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Abstract. A convex geometric graph G of order n consists of the set of vertices of a plane 

convex n-gon P together with some edges and/or diagonals of P as edges. Call G l-free if 

G does not have l disjoint edges in convex position. 

We answer the following questions: 

(a) What is the maximum possible number of edges of G if G is l-free (as a function 

of n and 1)? 

(b) What is the minimum possible number of edges of G if G is l-free and saturated, 

i.e., if G U {e} is not l-free for any edge or diagonal e of P that is not already in G. 

We also fully describe the graphs G where the maximum (in (a)) or the minimum (in 

(b)) is attained. Then we remove the word "disjoint" from the definition of "l-free" and 

do the same over again. The results obtained are quite similar and closely related to the 

corresponding results (Turk 's  theorem, etc.) in extremal abstract graph theory. 

O. Introduction 

Before introducing the geometric objects mentioned in the title, we would like to illus- 

trate, by means of a classical example from abstract graph theory, what we mean by 

"extremal theory." 

Definition. In what follows we always assume that the graph G is of order n. Call a 

graph G q-free (q > 2) if it has no complete subgraph of order q. Call G q-saturated if 

G is q-free, but is not included in any other q-free graph on the same set of vertices. 

* Editors' note: This paper was accepted for the special issue of Discrete & Computational Geometry 
(Volume 13, Numbers 3-4) devoted to the LAszl6 Fejes T6th Festschrift, but was not received in final form in 

time to appear in that issue. 



196 Y. s. Kupitz and M. A. Pefles 

Define 

Tq(n) = max{e(G): G is a q-free graph (of order n)} 

= max{e(G): G is a q-saturated graph}, 

tq (n) = min{e(G): G is a q-saturated graph (of order n)}. 

Call G (of order n) q-extremal if G is q-free and has Tq(n) edges. Call G q-minimal if 

G is q-saturated and has tq (n) edges. 

Results. (1) I f n = a ( q - 1 ) + r , O < r  < q -  l, then 

T q ( n ) = ( 2 ) - ( q - 1 ) ( 2 ) - r a .  (0.1) 

Note that T2(n) = 0. Another expression for Tq (n), that does not involve a explicitly, is 

2 n 2 (  l ) r ( q - - l - - r )  
Tq (n ) - -  _-- 1 - 

q 1 2(q - 1) 

where, as before, 0 < r < q - 1 and n -- r(mod(q -- 1)). The "error term" 

r(q -- 1 - r)/2(q - 1) 

is always between 0 and (q - 1)/8. 

(2) G is q-extremal iff G is a complete (q - D-partite graph with nearly equal parts 

(i.e., G = Ka..~_,.....aq_,, where ai = [(n + i - 1)/(q - 1)] for i = 1,2 . . . . .  q -- 1). 

{ ( 2 ) ( n ~ ( ~  for n < q ,  
(3) t q ( n ) =  

\ Z ] - \  n - q + 2 ] 2  for n > q .  

(4) G is q-minimal iff: 

(a) G = Kn, when n < q. 

(b) G = Kn\Kn-q+2, i.e., G is obtained from K~ by removing the edges of  a complete 

subgraph of order n - q + 2, when n >_ q. 

Results (1) and (2) are due to Turin [T]. See p. 72 of [B] for an English presentation. 

Results (3) and (4) are due to Erd6s et al. [EHM]. 

In the extremal theory presented in this paper we replace the abstract graph G by 

a convex geometric graph (cgg) G. This is a graph whose vertices are points in the 

Euclidean plane IR z. The set V of vertices is assumed to be in convex position, i.e., either 

#V < 2 or V is the set of vertices of  a convex polygon. The edges of G are closed, 

nondegenerate line segments with endpoints in V. 

Two edges of G that have no vertex in common may cross, or they may be disjoint as 

line segments. This distinction between crossing and noncrossing vertex-disjoint edges 

makes much of the difference between abstract graph theory and geometric graph theory. 
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The "forbidden subgraph" Kq of  IT] and [EHM] is replaced by a variety of  forbidden 

subconfigurations, where the main variants are l-matchings, convex l-matchings, and 

convex sets of  l-edges (definitions follow). 

Definition. Let G ----- (V, E) be a cgg. 

(a) An l -matching (l-m for short) of  G is a set {el . . . . .  et} of pairwise disjoint edges 

(disjoint as line segments, not just vertex-disjoint). 

(b) A set (el . . . . .  et} of  edges of  G is convex if each ei is an edge of  the convex 

polygon conv{el U �9 �9 �9 t.J et} (or if l < 1). Note that two edges el, e2 of  G form a 

convex set iff they do not cross. 

The main body of  the paper is devoted to the case where the forbidden configuration is 

a convex l-matching (---- l-cm). The other two cases (/-matching, not necessarily convex, 

and convex set of / -edges ,  not necessarily disjoint) are easier. They are treated briefly 

along with some other variants, in Sections 9 and 10. 

As we shall see, there is a tight relationship between the extremal theory for abstract 

graphs (with respect to ICq), and the extremal theory of  convex l-matchings in cgg's .  The 

resemblance becomes even closer when we replace convex l-matchings by convex sets 

of  I (not necessarily disjoint) edges. 

We call a cgg G l- free if it includes no l-cm. G is l - sa turated  if G is l-free, but is not 

included in any other l-free cgg on the same set of  vertices. 

Define cmt (n) (resp. CMt (n)) to be the minimal (resp. maximal) number of  edges of  an 

l-saturated cgg with n vertices. CM/(n) is, of course, also the maximal number of  edges 

of  an/-free cgg with n vertices. Call a cgg G with n vertices l -ex tremal  if it is l-free and 

has CMt (n) edges. Thus,/-saturated means l-free and maximal with respect to edge-set 

inclusion,  whereas l-extreme means maximal with respect to the n u m b e r  of  edges. 

In Sections 2--6 we give a complete description of  the/-saturated cgg's,  calculate the 

number of  edges e ( G )  for each one of  them, and determine the minimum cmt(n). In 

Sections 7 and 8 we calculate CMz(n) and determine the l-extreme cgg's.  In Sections 9 

and 10 we describe some extensions of  the theory, and mention also some open problems 

for further research. 

As we see in Section 8 

CMt(n) = Tt(n) + n  - l + 1 (0.2) 

for 6 < 2l < n. In the extremal theory for convex sets of I (not necessarily disjoint) 

edges, the corresponding extremal function turns out to be exactly Tl(n) for I > 3 (see 

Section 9). 

1. Notation, Terminology, and Some Preparatory Results 

Let V = {v(0) . . . . .  v(n  - 1)} be a fixed finite set o f n  points in Ig 2. We assume V to 

be in convex position, i.e., each point of  V is a vertex of  the convex hull [V] of  V. I f  

n > 3, we assume that the vertices v(0) . . . . .  v(n  --  1), v(0) appear in this cyclic order 

counterclockwise on the boundary bd[V] of  IV]. We extend the indexing cyclically to 

all integers, so that v( i )  = v ( j )  iff i --  j (modn)  (defining o(k)  =def v ( k  --  [ k /n ]n )  
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for all k). We denote by CK(n) the complete cgg on V, and regard all cgg ' s  G on V as 

spanning subgraphs of  CK(n). 

The edges [v(i),  v(i + 1)] (0 < i < n) are the boundary edges of  CK(n). The other 

edges of  CK(n)  are interior edges (or diagonals). An edge e = [v(i), v(k)] of  CK(n)  

divides [V] into two closed subsets, called sides of  e. I f  we think of  e as directed from 

v(i) to v(k), then we can identify them as the left side and the right side of  e. We can 

always choose the labels i, k so that i < k < i + n, and then precisely the vertices 

v(i),  v(i + 1) . . . . .  v(k - 1), v(k)  will be on the right side ofe .  I f e  is a boundary edge, 

then the two sides o f e  are e and [V], respectively. 

The length s of  a directed edge ~ of  CK(n) is defined as the number of  boundary 

edges on the right side o f  ~ (which is one less than the number of  vertices on this 

side). Thus, if i < k < i + n, then Z([v(i),  v(k)]) = k - i and )~([v(k), v(i)]) = 

n -- ),(Iv(i), v(k)]). 

Now consider the relative position of  two undirected edges e = Iv(i),  v( j ) ] ,  f = 

[v(h), v(k)] of  CK(n).  There are four possibilities: e and f may either coincide, share 

one vertex, be disjoint, or cross (i.e., have one common  interior point). For three edges e, 

f ,  g we need the notion of  betweeness: f lies between e and g i fe  and g lie on different 

(closed) sides of  f .  Note that under this definition f lies between f and f ! 

We defined a set E = {el . . . . .  el} o f  edges o f  CK(n) to be convex if  each edge ei is 

a boundary edge of  the convex hull [el O - . -  U et]. Thus E is convex iff for each edge 

ei E E all edges of  E lie on one side of  ei. It follows that E is convex iff: 

(a) No two edges of  E cross. 

(b) No edge of  E lies between two other edges of  E. 

We now turn our attention to a cgg G = (V, E). An edge e of  G is extreme if it does 

not lie between two other edges of  G, i.e., if (at least) one side of  e does not include any 

edge of  G, except e. 

Proposi t ion 1.1. l f  e is an edge o f  G, then on each side o f  e there are extreme edges 

o f  G. 

Proof. Assume e = [v(i), o(k)l, with i < k < i + n, and consider the right side o f  

e. Among all edges of  G of  the form [v(u),  v(]3)] with i _< c~ < /3 _< k, choose one 

for which fl - ot is minimal. This is certainly an extreme edge of  G. (It may coincide 

with e.) []  

Proposi t ion 1.2. l f  G has an l-cm, then it has an l-cm that consists o f  extreme edges 

only. 

