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EXTREMAL PROPERTIES OF LIKELIHOOD-RATIO QUANTIZERS 1
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Abstract

Let there be M hypotheses H 1,... , HM, and let Y be a random variable, taking values in a set

y, with different probability distribution under each hypothesis. A quantizer -': Y-+ {1,..., D}

is applied to form a quantized random variable 7(Y). We characterize the extreme points of the

set of possible probability distributions of -(Y), as 7y ranges over all quantizers. We then establish

optimality properties of likelihood-ratio quantizers for a very broad class of quantization problems,

including problems involving the maximization of an Ali-Silvey distance measure. Some new results

are also obtained for a Neyman-Pearson decentralized detection problem.
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I. INTRODUCTION

Suppose that there are M hypotheses H, ... , Hm, and that Y is a random variable with a

different probability distribution under each hypothesis. In classical detection theory [V68] one

observes one or more realizations of the random variable Y and attempts to infer the nature

of the true hypothesis. In several contexts, however, practical considerations dictate that the

observations must be quantized and statistical inferences are constrained to depend only on the

quantized observations. We are then led to the problem of finding a quantizer which is optimal

with respect to a performance measure of interest. This problem has been studied extensively

in the quantization literature [K77, PT77, AP84, FG87, P88, BB89]. It also arises in the area of

decentralized detection [TS81, T88] whereby a set of sensors obtain some observations and transmit

a summary of their observations to a fusion center that makes a final selection of one of the candidate

hypotheses (see [T89] for a survey and more references).

Throughout the literature on quantization and decentralized detection, there is a recurrent

theme. In particular, for several specific choices of a performance criterion, it has been shown that

likelihood ratio quantizers (LRQs) are optimal [TS81, FG87, PD88, KVW89, T89J. Motivated by

such results, this paper studies the geometry of the set of all quantizers, establishes some extremal

properties of LRQs, and derives some very broad conditions under which LRQs are optimal.

The contribution of this paper is twofold. First, the results of a multitude of published papers

are shown to be immediate consequences of a simple general principle. Second, a number of new

results are derived.

Summary of the paper

In Section 2, we define a quantizer as a function 3 from the range of the random variable Y into

a finite set {1,..., D}. We also define randomized quantizers. To each quantizer Y, we associate a

vector q(3) that describes the probability distribution of y(Y) under each hypothesis. We let Q be

the set of all vectors q(y) and we use a result of Liapounoff to show that Q is convex and compact.

As a corollary, we obtain a general result on the existence of optimal quantizers.

In Section 3, we focus on the case of binary hypotheses. After a definition of likelihood ratio

quantizers, we explore the geometry of the set Q. We show that q(y) is an extreme point of Q

if and only if y is an LRQ with a certain 'canonical" property. Furthermore, we characterize the

extreme points of certain "sections" of the set Q. As a corollary, we establish the optimality of

LRQs for a broad class of performance criteria.

In Section 4, we establish the optimality of LRQs when the performance criterion is an Ali-

Silvey distance mesure [AS66, PT771, thus providing a broad generalization of the results of [PD88,

KVW891.

In Section 5, we generalize the results of Sections 3-4 to the case of M hypotheses, for arbi-

trary M. In particular, we show that q(y) is an extreme point of Q if and only if there exists a
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sequence {},) of LRQs (suitably defined) such that q('n,) converges to q(7). We then derive some

implications on the nature of optimal solutions to certain quantization problems.

Finally, in Section 6, we consider decentralized detection problems of the type introduced in

[TS81]. We concentrate on a Neyman-Pearson variant of the problem and provide a new result on

the optimality of LRQs.

II. QUANTIZERS

Let y be some set endowed with a r-field 7 and let P 1,..., PM be M probability measures on

the measurable space (Y, 7). We associate each measure A, i = 1,..., M, with a hypothesis Hi on

the distribution of a Y-valued random variable Y. Accordingly, we use the notation Pr(A I Hi) to

indicate the Pi-measure of an event A.

Let D be a positive integer that will be held constant throughout the paper. We define a

deterministic quantizer as an 7-measurable mapping 7: Y /'- {1,..., D}. We use r to denote the

set of all deterministic quantizers.

If the quantized version 7(Y) of the random variable Y is to be used for choosing between the

hypotheses H1 , . . ., HM, then the distribution of -y(Y) under each hypothesis becomes of interest.

Since -y(Y) is finite-valued, its distribution is specified by the finite set of scalars

qd(7 I Hi) = Pr(7(Y) = d I Hi), i = 1,...,M, d= 1,...,D. (2.1)

For i = 1,..., M, and for any 7 e r let

q(-y I Hi) =- (7q |(yI Hi), . . . , qD (7yl Hi)). *(2.2)

Thus, q(7 I Hi) is a D-dimensional vector describing the probability distribution of 7(Y) under

hypothesis Hi. Finally, for any 7 E r, we define a vector q(7) E WMD by letting

q(7) = (q(7 I H1),..., q(7 I Hm)). (2.3)

Any two quantizers y,7' E r satisfying q(7) = q(y') are equally helpful for the purpose of

distinguishing between the different hypotheses. Thus, instead of studying quantizers directly, we

can concentrate on the corresponding vectors q(y). Accordingly, we define

Q = fq(7) I 7E r}. (2.4)

As is well known from Neyman-Pearson detection theory [V68], randomization can improve

performance in some detection problems. For this reason, we generalize our earlier definition, as

follows. Let K be an arbitrary positive integer and let 71,...-, 7K be some deterministic quantizers.

