Extremal Topological Indices for Graphs of Given Connectivity

Ioan Tomescu ${ }^{\text {a }}$, Misbah Arshad ${ }^{\text {b }}$, Muhammad Kamran Jamil ${ }^{\text {b }}$
${ }^{a}$ Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania.
${ }^{b}$ Abdus Salam School of Mathematical Sciences, 68B New Muslim Town, GC University, Lahore, Pakistan

Abstract

In this paper, we show that in the class of graphs of order n and given (vertex or edge) connectivity equal to k (or at most equal to k), $1 \leq k \leq n-1$, the graph $K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$ is the unique graph such that zeroth-order general Randić index, general sum-connectivity index and general Randić connectivity index are maximum and general hyper-Wiener index is minimum provided $\alpha \geq 1$. Also, for 2 -connected (or 2 -edge connected) graphs and $\alpha>0$ the unique graph minimizing these indices is the n-vertex cycle C_{n}.

1. Introduction

Let G be a simple graph having vertex set $V(G)$ and edge set $E(G)$. For a vertex $u \in V(G), d(u)$ denotes the degree of u and $N(u)$ the set of vertices adjacent with u. The distance between vertices u and v of a connected graph, denoted by $d(u, v)$, is the length of a shortest path between them. For two vertex-disjoint graphs G and H, the join $G+H$ is obtained by joining by edges each vertex of G to all vertices of H and the union $G \cup H$ has vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

The connectivity of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G-S$ is disconnected or has only one vertex. A graph G is said to be k-connected if its connectivity is at least k. Similarly, the edge-connectivity of G, written $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set of edges. For every graph G we have $\kappa(G) \leq \kappa^{\prime}(G)$. For other notations in graph theory, we refer [23].

The Randić index $R(G)$, proposed by Randić [19] in 1975, one of the most used molecular descriptors in structure-property and structure-activity relationship studies [9,10, 14, 18, 20, 22], was defined as

$$
R(G)=\sum_{u v \in E(G)}(d(u) d(v))^{-1 / 2}
$$

The general Randić connectivity index (or general product-connectivity index), denoted by R_{α}, of G was defined by Bollobás and Erdös [3] as

$$
R_{\alpha}=R_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha}
$$

[^0]where α is a real number. Then $R_{-1 / 2}$ is the classical Randić connectivity index and for $\alpha=1$ it is also known as second Zagreb index. For an extensive history of this index see [21].

This concept was extended to the general sum-connectivity index $\chi_{\alpha}(G)$ in [26], which is defined by

$$
\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha}
$$

where α is a real number. The sum-connectivity index $\chi_{-1 / 2}(G)$ was proposed in [25].
The zeroth-order general Randić index, denoted by ${ }^{0} R_{\alpha}(G)$ was defined in [13] and [14] as

$$
{ }^{0} R_{\alpha}(G)=\sum_{u \in V(G)} d(u)^{\alpha},
$$

where α is a real number. For $\alpha=2$ this index is also known as first Zagreb index. This sum, which is just the sum of powers of vertex degrees, was much studied in mathematical literature (see [1, 4-6, 17]).

Thus, the general Randić connectivity index generalizes both the ordinary Randić connectivity index and the second Zagreb index, while the general sum-connectivity index generalizes both the ordinary sum-connectivity index and the first Zagreb index [26].

We shall also study the extremal properties in graphs of given connectivity of another general index. We introduce here this new index, called general hyper-Wiener index, denoted by $W W_{\alpha}(G)$ and defined for any real α by

$$
W W_{\alpha}(G)=\frac{1}{2} \sum_{\{u, v\} \subseteq V(G)}\left(d(u, v)^{\alpha}+d(u, v)^{2 \alpha}\right) .
$$

For $\alpha=1$ this index was introduced by Randić as an extension of the Wiener index for trees [20] and defined for cyclic structures by Klein et al. [15] . Several extremal properties of the sum-connectivity and general sum-connectivity index for trees, unicyclic graphs and general graphs were given in [7, 8, 25, 26].

Gutman and Zhang [11] proved that among all n-vertex graphs with (vertex or edge) connectivity k, the graph $K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$, which is the graph obtained by joining by edges k vertices of K_{n-1} to a new vertex, is the unique graph having minimum Wiener index. This property was extended to Zagreb and hyper-Wiener indices by Behtoei, Jannesari and Taeri [2] and to the first and second Zagreb indices when connectivity is at most k by Li and Zhou [16].