Proof. Suppose L = {el . . . . .  et} is an l-cm in G. Direct each edge ei in such a way  

that L lies on the left side of  ei (if l = 1, direct el arbitrarily). Now replace each edge ei 

that is not extreme by an extreme edge fi on the fight side o f  ei. [] 

We now introduce two operations on cgg's.  For a cgg G -- (V, E) define Ext(G)  

to be the cgg on V whose edges are precisely the extreme edges of  G, and let Bet (G)  

be the cgg on V whose edges are all the edges of  CK(n) that lie between two (not 
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necessarily different) edges of  G. Some useful properties of  these operations are listed 

in the following proposition: 

Proposi t ion 1.3. 

(a) 

(b) 

Let G = (V, E) be a cgg. Then: 

(i) G C Bet(G) and (ii) ext(G) C G. 

I f  G' = (V, E')  is another cgg on V, and G C G' (i.e., E C E'),  then Bet(G) C 

Bet(G') .  

(c) Bet(Bet(G)) = Bet(G). 

(d) Ext(Bet(G)) = Ext(G). 

(e) Bet(Ext(G)) = Bet(G). 

(f) Ext(Ext(G)) = Ext(G). 

Proof. The proofs are straightforward and we leave them to the reader. Some hints: For 

(c) and (d), use the fact that if e and f are edges of  G, and if f lies on the side S of  e, 

then S includes one side of  f .  For (e) use Proposition 1.1. [] 

Proposi t ion 1.4. Let G = (V, E) be a cgg. Then: 

(a) I f  G is l-free, then Bet(G) is also l-free. 

(b) l f  G is l-saturated, then G = Bet(G) = Bet(Ext(G)).  

Proof. For (a) use Propositions 1.2 and 1.3(a), (d). For (b) use (a) and Proposi- 

tion 1.3(a)(i), (e). [] 

R e m a r k  1.5. Proposition 1.2 also holds for convex sets of  edges that are not necessarily 

disjoint: I f  C = { e l  . . . . .  el} is a convex set of  I edges of  G, then there is a convex set 

C' = {./'1 . . . . .  fi} of /extreme edges of  G, and, in fact, C '  uses at least as many vertices as 

C. It follows that Proposition 1.4(b) also holds for cgg 's  G that are saturated ( =  inclusion 

maximal) with respect to the property of not having a convex set of  I edges (or a convex 

set of I edges that use at least I + c vertices, where c is some prescribed integer > 0). 

Proposition 1.6. A cgg G* = (V, E*) is Ext (G)  f o r  some l-saturated cgg G iff'. 

(i) Ext(G*) = G* (i.e., there is no edge of  E* lying between two other edges). 

(ii) E* does not contain an l-cm. 

(iii) I f~  ~ E ( C K ( n ) ) \ E ( B e t ( G * ) ) ,  then E* U {~} does contain an l-matching. 

Proof. Part (i) is true for the "Ext" of  any cgg (see Proposition 1.3(f)). The rest follows 

from Propositions 1.2 and 1.4. [] 

2. Construction of  l-Saturated cgg's---Type I 

Prel iminary  R e m a r k s  2.1. If  l = 1, then a cgg (V, E) is l-free iff E = t~, i.e., 

cml(n)  = CMI(n)  = 0. Assume therefore that l >_ 2. I f # V  = n < 2l, then CK(n) is l- 

free, and therefore CK(n) is the only/-saturated cgg on V, and cmt (n) = CM, (n) = (~). 
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Assume therefore that n > 2/. I f  #V = n = 2/, then CK(n)  has precisely two l -cm's .  

They are edge-disjoint ,  and together form the set of  boundary edges o f  the convex 2/- 

gon [V]. Thus G = (V, E)  is l -saturated iff  it misses one edge of  each l -cm. Thus 

cm,(21) = CMt(2I)  = (22t) - 2. 

We now describe a construction of  l -saturated cgg 's  with n vertices for n > 21 > 6. 

These are called cgg ' s  of  type I. (In the next section we construct  another kind of  l-  

saturated cgg 's ,  of  type II, for n > 2l > 4.) 

Put m = l - 1 and choose a subset A = {al . . . . .  am} of  V. Assume,  without loss of  

generality, that ai = v(12i) w i t h  121 < 122 < �9 �9 �9 < 12m < t2l "~ n ,  set 12m+t = 12t + n, and 

define, for i = 1 . . . . .  m, 

Xi = {v( j ) :  ot i<  j < 12i+1}, xi = #Xi  = oq+x - t~i - 1. (2.1) 

Thus the points al  . . . . .  am, al  appear  in this cyclic order  on the boundary of  [V], and 

Xi is the set of  vertices of  [V] that lie strictly between ai and ai+l (or am and a l ,  for 

i = m). We impose two conditions:  

xi > 0 for all i, i.e., no two of  the points ai are adjacent  vertices of  [V]. (2.2) 

At  least two o f  the xi ' s  are >2 ,  i.e., the points ai do not form one (2.3) 

long succession of  alternate vertices of  [V]. 

R e m a r k .  Condit ion (2.3) implies,  ofcourse ,  thatm > 2 , i . e . , l  _> 3 ( h e n c e n  > 2 / >  6). 

m 1) Define G* = (V, E*), where E* = Ui=I{[  (12i - 1), 1)(12i)], [p(12i), v(12 i + 1 ) ]} .  

E* is the set of  boundary edges of  CK(n)  that are incident  with A. Condi t ion (2.2) 

implies that #E* = 2m = 2(l - 1), and that the edges o f  E* form a system of  dis joint  

paths, each one of  even length, on the boundary bd[V] of  [V]. Condi t ion (2.3) says 

that this system consists of  at least two paths. Clearly, G* ----- Ext(G*).  Final ly  define 

G = (V, E) = Bet(G*).  Now make the following observations: 

Proposition 2.2. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Ext G ----- G*. 

G is l-free. 

An edge e o f  CK(n)  belongs to G i f f  each side o f  e meets  A. 

A vertex v o f  G is universal (i.e., (n - 1)-valent) i f f v  is an interior vertex o f  one 

o f  the paths that form the components  o f  E*. In particular, all points o f  A are 

universal vertices o f  G. 

An edge o f  CK(n)  is not an edge o f  G i f f  it connects two vertices o f  the same set 

Xi (1 < i < m).  Hence Xi is an independent set in G. 

G is l-saturated. 

~,im=l xi ---- n - l + 1, and 

1 X2 e (G)  = - = + �89 - l + l)  - ~ i 

i = l  i=1 
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Proof (a) Follows from Proposition 1.3(d), with Ext(G*) = G*. 

(b) Follows from Proposition 1.4(a), since G = Bet(G*), and G* is obviously l-free 

(G* has no/-matching even as an abstract graph). 

(c) e E E iff each side of  e includes an edge of  E*, and this happens iff each side of  

e meets A. 

(d) Obvious. 

(e) Follows from (c). 

(f) Define, for 1 < k < m, e~- = [v(otk -- 1), v(otk)], e + = [v(otk), V(~k+l)]. (These 

+ cyclically are the two edges of  G* incident with ak.) Extend the indexing of  ak, e~-, e k 

modulo m to all integers, so that, e.g., ak = at i ffk ~- l (modm) .  Now add to G an edge 

e* not in E. By (e), both endpoints of  e* belong to the same set Xi (1 < i < m). By 

(2.3) there is another set Xj with #Xj = xj > 2. Choose the indexing in such a way that 

i < j < i + m. Note that Xi lies between ai and ai+l. Finally define 

L = {e*} U {e+: i +  1 < v < j} t_l {e~-: j + 1 < v < i + m } .  

- + the edge that points away from e* (Here el+ m = e;-. We choose from each pair e~-, e~ 

and toward Xj.) Clearly, L is an l-cm in G tO {e*} (note .that e + and ej+ 1 are disjoint since 

#Xj > 2). Thus G is l-saturated. 

(g) 

m m / 
E x i = E # X i = #  Xi = n - - # A = n - - l + l  

i=1 i=1 i=1 

follows from the definition of  the sets Xi. The rest follows from (e), [] 

From Proposition 2.2(g) we infer: 

P r o p o s i t i o n  2.3. The maximum of e(G) for the l-saturated egg's G of type I, con- 

structed here, is attained when and only when the numbers xl . . . .  , xm are as equal as 

possible. Ifn = (l - 1)(q + 1) + r ,  1 < r < l - 1(= m), that is, n - l + 1 = (l - 1)q + r ,  

choose r times xi = q -k- 1, and m - r times xi = q to obtain 

max{e(G): G is an l-saturated egg of type I, n vertices} 

= ( 2 ) - ( l - - 1 ) ( q ) - r q  �9 (2.4) 

Proof. The first statement follows easily from Proposition 2.2(g). It remains only to 

check the calculation: the formula for e (G) in Proposition 2.2(g) gives, for the minimizing 

sequence (r times q + 1 and m - r times q), 

( 2 )  - ~__1 (x2)  = ( 2 )  - r  ( q ' ~  l )  - (m - r )  (q2) " 

which is equal to the fight-hand side of  (2.4). Note that (2.4) also holds for r = 0, i.e., 

fo rn  = (l - 1)(q + 1) (=  (l - 1)q + l -  1). [] 
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Note that, in view of  (0.1), the r ight-hand side of  (2.4) is equal to Tt(n) + n - l + 1. 

(Please check.) As we see later (in Section 7), this is the maximum of  e(G)  for l -free 

cgg ' s  with n vertices (i.e., this is CMt(n)) .  Section 7 does not  depend on anything from 

Sections 3-6.  

Proposition 2.4. The minimum o f  e (G)  f o r  l-saturated cgg 's o f  type I with n vertices 

is obtained when, say, xl . . . . .  Xm-2 --- 1, Xm-I = 2, and Xm = n - 21 + 2, and is 

equal to 2(l - 1)n - (2l 2 - 31 + 2). 