Let pl,..., PK be some nonnegative scalars whose sum is equal to 1. Consider a random variable W
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(defined on some auxiliary probability space) which, under either hypothesis, takes the value k with

probability pk and is statistically independent from Y. We define a function 7 : x {1,..., K}

{1,..., D} by letting

7(Y, W) = 7w (Y).

This function y will be referred to as the (randomized) quantizer corresponding to

(71i,..., K ,Pi, ... , PK). Intuitively, it corresponds to picking at random and then applying one of

the deterministic quantizers y',..., ,K . Note that

K

Pr(7(Y, W)= d IHi) = EPkPr(7k(Y) = d I Hi), Vd, i. (2.5)
k=l

In the sequel, we drop the argument W and write y(Y) instead of y(Y, W). However, it should be

kept in mind that 7(Y) is not always completely determined by Y.

Let r be the set of all (randomized) quantizers that can be constructed as in the preceding

paragraph. By considering the case K = 1, it is seen that r can be identified with a subset of r.

In the sequel, we use the term 'quantizer" to refer to elements of F and "deterministic quantizer"

to refer to elements of r.

For any 7 E r, we define qd(y I Hi), q(7 I Hi), and q(7), by means of Eqs. (2.1)-(2.3). Then, if

7 is the randomized quantizer corresponding to (yr, ... 7K ,P1,...,PK), Eq. (2.5) implies that

K

q(7) = ) Pkq(7k). (2.6)

Let

={q(7) IyE r}.

As is apparent from Eq. (2.6), we have

Q = co(Q), (2.7)

where co(.) stands for the convex hull.

Existence of Optimal Quantizers

The following result is part of what is known as Lyapunoff's theorem:

Proposition 2.1: The sets Q and Q are compact.

Proposition 2.1 was proved in [L40] for the case D = 2 and in [DWW51] for a general value of

D. A simpler proof, for the case D = 2, was subsequently given in [L66]. In view of the evident

importance of this result, and for completeness, a proof of Prop. 2.1 is provided in the Appendix.

This proof consists of a simple modification of the argument in [L66].

Let J : RMD _-+ R be a continuous function and suppose that the performance of a quantizer -

is captured by the value of J(q(y)). An optimal quantizer can be defined as one that minimizes
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J (q(-)) over the set r; equivalently, we are dealing with the minimization of J(q) over the set Q.

Then, Prop. 2.1 implies the existence of an optimal quantizer. This existence result remains valid

if we only optimize over the set r of deterministic quantizers.

mII. EXTREMAL QUANTIZERS - BINARY HYPOTHESES

Throughout this and the next section, we assume that the number M of hypotheses is equal to

2. As mentioned in the introduction, we are particularly interested in likelihood ratio quantizers

(LRQs for short) which we now define formally.

Let A be a measurable subset of y such that P1 (A) = 1 and such that P2 is absolutely continuous

with respect to P1 on the set A. The (generalized) likelihood ratio is a measurable function L y : -*

[0, oo] satisfying

L(y) = { (dP2 /dP)(y), if y E A, (3.1)c) , otherwise,

where dP2 /dP1 stands for (a version of) the Radon-Nikodym derivative of P2 with respect to P1 on

the set A.

Definition 3.1: (a) We define the threshold set T as the set of all vectors t = (tl,..., tDo-) E

[0,oo]D° - satisfying 0 < t1 < . . < tD-1 < oo. For any t E T, the associated intervals I1,..., ID

are defined by £I = [O, tl], I2 = [tl, t2 ],.. , ID-1 = [tD -2, tDo-], ID = [tD- 1,oo].

(b) Let t E T. We say that a quantizer y E r is a monotone LRQ with threshold vector t, if

Pr (7(Y) = d and L(Y) q Id I Hi) = 0, Vd, i.

(c) We say that a quantizer is an LRQ if there exists a permutation mapping r : {1,..., D}

{1,..., D) such that 7r o y is a monotone LRQ. We use r, to denote the set of all LRQs.

With this definition, an LRQ is obtained from a monotone LRQ, after renaming the elements of

(1,..., D}. Suppose now that y is a monotone LRQ. With our definition, the quantized value iY(Y)

is forced (modulo a zero measure event) to be equal to d whenever L(Y) belongs to the interior

of the set Id. On the other hand, the value of -y(Y) has some freedom when L(Y) belongs to the

common boundary of two intervals, that is, when L(Y) is equal to some threshold. Also, notice

that we allow different thresholds to be equal. Thus, we may have td- l = td in which case the

interval Id has empty interior.

Extreme points of sections of Q

We introduce some more notation. For any a E RD, we define

TQ = {q(") E q(cv I HI) = c).

Thus, each Qa is a "section" of the compact convex set Q. It follows that Q. is compact and

convex for every ca.
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Proposition 3.1: For any a E RD, the following hold:

(a) The set Qa has a finite number of extreme points.

(b) If q(3) is an extreme point of Qa, then 'y is an LRQ.

Proof: Let A be the set of all randomized quantizers whose range is {1, 2} (instead of {1,... ,D}).

Any 6 E A can be viewed as a statistical test for choosing between H1 and H 2 . For any a E [0, 1],

let
R(s) = minPr(6(Y) = 1 H 2 )

6EA (3.2)

subject to Pr(6(Y) 1 H1i) = a.

In classical terminology, the mapping sa -+ 1 - R(1 - s) coincides with the receiver operating

characteristic (ROC) curve. It is well-known that the minimum in Eq. (3.2) is attained.

If t E [0, ool, we say that an element 6 of A is a likelihood-ratio test (LRT) with threshold t if

Pr(6(Y) = 1 and L(Y) > t Hi) = 0, i = 1,2,

Pr(6(Y) = 2 and L(Y) < t I Hi) = 0, i = 1,2.

