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Summary. First, extremal properties of endpoints of line segments
in n-dimensional Euclidean space are discussed. Some topological prop-
erties of line segments are also discussed. Secondly, extremal properties
of vertices of special polygons which consist of horizontal and vertical line
segments in 2-dimensional Euclidean space, are also derived.

MML Identifier: SPPOL_1.

The terminology and notation used in this paper are introduced in the following
anticles: [18], [2], [12], [17], [21], [19], [22], [6], [15], [10], 6], [1], [7], [3], [5], [13];
[4], [8], [20], [9], [14], and [11].

1. PRELIMINARIES

One can prove the following propositions:

(1)  For every finite sequence f holds f is trivial iff len f < 2.

(2)  For every finite set A holds A is trivial iff card A < 2.

(3) For every set A holds A is non trivial iff there exist arbitrary ai, as
such that a1 € A and as € A and a1 # as.

(4) Let D be a non empty set and let A be a subset of D. Then A is non
trivial if and only if there exist elements dy, ds of D such that d; € A and
dy € A and d; 75 do.

We follow a convention: n, i, k, m will denote natural numbers and r, r1, ro,

s, 81, so will denote real numbers.
Next we state a number of propositions:

(5) Ifn<k,thenn—1<kandn—1<kandn<k+1landn<k+1.
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(6) Ifn<k,thenn—1<kandn—1<kandn+1l<kandn<k-1
andn<k+landn<k-+ 1.

(7) Ifl1<k—mandk—m <mn,then k—m € Segn and k —m is a natural

number.

(8) Ifr;>0andry>0and r; +ry =0, then r; =0 and ro = 0.

(9) Ifr; <0andry <0andr +ry =0, then r; =0 and ro = 0.

(10) Ho0<riandrp <landO0<rgandry<landry-ro=1, thenr; =1
and ro = 1.

(11) Ifry >0andry > 0and sy > 0and sy > 0 and ry - $1 + 13- s9 = 0, then
r1=0o0r sy =0but ry =0 or s5 = 0.

(12) Ifo<randr<1lands; >0and sy >0andr-s;+(1—7r)-s9=0,
then r =0and ss =0orr=1and s; =0 or s; =0 and s9 = 0.

(13) Ifr <rp and r < 7o, then r < min(ry, r2).

(14) If r > ry and r > 7o, then r > max(ry, r2).

In this article we present several logical schemes. The scheme FinSeqFam
deals with a non empty set A, a finite sequence B of elements of A, a binary
functor F yielding a set, and a unary predicate P, and states that:

{F(B,i):i € domB A Pl[i]} is finite
for all values of the parameters.

The scheme FinSeqFam’ concerns a non empty set A, a finite sequence B of
elements of A, a binary functor F yielding a set, and a unary predicate P, and
states that:

{F(B,i):1<i A i<lenB A P[i]} is finite
for all values of the parameters.

Next we state several propositions:

15)  For all elements x1, x2, x3 of R™ holds |z1 — xa| — |xg — z3| < |21 — 23].
) For all elements x1, 23, z3 of R™ holds |xe — z1| — |22 — 23] < |23 — 21].
) Every point of £} is an element of R™ and a point of £".

18)  Every point of £” is an element of R™ and a point of EF.
) Every element of R™ is a point of £" and a point of EF.

2. PROPERTIES OF LINE SEGMENTS

In the sequel p, p1, p2, ¢1, g2 will denote points of £F.
One can prove the following propositions:

(20)  For all points uy, uy of £™ and for all elements vy, ve of R™ such that
v1 = uy and v = ug holds p(u1,us) = |v; — val.

(21)  For all p, p1, p2 such that p € L(p1,p2) there exists r such that 0 < r
andr<landp=(1-7)-p1+7r-ps.

(22)  For all py, po, r such that 0 < r and r < 1 holds (1 —7)-p; +7r-ps €
L(p1,p2)-
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(23)  Given py, p2 and let P be a non empty subset of £f. Suppose P is closed
and P C L(p1,p2). Then there exists s such that (1 —s)-p; +s-p2 € P
and for every r such that 0 < randr <land (1—7)-py+7r-ps € P
holds s < r.

(24)  For all p1, pa, q1, g2 such that L(q1,q2) C L(p1,p2) and p1 € L(q1,q2)
holds p; = q1 or p1 = qo.

(25)  For all py, p2, q1, g2 such that L(p1,p2) = L(q1,q2) holds p; = ¢; and
P2 = q2 or p1 = g2 and p = q.

(26) &t is a Tq space.
(27)  {p} is closed.

(28)  L(p1,p2) is compact.
(29)  L(pi1,p2) is closed.

Let us consider n, p and let P be a subset of £F. We say that p is extremal
in P if and only if:
(Def.1)  p € P and for all p1, py such that p € L(p1,p2) and L(p1,p2) C P holds
p=Dp10rp=pa.
We now state several propositions:
(30)  For all subsets P, @ of £F such that p is extremal in P and @@ C P and
p € @ holds p is extremal in Q.

(31)  pis extremal in {p}.

(32)  pp is extremal in L(p1,p2).

(33)  pais extremal in L(p1, p2).

(34) If p is extremal in L(p1,p2), then p = py or p = pa.

3. ALTERNATING SPECIAL SEQUENCES

We follow the rules: P, ) will be subsets of E%, f, fi, fo will be finite
se2quences of elements of the carrier of 5%, and p, p1, p2, p3, ¢ will be points of
Et.