Proof. This follows by a s imple calculation from Proposit ion 2.2(g). []  

3. Construction of l-Saturated cgg's---Type II 

Fix a positive integer d ( =  the j u m p  number),  put m = (d + 1)l - 1, l > 2, assume n > m, 

and choose a subset A = {al . . . . .  am} of  V of  size m. (No extra condit ions this time, see 

(2.2) and (2.3).) As  in Section 2 assume,  without loss of  generali ty that ai = v (a i ) ,  with 

a l  < a2 < - - .  < am < or1 + n, and define the sets Xi and the numbers xi ,  1 < i < m,  

exactly as in (2.1). Extend the indexing of  ai, Xi ,  and xi cyclical ly modulo  m to all 

integers, and define G* = (V, E*), where, this time, E* = {[a i ,  ai+d]: 1 < i < m}. 

E* is the set of  edges on A that have d + 1 points of  A on one (closed) side, and 

m - d + 1 points of  A on the other (closed) side. (From m = (d + 1)1 - 1 > 2d + 1 it 

follows that d + 1 < m - d + 1.) It can easily be checked that Ext(G*) = G*. 

Finally define G = (V, E)  = Bet(G*) .  In the fol lowing proposit ion we list the main 

properties of  G (compare Proposit ion 2.2). 

Proposition 3.1. 

(a) Ext (G)  = G*. 

(b) An edge e o f  CK(n)  belongs to G i f f  each (closed) side o f  e contains at least d + 1 

points o f  A. 

(c) G is l-free. 

(d) G is l-saturated. 
1 

(e) I f  ai, aj ~ A, li -- Jl < ~m, then [ai, aj] is not an edge o f  G i f f  ]i - j[  < d. 

(f) I fa i  E A a n d x  E Xj ,  i - m / 2  <_ j <_ i + m / 2 ,  then [ai, x] is not an edge o f  G 

i f f i - d  < j < i + d - 1 .  
1 

(g) l f  x ~ Xi,  y ~ Xj ,  [i - Jl < ~m, then [ x , y ]  is not an edge o f  G i f f  

l i - j l < d .  

(h) Ei%l x i  "~- •(U?=I X i )  = # ( V \ A )  = n - m, and 

e(G) = (2)-m(d-l)-2d(n-m)-~(~') 
i=1 

- - ) ' -~{xix j :  1 < i < j < m a n d ( j  - i  < d o r j  - i  >_ m - d ) }  
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-l-E{xixj:2 1 < i < m, 1 . . . .  < j < m, and( l i  - J l  < d o r l i  - J l  > m - d ) } .  

Proof. (a) Same as Proposition 2.2(a). 

(b) Follows from G = Bet(G*), and from the properties of  E* listed before. 

(c) By Proposition 1.4(a), it suffices to show that G* is l-free. Assume, on the contrary, 

that G* is not l-free, and let L ----- {el . . . . .  et} be an l-cm in G*. For 1 < i < I, denote by 

Si the side of  ei that does not meet any other edge of  L. (Si is well defined since I > 2.) 

By the remark preceding Proposition 3.1, each side Si contains at least d + 1 points of  

A. However, the sides Sl . . . . .  St are pairwise disjoint. (Si is defined as the intersection 

of  [V] with one of  the closed half-planes bounded by the line affei .) This is impossible, 

s i n c e # A = m = ( d + l ) l - 1  < ( d + l ) l .  

(d) Let e* be an edge of  CK(n) not in G. We must show that G t,j {e*} has an l- 

crn. We will show, indeed, that G* U {e*} has an l-cm. Let S +, S -  be the two closed 

sides of  e*. By (b), one of  those sides, say S - ,  contains fewer than d + 1 points of  A. 

It follows that S+\e  * contains at least m - d = (d + 1)(l - 1) points of  A. Assume 

A CI ( S + \ e  *) = {ai, ai+l . . . . .  ai+t} where m - d - 1 < t < m. Now define, for 

1 < v < l - 1, e~ = [ai+(v-1)(d+l), ai+v(d+l)-l], and put L = {el, e2 . . . . .  el- i ,  e*}. 

Then L is an l-cm in G* U {e*}. 

(e), (f) and (g) follow directly from (b). (Remember that Xi is the set o f  points of  V 

that lie strictly between ai and ai+l on bd[V].)  

(h) By (e), each point a ~ A is connected by nonedges in G (i.e., by edges of  CK(n) 

that are not in G) to 2(d - 1 ) other points of  A. This takes account of  the term - m  (d - 1 ) 

in the formula. By (f), each point x ~ Xi is connected by nonedges in G to exactly 2d 

points of  A. This takes care of  the term - 2 d ( n  - m). The remaining terms account 

for the nonedges that connect points o f  the same set Xi, or of  two distinct sets Xi,  Xj  

(see (g)). [] 

Proposition 3.2. 

(a) Given l, n, andd ,  with I > 3, d >_ 1, a n d n  >_ (d + 1)1 - 1(= m), all l -saturated 

cgg's G o f  type II constructed here satisfy 

e ( G ) > ( 2 ) - m ( d - 1 ) - 2 d ( n - m ) + � 8 9 1 8 9  (3.1) 

Equality holds iff there is a chain o f  d + 1 consecutive sets Xi that contains all 

nonempty Xi 's, i.e., iff, f or  some i, ~vv=0 xi+~ = n - m. 

(b) I f l  = 2, then we always obtain e(G)  = n. 

Proof. (a) In Proposition 3. l(h) we have 

E { x ~ x j :  l <__i < m , l  < j < m , ( l i - j l  < d o r [ i - j l > _ m - d ) }  

t <_ E { x i x j :  1 < i <_ m, 1 <_ j < m} = xi = ( n - - m )  2. (3.2) 
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Fig. I 

Define P : =  {i: 1 < i < m,  Xi > 0}. We consider  P as a subset of Zm ( =  Z / m Z ) .  

Equality holds in (3.2) iff  the circular distance in Zm between any two points of  P is < d .  

Since m = (d + 1 )l - 1 >_ 3d + 2 (here we invoke the assumption I >_ 3), this implies  

that P lies on an arc of  length d ( =  d + 1 consecutive points)  on the circuit Zm. 

(b) I l l  = 2, then m = 2d + 1, and the condi t ion "li  - Jl  -< d or li - Jl  _> m - d "  

is satisfied by all 1 < i, j < m. Thus the r ight-hand side of  the formula for e ( G )  

in Proposit ion 3.1(h) reduces to (2) - m ( d  - 1) - 2d(n - m) + �89 - m) - �89 - 

m) 2, which is equal to n (please check). (For a s impler  argument,  see Remark  3.3(ii) 

below.) []  

R e m a r k  3.3. (i) It follows from the definitions and from Proposi t ions 2.2(a) and 3.1 (a) 

that types I and II are mutually disjoint,  i.e., a cgg cannot be both of  type I and of  type II. 

(ii) It is instructive to have a better look at case l = 2 o f  the l-saturated cgg ' s  G of  

type II constructed above. Here #A = m = l ( d  + 1) - 1 = 2d + 1, and the restriction 

of  G to A is a self-intersecting (2d + 1 )-circuit  (an "asterisk").  The vertices of  X i ,  that 

lie between t2 i and ai+l  on bd[V],  are connected to the common neighbor  o f a  i a n d  ai+ 1 , 

i.e., to the opposi te  vertex a i - d  = a i+l+d (see Fig. 1). Geometr ic  graphs of  this type,  

without the restriction of  convexity, are the extremal 2-matching-free geometric  graphs 

of  order n. (See Remark  5.7 below and [E], [W], and [K].) 

4. Character iza t ion  o f / - S a t u r a t e d  cgg's  

In this section and the next we show that the only l -saturated cgg 's  are those constructed 

in Section 2 (type I) and in Section 3 (type II). 

Let G = (V, E)  be an l-saturated cgg, #V = n >_ 2/ > 4. Define G* = (V, E*) = 

Ext (G) ,  and put # = #E*. Note that # > 2. (If  # = 0, then E = E* = 0, and G is not 

/-saturated for any I > 1. I f  # = 1, then E = E* = {e}, and G is not even 2-saturated, 

since we can add to G another edge that meets e.) In fact, it will finally turn out that 

# > 3. By Proposit ion 1.4(b), G = Bet(G*);  thus it suffices to show that E* coincides  

with one of the sets E* defined in Sections 2 and 3. 

Direct each edge e of  E* in such a way that no edge of  G (except e) lies on the r ight  

side of  e. This can be done, since e is an extreme edge of  G.  In case both sides of  e do 

not include any other edge of  G, fix the direction of  e arbitrarily. (Later we see that this 

case never occurs.) Assume E* = {el . . . . .  e~} and ei = [ai ,  bi] ,  i = 1, 2 . . . . .  /z. ( e / i s  

directed from a i to bi .) 
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Of two directed edges in CK(n)  with the same starting point or with the same endpoint,  

one must necessari ly lie on the right side of  the other. It follows that the # vertices 

al . . . . .  a~, are all different. The same for bl . . . . .  b u. We can find numbers oti, 0 < cti < 

n, a n d f i  , 

~i < f i  <: Oti + n,  (4.1) 

such that ai = v(cti), bi = v ( f i )  (i = 1 ,2  . . . . .  /z). Assume that E* has been indexed 

in such a way that 0 < oq < a2 < �9 "" < au  < n. As we have done before, we extend 

the indexing of  el, ai, bi, oti, and f i  cycl ical ly  modu lo / z  to all integers i. 

Proposition 4.1. f l  < f2  < " ' '  < f u  < f l  + n.  

Proof  We already know that the numbers f l  . . . . .  flu are all noncongruent modulo n. 

I f  1 < i < j < / z  and f i  > f j ,  then ~i < t~j < f j  < f i  and therefore ej l ies on the right 

side of  e~, contrary to our assumption. Thus f l  < f2 < " '" < flu- It remains  to show 

that 

f ~  < f t  + n. (4.2) 

If  (4.2) fails, then (by (4.1)) f l  + 17 < flu < t~u + n  and therefore f !  < ot u. However, 

then el lies on the right side of e u (please check!),  a contradiction. []  

For later reference, we list again all the inequalities concerning the indices oti, f i :  

{ 0  <<Of I < ' ' '  < n,  <ot/z 

f t  < # 2 " "  < f u  < fll + n ,  (4.3) 

cti < f i  < t~i + n (i = 1, 2 . . . . .  /.t). 

