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Abstract

By using the lower and upper solution method, the existence of an iterative solution

for a class of fractional periodic boundary value problems,

D
α
0+u(t) = f (t,u(t)), t ∈ (0,h),

lim
t→0+

t
1–α

u(t) = h
1–α

u(h),

is discussed, where 0 < h < +∞, f ∈ C([0,h]× R,R), Dα
0+u(t) is the Riemann-Liouville

fractional derivative, 0 < α < 1. Different from other well-known results, a new

condition on the nonlinear term is given to guarantee the equivalence between the

solution of the periodic boundary value problem and the fixed point of the

corresponding operator. Moreover, the existence of extremal solutions for the

problem is given.

MSC: 34B15; 34A08
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1 Introduction

Differential equations of fractional order have played a significant role in engineering, sci-

ence, and pure and applied mathematics in recent years. Some researchers paid attention

to the existence results of the solution of the periodic boundary value problem for frac-

tional differential equations, such as [–]. Some recent contributions to the theory of

fractional differential equations initial value problems can be found in [, ].

In [], by using the fixed point theorem of Schaeffer and the Banach contraction princi-

ple, Belmekki et al. obtained the Green’s function and gave some existence results for the

nonlinear fractional periodic problem

Dα
+u(t) – λu(t) = f

(

t,u(t)
)

, t ∈ (, ] ( < α < ),

lim
t→+

t–αu(t) = u(),

where f : [, ]× R→ R is continuous and the following assumptions hold:

() there exists a constantM >  such that

∣

∣f (t,u)
∣

∣ ≤ M, for each t ∈ (, ),u ∈ R,
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() there exists a constant k >  such that

∣

∣f (t,u) – f (t, v)
∣

∣ ≤ k|u – v|, for each t ∈ (, ),u, v ∈ R.

The above conditions (see Lemma . of []) are very strong.

In [], Wei et al. discussed the properties of the well-known Mittag-Leffler function,

and consider the existence and uniqueness of the solution of the periodic boundary value

problem for a fractional differential equation involving a Riemann-Liouville fractional

derivative

Dα
+u(t) = f

(

t,u(t)
)

, t ∈ (,T) ( < α < ),

t–αu(t)|t= = t–αu(t)|t=T ,

by using the monotone iterative method. In this result, the bounded demand of f in

[] and the monotone demand of f in [] were removed. However, the application of

Lemma . in the proof of Theorem . was not correct, due to σ (η)(t) /∈ C[,T]. In

other words, the definition of operator A may be not appropriate. Consequently, while

the uniqueness result was correct, the existence of an extremal result was maybe wrong.

In [],Wei andDong studied the existence of solutions of the following periodic bound-

ary value problem:

Dα
+u(t) = f

(

t,u(t),Dα
+u(t)

)

, t ∈ (,T) ( < α < ),

lim
t→

t–αu(t) = lim
t→T

t–αu(t),

lim
t→

t–αDα
+u(t) = lim

t→T
t–αDα

+u(t),

where Dα
+ is the standard Riemann-Liouville fractional derivative, Dα

+u = Dα
+(D

α
+u)

is the sequential Riemann-Liouville fractional derivative,  < T < ∞, and f defined on

[,T] × R is continuous. The methods used in [] are monotone iterative techniques

and the Schauder fixed point theorem under the assumptions that there the upper and

lower solutions exist.

In this paper, we will focus our attention on the following problem:

Dα
+u(t) = f

(

t,u(t)
)

, t ∈ (,h), (.)

lim
t→+

t–αu(t) = h–αu(h), (.)

where f ∈ C([,h]×R,R),Dα
+u(t) is the Riemann-Liouville fractional derivative,  < α < .

The existence of the solution is obtained by the use of the upper and lower solutionmethod

which has been used by authors to deal with the fractional initial value problems [].

The remainder of this paper is as follows. In Section , we recall some notions and the

theory of the fractional calculus. Section  is devoted to the study of the existence of a

solution utilizing the method of upper and lower solutions. The existence of extremal

solutions is given. An example is given to illustrate the main result.
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2 Preliminaries

Given  ≤ a < b < +∞ and r > , define

Cr[a,b] =
{

u | u ∈ C(a,b], (t – a)ru(t) ∈ C[a,b]
}

.