The Neyman-Pearson lemma asserts the following. (A proof is naturally omitted.)

Lemma 3.1: There exists a nondecreasing function X: [0,11 '-4 [0, oo] such that:

(a) If 6 attains the minimum in Eq. (3.2), then 6 is an LRT with threshold X(s).

(b) If 0 < s < 1, if 6 is an LRT with threshold X(s), and if Pr(6(Y) = 1 l Hi) = s, then 6 attains

the minimum in Eq. (3.2).

(c) If s = 1, and 6(y) = 1 if and only if L(y) < oo, then 6 attains the minimum in Eq. (3.2).

The proof of the proposition rests on the following lemma:

Lemma 3.2: Fix some a = (al,..., aD) E JD such that Qa is nonempty. Fix also some vector

c = (C1 ,..., CD) E RD and suppose that no two components of c are equal. Consider the problem

D

minimize C (3.3)
d= 1

subject to (a,fl) E Q

Then, the problem (3.3) has a unique solution /* = (,8*,... , P), and f* is completely determined

by the ordering of the components of c. Furthermore, if q(y) = (a,/'*), then y is an LRQ.

Proof: Let us first prove the result for the special case where c1 > c2 > ... > CD. Let (a,/f) E Q,

and choose some 7 E r such that q('7) = (a,.). For d = 1,... ,D, we define Ed A ~ by

6d(y) = 2=1, if 7 (y) > d. (3.4)

Then,

al + ..- + cad = Pr(6 (Y)= 1 lHi), Vd,

P1 + + Pd = Pr(Sd(Y) = 1 l H 2), Vd.
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Using the definition (3.2) of the function R, we obtain

R(al +... + ad) < 1 +..+ Pd, Vd.

It follows that

D

>Cdld = (C1 - C2 )81 + ( 2 - C3 )( 1 + 2) + ** + (CD-1 - CD)( 6
1 +** + pD-1) + CD

d= 1

> (cl - c 2)R(al) + (C2 - 3)R(al + a 2 ) + . * + (CD_ --CD)R(al + . + ,_D-1) + CD.

(3.5)
Let us define 8* by letting ,B;+...+, = R(al+.. ' +ad), for d = 1,..., D-1, and = + + = 1.
We will first show that (a,f *) E Qu. Since this is the unique value of A* for which Eq. (3.5) becomes
an equality, it will follow that 8* is the unique optimal solution of the problem (3.3). Subsequently,
we will show that if q(7) = (a, B*), then y must be a monotone LRQ.

Let us define a threshold vector t E T by letting td = X(al + .. + ad), d = 1,..., D - 1, where
X is the function of Lemma 3.1. Let 7 be a monotone LRQ with threshold t and suppose that the
tie-breaking rule [when L(y) is equal to some threshold] is chosen so that:

(i) Pr(7(Y) < d HI) = al + ... + ad, Vd;
(ii) If L(y) = td = oo, then 7(y) > d.

Then, for d = 1,..., D - 1, the function 6 d defined by Eq. (3.4) has the properties required in
Lemma 3.1(b)-(c). It follows that

,-* +' " +/d = Pr(y(Y) < d I H2) = Pr(6d(Y) = 1 I Ha) = R(al +'" -+-ad), d = 1,..., D - 1.

Therefore, q(y) = (ca, *) which proves that (a, #B*) E QE.

Now, let us suppose that q(7) = (ca,,*). We will show that 7 is a monotone LRQ. Let td =
X(al + . + ad). Since /, + ... + /5 = R(al + ... + ad), Lemma 3.1(a) applied to 6 d implies that

Pr(r(Y) > d and L(Y) < td I Hi) = O, Vi, d,

Pr(y(Y) < d and L(Y) > td I Hi) = 0, Vi, d.

Furthermore, t < ... _< tD-.- It then follows easily that y is a monotone LRQ.

We have proved so far Lemma 3.2 for the special case where cl > C2 > ... > CD. The general
case can be reduced to this special case by "renaming" of (that is, applying a permutation to) the
elements of { 1,..., D} so that the coefficients Cd become strictly decreasing. The only difference is
that if q(7) = (a, 3*), then ' will be a non-monotone LRQ. (It will be monotone with respect to
the renamed variables.) Q.E.D.

Let Get be the set of all (a,/1*) for which there exists a vector c with unequal components such
that M* is the unique optimal solution of the problem (3.3). Since each ordering of the components
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of c gives rise to exactly one 8*, it follows that G, has at most D! elements. Furthermore, Lemma

3.2 has established that if q(y) E Ga, then 'y is an LRQ. The proof of the proposition will be

completed by showing that Ga contains the set of extreme points of Qa.

Suppose that Qa has an extreme point z = (a, 1) that does not belong to Ga. Then, Qa

has an extreme point z = (a,, ) that does not belong to the convex hull co(Ga) of Ga. Using the

separating hyperplane theorem to separate z from co(Ga ), there exists some vector c = (c l , ... , CD)

such that

D D

Z Cdfd < mn Cd8d- (3.6)
d= 1 (a,B)EGr d= 1

By slightly perturbing the components of c, we can make them distinct while retaining the validity

of Eq. (3.6). This contradicts the definition of Ga. The contradiction shows that Ga contains the

set of extreme points of Qa. Q.E.D.