Define A = {al . . . . .  a u} (C V), B = {bl . . . . .  b u} (C V). Proposit ion 4.1 implies 

that the correspondence ai ~ bi (i ---- 1 . . . . .  ~ )  is a 1-1 orientation-preserving mapping 

of  A onto B. Now distinguish two cases: 

Case I: A = B. We show that in this case G is of  type II. 

Assume bl = a~+d, where 1 < d < /z (note that a l  = al+u and bl ~ at, hence 

1 < d < / z  implies d < #) .  Since ai ~ bi is an orientation-preserving bijection of  A, it 

follows that bi = ai+d for i = 1, 2 . . . . .  /.t. Our next aim is to show that/z = (d + 1)l - 1. 

This will clearly imply that our cgg G is one of  the/ -sa turated cgg 's  of  type II constructed 

at the beginning of Section 3, with m = / z .  

If  # > (d + 1)l, then G* (and therefore G)  has an l -cm L: Take 

L = {el+~d+l): v = 0, 1 ,2  . . . . .  l - -  1}. 

(The vertices a l ,  bl ( =  ad+l) ,  ad+2, bd+2 ( =  a2d+2), a2d+3, b2d~-3 . . . . .  al+(l-l)(d+l), 

bl+~t-l)~d~l) ( =  at~d+l)) are all different and appear in this order on the boundary of  

[V].) Thus /z  <_l (d+ 1) - 1. 

Now we use our assumption that G is I-saturated to show that/z > l ( d +  1 ) -  1. Assume 

first d > 1. Define ~ = [al ,  ad] (directed from al to ad), F, = E U {~}, G = (V, /~) ,  

and G* = Ext(G)  = (V,/~*).  Note taht ~ r E and/~* C E* U {~} (check!).  Since G 
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is/-saturated, G must include an / -cm.  However, then (~* must also include an l-cm L 

(see Proposition 1.2). Since/~* C E* t.; {~}, and G* is/-free,  L consists of  ~ and l - 1 

edges of  E*. The fight side of~  contains exactly d points al . . . . .  ad of  A. The fight side 

of  any edge in E* contains exactly d + 1 points of  A. Since the fight sides of  all edges 

in L must be pairwise disjoint, we obtain # = #A > ( l -  1)(d + 1 ) +  d = l ( d  + 1 ) -  1. 

Now consider the case d = 1. We have already shown that #A = # < (d + 1)l - 1 = 

21 - 1. However, we have assumed that #V = n > 2/; thus A ~ V. Take a vertex 

x E V \ A ;  x lies between two consecutive points of  A, say between ai and ai+l , for 

some i, 1 < i < / z .  Define ~ = Ix, ai+d] = [X, ai+l] (directed from x to ai+l) .  T h e  rest 

of  the proof is exactly the same as in the previous case d > 1. This concludes Case 1 

(A ----- B). 

5. Continuation 

Before passing to the case A r B, we prove two more propositions. Call an edge 

[ai, bi] E E* long if fli > ai + 1 (i.e., if ~.([ai, bi]) > 1). (Recall that ai = v(o~i), 

bi = v( f l i ) ,  0 < oti < n,  Ol i < ~i < f f i  "~ n.)  

Proposition 5.1. I f  f o r  some 1 < i < lz, [ai,  bi] E E* is a long edge, then ai E B,  

bi E A .  

P r o o f  (see Fig. 2). Define x = v(~i  - 1), ~ = [ai, x] .  e. lies on the fight side of  el, 

hence ~ r E. Now put /~ = E L I  {~}, G = (V,/~),  G* = Ext(G) = (V,/~*). As 

before,/~* C E* t9 {~}. Since G is l-saturated, G, and therefore also r must include 

an l-cm L. L necessarily consists of  ~ and l - 1 edges of  E*\{e i } .  (ei shares a vertex 

with ~.) All edges of  L N E* lie strictly on the left side of  ~ = [ai ,  x ] .  If  no edge of  

L f'l E* uses the vertex bi,  then they all lie strictly on the left side of  ei = [ai, bi], and 

.X 

Fig. 2 

ai 
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Fig. 3 

ai 

I ai_i 
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then L'  = (L\{~}) U {ei} is an l-cm in G*, which is impossible. Thus there is an edge 

e' = L tq E* C E*\{ei} that uses bi as a vertex. Since two different edges of  E* cannot 

have the same endpoint, bi must be the starting point o f e ' ,  hence bi E A. The proof that 

ai E B is entirely analogous and is left to the reader. [] 

Proposi t ion 5.2. If, for  some i, ai lies strictly on the right side o f  e l - i ,  then ai+l lies 

strictly on the right side o f  el. 

Proof (see Fig. 3). I f  ai lies strictly on the right side of  el- i ,  then ei-i  must be a long 

edge, and therefore, by Proposition 5.1, bi-1 ~- A. Since ei cannot be entirely on the right 

side of e i_ 1, bi must lie strictly on the left side of  e i_ I. Moving on bd[ V ] counterclockwise 

from ai, we reach ai+l either at bi-l  (E A) or even earlier; at any rate, before bi. Thus 

a,-+l lies strictly on the right side of  e i . [] 

From Proposition 5.2 we conclude (by cyclical induction), that if, for some i, ai lies 

strictly on the right side of  el- l ,  then the same holds for all i, and therefore all edges o f  

E* are long, hence A = B (by Proposition 5.1). 

Case II: A ~ B. We assume henceforth that ai lies on the left side of  el_l, for all 

1 < i < #.  This implies (see (4.3)) 

0 0/I < fll _~< 0~2 "< fJ2 __~ O~3 < /~3 ~__ �9 - - b~ 0~# < /~/1 _~< 0/1 "-~- n. (5.1) 

(The rightmost inequality follows from the fact that al (=  au+l) lies on the left side 

of eu.) 

Thus E* is a convex set of  edges of CK(n). If  we put 

W = A U B : U{ve r t e :  e E E*}, 

then E* is a set of  boundary edges o f  [W]. [ W] is a nondegenerate polygon, since #E* = 

# > 2 (see the beginning of  Section 4). E* does not contain all boundary edges of  [W], 
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since A r B. Thus E* is the union of, say, x pairwise disjoint boundary paths P1 . . . . .  Pr 

of  [W]. Assume these paths P~ . . . . .  Pr appear in this order, counterclockwise, on the 

boundary of  [W], and assume also that each path Pi is directed counterclockwise. Denote 

by/zi  the length (=number  of  edges) of  Pi, and define ~-i = [ l( /zi  + 1)] (i = 1 . . . . .  K), 

~. = kl + . . .  + ~.,. Clearly,/x = / Z l  + -- .  + / , t r ,  and the maximum size of  a matching 

included in Pi is hi (i = 1 . . . . .  K). It follows that the maximum size o f  a convex matching 

in G is ;~ (see Proposition 1.2). However, G is l-saturated, and therefore the maximal 

size of  a convex matching in G must be I - 1, i.e., ~. = l - 1. (G is not complete, since 

n >_ 2l, and adding any edge to G will produce an/ -cm.)  

Proposi t ion  5.3. /zi = 2~.ifor i ---- 1 . . . . .  x, and therefore /z ----- 2~. = 2(l - 1). 

Proof. If, for some i, ].s ~ 2)~i, then/zi  = 2~.i -- 1. Let ~ be the edge that connects 

the front vertex of  Pi with the back vertex of  Pi+l. (Pi+l = Pt if i = K. If  r = 1, then 

Pi = Pi+x = PI.) e is a boundary edge of  [ W], and ~ r E. Define G = G tO {~}. The set 

of  extreme edges of (~ is E* tO {~}. G is not/-free,  and thus there is an l-cm with edges 

in E* U {~}. However, this is impossible. 

I f x  > 1, then E* tO {~} consists o f  the paths PI . . . . .  Pi U {~} to Pi+I, Pi+2 . . . . .  P~, 

and 

[ / (  1 "~-#(Pi to {e} to P i+ I ) ) ]  = [ l  (1 "]- ]/,i "~- 1 + U,+~)]  

= [I(2~.i + 1 + / z i + t ) ]  

~--- ~-i + [ l ( ]  ..]_ /2i+1) ] ~___ ~-i + ~'i+1. 

Thus the addition of  ~ does not increase the maximal size of  a matching in Pi to Pi+l. If  

x = 1, then E* = P~, and E* U {~} is a convex circuit of  2)~ edges (the whole boundary 

of  [W]), which again has no matching of  size larger than 9, = l - 1. []  

Proposi t ion 5.4. E* consists of  boundary edges of[V] only. 

Proof It suffices to show that E* contains no long edges. 

Assume e = [a, b] is a long edge in E*, and le tx  be a vertex o f  V, strictly on the right 

side o fe .  e belongs to a path Pi (1 < i < x). Since #Pi = 2~.i is even, e divides Pi into 

an even path and an odd path. Assume, e.g., that Pi has 2ct edges behind a and 2fl - 1 

edges in front o f b  (1 _< fl < ~-i; ot + fl = hi). Define ~ = Ix, b] and (~ = G U {~}. As 

before, ~ r G, and therefore (~ must have an l-cm L with edges in E* U {~}. L must use 

~, and therefore cannot use e (e N ~ = {b} # 0). However, (E*\{e}) to {~} is obtained 

from E* by replacing the path Pi of  length 2(ce + fl) by two disjoint paths P;, Pi" of  

lengths 2a and 2/3, respectively. This replacement does not increase the size t~ + /5  of  a 

maximal matching in ei. [] 

By now we know that E* consists of  x (one or more) disjoint even paths on the 

boundary of IV], of total length 2(l - 1). In the next proposition we show that x > 1, 
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and thus E* is indeed one of  the sets E* (of type I) constructed in Section 2. (The 

evenness o f # P / = / . t i  = 2~.i ensures (2.2), and r > 1 ensures (2.3).) 