Clearly, Cr[a,b] is a linear space with the normal multiplication and addition. Given u ∈

Cr[a,b], define

‖u‖ = max
t∈[a,b]

(t – a)r
∣

∣u(t)
∣

∣,

then (Cr[a,b],‖ · ‖) is a Banach space.

Lemma . ([]) For  < α ≤ , λ ≥ , theMittag-Leffler type function Eα,α(–λtα) satisfies

 ≤ Eα,α

(

–λtα
)

<


Ŵ(α)
, t ∈ (,∞).

Lemma . The linear periodic problem

Dα
+u(t) + λu(t) = q(t), (.)

lim
t→+

t–αu(t) = h–αu(h), (.)

where λ ≥  is a constant and q ∈ L(,h), has the following integral representation of the

solution:

u(t) = Ŵ(α)u(h)tα–Eα,α

(

–λtα
)

+

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)

q(s)ds.

Proof According to [], for every initial condition

lim
t→+

t–αu(t) = u

the unique solution of equation (.) is given by

u(t) = Ŵ(α)ut
α–Eα,α

(

–λtα
)

+

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)

q(s)ds.

Specially, choose u as

u =
h–α

∫ h


(h – s)α–Eα,α(–λ(h – s)α)q(s)ds

 – Ŵ(α)Eα,α(–λhα)
,

then u(t) satisfies the periodic boundary condition (.). That is to say that the linear pe-

riodic problem (.), (.) has the following integral representation of the solution:

u(t) = Ŵ(α)h–αu(h)tα–Eα,α

(

–λtα
)

+

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)

q(s)ds.

The proof is complete. �
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Lemma . ([]) Suppose that E is an ordered Banach space, x, y ∈ E, x ≤ y, D =

[x, y], T :D → E is an increasing completely continuous operator and x ≤ Tx, y ≥ Ty.

Then the operator T has a minimal fixed point x∗ and a maximal fixed point y∗. If we let

xn = Txn–, yn = Tyn–, n = , , , . . . ,

then

x ≤ x ≤ x ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y ≤ y ≤ y,

xn → x∗, yn → y∗.

Definition . A function v(t) ∈ C–α[,h] is called a lower solution of problem (.), (.),

if it satisfies

Dα
+v(t)≤ f

(

t, v(t)
)

, t ∈ (,h), (.)

lim
t→+

t–αv(t)≤ h–αv(h). (.)

Definition . A function w(t) ∈ C–α[,h] is called an upper solution of problem (.),

(.), if it satisfies

Dα
+w(t)≥ f

(

t,w(t)
)

, t ∈ (,h), (.)

lim
t→+

t–αw(t)≥ h–αw(h). (.)

3 Themain results

The following assumptions will be used in this section:

(S) f : [,h]× R→ R is continuous and there exist constants A,B ≥  and

 < r ≤  < r < /( – α) such that for t ∈ [,h]

∣

∣f (t,u) – f (t, v)
∣

∣ ≤ A|u – v|r + B|u – v|r , u, v ∈ R. (.)

Theorem . Suppose (S) holds. Then u solves problem (.), (.) if and only if it is a

fixed point of the operator Tλ : C–α[,h] → C–α[,h] defined by

(Tλu)(t) = Ŵ(α)h–αu(h)tα–Eα,α

(

–λtα
)

+

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s,u(s)
)

+ λu(s)
]

ds,

where λ ≥  is a constant.

Proof First of all, we show that the operator Tλ is well defined. Clearly tα–Eα,α(–λtα) ∈

C–α[,h], so it is enough to prove that for every u ∈ C–α[,h], the function

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s,u(s)
)

+ λu(s)
]

ds
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belongs to C–α[,h]. Taking into account that f is continuous on [,h] × R, for u ∈

C–α[,h], we have

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s,u(s)
)

+ λu(s)
]

ds ∈ C(,h].

