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Abstract. Quantile regression is an important tool for estimation of conditional quantiles of a re-

sponse Y given a vector of covariates X. It can be used to measure the effect of covariates not only

in the center of a distribution, but also in the upper and lower tails. This paper develops a theory

of quantile regression in the tails. Specifically, it obtains the large sample properties of extremal

(extreme order and intermediate order) quantile regression estimators for the linear quantile re-

gression model with the tails restricted to the domain of minimum attraction and closed under tail

equivalence across regressor values. This modelling set up combines restrictions of extreme value

theory with leading homoscedastic and heteroscedastic linear specifications of regression analy-

sis. In large samples, extreme order regression quantiles converge weakly to argmin functionals of

stochastic integrals of Poisson processes that depend on regressors, while intermediate regression

quantiles and their functionals converge to normal vectors with variance matrices dependent on

the tail parameters and the regressor design.
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1. Introduction

Regression quantiles, Koenker and Bassett (1978), estimate conditional quantiles of a response

variable Y given regressors X. They complement Laplace’s (1818) median regression (least abso-

lute deviation estimator) and generalize the ordinary sample quantiles to the regression setting.

Regression quantiles are used widely in empirical work and studied extensively in theoretical statis-

tics. See Koenker and Bassett (1978), Buchinsky (1994), Chamberlain (1994), Chaudhuri, Doksum,

and Samarov (1997), Gutenbrunner and Jurečková (1992), Hendricks and Koenker (1992), Knight

(1998), Koenker and Portnoy (1987), Portnoy and Koenker (1997), Portnoy (1991a), and Powell

(1986), among others.

Many potentially important applications of regression quantiles involve the study of various ex-

tremal phenomena. In econometrics, motivating examples include the analysis of factors that con-

tribute to extremely low infant birthweights, cf. Abrevaya (2001); the analysis of the highest bids in

auctions, cf. Donald and Paarsch (1993); and estimation of factors of high risk in finance, cf. Tsay

(2002) and Chernozhukov and Umantsev (2001), among others. In biostatistics and other areas,

motivating examples include the analysis of survival at extreme durations, cf. Koenker and Geling

(2001); the analysis of factors that impact the approximate boundaries of biological processes, cf.

Cade (2003); image reconstruction and other problems where conditional quantiles near maximum

or minimum are of interest, cf. Korostelëv, Simar, and Tsybakov (1995).
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An important peril to inference in the listed examples is that conventional large sample theory for

quantile regression does not apply sufficiently far in the tails. In the non-regression case, this problem

is familiar, well-documented, and successfully dealt with by modern extreme value theory; see, for

example, Leadbetter, Lindgren, and Rootzén (1983), Resnick (1987), Embrechts, Klüppelberg, and

Mikosch (1997). The purpose of this paper is to develop an asymptotic theory for quantile regression

in the tails based on this theory. Specifically, this paper obtains the large sample properties of

extremal (extreme order and intermediate order) quantile regression for the class of linear quantile

regression models with conditional tails of the response variable restricted to the domain of minimum

attraction and closed under the tail equivalence across conditioning values.

The paper is organized as follows. After an introductory Section 2, Section 3 joins together the

linear quantile regression model with the tail restrictions of modern extreme value theory. These

restrictions are imposed in a manner that allows regressors to impact the conditional tail quantiles

of response Y differently than the central quantiles. The resulting set up thus covers conventional

location shift regression models as well as more general quantile regression models. Section 4 provides

the asymptotic theory for the sample regression quantiles under the extreme order condition, τTT →
k > 0, where τT is the quantile index and T is the sample size. By analogy with the extreme order

quantiles in non-regression cases, the extreme order regression quantiles converge to extreme type

variates (functionals of multivariate Poisson processes that depend on regressors). Our analysis of

the case τTT → k > 0 builds on and complements the analysis of τTT → 0 given by Feigin and

Resnick (1994), Smith (1994), Portnoy and Jurec̆ková (1999), and Knight (2001) for various types

of location shift models. (Chernozhukov (1998) also studied some nonparametric cases). Section 5

derives the asymptotic distributions of regression quantiles under the intermediate order condition:

τTT → ∞, τT → 0, thus providing a quantile regression analog of the results on the intermediate

univariate quantiles by Dekkers and de Haan (1989). As with the intermediate quantiles in non-

regression cases, the intermediate order regression quantiles, and their functionals such as Pickands

type estimators of the extreme value index, analyzed in Section 6, are asymptotically normal with

variance determined by both the tail parameters and the regressor design. Sections 7 provides an

illustration, Section 8 concludes, and Section 9 collects the proofs.

2. The setting

Suppose Y is the response variable in R, and X = (1, X ′
−1)

′ is a d × 1 vector of regressors

(typically transformations of original regressors). (Throughout the paper, given a vector x, x−1

denotes x without its first component x1.) Denote the conditional distribution of Y given X = x by

FY (·|x). The present focus is on F−1
Y

(τ |x) = inf{y : FY (y|x) > τ} where τ is close to 0. Let there

be a sample

{Yt, Xt, t = 1, ..., T}, where Xt ∈ X,

generated by a probability model with a conditional quantile function of the classical linear-in-

parameter form

F−1
Y

(τ |x) = x′β(τ), for all τ ∈ I, x ∈ X, (2.1)
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where β(·) is a nonparametric function of τ , which when I = (0, 1) also corresponds to the stochastic

model with random coefficients:

Y = X ′β(ε), ε =d U(0, 1), X ∈ X. (2.2)

Here it is necessary that (2.1) holds for

I = [0, η] for some 0 < η ≤ 1 and x ∈ X, a compact subset of R
d. (2.3)

Different linear models (2.1) can be applied to different covariate regions X (which can be local

neighborhoods of a given x0, in which case the linear model (2.1) is motivated as a Taylor expansion).

The model (2.1) plays a fundamental role in the theoretical and practical literature on quantile

regression mentioned in the introduction. Its appealing feature is the ability to capture quantile-

specific covariate effects in a convenient linear framework.

In the sequel, we combine the linear model (2.1) with the tail restrictions from the extreme value

theory to develop applicable asymptotic results. It is of vital consequence to impose these restrictions

in a manner that preserves the quantile-specific covariate effects, as motivated by the empirical

examples listed in the introduction. For instance, in the analysis of U.S. birthweights, Abrevaya

(2001) finds that smoking and the absence of pre-natal care impact the low conditional quantiles

of birthweights much more negatively than the central birthweight quantiles. The linear framework

(2.1) is able to accommodate this type of impact through the quantile-specific coefficients β(τ),

where β−1(τ), for τ near 0, describes the effect of covariate factors on extremely low birthweights

and, say, β−1(1/2) describes the effect on central birthweights. Thus, when imposing extreme value

restrictions, it is important to preserve this ability.

The inference about β(τ) is based on the regression quantile statistics β̂(τ) (Koenker and Bassett

1978) defined by the least asymmetric absolute deviation problem:

β̂(τ) ∈ arg min
β∈Rd

T∑

t=1

ρτ (Yt −X ′
tβ) , where ρτ (u) = (τ − 1(u ≤ 0))u, (2.4)

of which Laplace’s (1818) median regression is an important case with ρ1/2(u) = |u|/2. The statistics
β̂(τ) naturally generalize the ordinary sample quantiles to the conditional setting. In fact, the usual

univariate τ -quantiles can be recovered as the solution to this problem without covariates, i.e. when

Xt = 1. (For example, if τT ∈ (0, 1), β̂(τ) = Y(1), and if τT ∈ (1, 2), β̂(τ) = Y(2), etc.)

In order to provide large sample properties of β̂(τ) in the tails, we distinguish three types of

sample regression quantiles, following the classical theory of order statistics: (i) an extreme order

sequence, when τT ↘ 0, τTT → k > 0, (ii) an intermediate order sequence, when τT ↘ 0, τTT →∞,

(iii) a central order sequence, when τ ∈ (0, 1) is fixed, and T → ∞ (under which the conventional

theory applies). We consider β̂(τT ) under the extreme and intermediate order sequences, and refer

to β̂(τT ) under both sequences as the extremal regression quantiles. In what follows, we omit

the T in τT whenever it does not cause confusion.
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3. The Extreme Value Restrictions on the Linear Quantile Regression Model

This section joins the linear model (2.1) together with the tail restrictions from the extreme value

theory, examines the consequences, and presents examples.

Consider a random variable u with distribution function Fu and lower end-point su = 0 or

su = −∞. Recall, cf. Resnick (1987), that Fu is said to have tail of type 1, 2, or 3 if for

type 1: as z ↘ su = 0 or −∞, Fu(z + va(z)) ∼ Fu(z)e
v, ∀v ∈ R, (ξ ≡ 0),

type 2: as z ↘ su = −∞, Fu(vz) ∼ v−
1
ξFu(z), ∀v > 0, (ξ > 0),

type 3: as z ↘ su = 0, Fu(vz) ∼ v−
1
ξFu(z), ∀v > 0 (ξ < 0),

(3.1)

where a(z) ≡
∫ z

su
Fu(v)dv/Fu(z), for z > su. The number ξ is commonly called the extreme value

index, and Fu with tails of types 1-3 is said to belong to the domain of minimum attraction.

(a(z) ∼ b(z) denotes that a(z)/b(z)→ 1 as a specified limit over z is taken.)

Condition R1: In addition to (2.1), there exists an auxiliary line x 7→ x′βr such that for

U ≡ Y −X ′βr, with sU = 0 or sU = −∞, (3.2)

and some Fu with type 1, 2, or 3 tails,

FU(z|x) ∼ K(x) · Fu(z) uniformly in x ∈ X , as z ↘ sU , (3.3)

where K(·) > 0 is a continuous bounded function on X. Without loss of generality, let K(x) = 1 at

x = µX and Fu(z) ≡ FU(z|µX).

Condition R2: The distribution function of X = (1, X ′
−1)

′, FX , has compact support X with

EXX ′ positive definite. Without loss of generality, let µX = EX = (1, 0, ..., 0)′.

When Y has a finite lower end-point, i.e. X ′β(0) > −∞, it is implicit in R1 that βr ≡ β(0)

so that U ≡ Y − X ′β(0) ≥ 0 has end-point 0 by construction. In the unbounded support case,

X ′β(0) = −∞ and is not suitable as an auxiliary line, but existence of any other line such that R1

holds suffices.

