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Summary. First, extremal properties of endpoints of line segments
in n-dimensional Euclidean space are discussed. Some topological prop-
erties of line segments are also discussed. Secondly, extremal properties
of vertices of special polygons which consist of horizontal and vertical line
segments in 2-dimensional Euclidean space, are also derived.

MML Identifier: SPPOL 1.

The terminology and notation used in this paper are introduced in the following
articles: [18], [2], [12], [17], [21], [19], [22], [6], [15], [10], [16], [1], [7], [3], [5], [13],
[4], [8], [20], [9], [14], and [11].

1. Preliminaries

One can prove the following propositions:

(1) For every finite sequence f holds f is trivial iff len f < 2.

(2) For every finite set A holds A is trivial iff card A < 2.

(3) For every set A holds A is non trivial iff there exist arbitrary a1, a2

such that a1 ∈ A and a2 ∈ A and a1 6= a2.

(4) Let D be a non empty set and let A be a subset of D. Then A is non
trivial if and only if there exist elements d1, d2 of D such that d1 ∈ A and
d2 ∈ A and d1 6= d2.

We follow a convention: n, i, k, m will denote natural numbers and r, r1, r2,
s, s1, s2 will denote real numbers.

Next we state a number of propositions:

(5) If n ≤ k, then n − 1 ≤ k and n − 1 < k and n ≤ k + 1 and n < k + 1.
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(6) If n < k, then n − 1 ≤ k and n − 1 < k and n + 1 ≤ k and n ≤ k − 1
and n ≤ k + 1 and n < k + 1.

(7) If 1 ≤ k−m and k−m ≤ n, then k−m ∈ Seg n and k−m is a natural
number.

(8) If r1 ≥ 0 and r2 ≥ 0 and r1 + r2 = 0, then r1 = 0 and r2 = 0.

(9) If r1 ≤ 0 and r2 ≤ 0 and r1 + r2 = 0, then r1 = 0 and r2 = 0.

(10) If 0 ≤ r1 and r1 ≤ 1 and 0 ≤ r2 and r2 ≤ 1 and r1 · r2 = 1, then r1 = 1
and r2 = 1.

(11) If r1 ≥ 0 and r2 ≥ 0 and s1 ≥ 0 and s2 ≥ 0 and r1 · s1 + r2 · s2 = 0, then
r1 = 0 or s1 = 0 but r2 = 0 or s2 = 0.

(12) If 0 ≤ r and r ≤ 1 and s1 ≥ 0 and s2 ≥ 0 and r · s1 + (1 − r) · s2 = 0,
then r = 0 and s2 = 0 or r = 1 and s1 = 0 or s1 = 0 and s2 = 0.

(13) If r < r1 and r < r2, then r < min(r1, r2).

(14) If r > r1 and r > r2, then r > max(r1, r2).

In this article we present several logical schemes. The scheme FinSeqFam

deals with a non empty set A, a finite sequence B of elements of A, a binary
functor F yielding a set, and a unary predicate P, and states that:

{F(B, i) : i ∈ domB ∧ P[i]} is finite
for all values of the parameters.

The scheme FinSeqFam’ concerns a non empty set A, a finite sequence B of
elements of A, a binary functor F yielding a set, and a unary predicate P, and
states that:

{F(B, i) : 1 ≤ i ∧ i ≤ lenB ∧ P[i]} is finite
for all values of the parameters.

Next we state several propositions:

(15) For all elements x1, x2, x3 of Rn holds |x1 −x2| − |x2 −x3| ≤ |x1 −x3|.

(16) For all elements x1, x2, x3 of Rn holds |x2 −x1| − |x2 −x3| ≤ |x3 −x1|.

(17) Every point of En
T is an element of Rn and a point of En.

(18) Every point of En is an element of Rn and a point of En
T.

(19) Every element of Rn is a point of En and a point of En
T.

2. Properties of line segments

In the sequel p, p1, p2, q1, q2 will denote points of En
T.