Extreme points of Q

The following is our main result:

Proposition 3.2: If y E r and q('y) is an extreme point of Q then 7y is an LRQ. Furthermore,

there exists a deterministic LRQ 'I such that q(7') = q(y)-

Proof: Suppose that q('y) =(a,13) is an extreme point of Q. Then, q(y) is also an extreme point

of Qa and Prop. 3.1 implies that y is an LRQ. Furthermore, since Q is the convex hull of Q, it

follows that q(y) E Q. Thus, there exists a deterministic Y' E r such that q(Y) = q(7). Using the

already proved part of the proposition, ' is an LRQ. Q.E.D.

The converse of Prop. 3.2 is not always true. For example, consider a threshold vector t and

suppose that for some d, Pr(L(Y) td I Hi) > 0 for some i. If y is an LRQ with threshold vector

t and uses randomization to resolve ties whenever L(Y) = td, it is evident that q(3) is a convex

combination of two different elements of Q, and q('y) is not an extreme point. This suggests that for

q(7) to be an extreme point of Q, -y should not use randomization for tie-breaking. This motivates

the following definition:

Definition 3.2: We say that 'y is a canonical LRQ if it is an LRQ and there exists a function

f: [0, oo] - {1,. .. , D} such that '(Y) = f (L(Y)), with probability 1, under either hypothesis.

Note that if L(Y) < oo with probability 1, and if the probability distribution of L(Y) is absolutely

continuous with respect to Lebesgue measure (under either hypothesis), then every LRQ is a

canonical LRQ. The following result provides a complete characterization of the extreme points of

Q. We omit the proof because the most important parts of our subsequent results do not depend

on it.

Proposition 3.3: q(y) is an extreme point of Q if and only if 'y is a canonical LRQ.
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Optimality Properties of Likelihood Ratio Quantizers

Proposition 3.4: Suppose that f: Q '-+ R is continuous and convex. Then:

(a) There exists a canonical LRQ 7* that maximizes f (q(7)) over all 7 E r.

(b) If f is also strictly convex and if 7* maximizes f(q(y7)) over all y E r, then y* is a canonical

LRQ.

Proof: (a) By Corollary 32.3.1 of [R70], the maximum of a convex function f over the compact

convex set Q is attained at an extreme point. By Prop. 3.3, such an extreme point is of the form

q(7*) for some canonical LRQ *'.

(b) In the strictly convex case, the value of f at any non-extreme point has to be smaller than

the value of f at some extreme point. (Because non-extreme points can be expressed as convex

combinations of extreme points.) Thus, if f (q(7*)) = maxqEi f(q), then q(7*) is an extreme point

of Q and, by Prop. 3.3, 7* is a canonical LRQ. Q.E.D.

The next proposition applies to optimal quantization problems in which the function f((a, 1) is

only convex in fl. It also applies to problems in which the value of a = q('y I H1 ) has to obey

certain constraints. Such constraints arise in certain problems of the Neyman-Pearson type. An

example will be seen in Section 6.

Proposition 3.5: Suppose that f: Q R-* ~R is continuous and that for any a E RD, the restriction

of f on the set Qa is convex. [That is, f(a,,f) is convex in 1.] Let A be some closed subset of RD.

(a) There exists an LRQ '1* such that q(y7*) maximizes f(a, 1f) subject to the constraints (a, 1) E Q

and a E A.

(b) If f(a, f1) is also strictly convex in 1 for each a, and if q(7*) maximizes f(a, 1i) subject to the

constraints (a, f) E Q and a E A, then 7' is an LRQ.

Proof: (a) Existence of an optimal solution follows because the set {(a,16) E Q E a E A} is

compact, being the intersection of a compact and a closed set. Let 'Y* be such that q(7*) = (a*,13*)

is an optimal solution. In particular, a* E A.

Let us consider the auxiliary problem of maximizing f(a, f) subject to (a, 1,) E Q and ac = a*.

Since f(a*,13) is a convex function of fl, it follows that there exists an extreme point (a*, 3) of

Q.a at which the maximum is attained. By the definition of 5, we have f(a*, B) > f(a*,/*).

Using the optimality of (a*,#*), the converse inequality also holds, and we conclude that (a*,W)

maximizes f(a, 1) subject to the constraints (a, 1i) E Q and a E A. Since (ca*,1) is an extreme

point of Q'"., Prop. 3.1 implies that there exists an LRQ 7 such that q(-7) = (c*,B). Such a 7 is

clearly an optimal solution of the problem under consideration.

(b) This follows similarly with part (b) of Prop. 3.4. Q.E.D.

IV. ALI-SILVEY DISTANCE MEASURES

Ali-Silvey distance measures [AS66] (also known as f-divergences [C67]) are general measures of
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the distance between two probability measures defined on the same measurable space. Such distance

measures are useful in several contexts, including quantization problems; see [PT77, FG87, P88].

In this section, we show that a quantizer that maximizes an Ali-Silvey distance measure of the

quantized distributions q(y I H1) and q(7 I H2) can always be chosen to be an LRQ.

Let f : [0, oo) A-t r be a continuous convex function satisfying

lim f( ). = 0. (4.1)

Then, the Ali-Silvey distance of two probability measures P1, P2 is defined as

Df (P1 , P2 ) f(L(y)) dPl(y), (4.2)
DYE Y IL (y)< 0 I

where L(y) is the generalized likelihood ratio, as defined by Eq. (3.1).

If we employ a quantizer 7y, the quantized random variable y7(Y) has a different probability

distribution q(, I Hi) under each hypothesis Hi, i = 1,2. The usefulness of a quantizer 7y for

discriminating between the two hypotheses H 1, H2 , can be measured in terms of the Ali-Silvey

distance F(7y) = Df (q(y7 H1), q(y7 H2)). Let a = (al,..., aD) = q(y7 I H ) and f = (6i1,..., D ) =

q( I H2). Then, using Eq. (4.2), we have

F(7)= adf(-) = E adf( - (4.3)

{dtad O} d= 1

where the second equality follows once we adopt the convention 0. f(oo) = 0. Let us use J(a, /)
to denote the right-hand side of Eq. (4.3). The main result of this section follows.