Condition R1 is the main assumption. First, R1 requires the tails of U = Y −X ′βr for some βr
to be in the domain of the minimum attraction, which is a non-parametric class of distributions, cf.

Resnick (1987) and Embrechts, Klüppelberg, and Mikosch (1997). In this sense, the specification

R1 is semi-parametric. Examples 3.1 and 3.2 present some of the regression models covered by

R1. Second, R1 also requires that, for any x′, x′′ ∈ X, z 7→ FU(z|x′) and z 7→ FU(z|x′′) are tail

equivalent up to a constant. This condition is motivated by the closure of the domain of minimum

attraction under tail equivalence, cf. Proposition 1.19 in Resnick (1987).

Compactness of X in R2 is necessary, as the limit theory for regression quantiles may generally

change otherwise. In applications, compactness may be imposed by the explicit trimming of ob-

servations depending on whether Xt ∈ X. In this case the linear model (2.1) is assumed to apply

only to values of X in X. Clearly, the smaller X, the less restrictive is the linear model by virtue

of Taylor approximation (e.g. Chaudhuri (1991)). Also, trimming X to X eliminates the impact of
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outlying values on the limit distribution and inference, as it does in the case of the central regres-

sion quantiles. In some cases it should be possible to make X unbounded by imposing higher level

non-primitive conditions, e.g. similar to those on p. 98 in Knight (2001). However, since we view X

as a “small” neighborhood over which the linear approximation (2.1) is adequate, we do not pursue

this extension.

Theorem 3.1 shows that the function K(x) in R1 can be represented by the following types.

Other properties of the linear quantile regression model under R1-R2 are obtained in Lemma 9.1

given in Section 9.

Theorem 3.1 (Three Types of K(·)). Under R1-R2, for some c ∈ R
d

K(x) =





e−x′c when Fu has type 1 tails, ξ = 0,

(x′c)
1
ξ when Fu has type 2 tails, ξ > 0,

(x′c)
1
ξ when Fu has type 3 tails, ξ < 0,

(3.4)

where µ′Xc = 1 for type 2 and 3 tails, µ′Xc = 0 for type 1 tails, and x′c > 0 for all x ∈ X for types

2 and 3.

Remark 3.1. The condition X ′c > 0 a.s. for tails of types 2 and 3 arises from the linearity

assumption (2.1). Indeed, (2.1) imposes that the quantiles should not cross: if l > 1, then X ′(β(lτ)−
β(τ)) > 0 a.s. Since by Lemma 1-(v) X ′(β(lτ) − β(τ))/µ′X(β(lτ) − β(τ)) → X ′c, as τ ↘ 0, the

non-crossing condition requires X ′c > 0 a.s. In location-scale shift models, cf. Example 3.2, the

condition X ′c > 0 a.s. is equivalent to a logical restriction on the scale function (X ′σ > 0 a.s). In

location shift models, cf. Example 3.1, this condition is ordinarily satisfied since X ′c = 1 a.s. for

tails of type 2 and 3.

Remark 3.2. The general case when P{K(X) 6= 1} > 0 will be referred to as the heterogeneous

case, and c will be referred to as the heterogeneity index. The special case with

K(X) = 1 a.s., (3.5)

will be referred to as the homogeneous case. The latter amounts to c = 0 for type 1 tails, and

c = e′1 ≡ (1, 0, ...)′ for type 2 and 3 tails. Notice that in this case X ′c = 1 a.s. for types 2 and 3 and

X ′c = 0 a.s. for type 1 tails.

In developing regularity conditions which target regression applications, it is natural to try to

cover the most conventional regression settings and, hopefully, more general stochastic specifications.

The following examples clarify this possibility.

Example 3.1 (Location Shift Regression). Consider the location-shift model

Y = X ′β + U, (3.6)

where U is independent of X, and suppose U is in the domain of minimum attraction. When the

lower end-point of the support of U is finite, it is normalized to 0. Clearly, this is a special case of

R1 where X ′βr ≡ X ′β, U ≡ Y − X ′β, K(X) = 1 a.s. The data generating process (3.6) has

been widely adopted in regression work at least since Huber (1973) and Rao (1965). A variety of
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standard survival and duration models also imply (3.6) after a transformation, e.g. the Cox models

with Weibull hazards and accelerated failure time models, cf. Doksum and Gasko (1990). Also (3.6)

underlies many theoretical studies of quantile regression. Hence it is useful that R1 covers (3.6).

Example 3.2 (Location-Scale Shift Regression). As a generalization of (3.6), consider the

stochastic equation

Y = X ′β +X ′σ · V, V is independent of X, (3.7)

where X ′σ > 0 (a.s.) is the scale function, and V is in the domain of minimum attraction with

ξ 6= 0. (3.7) implies the following linear conditional quantile function

F−1
Y

(τ |X) = X ′β +X ′σ · F−1
V

(τ). (3.8)

Then for X ′βr ≡ X ′β, U ≡ Y − X ′βr = X ′σ · V , we have P (X ′σ · V ≤ z|X) ∼ (X ′σ)1/ξ ·
FV (z), as z ↘ 0 or −∞, so R1 is satisfied with Fu ≡ FV and K(X) = (X ′σ)1/ξ. The data generat-

ing process (3.7) has been adopted in e.g. Koenker and Bassett (1982), Gutenbrunner and Jurečková

(1992), and He (1997).

Example 3.3 (Quantile-Shift Regression). To see that R1 covers more general stochastic mod-

els than (3.6) and (3.7), note that R1 requires that FU (u|X) or FV (u|X) are independent of X

only in the tails. In both cases, these weaker independence requirements allow X, for example, to

have a negative impact on the high and low quantiles but to have a positive impact on the median

quantiles. In contrast, notice from (3.8) that (3.6) and (3.7) preclude such quantile-specific impacts.

Thus, R1 preserves the heterogeneous impact property of (2.1), allowing the impact of covariate

factors on extreme quantiles to be very different from their impact on the central quantiles.

4. Asymptotics of Extreme Order Regression Quantiles

Consider sequences τi, i = 1, ..., l, such that τiT → ki > 0 as T → ∞, and the corresponding

normalized regression quantile statistics ẐT (ki), where

ẐT (k) ≡ aT

(
β̂(τ)− βr − bTe1

)
, (4.1)

β̂(τ) is the regression quantile, βr is the coefficient of the auxiliary line defined in (3.2), e1 ≡
(1, 0, ...)′ ∈ R

d, and (aT , bT ) are the canonical normalization constants, given by

for type 1 tails: aT = 1/a
[
F−1
u ( 1T )

]
, bT = F−1

u ( 1T ),

for type 2 tails: aT = −1/F−1
u ( 1T ) , bT = 0,

for type 3 tails: aT = 1/F−1
u ( 1T ) , bT = 0,

(4.2)

where Fu is defined in R1. Moreover, consider the centered statistic

Ẑc
T (k) ≡ aT

(
β̂(τ)− β(τ)

)
(4.3)

and the point process, for Ut = Yt −X ′
tβr,

N̂(·) =
T∑

t=1

1({aT (Ut − bT ), Xt} ∈ ·). (4.4)
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We will show that N̂(·) converges weakly to the Poisson process

N(·) =
∞∑

i=1

1({Ji,Xi} ∈ ·), (4.5)

with points {Ji,Xi} satisfying

(
Ji, Xi, i ≥ 1

)
=





(ln(Γi) + X ′
ic, Xi) for type 1 tails,

(−Γ−ξ
i X ′

ic, Xi) for type 2 tails, i ≥ 1,

(Γ−ξ
i X ′

ic, Xi) for type 3 tails,

(4.6)

where {Xi} is an i.i.d sequence with law FX ,

Γi ≡
i∑

j=1

Ej , i ≥ 1, (4.7)

and {Ej} is an i.i.d. sequence of unit-exponential variables, independent of {Xi}. In the homogeneous

case (3.5), Ji and Xi are independent since

X ′
ic = 0 for type 1 tails, for all i ≥ 1, X ′

ic = 1 for type 2 & 3 tails, for all i ≥ 1. (4.8)

The following theorem establishes the weak limit of ẐT (k)’s as a function of N.

Theorem 4.1 (Extreme Order Regression Quantiles). Assume R1-R2 and that {Yt, Xt} is

an i.i.d. or a stationary sequence satisfying the Meyer type conditions of Lemma 9.4. Then as

τT → k > 0 and T →∞

ẐT (k)→d Z∞(k) ≡ argmin
z∈Z

[
−kµ′Xz +

∫
(x′z − u)+dN(u, x)

]
, (4.9)

provided Z∞(k) is a uniquely defined random vector in Z, where (x′z − u)+ = 1(u ≤ x′z)(x′z − u),

Z = R
d for type 1 and 3 tails, and Z = {z ∈ R

d : maxx∈X z′x ≤ 0} for type 2 tails. Moreover,

Ẑc
T (k)→d Zc

∞(k) ≡ Z∞(k)− η(k), (4.10)

where

η(k) =





c + ln k e1 for type 1 tails,

− k−ξc for type 2 tails,

k−ξc for type 3 tails.

(4.11)

If Z∞(k) is a uniquely defined random vector for k = k1, ..., kl,
(
ẐT (k1)

′, ..., ẐT (kl)
′
)′→d

(
Z∞(k1)

′, ..., Z∞(kl)
′
)′
,
(
Ẑc
T (k1)

′, ..., Ẑc
T (kl)

′
)′→d

(
Zc
∞(k1)

′, ..., Zc
∞(kl)

′
)′
.

Remark 4.1 (The Limit Criterion Function). The limit objective function −kµ′
Xz +

∫
(x′z −

u)+dN(u, x) can also be written as

−kµ′Xz +
∞∑

i=1

(X ′
i z − Ji)

+. (4.12)

Remark 4.2 (Homogeneous Case). The limit result is simpler for the homogeneous case (3.5),

since N does not depend on the heterogeneity parameter c due to (4.8).
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Remark 4.3 (Case with τT → 0). The linear programming estimator, which corresponds to

Tτ → 0 in (2.4) (in comparison, here τT → k > 0), was studied in Feigin and Resnick (1994),

Smith (1994), Portnoy and Jurec̆ková (1999), Knight (1999), Knight (2001), and Chernozhukov

(1998) under various types of location-shift specification (3.6). This estimator is the solution to the

problem

max
β∈Rd

X̄ ′β such that Yt ≥ X ′
tβ for all t ≤ T, X̄ = T−1

T∑

t=1

Xt. (4.13)

The asymptotics of (4.13) and proofs differ substantively from the ones given here for τT → k > 0.

