
Filomat 29:7 (2015), 1639–1643
DOI 10.2298/FIL1507639T

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we show that in the class of graphs of order n and given (vertex or edge) connectivity
equal to k (or at most equal to k), 1 ≤ k ≤ n − 1, the graph Kk + (K1 ∪ Kn−k−1) is the unique graph such that
zeroth-order general Randić index, general sum-connectivity index and general Randić connectivity index
are maximum and general hyper-Wiener index is minimum provided α ≥ 1. Also, for 2-connected (or
2-edge connected) graphs and α > 0 the unique graph minimizing these indices is the n-vertex cycle Cn.

1. Introduction

Let G be a simple graph having vertex set V(G) and edge set E(G). For a vertex u ∈ V(G), d(u) denotes
the degree of u and N(u) the set of vertices adjacent with u. The distance between vertices u and v of a
connected graph, denoted by d(u, v), is the length of a shortest path between them. For two vertex-disjoint
graphs G and H, the join G +H is obtained by joining by edges each vertex of G to all vertices of H and the
union G ∪H has vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H).

The connectivity of a graph G, written κ(G), is the minimum size of a vertex set S such that G − S is
disconnected or has only one vertex. A graph G is said to be k-connected if its connectivity is at least k.
Similarly, the edge-connectivity of G, written κ′(G), is the minimum size of a disconnecting set of edges.
For every graph G we have κ(G) ≤ κ′(G). For other notations in graph theory, we refer [23].

The Randić index R(G), proposed by Randić [19] in 1975, one of the most used molecular descriptors in
structure-property and structure-activity relationship studies [9, 10, 14, 18, 20, 22], was defined as

R(G) =
∑

uv∈E(G)

(d(u)d(v))−1/2.

The general Randić connectivity index (or general product-connectivity index), denoted by Rα, of G was
defined by Bollobás and Erdös [3] as

Rα = Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α,
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where α is a real number. Then R−1/2 is the classical Randić connectivity index and for α = 1 it is also known
as second Zagreb index. For an extensive history of this index see [21].

This concept was extended to the general sum-connectivity index χα(G) in [26], which is defined by

χα(G) =
∑

uv∈E(G)

(d(u) + d(v))α,

where α is a real number. The sum-connectivity index χ−1/2(G) was proposed in [25].
The zeroth-order general Randić index, denoted by 0Rα(G) was defined in [13] and [14] as

0Rα(G) =
∑

u∈V(G)

d(u)α,

where α is a real number. For α = 2 this index is also known as first Zagreb index. This sum, which is just
the sum of powers of vertex degrees, was much studied in mathematical literature ( see [1, 4–6, 17]).

Thus, the general Randić connectivity index generalizes both the ordinary Randić connectivity index
and the second Zagreb index, while the general sum-connectivity index generalizes both the ordinary
sum-connectivity index and the first Zagreb index [26].

We shall also study the extremal properties in graphs of given connectivity of another general index.
We introduce here this new index, called general hyper-Wiener index, denoted by WWα(G) and defined for
any real α by

WWα(G) =
1
2

∑
{u,v}⊆V(G)

(d(u, v)α + d(u, v)2α).

For α = 1 this index was introduced by Randić as an extension of the Wiener index for trees [20] and defined
for cyclic structures by Klein et al. [15] . Several extremal properties of the sum-connectivity and general
sum-connectivity index for trees, unicyclic graphs and general graphs were given in [7, 8, 25, 26].

Gutman and Zhang [11] proved that among all n-vertex graphs with (vertex or edge) connectivity k,
the graph Kk + (K1 ∪ Kn−k−1), which is the graph obtained by joining by edges k vertices of Kn−1 to a new
vertex, is the unique graph having minimum Wiener index. This property was extended to Zagreb and
hyper-Wiener indices by Behtoei, Jannesari and Taeri [2] and to the first and second Zagreb indices when
connectivity is at most k by Li and Zhou [16].