Proposition 4.1: The problem of finding a quantizer that maximizes the Ali-Silvey measure F(,7)

has an optimal solution which is an LRQ.

Proof: As 7y ranges over the set F of all quantizers, (a, 1) ranges over the set Q. Thus, finding a

quantizer 7y E r that maximizes F(-y) over the set P is equivalent to maximizing J(a,/3) over the

set Q. Using Eq. (4.1), we see that J is a continuous function. Furthermore, since f is assumed

convex, it is clear that J(a,, ) is a convex function of A, for any fixed a. The result follows from

Prop. 3.5(a). Q.E.D.

Some historical comments are in order. In [FG87], an iterative algorithm is given, which given

any quantizer, produces a new quantizer with larger or equal value of the Ali-Silvey distance. No

matter how the algorithm is intialized, the algorithm always produces LRQs. Thus, the argument

of [FG87] implicitly contains a proof that if an optimal quantizer exists then there exists an LRQ

which is optimal. However, the derivation in [FG87] depends heavily on an assumption that the

function f is twice differentiable and strictly convex. This excludes, for example, the case where

we want to maximize the variational distance between the two conditional distributions of -y(Y),

10



because we have to let f (x) = jz- ii which is neither strictly convex nor differentiable. In contrast,

we are only assuming that f is continuous and convex. Furthermore, we believe that the algorithmic

derivation in [FG87] does not expose the simple reasons for which Prop. 4.1 is true. Independently

from [FG87], the optimality of LRQs was established in [PD88] for the special case f(z) = l/z,

using a direct argument. Following the lines of the argument in [PD88], [KVW89] established the

same result for the special case f(z) = -X', s [0, 1].

Examples

Kullback-Liebler Divergence: When f(z) = - log z, the corresponding Ali-Silvey distance is the

Kullback-Liebler divergence, which plays a prominent role in Neyman-Pearson hypothesis testing.

For a concrete example [T88], suppose that N sensors receive i.i.d samples Y1,..., YN of a random

variable Y. The sensors transmit quantized values y(Y1 ),..., r(YN) to a fusion center.3 Then,

the fusion center solves a Neyman-Pearson hypothesis testing problem to decide in favor of one of

the underlying hypotheses. When N is large, the probability of error by the fusion center can be

approximated by e- NF(7), where F is defined by Eq. (4.3) with f(z) =- logz. This leads to the

problem of finding a quantizer 7 that maximizes F(7).

The function f convex and satisfies Eq. (4.1). On the other hand, f(0) = oo, the continuity

assumption on f is not satisfied, and the existence of an optimal quantizer is not guaranteed. Let us

assume however that - fy log L(y) dP1 (y) = c < oo . We then have J(a, P) = dD= f ldf (d/ad) <

c, for any (a,f) E Q. (This is because quantization cannot increase the value of the Kullback-

Liebler divergence.) From this, it follows easily that J(ac,B) is continuous on the set Q. We

conclude that an optimal quantizer exists and an optimal quantizer can be chosen to be an LRQ.

We can actually obtain an even stronger conclusion, as follows. It is easily shown that J(a, l)

is a convex function of (a,f). (Just check the Hessian matrix for nonnegative definiteness.) Then,

Prop. 3.4(a) shows that there exists an optimal quantizer which as a canonical LRQ. Because of the

symmetry of the problem, there exists an optimal quantizer which is a monotone canonical LRQ.

Chernoff's ezponent: Let s be a constant in (0,1) and consider the case where f(z) = -zx.

Accordingly, let
D

J(a,13;s) =

i=1

Again, it is easily checked that this function is convex in (a, ) and by Prop. 3.4(a), there exists

an optimal canonical LRQ. Let us define

J(f,"B) = sup J(a,6;s).
eE(O,1)

3. We are restricting the sensors to use the same quantizer. It has been shown in [T88] that this

results to no loss of optimality, asymptotically as N --, oo.

_ ~~~~ ~~~c~~~1



This quantity is associated with the Chernoff bound on the probability of error in hypothesis testing

[C52]. Thus, the problem of maximizing J(ca,,) over the set Q is of definite interest [BB89]. (Its

relevance to decentralized detection problems was shown in [T88]; see also [KVW89]). This is

the same as maximizing J(act,,s) over Q x (0,1). Assume that the maximum is attained at

some (a,,6*,8*). Then, any (a, /, 8*) is also an optimal solution provided that (N, B) maximizes

J(ai,,, s*) over the set Q. It follows again from Prop. 3.4(a) that there exists an optimal quantizer

which is a monotone canonical LRQ.

V. THE CASE OF MULTIPLE HYPOTHESES

The results of Sections 3-4 can be partially generalized to the case of multiple hypotheses,

provided that the concept of an LRQ is suitably modified. Indeed, in this section, we generalize

Prop. 3.3, by providing a characterization of the exposed (cf. Definition 5.2 below) and of the

extreme points of the set Q.

We still use the model and the notation of Section 2. Let P = Pi + '-" + PM. Notice that each

Pi is absolutely continuous with respect to P. We define Li(y) = (dPi/dP)(y).