The analysis of τT → k > 0 is specifically motivated by the applications listed in the introduction.

Remark 4.4 (Uniqueness). The limit objective function is convex, and it is assumed in Theorem

4.1 that Z∞(k) is unique and tight. Lemma 9.7 shows that a sufficient condition for tightness is

the design condition of Portnoy and Jurec̆ková (1999). Taking tightness as given, conditions for

uniqueness can be established. Define H as the set of all d-element subsets of N. For h ∈ H, let

X (h) and J(h) be the matrix with rows Xt, t ∈ h, and vector with elements Jt, t ∈ h, respectively.

Let H∗ = {h ∈ H : |X (h)| 6= 0}. H∗ is non-empty a.s. by R2 and is countable. Application of the

argument of Theorem 3.1. of Koenker and Bassett (1978) gives that an argmin of (4.12) takes the

form zh = X (h)−1J(h) for some h ∈ H∗, and must satisfy the gradient condition:

ζk(zh) ≡
(
kµX −

∞∑

t=1

1(Jt < X ′
tzh)Xt

)′
X (h)−1 ∈ [0, 1]d, (4.14)

where the argmin is unique iff ζk(zh) ∈ D = (0, 1)d. Thus, uniqueness holds for a fixed k > 0 if

P (ζk(zh) ∈ ∂D for some h ∈ H∗) = 0. (4.15)

This condition is a direct analog of Koenker and Bassett’s (1978) condition for uniqueness in finite

samples; for instance it is satisfied for a given k when covariates X−1t are absolutely continuous, cf.

Portnoy (1991b). Thus, uniqueness holds generically in the sense that for a fixed k adding arbitrarily

small absolutely continuous perturbations to {X−1t} ensures (4.15).

Remark 4.5 (Asymptotic Density). The density of Z∞(k) can be stated following Koenker and

Bassett (1978). Given {Xt}, h ∈ H∗, and J(h), the probability that Z∞(k) = X (h)−1J(h) equals

P
{
ζk(X (h)−1J(h)) ∈ D

∣∣{Xt}, J(h)
}
. Conditional on {Z∞(k) = X (h)−1J(h)}, h ∈ H∗, and X (h),

the density of Z∞(k) at z is fJ(h)|X(h)(X (h)z) · |X (h)|, where fJ(h)|X(h)(u), u ∈ R
d, is the joint density

of J(h) conditional on X (h). Thus, the joint density of Z∞(k) at z is

fZ∞(k)(z) = E

[
∑

h∈H∗

fJ(h)|X(h)(X (h)z) · |X (h)| · P
{
ζk(X (h)−1J(h)) ∈ D

∣∣{Xt}, J(h)
}
]
.

Finally, for fZ∞(k)(z) to be non-defective, Z∞(k) = Op(1) should be established, cf. Lemma 9.7.

Remark 4.6 (Univariate Case). The density simplifies in the classical non- regression case, that

is when X = 1, in which case we also have the simplification (4.8). In this case, an argmin is

necessarily an order statistics, i.e. zh = J(h) = Jh; the gradient condition (4.14) becomes

ζk(zh) ≡ (k −
∞∑

t=1

1(Jt < zh)) ∈ [0, 1]; (4.16)
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and condition for uniqueness is that ζk(zh) ∈ D = (0, 1). Then for k 6= dke, P
{
ζk(zh) ∈ D} = 1

if h = dke and P
{
ζk(zh) ∈ D} = 0 if h 6= dke. Here k 6= dke is needed for uniqueness. Hence

fZ∞(k)(z) = fJdke(z), which is the limit density of the dke-th order statistics in the univariate case.

Thus, uniqueness holds for almost every k ∈ (0,∞).

5. Asymptotics of Intermediate Order Regression Quantiles

In order to develop asymptotic results on the intermediate regression quantiles, the following addi-

tional condition R3 will be added. First, existence of the quantile density function ∂F−1
U

(τ |x)/∂τ ≡
x′∂β(τ)/∂τ and its regular variation will be required. Second, the tail equivalence of the conditional

distribution functions, previously assumed in R1, will now be strengthened to the tail equivalence

of conditional quantile density functions.

Condition R3. In addition to R1-R2, for ξ defined in (3.1),

(i)
∂F−1

U
(τ |x)

∂τ
∼ ∂F−1

u (τ/K(x))

∂τ
uniformly in x ∈ X,

(ii)
∂F−1

u (τ)

∂τ
is regularly varying at 0 with exponent −ξ − 1.

(5.1)

In the homoscedastic case (3.5), condition R3-(i) amounts to
∂F−1

U
(τ |x)

∂τ ∼ ∂F−1
u (τ)
∂τ uniformly in

x ∈ X as τ ↘ 0. Condition R3-(ii) is a von Mises type condition; see Dekkers and de Haan (1989)

for a detailed analysis of the plausibility of R3-(ii).

For an intermediate sequence such that τ ↘ 0 and τT →∞, define for m > 1

ẐT ≡ aT

(
β̂(τ)− β(τ)

)
, aT ≡

√
τT

µ′X (β(mτ)− β(τ))
. (5.2)

Consider also k sequences {τ l1, ..., τ lk}, where l1, ..., lk are positive constants, and corresponding

statistics
(
ẐT (l1)

′, ..., ẐT (lk)
′
)′
, where for l > 0 and m > 1

ẐT (l) ≡ aT (l)
(
β̂(lτ)− β(lτ)

)
, aT (l) ≡

√
τ lT

µ′X (β(mlτ)− β(lτ))
. (5.3)

The following theorem establishes the weak limits for ẐT and ẐT (l)’s. Because τ ↘ 0, the limits

depend only on the tail parameters ξ and c, as in Theorem 4.1, but since τT → ∞, the limits are

normal, unlike in Theorem 4.1.

Theorem 5.1 (Intermediate Order Regression Quantiles). Suppose R1-R3 hold, and that

{Yt, Xt} is an i.i.d. sequence or a stationary series, satisfying the conditions of Lemma 9.6. Then

as τT →∞ and τ ↘ 0

ẐT→d Z∞ = N (0,Ω0) , Ω0 ≡ Q−1
H QXQ−1

H

ξ2

(m−ξ − 1)2
, (5.4)
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where for ξ = 0 interpret ξ2/(m−ξ − 1)2 as (lnm)−2 and

QH ≡ E[H(X)]−1XX ′, QX ≡ EXX ′, (5.5)

H(x) ≡ x′c for type 2 and 3 tails, H(x) ≡ 1 for type 1 tails. (5.6)

In addition
(
ẐT (l1)

′, ..., ẐT (lk)
′
)′
→d (Z∞(l1)

′, ..., Z∞(lk)
′)
′
= N(0,Ω), (5.7)

EZ∞(li)Z∞(lj)
′ = Ω0 ×min(li, lj)/

√
lilj . (5.8)

Finally, aT (l) can be replaced by
√
τ lT/X̄ ′

(
β̂(mlτ)− β̂(lτ)

)
without affecting (5.4) and (5.7), i.e.

aT (l)

/( √
τ lT

X̄ ′
(
β̂(mlτ)− β̂(lτ)

)
)
→p 1, where X̄ = T−1

T∑

t=1

Xt. (5.9)

Remark 5.1 (Scaling Constants). It may be useful to have the same normalization aT in place

of aT (l) for the joint convergence. This is possible by noting that aT /aT (l)→ l−ξ/
√
l.

Remark 5.2 (Homogeneous Case). In the homogeneous case (3.5), H(X) = 1, so the variance

simplifies to

Ω0 = Q−1
X

ξ2

(m−ξ − 1)2
. (5.10)

Remark 5.3 (Non-regression Case). Theorem 5.1 extends Theorem 3.1 of Dekkers and de Haan

(1989), which applies to univariate quantiles, to the case of regression quantiles. In fact, Theorem

3.1 of Dekkers and de Haan (1989) can be specialized from Theorem 5.1 with X = 1 and m = 2. In

this case the variance becomes

ξ2

(2−ξ − 1)2
=

22ξξ2

(2ξ − 1)2
, (5.11)

as Dekkers and de Haan (1989) found in their Theorem 3.1.

6. Quantile Regression Spacings and Tail Inference

The tail parameters enter the limit distributions in Theorems 2 and 3, and estimation of the tail

index is an important problem of its own. The following results show how to estimate them by

applying Pickands (1975) type procedures to the quantile regression spacings.

Consider the following parameters and statistics

ϕ =
x′(β̂(mτ)− β̂(τ))

x′(β(mτ)− β(τ))
, ρx,ẋ,l =

x′(β(mlτ)− β(lτ))

ẋ′(β(mτ)− β(τ))
, ρ̂x,ẋ,l =

x′(β̂(mlτ)− β̂(lτ))

ẋ′(β̂(mτ)− β̂(τ))
. (6.1)

Theorem 6.1 shows that the quantile regression spacings of intermediate order consistently ap-

proximate the corresponding spacings in population (results (i) and (ii)), which then reveal the tail

parameters (results (iii) and (iv)).
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Theorem 6.1 (Quantile Regression Spacings and Tail Inference). Suppose the conditions

of Theorem 5.1 hold. Then as τ ↘ 0, τT →∞, for all l > 0, m > 1, x, ẋ ∈ X

(i) ϕ→p 1,

(ii) ρ̂x,ẋ,l − ρx,ẋ,l→p 0, ρx,ẋ,l → l−ξ · [H(x)/H(ẋ)], for H(x) defined in Theorem 5.1,

(iii) ξ̂rp ≡ −1
ln l ln ρ̂X̄,X̄,l→p ξ,

(iv) ρ̂x,X̄,1→p x′c uniformly in x ∈ X (ξ 6= 0),

(v) for π = µ′XQ−1
H QXQ−1

H µX , l = m = 2, if
√
τT (ρX̄,X̄,l − limT ρX̄,X̄,l)→ 0,

√
τT (ξ̂rp − ξ)→d N

(
0, π · ξ2(22ξ+1 + 1)

(2(2ξ − 1) ln 2)2

)
. (6.2)

Remark 6.1 (Homogeneous Case). The proposed estimator ξ̂rp consistently estimates the tail

index ξ in the heteroscedastic and homoscedastic quantile regression models, and it is a regression

extension of the Pickands (1975) estimator. In fact, in the homoscedastic model (3.5) or when

X = 1, π = µ′X(EXX ′)−1µX = e′1(EXX ′)−1e1 = 1, so the variance in (6.2) reduces to that of the

canonical Pickands estimator.