Proposi t ion 5.5. r > 1. 

Proof .  Assum e r  = 1, i.e.,E* = Pi is one long path of length 2(l - 1 )  on the boundary 

of  [V], going from a to b. Define ~ = [b, a] and G = Bet(V, E* U {~}). Then G ~ G, 

since ~ ~ E. However, G is one of  the l-saturated graphs of  type II constructed in 

Section 3 (with d = 1, m = (d + 1)l - 1 = 21 - 1, and A the set of  vertices of  the path 

P~). Thus 0 is/-free, and therefore G is not l-saturated. []  

Conc lus ion  5.6. Let G = (V, E)  be an l-saturated cgg, where # V  = n > 2l > 4. 

Then G is either of  type I or of  type II. 

R e m a r k  5.7. The last conclusion together with Proposition 3.2(b) implies that any 

2-saturated cgg on n vertices has precisely n edges (and is of  type II; see Remark 3.3(ii) 

above). 

6. De terminat ion  o f  cmt (n) 

We defined cmt (n) in the Introduction to be the minimum number o f  edges of  an l- 

saturated cgg with n vertices. Recalling Remark 2.1, cm~ (n) = CM1 (n) = 0 ((V, 0) is 

1-saturated). All 2-saturated cgg 's  with n > 4 vertices are o f  type II (see Conclusion 5.6 

and the Remark after (2.3)), and they all have exactly n edges (see Proposition 3.2(b) and 

Remarks 3.3(ii) and 5.7). Thus cm2(n) = CM2(n) = n for n > 4 (actually for n > 3). 

As for small n, cmz(n) = CMt(n)  = (~) if n < 21 (CK(n) is l-saturated), and, for 

n = 2l (> 4), cmt(n) = CMt(n) = (~) - 2. (All/-saturated cgg 's  with n = 21 vertices 

have (~) - 2 edges, and the two missing edges lie on the boundary; they are of  type I if 

the missing edges are adjacent, and of  type II if not. In the latter case the missing edges 

separate bd[V] into two even  paths.) 

Assume therefore henceforth that n > 21 > 6. 

Denote by Pl.n (d) the minimum number of  edges of  an l-saturated cgg of  type II with 

n vertices and jump number d. By Proposition 3.2(a) 

Pt.n(d) = ( 2 )  - m ( d  - 1 ) -  2 d ( n  - m )  + �89 - m )  - �89 - m) 2, 

where d > 1 and m = (d + 1)l - 1 < n, hence 1 < d < [(n + 1)/I]  - 1. Substituting, 

we obtain 

x ( n + l - ( d + l ) l ) - � 8 9  2 . (6.1) 
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This is a quadratic polynomial in d, say ad 2 + bd + c, where a = 1 - � 8 9  -~- �89 I) < 0 

(since I >_ 3) and 

b = n l -  1 2 -  2n + 2 � 8 9  1. (6.2) 

This is a strictly concave function o fd .  It attains its max imum at the point d = - b / 2 a ,  

and is symmetric  with respect to this point. It attains its min imum on the effective range 

of  d, 1 < d _< [(n + 1)/ l]  - 1, at one of  the two endpoints. Note that i f n  < 31 -- 1, 

then [(n + 1) / l ]  = 2, and the effective range of  d is just d = 1. To show that P~.n(d) 

attains its minimum at the left endpoint d = 1 (and only there), it suffices to show that 

the point of  symmetry of Pt.n(d), - b / 2 a ,  lies strictly to the right o f  the center of  the 

effective interval, i.e., 

Since a < 0, it is enough to show that 

( n  ~- 1 )  
b > - a  ~ (---- � 8 9  

Using (6.2) and some simple manipulations, we find that (6.3) 

(n - 2l)(1 - 2) > 0, which is true. 

Thus we have shown that 

(6.3) 

is equivalent to 

Pt.n (1) (see (6.1)) (6.4) 

( 2 / -  3)(n - l + 1) + 1. 

The minimum is attained at G (of type II) iff G has j ump  number  d = 1 and, say, 

xl + x 2  = n + 1 - 21, x3 . . . . .  x2t-i  = 0 (see text after (3.1)). This characterizes the 

minimal / -sa tura ted  egg's .  

By Proposition 2.4, the minimum number  of  edges for egg 's  of  type I is 2(l - 1)n - 

(2/2 _ 3l + 2), which is larger (by n -- 2l) than (6.4). 

Combining all the previous considerations, we obtain: 

Theorem 6.1. 

c m l ( n ) =  i f  l = l ,  

/f  n_> 2 / = 4  

1 ( 2 / - 3 ) ( n - l + l ) + l  if  n>__2l>__6 

(i.e., 1 = 2), 

(i.e., l >_ 3). 

7. Determination of CMl(n) 

We defined CMt(n)  in the Introduction to be the max imum number  of  edges of  an l- 

saturated egg with n vertices, or, equivalently, the max imum number  of  edges of  an 
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l-free cgg with n vertices. At  the beginning of  Section 6 we have determined CMt(n) ,  

and described the extremal cgg's ,  in the following cases: CM1 (n) = cm I (n) = 0, 

CM2(n) = cm2(n) = n f o r n  > 4, CMt(n)  = cmt(n)  = (2) i f n  < 2/, and CMt(2/)  = 

crnt(2/) = (~) - 2 for I > 2. Assume, henceforth, that n > 2 / >  6. 

In Proposit ion 2.3 we have a formula (2.4) for the maximum number of  edges in 

an l-saturated cgg of  type I with n vertices (n > 2/ > 6). Call  this number  ~ol(n) 

( = ( ~ ) - ( I - 1 ) (  q ) - r q , w h e r e n = ( l - 1 ) ( q + l ) + r , 1  < r  < l - l ) .  

As we noted in Section 2, (2.4) also holds for r = 0. I t  fol lows by an easy computat ion 

that, for n as above (with r > 1), 

~ t ( n ) = ~ t ( n - 1 ) + n - - l - - q ,  (7.1) 

provided, of  course, that n > 21. As we mentioned in Section 2, ~ol (n) = Tt (n) + n - l + 1. 

Our purpose in this section is to show that 

CMt(n) = ~t(n)  (7.2) 

for n _> 2 / >  6. This is done by induction on n, for any fixed l > 3, starting with n = 2/, 

in the same spirit as the usual proof  of T u r k ' s  theorem. To make the induction step 

work we must know that eve ry / - f r ee  cgg has a vertex o f  sufficiently low valence. This 

is provided by the following lemma. 

L e m m a 7 . 1 .  Let G = (V, E) be a cgg o f  order n. Assume t h a t 6  <_ 21 <_ n = 

(l - 1)(q + 1) + r ,  1 < r < l - 1. I f  every vertex o f  G has valence > n - q, then G 

includes an l-cm. 

Proof. Orient the boundary of  [V] counterclockwise.  For  each vertex v, denote by v § 

the first vertex after v that is adjacent to v in G and by v -  the last vertex before v that is 

adjacent to v. 

Define a ( u )  = 1 + ~.([v, u+]) , /~(v)  = 1 + ~.([v-,  v]), i.e., a(v)  (resp. f l(v)) is the 

number of  vertices of  G that lie in the closed half-plane to the right of  [v, v +] (resp. 

tv-, vl). 
Clearly, c~(v),/~(v) >_ 2, and v is not adjacent to any vertex that lies strictly between 

v -  and v + , including v itself. The number  of  these vertices is t~ (v) + /3  (v) - 3. Therefore, 

val(v, G) < n - or(v) - ~(v)  + 3. 

Since, by assumption, val(v, G) > n - q, we conclude that 

or(v) + / 3 ( v )  < q + 3, (7.3) 

and therefore or(v), fl(v) < q + 1 for all v ~ V. 

Consider  three cases: 

(I) a ( v )  < fl(v) for all v 6 V. 

(II) ~ (v)  > ~(v)  for all v 6 V. 

(III) Neither I nor II. 
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Case I. For each vertex o e V, denote by v'  the immediate  counterclockwise successor 

of  v along the boundary of  IV]. Choose an arbitrary vertex of  G, call it vl, and define 

vertices v2, v3 . . . . .  vt inductively by 

Vi+l --- (vi+) ' (i = 1 . . . . .  l -  1). 

The closed boundary arc of IV] to the fight of  [vi, vi*] contains ~(v i )  vertices of  G. 

These boundary arcs come in a continuous succession one after another. I f  we show that 

~]I=1 ~ (v i )  < n, it follows that the edges [vi, v+], i = 1 . . . . .  l, form an l-cm. Since we 

are in case I, and in view of  (7.3), we find that a ( v i )  < [(q + 3) /2]  for all i, hence 

, _ .   (vi) _< l 

i=1 

I f q  < 2, then [(q + 3)/2]  < 2 and therefore l[(q + 3)/2]  _< 2l < n. I f q  > 3, then 

l [ q ~  - 3 ] -  - < l q + 3 1 ~ ( q + l ) ( l - 1 ) + l < ( q + l ) ( 1 2  _ _ - 1 )+r - - - - -n .  

(The inequality ( , )  holds easily from the assumptions q >_ 3, l >__ 3, please check.) 

Case II. This case is impossible. I f  e = [v, w] is a directed edge of  G that minimizes 

)~(e) (over all edges of  G), then clearly/~(v) >_ a ( v ) .  

Case III. In this case there must be a vertex v with a ( u )  > ~(v) ,  whose successor v' 

satisfies the opposite inequality a ( v ' )  < f l (v ' ) .  

Define vl = v, v2 = v', and continue by induction as in Case I: 

vi+n = ( v ~ ) '  for i = 2 , 3  . . . . .  I - 1 .  