On the other hand, under the condition (S), we have

∣

∣f (t,u)
∣

∣ ≤ A|u|r + B|u|r +C,

where C = maxt∈[,h] f (t, ).

By Lemma ., for u ∈ C–α[,h], we have

∣

∣

∣

∣

t–α

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s,u(s)
)

+ λu(s)
]

ds

∣

∣

∣

∣

≤ t–α

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)
∣

∣f
(

s,u(s)
)

+ λu(s)
∣

∣ds

≤ t–α

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)(

A|u|r + λ|u| + B|u|r +C
)

ds

≤ t–α

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
){

As(α–)r
[

s–α
∣

∣u(s)
∣

∣

]r

+ λsα–s–α
∣

∣u(s)
∣

∣ + Bs(α–)r
[

s–α
∣

∣u(s)
∣

∣

]r +C
}

ds

≤
A‖u‖r t–α

Ŵ(α)

∫ t



(t – s)α–s(α–)r ds +
λ‖u‖t–α

Ŵ(α)

∫ t



(t – s)α–sα– ds

+
B‖u‖r t–α

Ŵ(α)

∫ t



(t – s)α–s(α–)r ds +
Ct

Ŵ(α + )

≤ A‖u‖r
Ŵ((α – )r + )

Ŵ((α – )r + α + )
t(α–)r+α+–α + λ‖u‖

Ŵ(α)

Ŵ(α)
tα

+ B‖u‖r
Ŵ((α – )r + )

Ŵ((α – )r + α + )
t(α–)r+α+–α +

Ct

Ŵ(α + )

≤
Ŵ[(α – )r + ] ·A · t(α–)r+

Ŵ[(α – )r + α + ]
‖u‖r + λ‖u‖

Ŵ(α)

Ŵ(α)
tα

+
Ŵ[(α – )r + ] · B · t(α–)r+

Ŵ[(α – )r + α + ]
‖u‖r +

Ct

Ŵ(α + )
.

That is to say that

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s,u(s)
)

+ λu(s)
]

ds ∈ C–α[,h].

The above inequalities and the assumption  < r ≤  < r < /( – α) imply that

lim
t→+

t–α

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s,u(s)
)

+ λu(s)
]

ds = .

Combining with the fact that limt→+ Eα,α(–λtα) = Eα,α() = /Ŵ(α) yields

lim
t→+

t–α(Tλu)(t) = h–αu(h).



Zhang et al. Advances in Difference Equations  ( 2016)  2016:179 Page 6 of 8

The above arguments combined with Lemma . imply that the fixed point of the oper-

ator Tλ solves the periodic boundary value problem (.), (.), and vice versa. The proof

is complete. �

In the following, we consider the compactness of the set of the space Cr[,h].

Let F ⊂ Cr[,h] and E = {g(t) = trh(t) | h(t) ∈ F}, then E ⊂ C[,h]. It is clear that F is a

bounded set of Cr[,h] if and only if E is a bounded set of C[,h].

Therefore, to prove that F ⊂ Cr[,h] is a compact set, it is enough to prove that E ⊂

C[,h] is a bounded and equicontinuous set.

Theorem . Suppose (S) holds. Then the operator Tλ : C–α[,h] → C–α[,h] is com-

pletely continuous.

Proof Given un → u ∈ C–α[,h], with the definition of Tλ, the condition (S), and

Lemma ., one has

‖Tλun – Tλu‖

=
∥

∥t–α(Tλun – Tλu)
∥

∥

∞

= max
≤t≤h

{

∣

∣Ŵ(α)h–αEα,α

(

–λtα
)[

un(h) – u(h)
]
∣

∣

+

∣

∣

∣

∣

t–α

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f (s,un) – f (s,u) + λ(un – u)
]

ds

∣

∣

∣

∣

}

≤


Ŵ(α)
max
≤t≤h

t–α

∫ t



(t – s)α–
[

A|un – u|r + B|un – u|r + λ|un – u|
]

ds

+ ‖un – u‖

≤


Ŵ(α)