7. An Illustrative Example

The set of results established here may provide reliable and practical inference for extremal

regression quantiles. To illustrate this possibility, the following simple example compares graphically

the conventional central asymptotic approximation, where for fixed τ ∈ (0, 1) as T →∞
√
T (β̂(τ)− β(τ))→d N

(
0,

1

f2
U
(F−1

U (τ))
(EXX ′)−1τ(1− τ)

)
, (7.1)

to the extreme approximation, cf. Theorem 2. The comparison is based on the following design:

τ = .025, Yt = X ′
tβ + Ut, Ut ∼ Cauchy , t = 1, ..., 500, where Xt = (1, X ′

−1t)
′ ∈ R

5, X−1t are

iid Beta(3, 3) variables, and β = (1, 1, 1, 1, 1). (An extensive simulation study covering different

tail types, regressors, and sample sizes is given in Chernozhukov (1999).) In this comparison, the

parameters of the limit distribution are fixed at the true values.

Figure 1 plots (a) quantiles of the simulated finite-sample distribution of β̂1(.025) and β̂2(.025),

(b) quantiles of the simulated extreme approximation, cf. Theorem 2, and (c) quantiles of the cen-

tral approximation, cf. (7.1). Here τ × T = .025 × 500 = 12.5. It can be seen that the extreme

approximation accurately captures the actual sampling distribution of both the intercept estimator

β̂1(.025) and the slope estimator β̂2(.025). In contrast, the central approximation (7.1) does not

capture asymmetry and thick tails of the true finite sample distribution. The intermediate approx-

imation, cf. Theorem 3, performs similarly to the central approximation and is not plotted. The

central and intermediate approximations are expected to perform better for less extreme quantiles.
11



8. Conclusion

The paper obtains the large sample properties of extreme order and intermediate order quantile

regression for the class of linear quantile regression models with tails of the response variable re-

stricted to the domain of minimum attraction and closed under tail equivalence across conditioning

values. There are several interesting directions for future work. It would be important to determine

the most practical and reliable inference procedures that can be based on the obtained limit distri-

butions. Also, it would be interesting to examine estimation of the extreme conditional quantiles

defined through an extrapolation of the intermediate regression quantiles. The non-regression case

has been considered in Dekkers and de Haan (1989) and de Haan and Rootzén (1993), and the

approach may prove useful in the quantile regression case. Another interesting direction would be

an investigation of the Hill and other tail index estimators based on regression quantiles.
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9. Proofs

9.1. Properties of the Linear Quantile Regression Model under R1-R2. Let

M ≡ any fixed compact sub-interval of (0, 1) ∪ (1,∞) (9.1)

M ′ ≡ any other fixed compact sub-interval of (0, 1) ∪ (1,∞) (9.2)

T (τ ′) ≡ {τ : τ = sτ ′, s ∈ L}, where τ ′ ↘ 0, (9.3)

L ≡ any fixed compact sub-interval of (0,∞). (9.4)

Lemma 9.1 (Properties of The Linear Model Under R1-R2). R1-R2 imply that (for a constant

vector c specified in Theorem 1):

(i) K(x) can be represented by the forms specified in Theorem 1.

(ii) aT (β(τ)− βr − bTe1)→ η(k) for η(k) defined in Theorem 2.

(iii) Uniformly in (m, τ, x) ∈M × T (τ ′)×X, as τ ′ ↘ 0:

β−1(τ)− β−1r

F−1u (mτ)− F−1u (τ)
→ µ(m) =





c−1

m−ξ−1 for ξ < 0,
−c−1

m−ξ−1 for ξ > 0,
c−1

lnm
for ξ = 0,

(9.5)

also β1(τ)− β1r = F−1u (τ), and (β−1(τ)− β−1r)/F
−1
u (τ)→ c−1 for ξ 6= 0.
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(iv) Uniformly in (m, τ, x) ∈M × T (τ ′)×X, as τ ′ ↘ 0:

(x− µX)′(β(τ)− βr)

µ′X(β(mτ)− β(τ))
→





(x− µX)′ c

m−ξ−1 if ξ < 0,

(x− µX)′ −c

m−ξ−1 if ξ > 0,

(x− µX)′ c

lnm
if ξ = 0.

(9.6)

(v) Uniformly in (m, τ, x) ∈M × T (τ ′)×X, as τ ′ ↘ 0

x′(β(mτ)− β(τ))

µ′X(β(mτ)− β(τ))
→





x′c if ξ < 0,

x′c if ξ > 0,

1 if ξ = 0.

(9.7)

(vi) Uniformly in (l,m, τ, x) ∈M ×M ′ × T (τ ′)×X, as τ ′ ↘ 0,

x′(β(lτ)− β(τ))

x′(β(mτ)− β(τ))
→





l−ξ−1
m−ξ−1 if ξ < 0,
1− l−ξ

1−m−ξ if ξ > 0,
ln l
lnm

if ξ = 0.

(9.8)

Write Fu ∈ D(Hξ) if Fu is a cdf in the domain of minimum attraction with tail index ξ. Write Fu ∈ Rγ(0),

if Fu is a regularly varying function at 0 with exponent γ.

Lemma 9.2 (Useful Relations). Under R1-R2, uniformly in (m, l, τ) ∈M ×M ′ × T (τ ′), as τ ′ ↘ 0,

(i) Suppose F1(z) ∼ F2(z) as z ↘ 0 or −∞ and F1 ∈ D(Hξ). Then F2 ∈ D(Hξ); F
−1
1 and F−12 ∈

R−ξ(0); F1(F−11 (τ)) ∼ τ and F2(F
−1
2 (τ)) ∼ τ ; and

(
F−11 (mτ)− F−11 (τ)

)
∼
(
F−12 (mτ)− F−12 (τ)

)
. (9.9)

(ii) If FU(z|x) ∼ K(x)Fu(z) as z ↘ 0 or −∞ for each x ∈ X(compact), where K(x) ∈ (0,∞) for all

x ∈ X, then for each x ∈ X,

F−1U (mτ |x)− F−1U (τ |x) ∼ F−1u (mτ/K(x))− F−1u (τ/K(x)). (9.10)

(iii)
F−1
u (mτ)−F−1

u (τ)

F−1
u (lτ)−F−1

u (τ)
→ m−ξ−1

l−ξ−1 if ξ < 0, 1−m−ξ

1− l−ξ if ξ > 0, lnm
ln l
if ξ = 0; for Fu ∈ D(Hξ),

(iv)
F−1
u (lmτ)−F−1

u (lτ)

a(F−1
u (τ))

→ lnm if Fu ∈ D(H0), where a(·) is the auxiliary function defined in (3.1).

Proof of Lemma 9.2. Results (i), (iii), (iv) are well known, cf. de Haan (1984) and Resnick (1987),

Chapters 1 and 2. Result (ii) holds from (i) pointwise in x. ¥

Proof of Lemma 9.1. Claim (i): The proof consists of two steps, where we use notation (L,M, T (τ ′), τ ′)
as defined in (9.1)-(9.4).

Step 1: In this step all of the results hold uniformly in (m, τ, x) ∈M ×T (τ ′)×X as τ ′ ↘ 0, but we shall

suppress this qualification for notational simplicity. By construction in R1 x′(β(τ) − βr) ≡ F−1U (τ |x) and

µ′X(β(τ)− βr) ≡ F−1U (τ |µX) ≡ F−1u (τ). Hence

Bτ (x,m) ≡ (x− µX)′(β(τ)− βr)

µ′X(β(mτ)− β(τ))
≡ F−1U (τ |x)− F−1u (τ)

F−1u (mτ)− F−1u (τ)
. (9.11)
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We would like to show that for each x ∈ X

Bτ (x,m)→ B(x,m) ≡





(1/K(x))−ξ−1
m−ξ−1 if ξ < 0

1−(1/K(x))−ξ

1−m−ξ if ξ > 0
ln(1/K(x))

lnm
if ξ = 0

(9.12)

We will show (9.12) for the case ξ < 0 only; others follow similarly. Fix any x ∈ X. By R1 and Lemma 2(i)

FU(F
−1
U (τ |x)|x) ∼ τ . Hence by R1 K(x) · Fu(F−1U (τ |x)) ∼ τ , as τ ′ ↘ 0. Therefore, there exist sequences of

constants Kτ (x) and K ′τ (x) such that

F−1u (τ/Kτ (x)) ≤ F−1U (τ |x) ≤ F−1u (τ/K ′τ (x)) where Kτ (x)→ K(x) and K ′τ (x)→ K(x). (9.13)

Therefore,

F−1u (τ/Kτ (x))− F−1u (τ)

F−1u (mτ)− F−1u (τ)
≤ Bτ (x,m) ≤ F−1u (τ/K ′τ (x))− F−1u (τ)

F−1u (mτ)− F−1u (τ)
. (9.14)

Suppose that K(x) 6= 1. By Lemma 9.2(iii)

F−1u (τ/Kτ (x))− F−1u (τ)

F−1u (mτ)− F−1u (τ)
→ (1/K(x))−ξ − 1

m−ξ − 1
= B(x,m), (9.15)

and likewise conclude for K ′τ (x) in place of Kτ (x). Therefore, Bτ (x,m) → B(x,m) when K(x) 6= 1. To

show that Bτ (x,m) → B(x,m) also holds for K(x) = 1 with B(x,m) = 0, let κ′ and κ′′ be any positive

constants such that κ′ < 1 < κ′′. By monotonicity of quantile function, for all sufficiently small τ ′:

F−1u (τ/κ′′)− F−1u (τ)

F−1u (mτ)− F−1u (τ)
≤ F−1u (τ/Kτ (x))− F−1u (τ)

F−1u (mτ)− F−1u (τ)
≤ F−1u (τ/κ′)− F−1u (τ)

F−1u (mτ)− F−1u (τ)
. (9.16)

By Lemma 2-(iii), as τ ′ ↘ 0, the upper and lower bounds in (9.16) converge to

(1/κ′′)−ξ − 1

m−ξ − 1
and

(1/κ′)−ξ − 1

m−ξ − 1
. (9.17)

If in (9.17) we let κ′, κ′′ → 1, then expressions in (9.17) → 0. Therefore, since κ′ and κ′′ can be chosen

arbitrarily close to 1, it follows from (9.16) and (9.17) that
F−1
u (τ/Kτ (x))−F−1

u (τ)

F−1
u (mτ)−F−1

u (τ)
→ 0 as τ ′ ↘ 0. Likewise

conclude for K ′τ (x) in place of Kτ (x). Therefore, Bτ (x,m)→ B(x,m) = 0 when K(x) = 1.