Consider the edges [v~-, vz], Iv2, v~-], Iv3, v~-] . . . . .  [vt, v+]. The  closed boundary 

arcs to the fight of  these edges form a continuous succession, exactly as in Case I. The 

number  of  vertices of  G on these arcs is/~(v) for the first edge, c~(v') for the second one, 

and o~(vi) fo r3  < i < I. 

As in Case I, it suffices to show that ~(v)  + a ( v ' )  + ~--~I=3 a(v i )  < n. From our 

assumptions (~(v)  > f l (v) ,  a ( v ' )  < f l (v ' ) )  it follows that f l (v )  < (q + 3)/2,  a ( v ' )  < 

(q + 3) /2 ,  and thus ~(v)  + ~(v ' )  < q + 3, i.e., < q + 2. 

For 3 < j < l we have ot(vj) < q + 1. Summing together we find that f l (v)  +cr(v ' )  + 

Eli=3 ol(z)i) <.~ q + 2 + (1 -- 2)(q + 1) = (l -- 1)(q + 1) + 1 _< n. [] 

T h e o r e m  7.2. For n > 2l > 6, CMt(n)  = Tt(n) + n - l + 1. (The extremal graphs  

are de termined  later in Section 8.) 

Proof. As we mentioned earlier in this section, Tt(n) + n - l + 1 is equal to ~ot(n), 

which is the right-hand side of (2.4). By Proposition 2.3, there is an l-saturated cgg (of  

type I) with n vertices and ~ot (n) edges. Thus CMI(n)  > ~0t(n). 

To prove the opposite inequality we proceed by induction on n (n > 2l) for any fixed 
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l > 3. When n = 21 ( =  (l - 1)(1 + 1) -t- 2) we already know that CM/(n)  = (2) - 2, 

and this agrees with the value o f  ~0t (n), as defined in the beginning of  this section. 

The induction step ( n -  1 --* n): Suppose G is an l-free cgg of  order n, n > 2 / >  6. 

Assume n = (l - 1)(q + 1) + r ,  1 < r < l - 1. By L e m m a  7.1, G has a vertex 

v of  valence < n - q - 1. Define G'  = G \ v .  G '  is a n / - f r e e  cgg of  order  n - 1, 

n - 1 > 21 > 6, and therefore, by the induction hypothesis  e ( G ' )  < tpl(n - 1). Hence, 

by (7.1), e ( G )  = e (G ' )  + val(v, G) < ~ol(n - 1) + n  - q - 1 = tpt(n). [] 

8. Determination of the / .Extremal  egg's 

We start with the cases that are already settled. Note that whenever  CMt(n)  = cmt(n)  

the notions of  "/-saturated" and " l -extremal"  become the same. 

Case  I: l = 1, n > 2. CMI (n) = cml (n) = 0, and the extremal cgg consists o f n  vertices 

in convex position and no edges. 

Case  1I: l = 2, n > 4. CM2(n) = cm2(n) = n. 

The extremal cgg 's  have been determined in Remark  3.3(ii). They are all of  type 11 

and can be described as follows: Start with a convex n-gon P (ver tP  = V). For  some 

d, 1 < d < [(n - 1)/2], choose (arbitrarily) some 2d + 1 vertices of  P (the set A), and 

denote their convex hull by Q. Draw all 2d + 1 main diagonals  (=d iagona ls  of  order d)  

of  Q. Finally connect each vertex q of  Q with the vertices of  P that lie within the angle 

formed by the two main diagonals of  Q emanating from q. 

Case  lIl :  1 < n < 21. Here C M t ( n )  = cmt(n)  ----- (~), and the extremal cgg is CK(n) .  

Case  IV: n = 2l _> 4. Here CMt(2l)  = cmt(2/)  = (22t) - 2, and the extremal cgg ' s  

are obtained from CK(2I) by deleting two boundary edges e and e '  that are at an odd 

distance apart. 

If  e and e' are not adjacent, then they separate the boundary of  [V] into two non- 

degenerate even paths, and the cgg obtained is of  type I (with xi  = 2 twice, and xi  = 1 

l - 3 times). This can happen only when I >__ 3. 

If  e and e' are adjacent, then we obtain a cgg of  type II, with d = 1, xi  ----- 1 once and 

xi  = 0 2 / -  2 times. We call this graph the  (l, 21) -excep t iona l  cgg. 

Case  V: Suppose n > 2/ > 6, and let G be an l-saturated cgg of  order n o f  type I, as 

described in Section 2, with sets Xi  of  size x i ,  i = 1 . . . . .  l - 1, xi  > 1 for all i ,  x i  > 2 

at least twice, and ~ xi  = n - l -t- 1. Assume, also, as usual, that n = (l - 1) (q + 1) + r ,  

q >_ 1, 1 < r < l -  1, a n d i f q  = 1, then r > 1. 

We have seen (Proposition 2.3 and Theorem 7.2) that G is extremal iff the numbers 

xi  are nearly equal, i.e., xi  = q + 1 r t imes and xi  = q l - 1 - r times. 

The graphs satisfying this condition are call equ ipar t i t i oned .  

Case  VI: Let I ---- 3, n = 7. Consider  the 3-saturated cgg of  order 7, of  type II with d = 1 

(hence m = 5) and (xl ,  x2, x3, x4, xs) = (1, 0, 1, 0, 0). This one can also be descr ibed 

(simpler) as a CK(7) with two disjoint boundary paths of  length 2 removed. It has 17 

( =  0 - 4) edges, and is therefore extremal,  since ~o3(7) = 17. We call this graph the 

(3, 7) -excep t iona l  cgg. 
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T h e o r e m  8.1. Suppose n > 2l > 6. Then the only l-extremal cgg ' s o f  order n are those 

listed above, i.e.: 

(a) The equipartitioned l-saturated cgg' s of  type I of  order n. 

Co) For n = 21, the (1, 2l)-exceptional cgg's (of  type 11) mentioned in Case IV. 

(c) For I = 3, n = 7, the (3,7)-exceptional cgg of  type II described in Case VI. 

Proof Every l -ext remal  cgg is, afortiori, l -saturated.  By Conc lus ion  5.6, every l-  

saturated cgg of  order  n (n > 21 > 6) is ei ther o f  type I or  o f  type II. I f  it is of  type I, 

then we already know (Proposi t ion 2.3 and Theorem 7.2) that it is l -ex t remal  iff  it is 

equipart i t ioned.  Thus  it only  remains  to show that if  G is an  l -sa tura ted cgg of  order  n of  

type II, and  G is not  one of  the except ional  cgg's ,  then e(G) < CMt (n).  This  is precisely 

what  we are going to do. 

For  smal l  n,  i.e., for n <_ 8 if  I = 3, and for n < 21 + 1 i f  l > 4, we use a direct 

approach. After  hav ing  cleared the excepot ional  cgg ' s  out  o f  the picture,  we con t inue  by 

induc t ion  on  n,  for each fixed l. 

The  case n = 21 > 6 is already settled. We know a l l / - s a tu ra t ed  ( =  l -ext remal)  cgg ' s  

of  order  21 (Case IV above).  On e  o f  them is the (l, 21)-exceptional  cgg (of  type II), 

and the r ema in ing  ones are of  type I, equipar t i t ioned.  (There are precisely [(1 - 1) /2]  

non i somorph ic  cgg ' s  of this kind.)  

Next  come the cases I = 3, n = 7, 8. I f n  = 7, then f rom n > m = (d + 1 ) l -  1 it 

follows that d mus t  be 1, m = 5, and )-'~-~=l xi = n - m = 2. W h e n  (xl ,  x2, x3, x4, Xs) = 

(1, 0, 1 ,0 ,  0) we obta in  the (3, 7) -except ional  cgg, with 17 edges.  In the r ema in ing  cases, 

where  (Xl, x2, x3, x4, x5) is ei ther (1, 1, 0, 0, 0) or (2, 0, 0, 0, 0), the two X-vert ices  are 

not  j o ined  by  an edge,  and we are left with only 16 edges.  

For  n = 8, we have CM3 (8) = (~) - 6 ---- 22. 

The  possibi l i t ies  for 3-saturated cgg ' s  o f  type II with eight vert ices are: d = 2, m ---- 8, 

n - m = 0. This  is CK(8)  with all bounda ry  edges removed,  and  the n u m b e r  of  edges 

is (~) - 8 = 20 < 22. Or  d = 1, m = 5, )-'~.~=1 xi = n - m = 3. Each X-ver tex is not  

j o ined  to the two A-vert ices  that flank its b lock Xi. 

Moreover ,  two X-vert ices  that be long  to the same  b lock  Xi,  or  to adjacent  blocks,  

are not  j o ined  to each other. Since a pen tagon  does not  have three mutua l ly  nonad jacen t  

edges, we lose at least seven ( =  3 x 2 + 1) edges, i.e., e(G) < (~) - 7 = 21. 

F ina l ly  cons ider  the case n = 21 + 1, l > 4. Here a type  1I cgg mus t  have d = 1, 

since d = 2 would  lead to m = 3l - 1, which  is > 2 l  + 1. Thus  m ---- 21 - 1, and  
?I 

~-,i=1 xi ---- n - m ---- 2. As men t ioned  before,  each X-ver tex is no t  j o i n e d  to exact ly  two 

A-vert ices,  and therefore e(G) < (2L~-l) _ 4. However,  CMt(2 I  + 1) = /~+1~ - 3 for 
- -  ~ 2 l 

l > 4 .  

Now comes  the induct ive  step n - 1 ~ n. We as sume  that ei ther  I ----- 3 and n > 9, 

or I > 4 and n > 21 + 2. By  the induc t ion  hypothesis ,  all l - ex t reme cgg ' s  o f  order n - 1 

are of  type I and equipart i t ioned.  

Let G = (V,  E)  be an l -saturated cgg of  order n and  of  type II. We assume that G is 

l -extreme,  i.e., e(G) ---- CMt (n), and  this leads us to a contradic t ion.  