In this paper, we further study the extremal properties of this graph relatively to zeroth-order general Randić index, general sum-connectivity index and general Randić connectivity index provided $\alpha \geq 1$ and general hyper-Wiener index for any $\alpha \neq 0$. Also, for 2-(vertex or edge)-connected graphs of order n and $\alpha>0$ the unique graph minimizing these indices is the n-vertex cycle C_{n}.

2. Main Results

Theorem 2.1. Let G be an n-vertex graph, $n \geq 3$, with vertex connectivity $k, 1 \leq k \leq n-1$ and $\alpha \geq 1$. Then ${ }^{0} R_{\alpha}(G), \chi_{\alpha}(G)$ and $R_{\alpha}(G)$ are maximum if and only if $G \cong K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$.

Proof. Let G be an n-vertex graph with $\kappa(G)=k$ such that ${ }^{0} R_{\alpha}(G)$ is maximum. Since $\alpha>0$, by addition of new edges this index strictly increases. If $k=n-1$ then G is a complete graph K_{n} and we have nothing to prove. Otherwise, $k \leq n-2$, there exists a disconnecting set $S \subset V(G)$ such that $|S|=k$ and $G-S$ has at least two connected components. Since ${ }^{0} R_{\alpha}(G)$ is maximum it follows that $G-S$ has two components, C_{1} and C_{2}, which are complete subgraphs. Also $S \cup C_{1}$ and $S \cup C_{2}$ induce complete subgraphs. By setting $\left|C_{1}\right|=x$ we get $\left|C_{2}\right|=n-k-x$ and $G \cong K_{k}+\left(K_{x} \cup K_{n-k-x}\right)$. In this case we have ${ }^{0} R_{\alpha}(G)=k(n-1)^{\alpha}+\varphi(x)$, where $\varphi(x)=$ $x(k+x-1)^{\alpha}+(n-k-x)(n-1-x)^{\alpha}$. Since $\varphi(x)=\varphi(n-k-x)$, where $1 \leq x \leq n-k-1, \varphi$ has the axis of symmetry $x=(n-k) / 2$. Its derivative equals $\varphi^{\prime}(x)=(k+x-1)^{\alpha-1}(k-1+x(1+\alpha))-(n-1-x)^{\alpha-1}(n(1+\alpha)-1-\alpha k-x(1+\alpha))$. By the symmetry of φ we can only consider the case when $x \geq(n-k) / 2$. In this case $(k+x-1)^{\alpha-1} \geq(n-1-x)^{\alpha-1}$, which implies that $\varphi^{\prime}(x) \geq(n-1-x)^{\alpha-1}(2 x+k-n)(1+\alpha)$. We have $\varphi^{\prime}((n-k) / 2)=0$ and $\varphi^{\prime}(x)>0$ for
$x>(n-k) / 2$. It follows that $\varphi(x)$ is maximum only for $x=1$ or $x=n-k-1$. In both cases the extremal graph is isomorphic to $K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$.
As above, if $\chi_{\alpha}(G)$ is maximum, it follows that $G \cong K_{k}+\left(K_{x} \cup K_{n-k-x}\right)$ and $\chi_{\alpha}(G)=\binom{k}{2}(2 n-2)^{\alpha}+\binom{x}{2} 2^{\alpha}(k+x-$ $1)^{\alpha}+\binom{n-k-x}{2} 2^{\alpha}(n-1-x)^{\alpha}+k x(n+k+x-2)^{\alpha}+k(n-k-x)(2 n-2-x)^{\alpha}$. Since $n, 2^{\alpha}$ and k are constant, it is necessary to find the maximum when $1 \leq x \leq n-k-1$, of the functions:
$\varphi_{1}(x)=\binom{x}{2}(k+x-1)^{\alpha}+\binom{n-k-x}{2}(n-1-x)^{\alpha}$ and $\varphi_{2}(x)=x(n+k+x-2)^{\alpha}+(n-k-x)(2 n-2-x)^{\alpha}$. Both functions have the axis of symmetry $x=(n-k) / 2$. As for $\varphi(x)$ we get $\varphi_{2}^{\prime}((n-k) / 2)=0$ and $\varphi_{2}^{\prime}(x) \geq(2 n-2-x)^{\alpha-1}(2 x+k-n)(\alpha+1)>0$ for $x>(n-k) / 2$. Hence $\varphi_{2}(x)$ is maximum only for $x=1$ or $x=n-k-1$.
Similarly, $2 \varphi_{1}^{\prime}(x)=(2 x-1)(k+x-1)^{\alpha}+\alpha\left(x^{2}-x\right)(k+x-1)^{\alpha-1}-(2 n-2 k-2 x-1)(n-x-1)^{\alpha}-\alpha\left((n-k-x)^{2}-\right.$ $n+k+x)(n-x-1)^{\alpha-1}$. If $x \geq(n-k) / 2$ we obtain $2 \varphi_{1}^{\prime}(x) \geq(n-x-1)^{\alpha-1}(2 x-n+k)(2 n-3+\alpha(n-k-1))>0$ for $x>(n-k) / 2$. The same conclusion follows, $\varphi_{1}(x)$ is maximum only for $x=1$ or $x=n-k-1$ and the extremal graph is the same as for ${ }^{0} R_{\alpha}(G)$.