Step 2: By Step 1, for each x ∈ X, uniformly in (m, τ) ∈M × T (τ ′) as τ ′ ↘ 0

Bτ (x,m) =
(x− µX)′(β(τ)− βr)

µ′X(β(mτ)− β(τ))
→ B(x,m). (9.18)

Since (a) B(x,m) is finite and continuous in x over X by conditions imposed on K(x) in R1, and (b)

Bτ (x,m) is linear in x, the relation (9.18) also holds uniformly in x ∈ X. Recall that (x− µX)1 = 0. Since

(x− µX)−1 ranges over a non-degenerate subset of R
d−1, (9.18) implies

β−1(τ)− β−1r
µ′X(β(mτ)− β(τ))

→ µ(m), (9.19)

uniformly in (m, τ) ∈ M × T (τ ′) as τ ′ ↘ 0, where µ(m) is some vector of finite constants. Hence B(x,m)

is affine in (x − µX). Note also that (x − µX) = (0, x′−1)
′. Therefore, if ξ = 0, B(x,m) affine and

B(x,m) = − lnK(x)/ lnm imply K(x) = e(x−µX )′c = ex
′
−1c−1 = ex

′
c for all x iff c1 = 0. When ξ < 0,

B(x,m) affine and B(x,m) = (K(x)ξ−1)/(m−ξ−1) imply K(x) = (1+(x−µX)′c)1/ξ, which equals (x′c)1/ξ

for all x iff c1 = 1. Likewise conclude for ξ > 0. This completes the proof of claim (i).

Claim (iii) follows directly from (9.19) and the preceding paragraph.

Claim (iv) is verified by substituting the forms of K(x) found above into (9.18).
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Claim (v) holds pointwise in x by Lemma 9.2(ii)- (iii). Since the left hand side in (9.7) is linear in x and

X is compact, it also holds uniformly in x ∈ X.

Combination of Lemma 9.2(iii) with Claim (v) implies Claim (vi).

Claim (ii). If ξ < 0, by claim (iii) uniformly in k in any compact subset of (0,∞) as T →∞

aT (β(
k

T
)− βr) ∼ aTcF−1u (

k

T
) = cF−1u (

k

T
)/F−1u (

1

T
)→ k−ξc, (9.20)

since by Lemma 9.2(i) F−1u ∈ R−ξ(0); similarly if ξ > 0

aT (β(
k

T
)− βr) ∼ −aTcF−1u (

k

T
) = −cF−1u (

k

T
)/F−1u (

1

T
)→ −k−ξc. (9.21)

If ξ = 0, by: c1 = 0, Lemma 9.2(i), (iv), and claim (iii) (using m = e in µ(m)), we have that uniformly in k

in any compact subset of (0,∞)

aT (β(
k

T
)− βr − bTe1) ∼

1

a(F−1(1/T ))

[
c
(
F−1u (e

k

T
)− F−1u (

k

T
)
)
+ e1

(
F−1u (

k

T
)− F−1u (

1

T
)
)]

→ c ln e+ e1 ln k = c + e1 ln k. ¥

(9.22)

9.2. Proof of Theorem 1. Follows from Lemma 1 (i). ¥

9.3. Proof of Theorem 2. Part 1. Referring to (2.4), notice that ZT (k) defined in (4.1) solves

ẐT (k) ∈ argmin
z∈Rd

[
1

aT

T∑

t=1

ρτ
(
aT (Ut − bT )−X ′tz

)
]

(9.23)

[where z ≡ aT (β − βr − bTe1).] Rearranging terms, the objective function becomes

1

aT

[
−τT X̄ ′z −

T∑

t=1

1(aT (Ut − bT ) ≤ X ′tz)
(
aT (Ut − bT )−X ′tz

)
+ τ ·

n∑

t=1

aT (Ut − bT )

]
. (9.24)

Mutiply (9.24) by aT and subtract

T∑

t=1

1(aT (Ut − bT ) ≤ −δ)(−δ − aT (Ut − bT )) +
T∑

t=1

τaT (Ut − bT ), for some δ > 0 , (9.25)

which does not affect optimization, and denote the new objective function QT (z, k):

QT (z, k) ≡ −τT X̄ ′z +
T∑

t=1

lδ(aT (Ut − bT ), X
′
tz), (9.26)

where

lδ(u, v) ≡ 1(u ≤ v)(v − u)− 1(u ≤ −δ)(−δ − u), for δ > 0. (9.27)

Since it is a sum of convex functions in z, QT (z, k) is convex in z. The transformations make (as shown

later) QT a continuous functional of the point process N̂:

QT (z, k) = −τT X̄ ′z +
∫

E

lδ(j, x
′z)dN̂(j, x), (9.28)

where the point process

N̂(·) ≡
∑

t≤T
1{(aT (Ut − bT ), Xt) ∈ ·} (9.29)

is taken to be a random element of the metric space Mp(E) of point processes defined on the measure space

(E, E) and equipped with the metric induced by the topology of vague convergence, cf. Resnick (1987).
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It will suffice to restrict our attention to underlying measure spaces (E, E) of the form

E =





E1 ≡ [−∞,∞)×X for type 1 tails,

E2 ≡
[
−∞, 0)×X for type 2 tails,

E3 ≡ [0,∞)×X for type 3 tails,

(9.30)

with σ-algebra E generated by the opens sets of E. The topology on E1, E2, E3 is assumed to be standard

so that e.g. [−∞, a]×X is compact in E2 for a < 0 and in E1 for any a <∞.

Part 2 shows that for type 1 and 3 tails the marginal weak limit of QT is a finite convex function in z:

Q∞(z, k) = −kµ′Xz +
∫

E

lδ(j, x
′z)dN(j, x), z ∈ R

d (9.31)

where N is the Poisson point process defined in the statement of Theorem 4.1.

Part 2 also shows that for type 2 tails the marginal weak limit of QT is a finite convex function in z:

Q∞(z, k) = −kµ′Xz +
∫

E

lδ(j, x
′z)dN(j, x), for z ∈ ZN ≡ {z ∈ R

d : max
x∈X

x′z < 0}, (9.32)

where N is the Poisson point process defined in the statement of Theorem 4.1, and

Q∞(z, k) = +∞, for z ∈ ZP ≡ {z ∈ R
d : max

x∈X

x′z > 0}. (9.33)

Function Q∞(z, k) is convex and lδ(j, x
′z) = (j−x′z)+ ≥ 0 when j ≥ −δ. Hence Q∞(z, k) is also well-defined

over entire Z = {z ∈ R
d : maxx∈X x′z ≤ 0}, although may equal +∞ at z : maxx∈X x′z = 0. Also note that

ZN ∪ ZP is dense in R
d.

Recall the Convexity Lemma, cf. Geyer (1996) and Knight (1999), which states: Suppose (i) a sequence

of convex lower-semicontinous function QT : R
d → R̄ marginally converges to Q∞ : R

d → R̄ over a dense

subset of R
d, (ii) Q∞ is finite over a non-empty open set Z0, and (iii) Q∞ is uniquely minimized at a random

vector Z∞. Then any argmin of QT , denoted ẐT , converges in distribution to Z∞.

We show (i) and (ii) in step 2, and we assumed (iii). (A sufficient condition for uniqueness is given in

Remark 4.4). Hence application of the Convexity Lemma to our case gives:

ẐT (k)→d Z∞(k) ≡ argmin
z∈Rd

Q∞(z, k). (9.34)

Note also that for type 2 tails the argmin Z∞(k) necessarily belongs to Z = {z ∈ R
d : maxx∈X x′z ≤ 0}.

This gives us the conclusion stated in Theorem 2 upon noting that Q∞(z, k) differs from the limit objective

function of Theorem 4.1 only by a finite random variable that does not depend on z.

Part 2. It remains to verify that (I) there exists a non-empty open set Z0 such that Q∞(z, k) is finite

a.s. for all z ∈ Z0 and (II) Q∞(·, k) is indeed the weak marginal limit of QT (·, k).

To show (I), when tails are of type 1 and 3 choose Z0 as any open bounded subset of R
d; when tails

are of type 2, additionally require Z0 ⊂ ZN for each l (possible by compactness of X). For any z ∈ Z0,

(u, x) 7→ lδ(u, x
′z) is in CK(E) (continuous functions on E vanishing outside a compact set K), by the

arguments in (II). This implies
∫
E
lδ(u, x

′z)dN(u, x) is finite a.s., since N ∈Mp(E).

To show (II). Q∞(·, k) is the marginal weak limit of {QT (·, k)} iff for any finite collection (zj , j = 1, ..., l)(
QT (zj , k), j = 1, ..., l

)
→d

(
Q∞(zj , k), j = 1, ..., l

)
. Since X̄ ′zj→p µ

′
Xzj and τT → k > 0, it remains to
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verify:

( ∫

E

lδ(u, x
′zj)dN̂(u, x), j = 1, ..., l

)
→d

( ∫

E

lδ(u, x
′zj)dN(u, x), j = 1, ..., l

)
. (9.35)

Define the mapping T : Mp(E)→ R
l (for E = E1, E2, orE3) by

T : N 7→
( ∫

E

lδ(u, x
′zj) dN(u, x), j = 1, ..., l

)
. (9.36)

(a) Consider type 1 tails and set E = E1. The map (u, x) 7→ lδ(u, x
′zj) is in CK(E1) (continuous functions

on E1 vanishing outside a compact set K), since by construction it is continuous on E1 and vanishes outside

K ≡ [−∞,max(κ,−δ)] × X, where κ = maxx∈X,z∈{z1,...,zl} x
′z. K is compact in E1 since κ < ∞ by R2.

Hence N̂ 7→ T(N̂) is continuous from Mp(E1) to R
l. Thus N̂⇒ N in Mp(E1) implies T(N̂)→d T(N).

(b) Consider type 3 tails and set E = E3. The map (u, x) 7→ l(u, x′zj) is in CK(E3): by construction it

is continuous on E3 and vanishes outside K ≡ [0,max(κ, 0)] × X, where κ = maxx∈X,z∈{z1,...,zl} x
′z. K is

compact in E3 since κ <∞ by R2. Therefore, N̂ 7→ T(N̂) is continuous from Mp(E3) to R
l. Hence N̂⇒ N

in Mp(E3) implies T(N̂)→d T(N).

