9 of

Table 1. A comparison of the lower bound valid for @l an explicit construction

given by the projection vector®', 24—1-1) fori = 0, ...,d — 1 that we could only

calculate up tad = 12, and the upper bound as given by Corollary 3.3, where the
minimization step was done explicitly.

Dimension Lower bound Construction Upper bound
d (for all d, Theorem 3.1) (for smad only) (Corollary 3.3)
1 — 2 4
2 — 4 6
3 — 6 10
4 8 10 16
5 8 14 24
6 8 18 38
7 16 22 58
8 16 32 88
9 16 42 138
10 32 52 210
11 32 66 320

12 32 82 500
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[12] we find a convex polygon wittil2/(27)?3)n?? + O(n'/3logn) extremal vertices
on the grid, where = 2K,

However, comparison of the explicit calculations for certain grid sizes as worked out
by Thiele with the bound given by Theorem 3.1 shows no substantial difference, while
there are constructions that yield much better lower bounds (see Table 1).

The same technique as shown above can be used to prove a truly exponential lower
bound forH (Py), as was pointed out by one referee: Take a projection ditthe 10k)-
dimensional cube to thesa 2% x 23 x 2% integer grid and choose Zertices on the
grid which are the vertices of a cyclic 4-polytope. The convex hull of the preimages of
these is a 2-neighborly/Q@-polytope, and s#l (Py) > 29/19,

3.2. An Upper Bound for EL(Pg)

We derive upper bounds fdtsn(Py) by relating this to a problem on set systems.
A collection of setsS ¢ 2 s said to have property (SYM) if the pai¢&\ B, B\ A)
are distinct for allA, B € S with A £ B. We define

X(d) = maX{|S|: S < 219 satisfies (SYM).

We note that the projection ofd&dimensional @1-polytope is described by a col-
lection ofd points? = {ps, ..., pa} in the plane. Ifp; is the image of the unit vector
e € RY, then the image of a generaglBvector with supporBis P(S) = Y ;s pi- This
defines a collection of at most points

27 = {P(9 | Sc[d]}.
If g(P, d) is the largest number of points if2n convex position, then
Hsh(Pg) = mgxg(P, d).
For subsets,, S C [d], the vector joiningP(S) andP(S) is
P(&) -P(&) =PE\S) -PE\S)

which corresponds to the ordered pé®\ S, S;\S), and at most two copies of such

a vector can appear in any (strictly convex) polygon with vertices”inl@ fact, by
discarding half the vertices of the polygon, we ensure that each vector joining pairs
of vertices appears exactly once. Then the subsets corresponding to the vertices of the
polygon satisfy (SYM). We have thus shown that the functiblggPy) and X(d) are

related by

Hshgpd) < X(d).

Thus it suffices to find an upper bound f&r(d) in order to boundHgh(Py). We first
establish the following simple bound f&(d): If S 2191 satisfies (SYM) andiS| = k,
thenk(k — 1) < 39, since the total number of disjoint pairs of subsghs B) in [d] is
39, HenceX (d) < 2 3%2. We improve this bound in the following result.
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Theorem 3.2.
X(d) < (1 + \/:_3) 2d(|0g 3/log 6).
Corollary 3.3.

Hsn(Py) < 2(1 + +/3) 2409 3/log 6),

Proof. LetS c 219 be a collection of sets satisfying (SYM). Fokasubsefl C [d],
let N(T) be the number of pairgA, B) with A,B € S and A\B, B\A C T. Let
T = [d]\T be the complement af and letm = 29-¥, We countN (T) by partitioningS
into subcollectionsSy, . . ., Sminsuchawaythaf, B € S; ifand only if ANT = BNT.
ThusA, B € §; implies thatA\B, B\A C T. If |Sj| = d;, then

di(d; — 1) + - 4+ d(dm — 1) = N(T) < 3%,

since the number of disjoint pairs of subset¥ iis at most 8. Thus, using the arithmetic-
geometric mean inequality twice, we get

IS| = di+ -+ dn
m
= G-+ -+
(di—3) + -+ (dm— 3)
:m(%+ 2 2

m

di— 324+ 4 (dy — 1)2
m(%+\/<1 2>+m+< 2>)

m m
= E+Jﬁ\/d1(d1—1)+---+dm(dm—1)+Z

IA

IA

m m
— m3k _
2 TYMYSt Y

m+ v/3km
= 207K 4 2k,

The right-hand side is minimized wheh 3 2%, Hence choosing = [d log 2/log 6]
we get

IA

|S| < (1+ﬁ) 2d|og3/|og6

as desired. O

We conjecture thaX(d) = 21/2+oMd A Jower bound of the order of%? can
be constructed foX (d) by relating this problem to the existence of Sidon sets in the
following sense. ASidon sefs a set of integers such that all pairs have distinct sums.
By associating a se® < [d] with the number 1+ ZieSZi‘l, we get a one-to-one
correspondence between the subsetd]xifid the elements of f2. Then, given a Sidon
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subset of [2], the corresponding collection of sets il atisfy (SYM). A Sidon subset

of [29] of size 2/2 — ¢259/16 has been constructed in [6]. While the lower boundXed)

does not reveal any further information on the shadow vertex problem, it is of interestin
its own right.
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Note added in progflanuary10, 1997. Very recentimprovements on the estimates for
the maximal numbers of facefgd) include

f(5) 40 (Oswin Aichholzer)
(3.26)% < f(d) forlarged (Komei Fukudeet al.), and
f(d) < 6.4d!/+/d forlarged  (Giinter Rote)

See [10] for latest results.