It remains to see what happens if $R_{\alpha}(G)$ is maximum. In this case also $G \cong K_{k}+\left(K_{x} \cup K_{n-k-x}\right)$ and $R_{\alpha}(G)=\binom{k}{2}(n-1)^{2 \alpha}+\binom{x}{2}(k+x-1)^{2 \alpha}+\binom{n-k-x}{2}(n-x-1)^{2 \alpha}+k x(n-1)^{\alpha}(k+x-1)^{\alpha}+k(n-1)^{\alpha}(n-k-x)(n-x-1)^{\alpha}$. The sum of the last two terms equals $k(n-1)^{\alpha} \varphi(x)$ and we have seen that this function is maximum if and only if $x=1$ or $x=n-k-1$. To finish, it is necessary to find the maximum of $\psi(x)=\binom{x}{2}(k+x-1)^{2 \alpha}+\binom{n-k-x}{2}(n-x-1)^{2 \alpha}$. This function is exactly $\varphi_{1}(x)$ with α replaced by 2α. It follows that for $x>(n-k) / 2$ we have $2 \psi^{\prime}(x)>$ $(n-x-1)^{2 \alpha-1}(2 x+k-n)(2 n-3+2 \alpha(n-k-1))>0$ and the extremal graph is the same.

Theorem 2.2. Let G be an n-vertex graph, $n \geq 3$, with vertex connectivity $k, 1 \leq k \leq n-1$. Then $W W_{\alpha}(G)$ is minimum for $\alpha>0$ and maximum for $\alpha<0$ if and only if $G \cong K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$.

Proof. We will prove that $\sum_{\{u, v\rangle \subseteq V(G)} d(u, v)^{\alpha}$ is minimum for $\alpha>0$ and maximum for $\alpha<0$ only for $K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$. Since by addition of edges this sum strictly decreases for $\alpha>0$ and strictly increases for $\alpha<0$, it follows, as above, that every extremal graph G is isomorphic to $K_{k}+\left(K_{x} \cup K_{n-k-x}\right)$. All distances in this graph are 1 or 2 , the distance $d(u, v)=2$ if and only if $u \in C_{1}$ and $v \in C_{2}$. It follows that

$$
\sum_{\{u, v\rangle \subseteq V(G)} d(u, v)^{\alpha}=\binom{n}{2}+x(n-k-x)\left(2^{\alpha}-1\right)
$$

We have $2^{\alpha}-1>0$ for $\alpha>0$ and the reverse inequality holds for $\alpha<0$. Consequently, $x(n-k-x)$ must be minimum, which implies $x=1$ or $x=n-k-1$.

Corollary 2.3. Let G be an n-vertex graph, $n \geq 3$, with edge connectivity $k, 1 \leq k \leq n-1$ and $\alpha \geq 1$. Then ${ }^{0} R_{\alpha}(G), \chi_{\alpha}(G)$ and $R_{\alpha}(G)$ are maximum if and only if $G \cong K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$.

Proof. Suppose that $\kappa(G)=p \leq k=\kappa^{\prime}(G)$. Since $H=K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$ consists of a vertex adjacent to exactly k vertices of K_{n-1}, it follows that ${ }^{0} R_{\alpha}(H), \chi_{\alpha}(H)$ and $R_{\alpha}(H)$ are strictly increasing as functions of k. We get that the values of these indices in the set of graphs G of order equal to n and $\kappa(G)=p \leq k$, by Theorem 2.1, are bounded above by the values of these indices for $K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$. Since this graph has edge-connectivity equal to k, the proof is complete.