(c) Consider type 2 tails and set E = E2. (c− i) shows that (9.35) holds on ZN , while (c− ii) shows

that Qn(z)→p ∞ for any z ∈ ZP . (Sets ZN and ZP are defined in (9.32) and (9.33)).

(c− i) The map (u, x) 7→ lδ(u, x
′z) is in CK(E2) if z ∈ ZN , since by construction it is continuous on E2

and vanishes outside K ≡ [−∞,max(κ,−δ)] × X, where κ = maxx∈X,z∈{z1,...,zl} x
′z. K is compact in E2

since κ < 0 if z ∈ ZN . Hence N̂ 7→ T(N̂) is continuous from Mp(E2) to R
l. Then N̂⇒ N in Mp(E2) implies

T(N̂)→d T(N).

(c− ii) Observe that I ≡∑t≤T lδ(aTUt, X
′
tz)1(aTUt ≤ −δ) = Op(1) by the argument in (c-i). Observe

that lδ(u, v) = (v − u)+ ≥ 0 for any u ≥ −δ. Hence

lδ(u, v) = 1(−δ ≤ u ≤ v)(v − u) ≥ 1(−δ ≤ u ≤ 0, v ≥ ε)ε for any u ≥ −δ and any ε > 0. (9.37)

For a given z ∈ ZP , since X equals the support of X, maxx∈X x′z > 0 implies that X ′z ≥ ε occurs with

positive probability for some ε > 0. Fix this ε. Since 1/aT → ∞ for type 2 tails, P (−δ/aT ≤ U ≤
0, X ′z ≥ ε) → π = P (U ≤ 0, X ′z ≥ ε) > 0. π > 0 because infx∈X P (U ≤ 0|X = x) > 0 for type 2 tails

by assumptions in R1. Therefore, II ≡ ∑
t≤T 1(−δ/aT ≤ Ui ≤ 0, X ′iz ≥ ε)ε →p +∞ in R̄. Since

QT (z, k) ≥ −kµ′Xz + I + II by (9.37), QT (z, k)→p +∞ for any z ∈ ZP .

Part 3. By Lemma 1(ii) aT (β(τ)− βr − bTe1)→ η(k). Hence ẐcT (k)→d Z
c
∞(k) ≡ Z∞(k)− η(k).

Part 4.
(
ẐT (kj)

′, j = 1, ..., l
)′ ∈ argmin z∈Rd×l [QT (z1, k1) + ... + QT (zl, kl)], for z = (z1, ..., zl). Since

this objective is a sum of objective functions in Parts 1-2, the previous derivation of the marginal limit and

subsequent arguments apply very similarly to QT (z1, k1) + ... + QT (zl, kl) to conclude that
(
ẐT (kj)

′, j =

1, ..., l
)′ →d

(
Ẑ∞(kj)

′, j = 1, ..., l
)′

= argmin z∈Rd×l [Q∞(z1, k1) + ...+Q∞(zl, kl)]. ¥

9.4. Weak Limit of N̂.

Lemma 9.3 (Resnick (1987), Proposition 3.22 ). Suppose N is a simple point process in Mp(E), T is
a basis of relatively compact open sets such that T is closed under finite unions and intersections and for
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any F ∈ T P (N(∂F ) = 0) = 1. Then N̂⇒ N in Mp(E) if for all F ∈ T

lim
T→∞

P [N̂(F ) = 0] = P [N(F ) = 0], (9.38)

lim
T→∞

EN̂(F ) = EN(F ) <∞. (9.39)

Remark 9.1. In our case, T consists of finite unions and intersections of bounded open rectangles in E1,

E2, E3, cf. Resnick (1987).

We impose Meyer (1973) conditions on the “rare” events AT
t (F ) ≡ {w ∈ Ω : (aT (Ut − bT ), Xt) ∈ F}.

Lemma 9.4 (Poisson Limits under Meyer Mixing Conditions). Suppose that for any F ∈ T , the
triangular sequence of events

{(
ATt (F ), t ≤ T

)
, T ≥ 1

}
is stationary and α -mixing with the mixing coefficient

αT (·), condition (9.39) holds, and the Meyer type condition holds: There exist sequences of integers (pn, n ≥
1), (qn, n ≥ 1) , (tn = n(pn + qn), n ≥ 1) such that as n → ∞, for some r > 0 (a) nrαtn(qn) → 0, (b)

qn/pn → 0, pn+1/pn → 1, and (c) Ipn =
∑pn−1

i=1 (pn − i)P (Atn
1 (F ) ∩ Atn

i+1(F )) = o(1/n). Then in Mp(E),

N̂⇒ N, a Poisson point process with mean measure m : m(F ) ≡ limT→∞ EN̂(F ).

Proof. For any F : m(F ) > 0, limT→∞ P [N̂(F ) = 0] = P [N(F ) = 0] = e−m(F ), by Meyer (1973). The same

also holds for F : m(F ) = 0, since EN̂(F )→ 0 implies P (N̂(F ) = 0)→ 1. Conclude by Lemma 9.3. ¥

Remark 9.2. Condition IPn = o(1/n) prevents clusters of “rare” events AT
t (F ), eliminating compound

Poisson processes as limits.

Lemma 9.5 (Limit N under R1-R2 ). Suppose R1-R2 hold and that (Yt, Xt) is an i.i.d. or stationary

strongly mixing sequence that satisfies the conditions of Lemma 9.4 with (aT , bT ) defined in (4.2). Then

(i) N̂ ⇒ N in Mp(E), where E = E1, E2, E3 for tails of type 1,2,3, respectively. N is a Poisson point

process with mean intensity measure : m(du, dx) = K(x) × dh(u) × dFX(x), where h(u) = eu for

type 1, h(u) = (−u)−1/ξ for type 2, and h(u) = u−1/ξ for type 3 tails.

(ii) Points (Ji,Xi) of N have the representation (Ji,Xi, i ≥ 1)
d
= (h−1(Γi/K(Xi)),Xi, i ≥ 1), where h−1

is the inverse of h, Γi = E1+ ...+Ei, i ≥ 1 ({Ei} are i.i.d. standard exponential), and {Xi} are i.i.d.
r.v. with law FX , independent of {Ei}.

Proof of Lemma 9.5: To show (i). By Lemma 9.3 and 9.4, the proof reduces to verifying limT EN̂(F ) =

m(F ) for all F in T . E.g. as in Leadbetter, Lindgren, and Rootzén (1983), p. 103, it suffices to consider F

of the form F = ∪kj=1Fj , where Fj = (lj , uj)×Xj , where F1, ..., Fk are non-overlapping non-empty subsets

of E, and X1, ...,Xk are intersections of open bounded rectangles of R
d with X. Then by the stationarity
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and Fj ’s non-overlapping,

EN̂(F ) = E
T∑

t=1

1 [(aT (Ut − bT ), Xt) ∈ F ]

=
k∑

j=1

TP [(aT (U − bT ), X) ∈ (lj , uj)×Xj ]

=
k∑

j=1

T · E
(
P [(aT (U − bT ), X) ∈ (lj , uj)×Xj |X]

)

=
k∑

j=1

T · E
(
P [(aT (U − bT ) ∈ (lj , uj)|X] · 1[X ∈ Xj ]

)

=
k∑

j=1

T · E
((

FU [uj/aT + bT |X]− FU [lj/aT + bT |X]
)
· 1[X ∈ Xj ]

)

(9.40)

Suppose that lj > −∞ for all j. Then as T →∞

EN̂(F ) =

k∑

j=1

E

((FU [uj/aT + bT |X]

Fu[uj/aT + bT ]
· T · Fu[uj/aT + bT ]

− FU [lj/aT + bT |X]

Fu[lj/aT + bT ]
· T · Fu[lj/aT + bT ]

)
· 1[X ∈ Xj ]

)

∼
k∑

j=1

E
(
(K(X)[h(uj)− h(lj)]) 1[X ∈ Xj ]

)

=
k∑

j=1

∫

Fj

K(x)dh(u)× dFX(x)

=
k∑

j=1

m(Fj) = m(F ).

(9.41)

In (9.41), ∼ follows from two observations. First, the assumed tail equivalence condition R1 implies

FU [l/aT + bT |x]
Fu[l/aT + bT ]

∼ K(x) uniformly in x ∈ X, (9.42)

since by definition of (aT , bT ) given in (4.2) l/aT + bT ↘ F−1u (0) = 0 or = −∞ for any l ∈ (−∞,∞) for

type 1 tails, any l ∈ (−∞, 0) for type 2 tails, and l ∈ [0,∞) for type 3 tails. Second, e.g. as in Leadbetter,

Lindgren, and Rootzén (1983), p. 103, the definition of the tail types (3.1) implies that (a) for tails of type

2: for any l < 0, TFu(l/aT ) = TFu
(
−lF−1u

(
1
T

))
∼ (−l)−1/ξTFu

(
F−1u

(
1
T

))
∼ (−l)−1/ξ, (b) for tails of type

3: for any l > 0, TFu(l/aT ) = TFu
(
lF−1u

(
1
T

))
∼ l−1/ξTFu

(
F−1u

(
1
T

))
∼ l−1/ξ and (c) for tails of type 1:

for any l ∈ R, TFu(l/aT + bT ) = TFu
(
l/a
(
F−1u

(
1
T

))
+ F−1u

(
1
T

))
∼ elTFu

(
F−1u

(
1
T

))
∼ el.

On the other hand, if for some j’s, lj = −∞ for type 1 or 2 tails, then we have the replacement

TFU [lj/aT + bT |X] = 0 in (9.40), and (9.41) follows similarly.

To show (ii). Construct a Poisson random measure (PRM) with the given m(·). First, define a canonical

homogeneous PRM N1 with points {Γi, i ≥ 1}. It has the mean measure m1(du) = du on [0,∞), e.g.

Resnick (1987). Second, by Proposition 3.8 in Resnick (1987), the composed point process N2 with points

{Γi,Xi} is PRM with the mean measure m2(du, dx) = du × dFX(x) on [0,∞) × X, because {Xi} are

i.i.d. and are independent of {Γi}. Finally, the point process N with the transformed points {T(Γi,Xi)},
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where T : (u, x) 7→ (h−1(u/K(x)), x), is PRM with the desired mean measure on E × X, m(dj, dx) =

m2 ◦T−1(dj, dx) = K(x)× dh(j)× dFX(x), by Proposition 3.7 in Resnick (1987). ¥

9.5. Proof of Theorem 5.1. Step 1 outlines the overall proof using standard convexity arguments, while

the main step 2 invokes regular variation assumptions on the conditional quantile density to demonstrate

a quadratic approximation of the criterion function. Step 3 shows joint convergence of several regression

quantile statistics. Step 4 demonstrates that aT can be estimated consistently.