One can prove the following propositions:

(20) For all points u1, u2 of En and for all elements v1, v2 of Rn such that
v1 = u1 and v2 = u2 holds ρ(u1, u2) = |v1 − v2|.

(21) For all p, p1, p2 such that p ∈ L(p1, p2) there exists r such that 0 ≤ r
and r ≤ 1 and p = (1 − r) · p1 + r · p2.

(22) For all p1, p2, r such that 0 ≤ r and r ≤ 1 holds (1 − r) · p1 + r · p2 ∈
L(p1, p2).
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(23) Given p1, p2 and let P be a non empty subset of En
T. Suppose P is closed

and P ⊆ L(p1, p2). Then there exists s such that (1 − s) · p1 + s · p2 ∈ P
and for every r such that 0 ≤ r and r ≤ 1 and (1 − r) · p1 + r · p2 ∈ P
holds s ≤ r.

(24) For all p1, p2, q1, q2 such that L(q1, q2) ⊆ L(p1, p2) and p1 ∈ L(q1, q2)
holds p1 = q1 or p1 = q2.

(25) For all p1, p2, q1, q2 such that L(p1, p2) = L(q1, q2) holds p1 = q1 and
p2 = q2 or p1 = q2 and p2 = q1.

(26) En
T is a T2 space.

(27) {p} is closed.

(28) L(p1, p2) is compact.

(29) L(p1, p2) is closed.

Let us consider n, p and let P be a subset of En
T. We say that p is extremal

in P if and only if:

(Def.1) p ∈ P and for all p1, p2 such that p ∈ L(p1, p2) and L(p1, p2) ⊆ P holds
p = p1 or p = p2.

We now state several propositions:

(30) For all subsets P , Q of En
T such that p is extremal in P and Q ⊆ P and

p ∈ Q holds p is extremal in Q.

(31) p is extremal in {p}.

(32) p1 is extremal in L(p1, p2).

(33) p2 is extremal in L(p1, p2).

(34) If p is extremal in L(p1, p2), then p = p1 or p = p2.

3. Alternating special sequences

We follow the rules: P , Q will be subsets of E 2
T, f , f1, f2 will be finite

sequences of elements of the carrier of E 2
T, and p, p1, p2, p3, q will be points of

E2
T.

The following proposition is true

(35) For all p1, p2 such that (p1)1 6= (p2)1 and (p1)2 6= (p2)2 there exists p
such that p ∈ L(p1, p2) and p1 6= (p1)1 and p1 6= (p2)1 and p2 6= (p1)2
and p2 6= (p2)2.

Let us consider P . We say that P is horizontal if and only if:

(Def.2) For all p, q such that p ∈ P and q ∈ P holds p2 = q2.

We say that P is vertical if and only if:

(Def.3) For all p, q such that p ∈ P and q ∈ P holds p1 = q1.

Let us observe that every subset of E 2
T which is non trivial and horizontal is

also non vertical and every subset of E 2
T which is non trivial and vertical is also

non horizontal.



100 yatsuka nakamura and czes law byliński

Next we state a number of propositions:

(36) p2 = q2 iff L(p, q) is horizontal.

(37) p1 = q1 iff L(p, q) is vertical.

(38) If p1 ∈ L(p, q) and p2 ∈ L(p, q) and (p1)1 6= (p2)1 and (p1)2 = (p2)2,
then L(p, q) is horizontal.

(39) If p1 ∈ L(p, q) and p2 ∈ L(p, q) and (p1)2 6= (p2)2 and (p1)1 = (p2)1,
then L(p, q) is vertical.

(40) L(f, i) is closed.

(41) If f is special, then L(f, i) is vertical or L(f, i) is horizontal.

(42) If f is one-to-one and 1 ≤ i and i+1 ≤ len f, then L(f, i) is non trivial.