For every d = 1,...,D, and i = 1,...,M, let there be given a coefficient aid. Let ad =

(ald, ... , aMd) and a = (al,..., aD). Let us consider quantizers of the form

M

(y) = argmin aid aLi(y), w.p.1,
i=i(5.1)

= argmin aL(y), w.p.1,

where L(y) = (Ll(y),...,LM(y)), and the superscript T denotes transpose. Equation (5.1) gen-

eralizes the structure of optimal statistical tests in M-ary hypothesis testing. It is also a natural

structure for quantization problems in the presence of a finite number of alternative hypotheses

[FG87].

We notice that Eq. (5.1) does not define a unique quantizer because we have not provided a tie-

breaking rule. Furthermore, the class of quantizers of the form (5.1) is too general. For example,

by letting ad = 0 for all d, we see that any quantizer y E r is of the form (5.1). We will thus

concentrate on quantizers of the form (5.1) for which a tie-breaking rule is unnecessary.

Definition 5.1: A quantizer -y E r is called an unambiguous likelihood quantizer (ULQ, for short)

if it is of the form (5.1) and the set of y's for which there is a tie in Eq. (5.1) has zero P-measure.

Formally, for any d' : d",

,P({y E yI ad' L(y) = a,,L(y) = minad L(y)}) = 0.

An simple criterion for a quantizer of the form (5.1) to be unambiguous is available under the

following assumption:

12



Assumption 5.1: The joint probability distribution of the random vector (L1 (Y),..., Lm- 1 (Y))

is absolutely continuous with respect to Lebesgue measure, under either hypothesis.

Lemma 5.1: Let Assumption 5.1 hold. Let 7 be a quantizer of the form (5.1) and suppose that

the vectors ad are distinct. Then, 7 is an unambiguous LRQ.

Proof: Suppose that ad ad',. Using the equality L (y) + ..- + Lm (y) = 1, we see that we

have a tie [that is, aTL(y) = aT ,L(y)] if and only if the vector (L1 (y),..., L-i (y)) satisfies a

(nontrivial) linear equation. Equivalently, if and only if this vector belongs to a subset of RM- of

Lebesgue measure zero. Thus, under Assumption 5.1, a tie occurs with zero probability under any

hypothesis, and 7 is unambiguous. Q.E.D.

We will now establish an extremal property of ULQs. We need one more definition.

Definition 5.2: Let C be a convex subset of R" and let z E C. We say that x is an exposed point

of C, if there exists some c E RJ such that cTz < c 'y for every y E C different than x.

It is evident that the exposed points of a convex set are extreme points, but the converse is not

always true. However, Straszewicz's theorem [R70] asserts that the set of extreme points of a closed

convex set is the closure of the set of exposed points. We will use this fact later.

The following result is a counterpart of Prop. 3.3.

Proposition 5.1: q(7) is an exposed point of Q if and only if 7 is an ULQ.

Proof: Let us fix a vector c with components Cid, i = 1,...,M, d = 1,...,D. We introduce

an auxiliary Bayesian decision problem. We assume that each hypothesis Hi has the same prior

probability. Furthermore, once we observe Y, we have to make a decision y(Y) E {1..., D}, and

we incur a penalty of Mcid if the true hypothesis is Hi and our decision is d. It is clear that the

expected cost of a decision rule 7 E r is equal to Zid Cidqd(7 I Hi). In particular, minimizing the

expected cost is the same as minimizing Ei, d CidXid over all z E Q.

We derive the solution of the Bayesian decision problem. Using a standard argument, 7 is

optimal if and only if 7 (Y) minimizes (w.p.1) the conditional expectation of the cost, conditioned

on Y. That is,
M

7(Y) = arg min cidPr(H, I Y), w.p.1. (5.2)
i=l

Using Bayes' rule, Pr(Hi I Y) is proportional to Li(Y), and Eq. (5.2) becomes

M

7(Y) = argnin cdLi(Y), w.p.1. (5.3)
i=l

Thus, if z = q(7), we have that x minimizes i ,d CidZid over the set Q if and only if 7 satisfies Eq.

(5.?).

Suppose that x* is an exposed point of Q. Then, there exist coefficients cid such that x* is the

unique minimizer of of Ei,d CidZid over the set Q. Suppose that q(7*) = x*. Then, 7* satisfies Eq.
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(5.3). Furthermore, if 7y satisfies Eq. (5.3), then q(7) = x*. This shows that q(') is the same for all

7 that satisfy Eq. (5.3). It follows that the probability of a tie in Eq. (5.3) is equal to zero under

any hypothesis. Thus, 7* is an ULQ.

Conversely, if 7* is an ULQ, then for some choice of coefficients Cid, '* satisfies Eq. (5.3) and

the probability of a tie is zero. Let z* = q(7*). Then, x* minimizes ,Eid CidZid over the set Q.

Using the fact that 7* is unambiguous, and by reversing the argument in the preceding paragraph,

it follows that x* must be the unique minimizer. It follows that q(7*) is an exposed point of Q.
Q.E.D.

Using Straszewicz's theorem, we obtain the following:

Corollary 5.1: q(y) is an extreme point of Q if and only if there exists a sequence ({n} of ULQs

such that q(7) = lim- o q(-,).

By comparing Corollary 5.1 and Prop. 3.3, we can assert that, for the case of two hypotheses,

we have that y is a canonical LRQ if and only if there exists a sequence of n )} ULQs such that

q(7,) converges to q(7). (This fact can also be verified by a simple direct argument.)

The following example illustrates the manner in which an extreme point of Q can fail to be an

exposed point of Q. Suppose that M = D = 3 and that Assumption 5.1 holds. Let t be a positive

scalar, and let e be a positive parameter. Let

g,(Y) = min{Ll(y) - e, EL2 (y),EL3(y)}

We define a quantizer 'Y., c > 0, by

1, if g (y) = Li (y) - e,
e (y) = 2, if g (y) = L2 (y),

3, if g,(y) = eL3s(y).