[

A max
≤t≤h

t–α

∫ t



(t – s)α– · s–r(–α) · sr(–α) · |un – u|r ds

+ λ max
≤t≤h

t–α

∫ t



(t – s)α– · s–(–α) · s(–α) · |un – u|ds

+ B max
≤t≤h

t–α

∫ t



(t – s)α– · s–r(–α) · sr(–α) · |un – u|r ds

]

+ ‖un – u‖

≤


Ŵ(α)

[

A‖un – u‖r max
≤t≤h

t–α

∫ t



(t – s)α– · s–r(–α) ds

+ λ‖un – u‖ max
≤t≤h

t–α

∫ t



(t – s)α– · s–(–α) ds

+ B‖un – u‖r max
≤t≤h

t–α

∫ t



(t – s)α– · s–r(–α) ds

]

+ ‖un – u‖

≤
A‖un – u‖rŴ[ – r( – α)]

Ŵ[ – r( – α) + α]
h–r(–α) +

λ‖un – u‖Ŵ[α]

Ŵ[α]
hα

+
B‖un – u‖rŴ[ – r( – α)]

Ŵ[ – r( – α) + α]
h–r(–α) + ‖un – u‖

→  (n→ ∞).

That is to say that Tλ is continuous.
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Suppose that F ⊂ C–α[,h] is a bounded set and there is a positive constant M such

that ‖u‖ ≤ M for u ∈ F . The proof process of Theorem . shows that Tλ(F) ⊂ C–α[,h]

is bounded.

We omit the proof details of the equicontinuity of T(F) here and refer the reader to []

for a similar details. The proof is complete. �

Theorem. Assume (S)hold and v,w ∈ C–α[,h] are lower andupper solutions of prob-

lem (.), (.), respectively, such that

v(t)≤ w(t),  ≤ t ≤ h. (.)

Moreover, f : [,h]× R→ R satisfies

f (t,x) – f (t, y) + λ(x – y) ≥ , for v≤ y≤ x ≤ w. (.)

Then the fractional periodic boundary value problem (.), (.) has a minimal solution x∗

and a maximal solution y∗ such that

x∗ = lim
n→∞

Tn
λ v, y∗ = lim

n→∞
Tn

λw.

Proof Clearly, if the functions v, w are lower and upper solutions (or strict) of problem

(.), (.), then there are v ≤ Tλv, w ≥ Tλw (or the inequality is strict). In fact, by the

definition of the lower solution, there exist q(t)≥  and ǫ ≥  such that

Dα
+v(t) = f

(

t, v(t)
)

– q(t), t ∈ (,h),

lim
t→+

t–αv(t) = h–αv(h) – ǫ.

By the use of Theorem . and Lemma ., one has

v(t) = Ŵ(α)
(

h–αv(h) – ǫ
)

tα–Eα,α

(

–λtα
)

+

∫ t



(t – s)α–Eα,α

(

–λ(t – s)α
)[

f
(

s, v(s)
)

+ λv(s) – q(s)
]

ds

≤ (Tλv)(t).

Similarly, we have w≥ Tλw.

By condition (.) and Theorem ., the operator Tλ : C–α[,h] → C–α[,h] is an in-

creasing completely continuous operator. Setting D := [v,w], by the use of Lemma ., the

existence of x∗, y∗ is obtained. The proof is complete. �

Remark . The main result is a consequence of the classical monotone iterative tech-

nique [, ]. However, the periodic condition is not the same.

Example . Consider the following periodic fractional boundary value problem:

Dα
+u(t) = f

(

t,u(t)
)

, t ∈ (,h), (.)
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lim
t→+

t–αu(t) = h–αu(h), (.)

where α = ., h = ., f (t,u) = t

[ + u(t)]. Obviously, the function f (t,u) satisfies condi-

tion (.) and (S), f (t, )≥ , and f (t, ) 
≡  for t ∈ [,h]. Thus, v(t)≡  is a lower solution

of problem (.), (.). Choose u(t) = tα– Cos[t] + tα , one can check that u ∈ C–α[,h]

is an upper solution of problem (.), (.), and v(t) ≤ u(t) for t ∈ [,h]. By the use of

Theorem ., problem (.), (.) has at least one solution.
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