Step 1. With reference to (2.4), notice that ẐT ≡ aT
(
β̂(τ)− β(τ)

)
defined in (5.2) minimizes

QT (z, τ) ≡
aT√
τT

T∑

t=1

(
ρτ

(
Yt −X ′tβ(τ)−

X ′tz

aT

)
− ρτ

(
Yt −X ′tβ(τ)

))
. (9.43)

Using Knight’s identity

ρτ (u− v)− ρτ (u) = −v(τ − 1(u < 0)) +

∫ v

0

(1(u ≤ s)− 1(u ≤ 0)) ds, (9.44)

write, a.s.

QT (z, τ) = WT (τ)
′ z + GT (z, τ),

WT (τ) ≡
−1√
τT

T∑

t=1

(
τ − 1

[
Yt < X ′tβ(τ)

])
Xt,

GT (z, τ) ≡
aT√
τT

(
T∑

t=1

∫ X′
tz/aT

0

[
1(Yt −X ′tβ(τ) ≤ s)− 1(Yt −X ′tβ(τ) ≤ 0)

]
ds

)
.

(9.45)

By Lemma 9.6, WT (τ)→d W ≡ N(0, EXX ′), and by step 2,

GT (z, τ)→p
1

2
·
(m−ξ − 1

−ξ
)
· z′QHz, (m > 1) (9.46)

where QH ≡ E [H(X)]−1XX ′, H(x) ≡ x′c for type 2 and 3 tails, and H(x) = 1 for type 1 tails. Thus, the

weak marginal limit of QT (z) is given by

Q∞(z) = W ′z +
1

2

(
m−ξ − 1

−ξ

)
z′QHz. (9.47)

We have that EXX ′ is positive definite and by Theorem 1 that 0 < H(X) < c < ∞ for some constant c.

Thus QH is finite and QH is positive definite. Indeed z′QHz = E(X ′z)2/H(X) = 0 for some z 6= 0 if and

only if X ′z = 0 a.s., which contradicts EXX ′ positive definite. Thus, the marginal limit Q∞(z) is uniquely

minimized at Z∞ ≡
(

ξ

m−ξ−1

)
Q−1H W = N

(
0, ξ2

(m−ξ−1)2Q
−1
H EXX ′Q−1H

)
. By the Convexity Lemma (e.g.

Geyer (1996) and Knight (1999)) ẐT→d Z∞.

Step 2 demonstrates that as τ ↘ 0

EGT (z, τ) −→
1

2
·
(m−ξ − 1

−ξ
)
· z′QHz, (9.48)

while Lemma 9.6 shows that Var(GT (z, τ)) −→ 0. In what follows Ft, ft, Et denote FU(·|Xt), fU(·|Xt) and

E [·|Xt] respectively, where U is the auxiliary error constructed in R1.
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Since

GT (z, τ) ≡
T∑

t=1

aT ·
(∫ X′

tz/aT

0

[
1(Yt −X ′tβ(τ) ≤ s)− 1(Yt −X ′tβ(τ) ≤ 0)√

τT

]
ds

)

=

T∑

t=1

(∫ X′
tz

0

[
1(Yt −X ′tβ(τ) ≤ s/aT )− 1(Yt −X ′tβ(τ) ≤ 0)√

τT

]
ds

)
,

(9.49)

we have

EGT (z, τ) = T · E
(∫ X′

tz

0

Ft[F
−1
t (τ) + s/aT ]− Ft[F

−1
t (τ)]√

τT
ds

)

(1)
= T · E

(∫ X′
tz

0

ft
{
F−1t (τ) + o

(
F−1u (mτ)− F−1u (τ)

) }

aT ·
√
τT

· s · ds
)

(2)∼ T · E
(∫ X′

tz

0

ft
{
F−1t (τ)

}

aT ·
√
τT

· s · ds
)

= T · E
(
1

2
· (X ′tz)2 ·

ft
{
F−1t (τ)

}

aT ·
√
τT

)

= E

(
1

2
· (X ′tz)2 ·

F−1u (mτ)− F−1u (τ)

τ(ft
{
F−1t (τ)

}
)−1

)

(3)∼ E

(
1

2
· (X ′tz)2 ·

1

H(X)
· m

−ξ − 1

−ξ

)

≡ 1

2
· m

−ξ − 1

−ξ · z′QHz.

(9.50)

Equality (1) is by the definition of aT and a Taylor expansion. Indeed, since τT → ∞, uniformly over s in

any compact subset of R

s/aT = s ·
(
F−1u (mτ)− F−1u (τ)

)
/
√
τT = o

(
F−1u (mτ)− F−1u (τ)

)
. (9.51)

To show equivalence (2), it suffices to prove that for any sequence vτ = o(F−1u (mτ)−F−1u (τ)) with m > 1

as τ ↘ 0:

ft(F
−1
t (τ) + vτ ) ∼ ft(F

−1
t (τ)) uniformly in t . (9.52)

This will be shown by using the assumption made in R3, which is that uniformly in t 1/ft(F
−1
t (τ)) ∼

∂F−1u (τ/K(Xt))/∂τ, where ∂F
−1
u (τ)/∂τ is regularly varying with index −ξ − 1.

To be clear, let us first show (9.52) for the special case of ft = fu and F−1t (τ) = F−1u (τ):

fu(F
−1
u (τ) + vτ ) ∼ fu(F

−1
u (τ)). (9.53)

By the regular variation property of ∂F−1u (τ)/∂τ = 1/fu(F
−1
u (τ)), locally uniformly in l [uniformly in l in

any compact subset of (0,∞)]

fu(F
−1
u (lτ)) ∼ lξ+1fu(F

−1
u (τ)). (9.54)

I.e. locally uniformly in l

fu(F
−1
u (τ) + [F−1u (lτ)− F−1u (τ)]) ∼ lξ+1fu(F

−1
u (τ)). (9.55)

Hence for any lτ → 1,

fu(F
−1
u (τ) + [F−1u (lττ)− F−1u (τ)]) ∼ fu(F

−1
u (τ)). (9.56)
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Hence for any sequence vτ = o([F−1(mτ)− F−1(τ)]) with m > 1 as τ ↘ 0:

fu(F
−1(τ) + vτ ) ∼ fu(F

−1
u (τ)), (9.57)

because for any such {vτ}, in view of Lemma 9.2 (iii), we can choose a sequence {lτ} such that {vτ} =

{[F−1u (lττ)− F−1u (τ)]} and lτ → 1 as τ ↘ 0.

Next let’s strengthen the claim (9.53) to (9.52), completing the proof of equivalence (2) in (9.50). Since

(a) 1/ft(F
−1
t (τ)) ∼ ∂F−1u (τ/K(Xt))/∂τ = 1/{K(Xt)fu[F

−1
u (τ/K(Xt))]} uniformly in t by condition

R3, and

(b) fu(F
−1
u (lτ/K)) ∼ (l/K)ξ+1fu(F

−1
u (τ)) ∼ (l)ξ+1fu(F

−1
u (τ/K)), locally uniformly in l and uniformly

in K ∈ {K(x) : x ∈ X} [compact by assumptions on K(·) and X], by (9.54),

we have that locally uniformly in l and uniformly in t

ft(F
−1
t (lτ)) ∼ lξ+1ft(F

−1
t (τ)). (9.58)

Repeating the steps (9.55)-(9.57) with ft(F
−1
t (lτ)) in place of fu(F

−1
u (lτ)), we obtain the required conclusion

(9.52).

The equivalence (3) in (9.50) can be shown as follows. By (a), uniformly in t:

F−1u (mτ)− F−1u (τ)

τ(ft[F
−1
t (τ)])−1

∼ F−1u (mτ)− F−1u (τ)

τ(K(Xt)fu[F
−1
u (τ/K(Xt))])−1

. (9.59)

By (b) we have that uniformly in t

fu[F
−1
u (τ/K(Xt))]) ∼ (1/K(Xt))

ξ+1 · fu(F−1(τ)) (9.60)

Putting (9.59)-(9.60) together, we have uniformly in t

F−1u (mτ)− F−1u (τ)

τ(ft[F
−1
t (τ)])−1

∼ 1

K(Xt)ξ
· F

−1
u (mτ)− F−1u (τ)

τfu[F
−1
u (τ)])−1

(9.61)

=
1

H(Xt)
· F

−1
u (mτ)− F−1u (τ)

τfu[F
−1
u (τ)])−1

, (9.62)

where H(Xt) = X ′tc for ξ 6= 0 and H(Xt) = 1 for ξ = 0. Finally, by the regular variation property (9.54)

F−1u (mτ)− F−1u (τ)

τ(fu[F
−1
u (τ)])−1

≡
∫ m

1

fu[F
−1
u (τ)]

fu[F
−1
u (sτ)]

ds (9.63)

∼
∫ m

1

s−ξ−1ds (9.64)

=
m−ξ − 1

−ξ (lnm if ξ = 0). (9.65)

Putting (9.61) -(9.65) together gives (3) in (9.50).

Step 3. For ẐT (l) defined in (5.3), notice that
(
ẐT (li), i = 1, ..., k

)
∈ argminz∈Rd×k [QT (z1, l1τ) + ... +

QT (zk, lkτ)] = argminz∈Rd×k [
∑k

i=1WT (τ li)
′zi + GT (zi, τ li)] for z = (z′1, ..., z

′
k)
′, where functions QT (·, ·),

WT (·), and GT (·, ·) are defined in (9.45). Since this objective function is a sum of the objective functions

in the preceding steps, it retains the properties of the elements summed. Therefore the previous argument

applies to conclude that the marginal limit of this objective function is given by
∑k

i=1W (li)
′zi + G(zi, li),

where (W (li), i ≤ k ) ≡ N(0,Σ) with EW (li)W (lj)
′ ≡ EXX ′min(li, lj)/

√
lilj and by calculations that are
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identical to those in the preceding section G(z, li) ≡ G(z) ≡ 1
2
·
(
m−ξ−1
−ξ

)
·z′QHz. The limit objective function

is minimized at (Z∞(li), i ≤ k) =
(

ξ

m−ξ−1 · Q
−1
H W (li), i ≤ k

)
. Therefore

(
ẐT (li), i ≤ k

)
→d (Z∞(li), i ≤ k) .