In this paper, we further study the extremal properties of this graph relatively to zeroth-order general
Randić index, general sum-connectivity index and general Randić connectivity index provided α ≥ 1 and
general hyper-Wiener index for any α , 0. Also, for 2-(vertex or edge)-connected graphs of order n and
α > 0 the unique graph minimizing these indices is the n-vertex cycle Cn.

2. Main Results

Theorem 2.1. Let G be an n-vertex graph, n ≥ 3, with vertex connectivity k, 1 ≤ k ≤ n − 1 and α ≥ 1. Then
0Rα(G), χα(G) and Rα(G) are maximum if and only if G � Kk + (K1 ∪ Kn−k−1).

Proof. Let G be an n-vertex graph with κ(G) = k such that 0Rα(G) is maximum. Since α > 0, by addition of
new edges this index strictly increases. If k = n − 1 then G is a complete graph Kn and we have nothing to
prove. Otherwise, k ≤ n− 2, there exists a disconnecting set S ⊂ V(G) such that |S| = k and G− S has at least
two connected components. Since 0Rα(G) is maximum it follows that G−S has two components, C1 and C2,
which are complete subgraphs. Also S ∪ C1 and S ∪ C2 induce complete subgraphs. By setting |C1| = x we
get |C2| = n − k − x and G � Kk + (Kx ∪ Kn−k−x). In this case we have 0Rα(G) = k(n − 1)α + ϕ(x), where ϕ(x) =
x(k+x−1)α+(n−k−x)(n−1−x)α. Sinceϕ(x) = ϕ(n−k−x), where 1 ≤ x ≤ n−k−1, ϕ has the axis of symmetry
x = (n−k)/2. Its derivative equalsϕ′(x) = (k+x−1)α−1(k−1+x(1+α))−(n−1−x)α−1(n(1+α)−1−αk−x(1+α)). By
the symmetry ofϕwe can only consider the case when x ≥ (n−k)/2. In this case (k+x−1)α−1

≥ (n−1−x)α−1,
which implies that ϕ′(x) ≥ (n − 1 − x)α−1(2x + k − n)(1 + α). We have ϕ′((n − k)/2) = 0 and ϕ′(x) > 0 for
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x > (n − k)/2. It follows that ϕ(x) is maximum only for x = 1 or x = n − k − 1. In both cases the extremal
graph is isomorphic to Kk + (K1 ∪ Kn−k−1).
As above, if χα(G) is maximum, it follows that G � Kk + (Kx ∪Kn−k−x) and χα(G) =

(k
2
)
(2n− 2)α +

(x
2
)
2α(k+ x−

1)α +
(n−k−x

2
)
2α(n − 1 − x)α + kx(n + k + x − 2)α + k(n − k − x)(2n − 2 − x)α. Since n, 2α and k are constant, it is

necessary to find the maximum when 1 ≤ x ≤ n − k − 1, of the functions:
ϕ1(x) =

(x
2
)
(k+x−1)α+

(n−k−x
2

)
(n−1−x)α andϕ2(x) = x(n+k+x−2)α+(n−k−x)(2n−2−x)α.Both functions have the

axis of symmetry x = (n−k)/2. As forϕ(x) we getϕ′2((n−k)/2) = 0 andϕ′2(x) ≥ (2n−2−x)α−1(2x+k−n)(α+1) > 0
for x > (n − k)/2. Hence ϕ2(x) is maximum only for x = 1 or x = n − k − 1.
Similarly, 2ϕ′1(x) = (2x− 1)(k+ x− 1)α + α(x2

− x)(k+ x− 1)α−1
− (2n− 2k− 2x− 1)(n− x− 1)α − α((n− k− x)2

−

n+ k + x)(n− x− 1)α−1. If x ≥ (n− k)/2 we obtain 2ϕ′1(x) ≥ (n− x− 1)α−1(2x− n+ k)(2n− 3+ α(n− k − 1)) > 0
for x > (n − k)/2. The same conclusion follows, ϕ1(x) is maximum only for x = 1 or x = n − k − 1 and the
extremal graph is the same as for 0Rα(G).

