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Abstract. If A is a square matrix with distinct eigenvalues and D a nonsingular

matrix, then the angles between row- and column-eigenvectors of D~XAD differ

from the corresponding quantities of A. Perturbation analysis of the eigenvalue

problem motivates the minimization of functions of these angles over the set of

diagonal similarity transforms ; two such functions which are of particular interest

are the spectral and the Euclidean condition numbers of the eigenvector matrix X

of D~lAD. It is shown that for a tri-diagonal real matrix A both these condition

numbers are minimized when D is chosen such that the magnitudes of corresponding

sub- and super-diagonal elements are equal. |

If a tri-diagonal matrix A is such that corresponding sub- and super-diagonal

elements have equal magnitude then A is said to be balanced or equilibrated. Wilkin-

son [5, p. 424] uses norms of balanced tri-diagonal matrices for error analysis of the

eigenvalue problem. He observes that, given a tri-diagonal matrix A = [an] all of

whose sub- and super-diagonal elements are nonzero, a diagonal matrix D = diag

(di, d<i, • • •, dn) can be found such that D~lAD is balanced. In fact, such a D is de-

fined by

di+i/di = (|ai+i,i|/|a¿,i+1|)1/2,       i = 1,2, ■ ■ -,n — 1 .

If some sub- or super-diagonal element of A is zero then finding its eigenvalues can

be reduced to finding the eigenvalues of submatrices, each of which can be balanced

separately.

It is an immediate consequence of Osborne's Lemma 2 [3] that a balanced tri-

diagonal matrix A has the extremal property

\\A\\E = irá {¡D^ADWe ,
D

where || • ||e denotes the Euclidean matrix norm (Schur norm, Frobenius norm). Our

Theorem 1 states the analogous result for the spectral norm; Theorems 2 and 3

show that the eigenvalue problem of a balanced tri-diagonal matrix is optimally

conditioned in the sense that no matrix of the form D~lAD has smaller angles be-

tween corresponding row- and column-eigenvectors.

We use || • || to denote the Euclidean vector norm, ][ - J|2 for the subordinate matrix

bound (the spectral matrix norm), kt(-) for the spectral condition number of a non-

singular matrix, and kE(-) for the Euclidean condition number (defined by kE(X)

= \\X\\e ||X_1||b). Absolute value signs applied to vectors are understood component-

wise. D, Di, and Di denote diagonal matrices with positive diagonal elements.

Theorem 1. If A is a balanced tri-diagonal real matrix then

\\A\U = mîWD-iADh .
D
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Proof. There exists a real diagonal matrix E with \E\ = I such that B = EA is

symmetric. Since, for all D,

IID-IADU» = WED-^ADW* = \\D-'EAD\\2 = \\D~lBD\\2,

the conclusion follows from the observation that for a symmetric matrix B, \\B\\2

^ IIZ^ÄDH» for all D.
The following theorem deals with the secants \\yH\\ ||x||/|i/Ha;| of the angles be-

tween corresponding row- and column-eigenvectors of a matrix.

Theorem 2. If A is a balanced tri-diagonal real matrix with distinct eigenvalues

Xi, X2, • • -, X„, corresponding column-eigenvectors xi, x2, ■ ■ •, xn, and corresponding

row-eigenvectors yiH, y2H, ■ ■ ■, ynH then

Wv/'WJxiïï = iDf \\yiHD\\\\D-1xi\\
\ijiHXi\ a \y/'xi\

for i = 1, 2, ■ ■ -,n.

Proof. Basing his argument on a theorem due to Stoer and Witzgall [4], Bauer

[1] showed that for any vector pair yH and x,

\\yHD\\ »ZT1*!! _ \yH\ \x\

\y x\ \y x\

Since A = EATE for some real diagonal matrix E with \E\ = /, y{ = dExi for

some scalars c,-. Hence

11 <\ 11    11      1   "1 1    1
i II H--g.ll _ \Vi I \Xi\

I   H   ! i   »   iI y i x % 1 1 y i x i \

for i = 1, 2, • • • ,n, which completes the proof.

Corollary. A has an eigenvector matrix X = [xi, xi, • • -, xn] such that kE(X)

= wfDl.DtkB(.Dr1XD%).

Proof. By Theorem 2, each term in the sum on the right of the relationship

inf  faCDTto) = inf ± MlMlD^xi
D¡,D2 £>!    ¿=1 \y{   Xi\

is minimized when D\ = I. This implies the corollary.

Theorem 3. If A is a balanced tri-diagonal real matrix with distinct eigen-

values then A has an eigenvector matrix X = [x\, x-i, • • -, xn] such that k2(X) =

mfj>1>D,fc2(Z>f1XDi).

Proof. Bauer [2] showed that

inf  fc2(Z»r1XZ)2) ^ p(E1X-1EtX)
Dl,D2

for all diagonal matrices E\ and E2 for which |2?i| = \E2\ = I (p denotes the spectral

radius). Hence it suffices for us to obtain equality for some eigenvector matrix X of

A and for some such E\ and E%.

Let Q be a unitary matrix such that if Z = XQ then J = Z~lAZ is the direct

sum of 1 by 1 and 2 by 2 matrices. (The latter are of the form
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[-Î   Û
and correspond to conjugate complex pairs of eigenvalues X ± ip.) If the permuta-

tion matrix P is chosen such that X = XP, invariance of k2 implies that for all Di

and D2

k(DrlXD2) = k(DrlXD2) = kiDr'XDi)

= kiD^XPD,) = fc(Dl-1X(Pi)î¡P2,)) .

Hence no generality is lost if we assume that those pairs of diagonal elements of D2

are equal which correspond to a complex conjugate pair of eigenvectors. Under this

assumption

k(D1~iXD2) = k(DrlXD2Q) = k(Dr'XQD2) ,

which allows us to replace the problem of minimizing k(Di~1XD2) by that of finding

mîDl,D2 kiD^ZDi). Now Z^AZ = / implies

ZtAtZ-t = jT = ElJEl

for some real diagonal matrix E\ such that \E\\ = I. Hence, if AT = E%AE2, it

follows that E2Z~TE\ — ZD2 for some diagonal matrix D2. Thus there exists a

matrix Z0 such that Z0-IAZ0 = J as well as Z0_1 = EiZoTE2. Hence

k(Z0) = llZolMI-EiZo^íllí = ll^olh2 = p(ZotZ0) = p(E1Z0-iE2Z0) .

The result of Bauer stated at the beginning of this proof now establishes the theo-

rem.
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