Note that in the statements of Theorem 2.1 and Corollary 2.3 we can replace (vertex or edge) connectivity k by (vertex or edge) connectivity less than or equal to k.

Corollary 2.4. Let G be an n-vertex graph, $n \geq 3$, with edge connectivity $k, 1 \leq k \leq n-1$. Then $W W_{\alpha}(G)$ is minimum for $\alpha>0$ and maximum for $\alpha<0$ if and only if $G \cong K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$.

Proof. The proof can be done as above, since expression $x(n-k-x)\left(2^{\alpha}-1\right)$ is decreasing in k for $\alpha>0$ and increasing for $\alpha<0$.

Corollary 2.5. Let G be an n-vertex graph, $n \geq 3$, with (vertex or edge) connectivity $k, 2 \leq k \leq n-1$. Then ${ }^{0} R_{-1}(G)$ is minimum if and only if $G \cong K_{k}+\left(K_{1} \cup K_{n-k-1}\right)$.

Proof. In this case $\alpha=-1$ and we obtain $\varphi^{\prime}(x)=(k-1)\left((k+x-1)^{-2}-(n-1-x)^{-2}\right)<0$ for $x>(n-k) / 2$. It follows that minimum of ${ }^{0} R_{-1}(G)$ is reached only for $x=1$ or $x=n-k-1$. For edge connectivity note that $\frac{1}{k}+k\left(\frac{1}{n-1}-\frac{1}{n-2}\right)+\frac{n-1}{n-2}$ is strictly decreasing in k. For $k=1$ the graph $G_{x}=K_{k}+\left(K_{x} \cup K_{n-k-x}\right)$ has ${ }^{0} R_{-1}\left(G_{x}\right)=2+\frac{1}{n-1}$ for every $1 \leq x \leq n-k-1$.

If $\alpha>0$ and G is a connected graph minimizing ${ }^{0} R_{\alpha}(G), \chi_{\alpha}(G)$ and $R_{\alpha}(G)$, then G must be minimally connected, i. e., G must be a tree. For $\alpha>0$ in [12] it was proved that among trees with $n \geq 5$ vertices, the path P_{n} has minimum general Randić index and in [26] it was shown that the same property holds for general sum-connectivity index for trees with $n \geq 4$ vertices.

In order to see what happens for 2-connected graphs we need some definitions related to Whitney's characterization of 2 -connected graphs [23,24]. An ear of a graph G is a maximal path whose internal vertices (if any) have degree 2 in G and an ear decomposition of G is a decomposition P_{0}, \ldots, P_{k} such that P_{0} is a cycle and P_{i} for $i \geq 1$ is an ear of $P_{0} \cup \ldots \cup P_{i}$. Similarly, a closed ear in G is a cycle C such that all vertices of C except one have degree 2 in G. A closed-ear decomposition of G is a decomposition P_{0}, \ldots, P_{k} such that P_{0} is a cycle and P_{i} for $i \geq 1$ is either an ear or a closed ear in $P_{0} \cup \ldots \cup P_{i}$. A graph is 2-connected if and only if it has an ear decomposition and it is 2-edge-connected if and only if it has a closed-ear decomposition.

Theorem 2.6. Let G be a 2-(connected or edge-connected) graph with $n \geq 3$ vertices. Then for $\alpha>0,{ }^{0} R_{\alpha}(G), \chi_{\alpha}(G)$ and $R_{\alpha}(G)$ are minimum if and only if $G \cong C_{n}$.