It remains to see what happens if Rα(G) is maximum. In this case also G � Kk + (Kx ∪ Kn−k−x) and
Rα(G) =

(k
2
)
(n−1)2α+

(x
2
)
(k+x−1)2α+

(n−k−x
2

)
(n−x−1)2α+ kx(n−1)α(k+x−1)α+ k(n−1)α(n− k−x)(n−x−1)α.

The sum of the last two terms equals k(n−1)αϕ(x) and we have seen that this function is maximum if and only
if x = 1 or x = n−k−1. To finish, it is necessary to find the maximum ofψ(x) =

(x
2
)
(k+x−1)2α+

(n−k−x
2

)
(n−x−1)2α.

This function is exactly ϕ1(x) with α replaced by 2α. It follows that for x > (n − k)/2 we have 2ψ′(x) >
(n − x − 1)2α−1(2x + k − n)(2n − 3 + 2α(n − k − 1)) > 0 and the extremal graph is the same.

Theorem 2.2. Let G be an n-vertex graph, n ≥ 3, with vertex connectivity k, 1 ≤ k ≤ n − 1. Then WWα(G) is
minimum for α > 0 and maximum for α < 0 if and only if G � Kk + (K1 ∪ Kn−k−1).

Proof. We will prove that
∑
{u,v}⊆V(G) d(u, v)α is minimum for α > 0 and maximum for α < 0 only for

Kk + (K1 ∪ Kn−k−1). Since by addition of edges this sum strictly decreases for α > 0 and strictly increases for
α < 0, it follows, as above, that every extremal graph G is isomorphic to Kk + (Kx ∪ Kn−k−x). All distances in
this graph are 1 or 2, the distance d(u, v) = 2 if and only if u ∈ C1 and v ∈ C2. It follows that∑

{u,v}⊆V(G)

d(u, v)α =
(
n
2

)
+ x(n − k − x)(2α − 1).

We have 2α − 1 > 0 for α > 0 and the reverse inequality holds for α < 0. Consequently, x(n − k − x) must be
minimum, which implies x = 1 or x = n − k − 1.

Corollary 2.3. Let G be an n-vertex graph, n ≥ 3, with edge connectivity k, 1 ≤ k ≤ n − 1 and α ≥ 1. Then
0Rα(G), χα(G) and Rα(G) are maximum if and only if G � Kk + (K1 ∪ Kn−k−1).

Proof. Suppose that κ(G) = p ≤ k = κ′(G). Since H = Kk+ (K1∪Kn−k−1) consists of a vertex adjacent to exactly
k vertices of Kn−1, it follows that 0Rα(H), χα(H) and Rα(H) are strictly increasing as functions of k. We get that
the values of these indices in the set of graphs G of order equal to n and κ(G) = p ≤ k, by Theorem 2.1, are
bounded above by the values of these indices for Kk + (K1 ∪Kn−k−1). Since this graph has edge-connectivity
equal to k, the proof is complete.

Note that in the statements of Theorem 2.1 and Corollary 2.3 we can replace (vertex or edge) connectivity
k by (vertex or edge) connectivity less than or equal to k.

Corollary 2.4. Let G be an n-vertex graph, n ≥ 3, with edge connectivity k, 1 ≤ k ≤ n − 1. Then WWα(G) is
minimum for α > 0 and maximum for α < 0 if and only if G � Kk + (K1 ∪ Kn−k−1).

Proof. The proof can be done as above, since expression x(n − k − x)(2α − 1) is decreasing in k for α > 0 and
increasing for α < 0.