It is seen that as long as e > 0, y% is an ULQ. We also define a quantizer 70o by

1, if Ll (y) < t,
70(Y) = 2, if Li(y) > e and L 2(y) < L3(y),

3, if L1 (y) > e and L2(y) > L 3 (y).

It is clear that under Assumption 5.1, q(y,) converges to q('yo). On the other hand, the quantizer

7o cannot be expressed in the form (5.1) unless a2 = a3 , and therefore is not an ULQ.

The preceding example shows that the set of ULQs is not "closed" in any meaningful sense. This

is of course just a reflection of the fact that the set of exposed points of a closed convex set is not

necessarily closed.

Optimal quantization problems

As in Sections 3-4, we are interested in characterizing the possible optimal solutions of certain

quantization problems. The main result is the following.
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Proposition 5.2: Let J Q '-, R be continuous and convex and let rU be the set of all ULQs.

Then,

sup J(q(3)) = max J (q(I)). (5.4)
Eruv 7Er

Proof: The maximum of the convex function J is attained at some extreme point of Q. By

Corollary 5.1, any extreme point of Q is the limit of a sequence {q(-,y)} with y, E Fu for each n.

Q.E.D.

Suppose now that f is a continuous convex function satisfying Eq. (4.1), and that D (., ) is the

corresponding Ali-Silvey distance measure [cf. Eqs. (4.2)-(4.3)]. Let us consider the problem of

finding a quantizer y that maximizes

F (q(3)) = Ewij Df (qi (y), q (3y)), (5.5)

where each wi, is a positive weight. (Such quantization problems are studied, for example, in

[FG87].)

We are not able to assert any general properties of optimal solutions for the problem of maxi-

mizing the performance measure (5.5). Let us now make the additional assumption that zf(y/x)

is a convex function of (z, y) (as in the two examples of Section 4). Then, it is easily seen [cf. Eq.

(4.3)] that F is a convex function on the set Q. Thus, Prop. 5.2 implies that we can get arbitrarily

close to an optimal quantizer while restricting to the class of ULQs.

VI. DECENTRALIZED NEYMAN-PEARSON DETECTION

In this section, we apply the results of Section 3 to characterize the optimal solutions of a

decentralized Neyman-Pearson detection problem.

The problem formulation is as follows. There are two hypotheses H 1 , H2 , and N sensors

S1,... ,SN. Each sensor Si receives an observation Y. which is a random variable taking val-

ues in a set y,. We assume that the joint probability distribution of (Y 1 ,..., YN), conditioned on

each hypothesis, is known.

For i = 1,..., N, let Pi be the set of all randomized quantizers of Yi, defined as in Section 2.

Each sensor Si, upon observing the value of the random variable Y., applies a quantizer Yi E ri,

and sends a message Ui = 3i(Yi) E {1,... , D} to a fusion center. Then, the fusion center makes a

decision U0 = yo(U 1 ,...,UN) E {H 1 ,H 2}, where 0o : (1,... ,D}N ' ({H1 ,H 2 } is a deterministic

function.

Let ai E (0, 1) be a given scalar. We consider the problem of choosing the quantizers r1,..., YN

and the function 70, so as to maximize the "probability of detection" PD by the fusion center,

subject to the "probability of false alarm" PF being bounded by at. Formally,

maximize Pr((7o0 (Y1).... 7N(YN)) = H2 I H2 ), (6.1)
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subject to Pr(70(71i(Y1),. -,'IN (YN)) = H2 H 1) < a. (6.2)

Our main result is the following:

Proposition 6.1: Suppose that the random variables Y1, ... ,YN are conditionally independent

given either hypothesis. Then, there exists an optimal solution of the problem (6.1)-(6.2) such that

each one of the quantizers 71, ,..., 7N is a monotone LRQ.

Proof: For i = 1, ... , N, j = 0, 1, and -yi E r, let q$ (-y I Hi) E 2 2D be the vector with components

Pr(7i(Yi) = d I Hi), d = 1,...,D. Let Qi = {(q(7yi l H 1),qi(7i I H 2)) I 7i E i,}. (These are

essentially the same definitions as in Section 2.)

Using the conditional independence assumption, the problem (6.1)-(6.2) is equivalent to

N

maximize E iPr(7.(Y) =i H2 ), (6.3)
{UE{1,...,D}N 7yo(u)=H 2) i=1

N

subject to E iPr(i(Yi) = H) < a. (6.4)
{E({1,...,D}N 70o(u)=HN} iI=

For any fixed 0o, this is the same as a constrained optimization problem defined over the set

,N 1 Qi. The latter is a Cartesian product of compact sets (Prop. 2.1) and is therefore compact.

The cost function (6.3) as well as the left hand-side of the constraining equation (6.4) are continu-

ous. This proves the existence of an optimal solution, for any fixed 70. Since there is only a finite

number of choices for 0o, we conclude that the problem (6.1)-(6.2) has an optimal solution.

Let us now consider the problem facing a particular sensor Si when the quantizers of all other

sensors are fixed. Notice that the functions in Eqs. (6.3)-(6.4) are linear (and therefore convex)

functions of q'(7i I Hy). In particular, sensor Si is maximizing a linear function of q'(7'i I H2) while

q' (7i I Hi) is constrained to belong to a closed set. Therefore, Prop. 3.5(a) applies and shows that

there exists an LRQ yi which is optimal for the problem facing sensor Si.

It follows easily that there exists an optimal solution in which each yi is an LRQ. We can then

modify each 'i so that it becomes a monotone LRQ, without changing the information available to

the fusion center (provided that 70 is modified accordingly). Q.E.D.