Wri te  n = (l --  1)(q + 1) + r ,  where  1 < r < l --  1. By L e m m a  7.1, t~ has a vertex 

of  valence _<n - q - 1. Pick a vertex v o f  min imal  va lence  in G and def ine V = ~'\{v}, 

G = (~ \v .  G i s / - f r ee ,  of  order  n - 1, and  therefore e(G) < C M l ( n  - 1). 
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Thus e(G) = val(v, t~) + e(G)  _< n - q - 1 + CM/(n - 1) = CM/(n) = e(G) (see 

(7.1) and (7.2)). 

It follows that val(v, G) = n - q - 1, and e(G)  = CMt(n - 1), i.e., G is also 

l-extreme. By the induction hypothesis G is of  type I and equipartitioned. 

In particular, G has exactly 2(l - 1) extreme edges, and these form a number (at least 

two) of  disjoint paths of  even length on the boundary of  IV]. Thus all extreme edges of  

G are "short" (using the language of  Section 5). 

On the other hand, if e is an extreme edge of  t~ that does not involve the vertex v, 

then e is obviously also an extreme edge in G ( =  t~\v).  Thus all but at most two of  the 

extreme edges of G are extreme also in G. 

I f d  > 1, t~ has m extreme edges, where m = (d + 1)l - 1 > 8, and none of  them is 

a boundary edge of  [I7']. Removing v, we lose at most two of  these edges, and at most 

another one becomes a boundary edge of  [V] (this can happen only if d = 2). Thus G 

has at least five "long" extreme edges, which is impossible. 

The case d = 1 remains. Here the extreme edges of  G form a convex circuit of  length 

2l - 1. If  the removed vertex v is an X-vertex, then no extreme edge is lost and thus G 

has a circuit of  extreme edges, which is impossible. Assume therefore that the removed 

vertex v is an A-vertex, say v = al. (Here we start using the notation o f  Section 3, and 

the contents of  Proposition 3.1.) 

I f  X 1 I..J X m ~ 0, then val(al, (~) > vat(x, t~) for all x ~ X1 t.J Xm, contrary to our 

assumption that v is a vertex of  minimal valence in G. 

If Xl U Xm = 0, then al is joined in G to all other vertices, which contradicts our 

assumption of  minimal valence even stronger. [] 

9. Extremal Theory for Convex Sets of Edges 

In the preceding sections we developed the extremal theory for convex l-matchings in 

cgg's  of  order n. In this section we briefly present the corresponding theory for con- 

vex sets of  I (not necessarily disjoint) edges. We denote such sets by l-c. "/-c-free," 

"l-c-saturated," and "l-c-extremal" cgg 's  are defined exactly as in the Introduction, 

with " l-cm" replaced by "l-c." The functions that correspond to CMt(n) and cmt(n) 

are denoted by Ct(n) and ct(n). 

As we already mentioned in Remark 1.5, if there is an l-c in G, then there is already 

one in Ext(G). It follows that if G is/-c-saturated, then G = Bet(G) = Bet(Ext G), as 

in Proposition 1.4(b). 

The results can be summarized as follows: 

9.1. Results Concerning cl(n), Minimal l-c-Saturated cgg 's, Ct(n), and 

l-c- Extremal cgg ' s 

(a) n < l, o r n  = l _< 2. Every cgg of  order n is/-c-free,  and thus Cl(n) = ct(n) = (2). 

Extremal cgg: CK(n). 

(b) l = 1. Cl(n)  = cl(n)  = 0. Extremal cgg: CK(n) (n vertices, no edges). 

(c) l ----- 2, n > 2. c2(n) ----- 1. Unique minimal 2-c-saturated cgg: n vertices, one 

boundary edge. 
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C2(n) = [n/2].  Unique 2-c-extremal cgg: n vertices, In /2]  mutual ly  intersecting, 

vertex disjoint  edges. I f  n is odd, there is one isolated vertex. 

(d) 1 > 3, n = I. ct(l)  = C / ( / )  = (~) - 1. Unique extremal cgg: CK(1) with one 

boundary edge removed.  ((d) is included in (e).) 

( e ) l  > 3, n > l. 

(o ,+ 0 
2 

Unique min ima l / - c - sa tu ra t ed  cgg: Let  CK(n)  be a complete  cgg based on a convex 

n-gon P .  Let  B = {bl, b2 . . . . .  bn-t+2} be a set of  n - l + 2 consecu t i ve  vertices of  P .  

Remove from CK(n)  all n-t+2 ( 2 ) edges that connect B-vertices.  

Ct(n)  = Tt(n). Extremal  cgg's :  Tur(m graphs, where each of  the l --  1 maximal  

independent  sets (of size [n / ( l  - 1)] or [ n / ( l  - 1)] appears as an arc of  consecutive 

vertices on the boundary of  the convex n-gon P .  The extremal cgg is unique (up to 

i somorphism of  cgg 's )  i ff  n is congruent  to 0, 1, or - 1 modulo  l - 1. 

9.2. Character izat ion o f  l -c -Satura ted  cgg 's 

(a) l ---- 2, n > 3. Let P be a convex n-gon with vertex set V. A cgg G = (V, E)  is 2-c- 

free iff the edges in E are mutually intersecting and vertex-disjoint .  Assume # E  = m. 

Then m < [n/2] ,  and i f m  > 0, then the vertices of  the edges in E divide the boundary 

of  P into 2m pairwise disjoint  open arcs. Denote these arcs by V1, V2 . . . . .  V ~ ,  in their 

natural cyclic order on bd P .  Then G is 2-c-saturated iff for each i,  1 < i _< n, at least 

one of  the two opposite arcs Vi, Vm+i is an open edge of  P (i.e., contains no vertex 

of  P).  

(b) l > 3, n > I. Let P be a convex n-gon with vertex set V = {v(0) . . . . .  v(n  - 1)}, 

as in Section 1. Choose an integer 8 (the j ump  number),  0 < ~5 < (n + 1 ) / l  - 1. Define 

m = (3 + 1)l - 1 (m < n). Choose a subset A C V of  size m. Assume that the points of  

A appear  in the counterclockwise cyclic order al . . . . .  am, al  on the boundary o f  P ,  and 

extend their indexing modulo m to all integers. For  a 6 A, denote by a '  the vertex of  P 

(not necessari ly in A) that follows a in the counterclockwise cycl ic  order. (If  a = v ( v ) ,  

then a '  = v ( v  + I).)  

Define E* = {[a i ,  ( a i + 8 ) ' ] :  i = 1 . . . . .  m}, G* = (V, E*), G = Bet(G*) .  Then G is 

/-c-saturated, and every l-c-saturated cgg on V is obtained in this way. 

9.3. Proofs  

The verification of  claims (a)--(d) in Section 9.1 and (a) in Section 9.2 is entirely straight- 

forward and is left to the reader. Next come the claims regarding Ct (n) and the extremal 

cgg ' s  in (e) of  Section 9.1. These can be tackled as follows: I f  a cgg G on n vertices has 

more than T l (n )  edges, then G includes a CK(I) ,  and the boundary edges of  this CK(I)  

form an l-c. The same holds if e ( G )  = Tt(n),  but G is not i somorphic  (as an abstract 

graph) to the appropriate Tur in  graph. ( =  complete  (l - 1)-partite graph on n vertices 

with nearly equal color  sets.) I f  G is isomorphic  to the Turfin graph, but (at least) one of  
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the color sets is not consecutive, then G includes a convex circuit of length I or I + 1. (If 

color set C is split, choose two appropriate vertices, c, c'  for color C, separate them on 

both sides by two vertices b, b '  not of  color C, and add one representative o f  each other 

color class. This results in a set of  I or I + 1 vertices, where each vertex is flanked by 

two vertices of  a different color.) 

If  G is a Tur'An graph, and all color sets are consecutive, then G is l-c-free. (If 

{el . . . . .  er} is a convex set of  edges in G, r > 2, then beyond each edge ei there is a 

boundary edge whose two endpoints have different colors.) 

We defer the proof of  the claims in (e) of  Section 9.1 that concern cl(n) and the 

minimal graphs until after the proof of  (b) in Section 9.2. 

Proof of(b) in Section 9.2. We must show that the cgg 's  G constructed in (b) of  Sec- 

tion 9.2 are l-c-free, that they are l-c-saturated, and that there are no other l-c-saturated 

cgg 's  on V. We model the proof of  the first two of  these three claims after the proof  of  

Proposition 3.1, and only indicate the necessary changes. 

Cla im a. Ext(G) = G*. 

If  8 = 0, then E* is a set of  m = l - 1 boundary edges o f  P,  which clearly implies 

Ext(G) = G*. 

I f8  > 0, we claim that the m edges [ai, (ai+~)'] are all distinct, and that none of  them 

lies on the right side of  any other one. Note that (ai+~)' may or may not be equal to 

ai+~+l. For (aj, (aj+8)'] (i < j < i + m) to be equal to [ai, (ai+~)'], or lie on the right 

side of  [a i, (ai+~f], we must have i < j _< i + 8 + 1 and j + 8 + 1 _> i + m, hence 

2 ( 8 + l ) > m .  However, l > _ 3 a n d 8  > 0 i m p l y 2 ( 8 + l )  < l ( 6 + l ) - l = m .  

Claim b. An edge e = [p, q] of CK(n) belongs to G iff each "half-open side" of  e 

contains at least 8 q- 1 points of A. 

Here an "half-open side" of  e = [p, q] means the boundary arc [p ~ q) of  P 

going counterclockwise from p to q, including p, excluding q, or the complementary 

arc [q ~ p), going from q (included) to p (excluded). 

Claim c, G is l-c-free. 

Suppose L = {el . . . . .  et} is an l-c in G*. Direct each edge ei in such a way that all 

other edges of  L lie on the left side of  el. Denote by Si the half-open right side of  e i as 

defined above. The I sets Si are pairwise disjoint, and each one contains 8 + 1 points of  

A. Contradiction to #A = m = (8 + 1)l - 1. 

Claim d, G is l-c-saturated. 