Proof. We shall prove the theorem only for 2-connected graphs and general sum-connectivity index, because in the remaining cases the proof is similar. The proof is by induction. The unique 2-connected graph of order $n=3$ is C_{3}. Suppose that $n \geq 4$ and for any graph G of order $m<n$ we have $\chi_{\alpha}(G) \geq m 4^{\alpha}$ and equality holds if and only if $G \cong C_{m}$. Let H be a 2-connected graph of order n which is not a cycle, such that $\chi_{\alpha}(H)$ is minimum. It has an ear decomposition P_{0}, \ldots, P_{k} with $k \geq 1 . P_{k}$ cannot be an edge, since by deleting this edge the resulting graph is still 2-connected and has a smaller value of χ_{α}. Denote by $r \geq 1$ the number of inner vertices of P_{k} and by u and v the common vertices of P_{k} with $P_{0} \cup \ldots \cup P_{k-1}$. Let H^{\prime} denote the subgraph of H of order $n-r$ deduced by deleting the inner vertices of P_{k}. Let $N_{H^{\prime}}(u) \backslash\{v\}=\left\{u_{1}, \ldots, u_{s}\right\}$ and $N_{H^{\prime}}(v) \backslash\{u\}=\left\{v_{1}, \ldots, v_{t}\right\}$, where $s, t \geq 2$ if $u v \notin E(H)$ and $s, t \geq 1$ otherwise. We have $\chi_{\alpha}(H)=\chi_{\alpha}\left(H^{\prime}\right)+\left(d_{H}(u)+2\right)^{\alpha}+\left(d_{H}(v)+2\right)^{\alpha}+$ $(r-1) 4^{\alpha}+\sum_{i=1}^{s}\left[\left(d_{H}(u)+d_{H}\left(u_{i}\right)\right)^{\alpha}-\left(d_{H}(u)+d_{H}\left(u_{i}\right)-1\right)^{\alpha}\right]+\sum_{i=1}^{t}\left[\left(d_{H}(v)+d_{H}\left(v_{i}\right)\right)^{\alpha}-\left(d_{H}(v)+d_{H}\left(v_{i}\right)-1\right)^{\alpha}\right]$. If $u v \in E(H)$, then we must add $\left(d_{H}(u)+d_{H}(v)\right)^{\alpha}-\left(d_{H}(u)+d_{H}(v)-2\right)^{\alpha}>0$. By the induction hypothesis, we have $\chi_{\alpha}(H)>(n-1) 4^{\alpha}+\left(d_{H}(u)+2\right)^{\alpha}+\left(d_{H}(v)+2\right)^{\alpha} \geq(n-1) 4^{\alpha}+2 \cdot 5^{\alpha}>n 4^{\alpha}=\chi_{\alpha}\left(C_{n}\right)$, a contradiction.

Acknowledgements

The authors thank the referee for valuable suggestions which improved the first version of this paper.

References

[1] R. Ahlswede, G. O. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32(1978) 97-120.
[2] A. Behtoei, M. Jannesari, B. Taeri, Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity, Appl. Math. Lett. 22(2009) 1571-1576.
[3] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[4] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245-248.
[5] S. Cioabă, Sum of powers of the degrees of a graph, Discrete Math. 306 (2006) 1959-1964.
[6] K. Ch. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66.
[7] Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem. 48 (2010) 697-703.
[8] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (2011) 402-405.
[9] R. Garcia - Domenech, J. Gálvez, J. V. de Julián - Ortiz, L. Pogliani, Some new trends in chemical graph theory, Chem. Rev. 108 (2008) 1127-1169.
[10] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[11] I. Gutman, S. Zhang, Graph connectivity and Wiener index, Bull. Acad. Serbe Sci. Arts Cl. Math. Natur. 133 (2006) 1-5.
[12] Y. Hu, X. Li, Y. Yuan, Trees with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 119-128.
[13] H. Hua, H. Deng, Unicycle graphs with maximum and minimum zeroth-order general Randić indices, J. Math. Chem. 41 (2007) 173-181.
[14] L. B. Kier, L. H. Hall, Molecular connectivity in structure - activity analysis, Wiley, New York, 1986.
[15] D. Klein, I. Lukovits, I. Gutman, On the definition of hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Phys. Chem. Sci. 35(1995) 50-52.
[16] S. Li, H. Zhou, On the maximum and minimum Zagreb indices of graphs with connectivity at most k, Appl. Math. Lett. 23 (2010) 128-132.
[17] V. Nikiforov, The sum of the squares of degrees: Sharp asymptotics, Discrete Math. 307 (2007) 3187-3193.
[18] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827-3858.
[19] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[20] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
[21] M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5-124
[22] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[23] D. B. West, Introduction to Graph Theory, (2nd Edition), Prentice-Hall, 2001.
[24] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
[25] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.
[26] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.

[^0]: 2010 Mathematics Subject Classification. Primary 05C35; Secondary 05C40
 Keywords. General sum-connectivity index, general Randić connectivity index, zeroth-order general Randić index, general hyperWiener index, vertex connectivity, edge connectivity, 2-connected graphs

 Received: 10 January 2014; Accepted: 23 February 2014
 Communicated by Francesco Belardo
 Research partially supported by Higher Education Commission, Pakistan.
 Email addresses: ioan@fmi . unibuc.ro (Ioan Tomescu), misbah_arshad15@yahoo.com (Misbah Arshad),
 m.kamran.sms@gmail.com (Muhammad Kamran Jamil)