Corollary 2.5. Let G be an n-vertex graph, n ≥ 3, with (vertex or edge) connectivity k, 2 ≤ k ≤ n− 1. Then 0R−1(G)
is minimum if and only if G � Kk + (K1 ∪ Kn−k−1).
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Proof. In this case α = −1 and we obtain ϕ′(x) = (k − 1)((k + x − 1)−2
− (n − 1 − x)−2) < 0 for x > (n − k)/2.

It follows that minimum of 0R−1(G) is reached only for x = 1 or x = n − k − 1. For edge connectivity note
that 1

k + k( 1
n−1 −

1
n−2 ) + n−1

n−2 is strictly decreasing in k. For k = 1 the graph Gx = Kk + (Kx ∪ Kn−k−x) has
0R−1(Gx) = 2 + 1

n−1 for every 1 ≤ x ≤ n − k − 1.

If α > 0 and G is a connected graph minimizing 0Rα(G), χα(G) and Rα(G), then G must be minimally
connected, i. e., G must be a tree. For α > 0 in [12] it was proved that among trees with n ≥ 5 vertices,
the path Pn has minimum general Randić index and in [26] it was shown that the same property holds for
general sum-connectivity index for trees with n ≥ 4 vertices.

In order to see what happens for 2-connected graphs we need some definitions related to Whitney’s
characterization of 2-connected graphs [23, 24]. An ear of a graph G is a maximal path whose internal
vertices (if any) have degree 2 in G and an ear decomposition of G is a decomposition P0, . . . ,Pk such that P0
is a cycle and Pi for i ≥ 1 is an ear of P0∪ . . .∪Pi. Similarly, a closed ear in G is a cycle C such that all vertices
of C except one have degree 2 in G. A closed-ear decomposition of G is a decomposition P0, . . . ,Pk such that
P0 is a cycle and Pi for i ≥ 1 is either an ear or a closed ear in P0∪ . . .∪Pi. A graph is 2-connected if and only
if it has an ear decomposition and it is 2-edge-connected if and only if it has a closed-ear decomposition.

Theorem 2.6. Let G be a 2-(connected or edge-connected) graph with n ≥ 3 vertices. Then for α > 0, 0Rα(G), χα(G)
and Rα(G) are minimum if and only if G � Cn.

Proof. We shall prove the theorem only for 2-connected graphs and general sum-connectivity index, because
in the remaining cases the proof is similar. The proof is by induction. The unique 2-connected graph of order
n = 3 is C3. Suppose that n ≥ 4 and for any graph G of order m < n we haveχα(G) ≥ m4α and equality holds if
and only if G � Cm. Let H be a 2-connected graph of order n which is not a cycle, such thatχα(H) is minimum.
It has an ear decomposition P0, . . . ,Pk with k ≥ 1. Pk cannot be an edge, since by deleting this edge the
resulting graph is still 2-connected and has a smaller value ofχα. Denote by r ≥ 1 the number of inner vertices
of Pk and by u and v the common vertices of Pk with P0∪ . . .∪Pk−1. Let H′ denote the subgraph of H of order
n − r deduced by deleting the inner vertices of Pk. Let NH′ (u)\{v} = {u1, . . . ,us} and NH′ (v)\{u} = {v1, . . . , vt},
where s, t ≥ 2 if uv < E(H) and s, t ≥ 1 otherwise. We have χα(H) = χα(H′) + (dH(u) + 2)α + (dH(v) + 2)α +
(r − 1)4α +

∑s
i=1[(dH(u) + dH(ui))α − (dH(u) + dH(ui) − 1)α] +

∑t
i=1[(dH(v) + dH(vi))α − (dH(v) + dH(vi) − 1)α]. If

uv ∈ E(H), then we must add (dH(u) + dH(v))α − (dH(u) + dH(v) − 2)α > 0. By the induction hypothesis, we
have χα(H) > (n − 1)4α + (dH(u) + 2)α + (dH(v) + 2)α ≥ (n − 1)4α + 2 · 5α > n4α = χα(Cn), a contradiction.
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