Let e* be an edge of  CK(n) not in G. Suppose that e* = [p, q], and the half-open arc 

[p ~ q) contains at most 8 points of  A. Let ai be the first point of  A encountered on 

bd P,  starting at q and going counterclockwise (possibly ai ~- q). The only points of  A 
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that may  poss ibly  lie in [p -~  q) arc ai+m_l, ai+m-2 . . . . .  ai+m-~. Consider  the edges 

e~ = [ai+v(~+l), (ai+v(8+l)+~)'], v = 0, 1 . . . . .  l -- 2. 

The second vertex of  the last edge el-2 is (ai+(l_2)(8+l)+8)'. However, 

i + ( / - - 2 ) ( 8 +  1 ) + 8  < i + m - - 8  

and therefore e0, el . . . . .  el-2, e* is an l-c in G t3 {e*}. 

Next we show (for I > 3, n > l) that every / -c -sa tura ted  cgg is of  the type described 

in (b) of  Section 9.2. Here we follow the treatment in Section 4. 

Let G = (V, E)  be an / -c -sa tura ted  cgg, #V = n > l > 3. Define G* = (V, E*) = 

Ext (G) ,  and put  m = #E*. As in Section 4, m > 2. Assume E* = {el . . . . .  era}, 

ei = [ai, bi] (i = l . . . . .  m ) ,  and no edge of  G (except el) lies on the fight side of  

ei, directed from ai tO bi. Define A = {al . . . . .  am}, B = {bl . . . . .  bin} and note that 

#A = #B = m, as in Section 4. 

First  we show that B = A'. Since both sets are of  the same size m, it suffices to show 

tha tA '  C B. P i c k i ,  1 < i < re. I f  el is abounda ry  edge o f  P ( =  [V] ) , thena~  = bi E B. 

Otherwise,  define e~ = [a~, bi], and note that e~ r E. It follows that the set E U {e~} 

includes an l-c L ' ,  which must contain e~. I f  L '  also contains ei, then L'  cannot contain 

any other edge on V, except [ai, a~]. However, [ai, a[] lies on the f ight  side o f  ei, and 

therefore is not in E. Since I > 3, this is impossible.  

I f  ei ~ L' ,  then each edge of  L '  except e~ can be replaced by an extreme edge of  

G that lies "behind" it. (See Proposit ion 1.2 and Remark  1.5.) Assume therefore that 

L'  C (E*\{ei})  U {e~}. I f  no edge o f  L'\{e~} ends at a~, then we can replace e~ by ei and 

obtain an l-c in G, which is impossible.  Thus a~ e B. 

By now we can write ei = [ai, bi] = [ai, (ai+6(i))'], where 0 < 8(i)  < m - 1 and the 

function 8 is m-periodic.  I f8  is not a constant, then, for some i, 8(i + 1) < 8 ( 0 ,  which 

implies that ei+l lies on the fight side of  ei, a contradiction. 

Thus E* = {[ai, (ai+6)']: i = 1 . . . . .  m}, for some constant 8, 0 < 8 < m. It only 

remains to be shown that m = (8 + 1 ) / -  1. (n > m is obvious.) I f m  > (8 + 1)/, then 

{el+(8+l)v: v = 0, 1 . . . . .  l -- 1} is an l-c in E*. I f m  < (8 + 1 ) / -  1, we dist inguish two 

cases: 

I f 8  = 0 and m < (8 + 1 ) / -  1 ---- l - 1, then E* consists of  at most  l - 2 boundary 

edges of  P .  Adding another boundary edge will not introduce an l-c (note that n > l). 

I f  8 > 1 and m _< (3 + 1 ) / -  2, define e' ---- [al, al+~], e' ~( E, since it lies on the 

right side of  el .  The half-open arc [al -+  al+~) on bd P contains exact ly 8 points of  A. 

Define G '  = (V, E tJ {e'}). If  L '  is an l-c in G' ,  then either: 

(1) e '  ~ L' ,  i.e., L '  C E, which is impossible  (see above, Claim c in Section 9.2). 

(2) e'  E L ' ,  but el ~ L' .  In that case we can replace each edge o f  L '  by an extreme 

edge, to obtain an l-c L C (E*k{ez }) U {e'}. This is again impossible ,  by the same 

reasoning as in (1). 

(3) e'  ~ L '  and el E L' .  In this case #L '  = 3, and the third edge must  be 

[al+~, (al+~)'].  However, this edge is not in E,  since it lies on the right side 

of  el .  [ ]  
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Proof  o f (e )  in Section 9.1. Assume l >_ 3, n > l, and let G = (V, E) be an l-c- 

saturated graph of  order n. We relate the number of  edges o f  G to its structure, find the 

minimum, and determine the (unique) minimal cgg. 

Let P ,  8, m, and A = {al . . . . .  am}, let E* and G* be defined as in (b) o f  Section 9.2, 

and assume G = Bet(G*). 

Two distinct vertices p, q of  P divide the boundary of  P into two half-open arcs 

[p --, q) and [q ---* p). The segment [p, q] is an edge of  G iff each of  these two arcs 

contains at least 8 + 1 points of  A. (See Claim b in Section 9.2.) 

For i = 1 . . . . .  m denote by Xi the set of  vertices of  P that lie strictly between ai_ l 

and ai, i.e., X i : V I"1 (ai- l  ""* ai), where a0 = am. Define also X + = X i U {ai}, and 

extend the definition of  Xi and X + cyclically (mod m) to all integers i. 

From the above characterization of  edges of  G we conclude that a vertex x 6 X + is 

not joined by an edge to any vertex in X +,  for i - 8 < j < i + 8, and is joined to all 

other vertices of  G. It follows that the number of  edges [ai, aj] is �89 -- 28 -- 1), the 

number of  edges [x, a] (x ~ V \ A  fixed, a 6 A) is m - 28 - 1, and the total number o f  

edges connecting A with V \ A  is (n - m) (m - 28 - 1). 

The number of  edges connecting two vertices of  V \ A  may be as low as zero. This 

happens (if and only if) all the nonempty sets Xi lie within a short run of  8 + 1 consecutive 

arcs: {Xi: io < i < io + 8}. (Note that n > m = (8 + 1)l - 1 > 38 + 2, and therefore 

n - 2 A  > 8 . )  

Thus the minimum possible number of  edges of  G, for given n, l, and 8, is 

(n -- �89 (m -- 22; -- 1) = �89 + 1 -- (8 + 1)l)(8 + 1)(l -- 2). (*) 

This is a quadratic polynomial in 6 + 1, strictly concave and symmetric about the axis 

8 + 1  = (2n+1) /21  = ( n + � 8 9  is 1 < 8 + 1  < [ ( n + l ) / l ] .  

As long as n + 1 < 2/, this is a single point. 

In any case, the axis of  symmetry (n + �89 lies strictly to the right of  the center of  

the domain, �89 + [(n + 1)/ l]) .  (We urge the reader to verify this inequality.) It follows 

that the minimum of ( ,)  is attained when 8 + 1 = 1, i.e., 8 = 0, and only there. 

The minimal/-c-saturated cgg of  order n is therefore unique, up to isomorhpism. It 

is obtained when 8 = 0, m = l - 1, and, say, 

A = {v(0), v(1) . . . . .  v ( l -  2)}, E* = {[v(i - 1), v(i)]: i --  1, 2 . . . . .  l - 1}. 

The vertices v (1) . . . . .  v (1 - 2 )  are universal, and G is obtained from C K (n) by removing 

all edges on v(l  - 1), v(l)  . . . . .  v(n - 1), v(n) (=  v(0)). In particular, ct(n) = (~) -- 
n - l + 2  
( 2 )  [] 

It is worth mentioning that the unique minimal/-c-saturated cgg of  order n described 

here is isomorphic, as an abstract graph, to the unique minimal IZq-saturated graph of  

order n, as determined in [EHM]. However, we do not know of  any simple way to deduce 

our result from that of  [EHM], or vice versa. 
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10. Possible Extensions and Open Problems 

Consider  a complete  cgg CK(n)  based on a convex n-gon P .  For  2 < l < n denote by 

Ct the class of  all convex sets of  l edges of  CK(n) .  

A partial order  < can be defined on CI, as follows: 

{al . . . . .  at} < {bl . . . . .  bl} 

if  each bi lies (weakly)  "beyond"  ai, i.e., i f  bi is weakly separated by the line affai from 

all other edges in {al . . . . .  az}. 

Note that the class of  all convex l -matchings in CK(n) ,  as well  as the class of  all 

convex sets of  I edges in CK(n) ,  form a "filter," i.e., an upwardly closed class, with 

respect to the partial order < .  

There are many other natural classes of  "forbidden configurations," which are filters 

with respect to < .  To list jus t  a few: 

(A) For e = 0, 1 . . . . .  1: convex sets of  l edges that use at least l -t- e vertices. For  

1 < e < l, this is the same as convex sets of  I edges that form e or more  disjoint  

simple paths. In this paper  we have treated the cases e = 1 ( l -matchings)  and 

e = 0 (no extra restrictions) extensively. 

(B) For  e ---- 1 . . . . .  l: convex sets o f / e d g e s  that have at least e odd components .  (An 

odd component  is a maximal  path with an odd number  of  edges.)  

(C) For t~ > 0, convex l-matchings,  with at least a extra vertices of  CK(n)  between 

any two edges. 

For  all these classes of  forbidden configurations, the analog of  Proposi t ion 1.4 holds, 

i.e., the corresponding saturated cgg ' s  satisfy G = Bet (Ext (G)) .  

In many cases an analog of  Lemma 7.1 will  hold: if  all valences of  G exceed a certain 

natural lower bound, then G must include a forbidden configuration. 

It seems, however, that considerable extra effort will be needed to extend the extremal 

theories developed in this paper, and even to determine just  the maximal  functions,  i.e., 

the analogs of  CMt (n) and Ct (n). 
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