(43) If f is one-to-one and 1 ≤ i and i + 1 ≤ len f and L(f, i) is vertical,
then L(f, i) is non horizontal.

(44) For every f holds {L(f, i) : 1 ≤ i ∧ i ≤ len f} is finite.

(45) For every f holds {L(f, i) : 1 ≤ i ∧ i + 1 ≤ len f} is finite.

(46) For every f holds {L(f, i) : 1 ≤ i ∧ i ≤ len f} is a family of subsets of
E2

T.

(47) For every f holds {L(f, i) : 1 ≤ i ∧ i+1 ≤ len f} is a family of subsets
of E2

T.

(48) For every f such that Q =
⋃
{L(f, i) : 1 ≤ i ∧ i + 1 ≤ len f} holds Q

is closed.

(49) L̃(f) is closed.

A finite sequence of elements of E2
T is alternating if:

(Def.4) For every i such that 1 ≤ i and i + 2 ≤ len it holds (πiit)1 6= (πi+2it)1
and (πiit)2 6= (πi+2it)2.

One can prove the following propositions:

(50) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f and (πif)1 =
(πi+1f)1, then (πi+1f)2 = (πi+2f)2.

(51) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f and (πif)2 =
(πi+1f)2, then (πi+1f)1 = (πi+2f)1.

(52) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f and
p1 = πif and p2 = πi+1f and p3 = πi+2f. Then (p1)1 = (p2)1 and
(p3)1 6= (p2)1 or (p1)2 = (p2)2 and (p3)2 6= (p2)2.

(53) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f and
p1 = πif and p2 = πi+1f and p3 = πi+2f. Then (p2)1 = (p3)1 and
(p1)1 6= (p2)1 or (p2)2 = (p3)2 and (p1)2 6= (p2)2.

(54) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f, then
L(πif, πi+2f) 6⊆ L(f, i) ∪ L(f, i + 1).

(55) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f and L(f, i) is
vertical, then L(f, i + 1) is horizontal.

(56) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f and L(f, i) is
horizontal, then L(f, i + 1) is vertical.
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(57) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f. Then
L(f, i) is vertical and L(f, i + 1) is horizontal or L(f, i) is horizontal and
L(f, i + 1) is vertical.

(58) Suppose f is special and alternating and 1 ≤ i and i + 2 ≤ len f and
πi+1f ∈ L(p, q) and L(p, q) ⊆ L(f, i) ∪ L(f, i + 1). Then πi+1f = p or
πi+1f = q.

(59) If f is special and alternating and 1 ≤ i and i + 2 ≤ len f, then πi+1f
is extremal in L(f, i) ∪ L(f, i + 1).

(60) Let u be a point of E2. Suppose f is special and alternating and 1 ≤ i
and i + 2 ≤ len f and u = πi+1f and πi+1f ∈ L(p, q) and πi+1f 6= q and
p /∈ L(f, i) ∪ L(f, i + 1). Given s. If s > 0, then there exists p3 such that
p3 /∈ L(f, i) ∪ L(f, i + 1) and p3 ∈ L(p, q) and p3 ∈ Ball(u, s).

Let us consider f1, f2, P . We say that f1 and f2 are generators of P if and
only if the conditions (Def.5) are satisfied.

(Def.5) (i) f1 is alternating,
(ii) f2 is alternating,
(iii) π1f1 = π1f2,
(iv) πlen f1

f1 = πlen f2
f2,

(v) 〈π2f1, π1f1, π2f2〉 is alternating,
(vi) 〈πlen f1−1f1, πlen f1

f1, πlen f2−1f2〉 is alternating,
(vii) π1f1 6= πlen f1

f1,

(viii) L̃(f1) ∩ L̃(f2) = {π1f1, πlen f1
f1}, and

(ix) P = L̃(f1) ∪ L̃(f2).

Next we state the proposition

(61) If f1 and f2 are generators of P and 1 < i and i < len f1, then πif1 is
extremal in P .
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