Step 4. It suffices to prove the result for l = 1. Then

X̄ ′(β̂(mτ)− β̂(τ))

µ′X(β(mτ)− β(τ))
≡ X̄ ′(β̂(mτ)− β(mτ))

µ′X(β(mτ)− β(τ))
− X̄ ′(β̂(τ)− β(τ))

µ′X(β(mτ)− β(τ))
+

X̄ ′(β(mτ)− β(τ))

µ′X(β(mτ)− β(τ))
→p 1, (9.66)

since the first two elements on the r.h.s. are Op(
1√
τT

) = op(1) by the first part of Theorem 5.1. ¥

9.6. CLT for WT (τ) and LLN for GT (z, τ).

Lemma 9.6 (CLT & LLN). Let {Yj , Xj}t−∞ be an i.i.d. or a stationary α-mixing sequence. The following
statements are true for WT (·) and GT (·, ·) defined in (9.45), as τ ↘ 0 and τT →∞ :

(i) Suppose mixing coefficients satisfy αj = O(j−φ) with φ > 2, and for any K sufficiently close to 0+ or

−∞, uniformly in t and s ≥ 1, and C > 0 (Pt denotes P (·|Ft),Ft ≡ σ({Yj , Xj}t−1−∞)) :

Pt(Ut ≤ K,Ut+s ≤ K) ≤ CPt(Ut ≤ K)2. (9.67)

Then for any finite collection of positive constants l1, ..., lm

{WT (τ l1)
′, ...,WT (τ lm)′}′→d

(
W (l1)

′, ...,W (lk)
′)′ = N(0,Σ) with EW (li)W (lj)

′ ≡ EXX ′min(li, lj)/
√
lilj .

(ii) If in addition αj = O(j−φ) with φ > 1
1−γ for 0 < γ < 1 and τ

1− 2
γ /T → 0, then

Var(GT (z, τ)) −→ 0. (9.68)

Remark 9.3. In the iid case, the claim (i) simply follows from the Lindeberg-Feller CLT. In the dependent

case, condition (9.67) requires that the extremal events should not cluster, which leads to the same limits as

under iid sampling. This condition may possibly be refined along the lines Watts, Rootzén, and Leadbetter

(1982) who dealt with the non-regression case. (9.67) is analogous to the no-clustering conditions of Robinson

(1983) (A7.4., p.191) used in the context of kernel estimation.

Proof of Lemma 9.6: To show (i). {WT (τ li)
′, i ≤ m}′ suits the CLT of Robinson (1983) which implies

the same weak limit as under i.i.d. sampling. His condition A7.1 (with q = 0), A7.2, and A7.3. are satisfied

automatically. The assumed above mixing condition implies
∑∞

j=1 jαj < ∞, which implies his condition

A3.3. Lastly, condition (9.67) immediately implies his condition A7.4.

To show (ii). Suppress τ . Then from (9.49),

Var(GT (z)) = τ−1
(
V ar(λ1) + 2

T−1∑

k=1

T − k

T
Cov(λ1, λ1+k)

)
,

for

λt =

∫ X′
tz

0

[
1(Yt −X ′tβ(τ) ≤ s/aT )− 1(Yt −X ′tβ(τ) ≤ 0)

]
ds.

By R2, |λt| ≤ K0|µt|, for

µt = (1(Yt −X ′tβ(τ) ≤ X ′tz/aT )− 1(Yt −X ′tβ(τ) ≤ 0))

and some K0 <∞. Hence

Var(λ1) = O(Eλ21)
(1)
= O(Eµ21)

(2)
= O(E|µ1|)

(3)
= O(fu(F

−1
u (τ))a−1T ) = O(

√
τ/T ), (9.69)
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where (1) is by |λt| ≤ K0|µt|, (2) is by |µt| ∈ {0, 1}, and (3) is by the calculation in (9.50). Thus, in the

iid case Var(GT (z)) = o(1) follows from (9.69) and τT → ∞. Also for all s and some positive constants

K1,K2,K3,K4

|Cov(λ1, λ1+s)| ≤ K1

(
α1−γs [E|λ1|r]

1
r [E|λ1|p]

1
p

)
(9.70)

≤ K2

(
α1−γs [E|µ1|r]

1
r [E|µ1|p]

1
p

)
(9.71)

≤ K3

(
α1−γs

[
E|µ1|

]γ)
(9.72)

≤ K4

(
α1−γs

( τ
T

)γ/2)
, (9.73)

where 1/p + 1/r = γ ∈ (0, 1), p ≥ 1. Here (9.70) follows by Ibragimov’s mixing inequality (e.g. Davidson

(1994)), (9.71) follows by the previous bound |λt| ≤ K0|µt|, and (9.72) follows by |µt| ∈ {0, 1}, while (9.73)

follows by (9.69). So V ar(GT (z))=o(1) by the condition on the mixing coefficients. ¥

9.7. Proof of Theorem 4. Theorem 4 is a direct corollary of Theorems 3 and Lemma 1. Proof of claim

(i) follows similarly to the proof in equation (9.66). Claim (i) implies claims (ii)-(iv), using the properties

(v)-(vi) in Lemma 9.1. Uniformity in x in claim (iv) follows from the linearity of ρ̂x,X̄,1 in x. Finally, claim

(v) follows from Theorem 3 by the Delta method. ¥

9.8. Tightness of Z∞(k). This section provides primitive conditions for tightness of Z∞(k), which is as-

sumed in the statement of Theorem 4.1 and the conditions of uniqueness given in Remark 4.4.

We impose the design condition of Portnoy and Jurec̆ková (1999) who used it for the case τT → 0 and

show that it holds if EXX ′ > 0. Their proof of tightness is not applicable here, so we have it.

Condition PJ. Let FX denote the distribution function of X. There is a finite integer I, a collection of

sets {R1, ..., RI} and positive constants δ and η such that

(a) for each u ∈ {u : ‖u‖ ≥ 1, u1 ≥ 0} there is Rj(u) such that x′u > δ‖u‖ for all x ∈ Rj(u),

(b)
∫
Rj

dFX > η > 0 for all j = 1, ..., I.

Lemma 9.7. If Conditions R1,R2 , PJ hold, then Z∞(k) is finite a.s.

Proof of Lemma 9.7. Choose zf = (zf1 , ..., z
f
d )
′ ∈ R

d such that

Q∞(zf , k) ≡ −kµ′Xzf +
∫

E

(x′zf − u)+dN(u, x) = Op(1), (9.74)

which is possible, as shown in the proof of Theorem 4.1.

Consider a closed ball B(M) with radius M and center zf , and let z(k) = zf + δ(k)v(k), where v(k) =

(v1(k), ..., vd(k))
′ is a direction vector with unity norm ‖v(k)‖ = 1 and δ(k) ≥M . By convexity in z

M

δ(k)

(
Q∞(z(k), k)−Q∞(zf , k)

)
≥ Q∞(z∗(k), k)−Q∞(zf , k), (9.75)

where z∗(k) is a point of boundary of B(M) on the line connecting z(k) and zf . We will show that for any

K and ε > 0 there is large M such that

P

(
inf

v(k):‖v(k)‖=1
Q∞(z∗(k), k) > K

)
≥ 1− ε. (9.76)
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(9.76) and (9.74) imply (9.75) > C > 0 with probability arbitrarily close to 1 forM sufficiently large, meaning

that Z∞(k) ∈ B(M) with probability arbitrarily close to 1 for M sufficiently large, i.e. Z∞(k) = Op(1).

Thus, it remains to show (9.76). Since µX = (1, 0, ..., 0)′, µ′Xz
∗(k) = zf1 + v1(k) ·M . Thus it suffices to

show that, when v1(k) ≥ 0, we have that for any ε > 0 and any large K > 0

−v1(k) · k ·M +

∫

E

(x′z∗(k)− u)+dN(u, x) ≥ K w. pr. ≥ 1− ε , for large enough M, (9.77)

and therefore establish (9.76). We have by condition PJ that for some Rj(v) with j(v) ∈ {1, ..., I}
∫

E

(x′z∗(k)− u)+dN(u, x) ≥
∫

([−∞,κ]×Rj(v))∩E
(x′z∗(k)− u)+dN(u, x)

≥ N
( (

[−∞, κ]×Rj(v)

)
∩ E

)
×
(
δM − κ− κ′

)+
,

(9.78)

where κ ∈ R is a constant to be determined later and that does not depend on v(k) and κ′ = supx∈X
|x′zf |.

Note that for any region X such that
∫

X
dFX > η > 0 and any κ1 > 0 and ε > 0, there is a sufficiently

large κ2 such that

N (([−∞, κ2]× X) ∩ E) > κ1 w. pr. ≥ 1− ε . (9.79)

Hence by (9.79) we can select κ large enough so that

N
(
([−∞, κ]×Rj) ∩ E

)
>

(k + 1)

δ
for all j ∈ {1, ..., I} w. pr. ≥ 1− ε , (9.80)

so that w. pr. ≥ 1− ε

−v1(k) · k ·M +

∫

E

(x′z∗(k)− u)+dN(u, x) ≥ −k ·M + (k + 1)
(δM − κ− κ′)

+

δ
. (9.81)

Now set M sufficiently large to obtain (9.77). ¥
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Figure 1. Comparison of Extreme and Central Approximations

A. Q-Q Plot for Intercept 
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B. Q-Q Plot for Slope 
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Note: Panel A plots Quantiles of the Finite-Sample Distribution of β̂1(τ) (Horizontal Axis) against the Quantiles of

the Extreme Approximation, cf. Theorem 2, and the Quantiles of the Central Approximations (7.1) (Vertical Axis).

Panel B plots Quantiles of the Finite-Sample Distribution of β̂2(τ) (Horizontal Axis) against the Quantiles of the

Extreme Approximation, cf. Theorem 2, and the Quantiles of the Central Approximations (7.1) (Vertical Axis). The

plot is based on 10,000 simulations of the regression model described in Section 7. The dashed line “- - - - - ”

denotes quantiles of the central approximation, and the dotted line “......” denotes quantiles of the extreme

approximation (this approximation almost coincides with “——-”) . The simulated quantiles of the finite-sample

distribution are given by the 45%-degree line depicted as the solid line “——”
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