Remarks:

1. A version of Prop. 6.1 has been proved for the Bayesian counterpart of the problem (6.1)-

(6.2) in [TS81], where decentralized detection problems were first introduced, as well as in several

subsequent papers. In fact, in the Bayesian case, an elementary proof is possible.

2. The Neyman-Pearson problem considered here has been studied in several papers ([S86a],

[S86b], [HV86], [R87j, [TVB87], [BV89]), for the case D = 2. Some of these papers associate a

Lagrange multiplier with the constraint (6.2), thus converting the problem to one which is essentially

equivalent to a Bayesian one. Then, one can use the Bayesian results to assert the optimality of
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LRQs. Unfortunately, such a proof is flawed for the following reason. Let R(a) be the optimal value

(i.e., the optimal probability of detection) for the Neyman-Pearson problem (6.1)-(6.2). Unlike

classical detection problems, the function R is not concave4 , in general. Due to the lack of

convexity, the optimal value in the maximization of PD subject to PF < Ca can be different from

the optimal value of the maximization of PD - APF, no matter how the Lagrange multiplier A is

chosen.

3. A correct proof of Prop. 6.1 has been provided in [TVB89] for the case D = 2. However, the

proof in [TVB89] does not generalize to the case D > 2. Thus, Prop. 6.1, in its present form, is

new.

4. It is straightforward to generalize the proof of Prop. 6.1 to cover: a) The case of acyclic detection

networks, thus providing a Neyman-Pearson counterpart of the results of [ET82] see [T89]; b) The

case where the fusion center is also allowed to use randomization.

5. In our formulation, we have allowed randomized quantizers. However, it is implicit in our

formulation that the randomizations at different sensors are statistically independent. [Equations

(6.3)-(6.4) would be false otherwise.] If one allows the sensors to randomize cooperatively (e.g., a

single toin is tossed, and all sensors are informed on the outcome), the problem is "convexified"

and bears a much closer relation to a Bayesian decentralized detection problem; see [T89] for more

details on this point.

4. An example can be found in [R87]. An explanation can be provided by observing that the

left-hand side of the constraint (6.4) is not convex when viewed as a function of all the variables

involved.
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APPENDIX

In this appendix, we prove that the sets Q and Q are compact, by suitably extending the proof

provided in [L66] for the case D = 2.

The sets Q and Q are clearly bounded, so we only need to show that they are closed. Furthermore,

since Q is the convex hull of Q, it suffices to show that Q is closed.

Let P = (P1 + ... + PM )/M. Let G be the set of all measurable functions from y into {0, 1}.

Let GD be the Cartesian product of D copies of G. Let

D

F = {(f,...,fD) E G I P(f(Y) = 1) = 1.
d=l

For any 7 E r and d E {1,..., D}, we can let fd be the indicator function of the set 7- 1 (d); that

is, fd (y) = 1 if and only if y(y) = d, and fd(y) = 0 otherwise. Clearly then, (fi,..., fD) E F and

qd(7- H,) = Pr((y(Y) d I Hi) = fd(y) dP,(y). (A.1)

Conversely, for any f = (fi,..., fD) E F, we define a deterministic quantizer y- E r as follows.

If Ed= ( f(Y) = 1, then let 7(y) be equal to the unique value of d for which fd(y) = 1. If

Ed=1 fd(Y) # 1, then let -y(y) = 1. Since the event d=_1 fd(y) : 1 has zero P-measure, it is seen

that Eq. (A.1) is again valid. Let h: F -+ WRMD be the mapping with components

hi,d(f) = fd(y) dPi,(). (A.2)

The correspondence we have established between F and r, together with Eq. (A.1), imply that

Q = h(F).

The proof will be completed by introducing a topology on G under which F is compact and h

is continuous. Then, Q becomes the continuous image of a compact set and is therefore compact.

We use C (y; P) to denote the set of all measurable functions f : y -. 2 such that f If(Y)l dP(y)

< oo. Similarly, 0o (y; P) denotes the set of all measurable functions f: y -4 ~R such that, after

discarding a subset of y of zero P-measure, f is bounded. We view G as a subset of Lo, (Y; P).

Recalling that l (y; P) is the dual of I(Y; P), we consider the weak* topology on , O(y; P),

defined as the weakest topology under which the mapping

f | f J(y)g(y) dP(y) (A.3)

is continuous for every g E LI (y; P). By Alaoglu's theorem [DS57], the unit ball in Zoo (y; P) is

weak*-compact, and it follows easily that G is also compact. Thus, GD is also compact under the

corresponding product topology. Recalling the definition of F, we see that F can be also defined

as the set of all elements (fi,..., fD ) E GD such that

E fd(y) dP(y) = P(A),
d= 1
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for every measurable subset A of y. Equivalently, for every measurable set A,

fd/(Y)XA (y) dP(y) = P(A),
d=l

where XA is the indicator function of A. Using the continuity of the mappings of the form (A.3),
and since XA E £ l(y; P), it follows that F is the subset of GD on which certain continuous equality
constraints are satisfied. Since GD is compact, it follows that F is also compact.

For each i, let gi be the Radon-Nikodym derivative of Pi with respect to P. Then, gi E Cl(Y; P)

[DS57]. Furthermore,

J fd(y)dPi(y) = Jfd()9i()dp() (iy) , d. (A.4)

By the definition of the weak* topology [cf. Eq. (A.3)j and Eq. (A.4), the mapping f | f d (y) dP (y)
is continuous. Thus, the mapping h whose components are given by Eq. (A.2) is continuous. Since

Q = h(F), it follows that Q is compact.
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