' The following proposition is true

(35)  For all py, ps such that (p1)1 # (p2)1 and (p1)2 # (p2)2 there exists P
such that p € L(p1,p2) and p1 # (p1)1 and p1 # (p2)1 and p2 # (p1)2
and pa # (p2)2-

Let us consider P. We say that P is horizontal if and only if:

(Def.2)  For all p, ¢ such that p € P and ¢ € P holds pa = ga.
We say that P is vertical if and only if:
(Def.3)  For all p, ¢ such that p € P and ¢ € P holds p1 = ¢1.

Let us observe that every subset of 5% which is non trivial and horizontal is
also non vertical and every subset of 5% which is non trivial and vertical is also
non horizontal.
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Next we state a number of propositions:
(36) pa = g2 iff L(p,q) is horizontal.
(37)  p1=q iff L(p,q) is vertical.

(38) If p1 € L(p,q) and py € L(p,q) and (p1)1 # (p2)1 and (p1)2 = (p2)2,
then L(p, q) is horizontal.

(39) If pr € L(p,q) and pa € L(p,q) and (p1)2 # (p2)2 and (p1)1 = (p2)1,
then L(p, q) is vertical.

(40)  L(f,1) is closed.

(41)  If f is special, then L£(f,1) is vertical or L(f,1) is horizontal.

(42)  If f is one-to-one and 1 < i and i+ 1 <len f, then £(f,4) is non trivial.

(43) If f is one-to-one and 1 < i and i + 1 < len f and L(f,4) is vertical,
then L£(f,4) is non horizontal.

(44)  For every f holds {L(f,i): 1 <i A ¢ <len f} is finite.

(45)  For every f holds {L(f,i):1<i A i+ 1 <len f} is finite.

(46) 2F0r every f holds {£(f,7):1<i A i<len f}is a family of subsets of

&

(47)  For every f holds {L(f,7):1<i A i+1 <len f} is a family of subsets
of 2.

(48)  For every f such that Q@ = U{L(f,7): 1 <i A i+ 1 <len f} holds Q
is closed.

(49)  L(f) is closed.
A finite sequence of elements of 5% is alternating if:

(Def.4)  For every i such that 1 < i and i + 2 < lenit holds (m;it); # (mi42it)1

and (TFiit)z #* (7Ti+2it)2.
One can prove the following propositions:

(50)  If f is special and alternating and 1 <i and i +2 <len f and (7;f)1 =
(Tit1f)1, then (mip1f)2 = (mipaf)2.

(51)  If f is special and alternating and 1 <i and i +2 <len f and (7;f)2 =
(miv1f)2, then (mip1f)1 = (mivaf)1.

(52)  Suppose f is special and alternating and 1 < ¢ and i + 2 < len f and
p1 = mf and py = w41 f and ps = migof. Then (p1); = (p2)1 and
(p3)1 # (p2)1 or (p1)2 = (p2)2 and (ps)2 # (p2)2-

(53)  Suppose f is special and alternating and 1 < ¢ and i + 2 < len f and
pr = mf and pp = miy1f and p3 = mipof. Then (p2)1 = (p3)1 and
(p1)1 # (p2)1 or (p2)2 = (p3)2 and (p1)2 # (p2)2-

(54) If f is special and alternating and 1 < ¢ and ¢ + 2 < len f, then
L(mif, mivaf) L L(f, ) UL(S, i+ 1).

(55) If f is special and alternating and 1 < i and i+ 2 <len f and L(f,1) is
vertical, then L£(f,7+ 1) is horizontal.

(56) If f is special and alternating and 1 < i and i+ 2 <len f and L(f,1) is
horizontal, then £(f,i+ 1) is vertical.
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(57)  Suppose f is special and alternating and 1 <4 and 7 + 2 < len f. Then
L(f,1) is vertical and L(f,7+ 1) is horizontal or L(f,%) is horizontal and
L(f,i+ 1) is vertical.

(58)  Suppose f is special and alternating and 1 < ¢ and i + 2 < len f and
7Ti+1f € [’(pa Q) and ‘C(p? Q) c £(f,2) U £(f,Z + 1) Then 7Ti+1f = p or
miv1f = q.

(59) If f is special and alternating and 1 < i and i + 2 < len f, then 7,11 f
is extremal in L(f,i) U L(f,i+1).

(60)  Let u be a point of £2. Suppose f is special and alternating and 1 <4
and i + 2 <len f and u = 71 f and w11 f € L(p,q) and w11 f # ¢q and
p & L(f,i)UL(f,i+1). Given s. If s > 0, then there exists ps such that
ps & L(f, i) UL(f,i+ 1) and p3 € L(p,q) and p3 € Ball(u, s).

Let us consider f1, fo, P. We say that f1 and fo are generators of P if and
only if the conditions (Def.5) are satisfied.
(Detf.5) (i)  f1 is alternating,
(ii)  fo is alternating,

)
(iii)  mif1 = mifo,
(V) Tien £, f1 = Ten o f25
(v)  (mofi,m1f1,m2f2) is alternating,
(vi)  (Mien fy—1f1, Men f1 f1, Tien fo—1f2) is alternating,
(Vi) T1f1 # Ten f1 /15
i)

Z(fl)~ﬁ L(f2) ={m1f1, Men s f1}, and
(ix) P=L(fi)UL(f)
Next we state the proposition

(61) If f1 and fo are generators of P and 1 < i and i < len fi, then m;f] is
extremal in P.
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