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We calculate the effect of a Dirac point �a conical singularity in the band structure� on the transmission of
monochromatic radiation through a photonic crystal. The transmission as a function of frequency has an
extremum near the Dirac point, depending on the transparencies of the interfaces with free space. The extremal
transmission T0=�0W /L is inversely proportional to the longitudinal dimension L of the crystal �for L larger
than the lattice constant and smaller than the transverse dimension W�. The interface transparencies affect the
proportionality constant �0, and they determine whether the extremum is a minimum or a maximum, but they
do not affect the “pseudodiffusive” 1/L dependence of T0.
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I. INTRODUCTION

In a two-dimensional photonic crystal with inversion
symmetry the band gap may become vanishingly small at
corners of the Brillouin zone, where two bands touch as a
pair of cones. Such a conical singularity is also referred to as
a Dirac point, because the two-dimensional Dirac equation
has the same conical dispersion relation. In a seminal work
�1�, Raghu and Haldane investigated the effects of broken
inversion symmetry and broken time reversal symmetry on
the Dirac point of an infinite photonic crystal. Here we con-
sider the transmission of radiation through an ideal but finite
crystal, embedded in free space.

As we will show, the proximity to the Dirac point is as-
sociated with an unusual scaling of the transmitted photon
current I with the length L of the photonic crystal. We as-
sume that L is large compared to the lattice constant a but
small compared to the transverse dimension W of the crystal.
For a true band gap, I would be suppressed exponentially
with increasing L when the frequency � lies in the gap.
Instead, we find that near the Dirac point I�1/L. The 1/L
scaling is reminiscent of diffusion through a disordered me-
dium, but here it appears in the absence of any disorder
inside the photonic crystal.

Such “pseudodiffusive” scaling was discovered in Refs.
�2,3� for electrical conduction through graphene �a two-
dimensional carbon lattice with a Dirac point in the spec-
trum�. Both the electronic and optical problems are governed
by the same Dirac equation inside the medium, but the cou-
pling to the outside space is different. In the electronic prob-
lem, the coupling can become nearly ideal for electrical con-
tacts made out of heavily doped graphene �2,3�, or by
suitably matching the Fermi energy in metallic contacts
�4,5�. An analogous freedom does not exist in the optical
case.

The major part of our analysis is therefore devoted to the
question how nonideal interfaces affect the dependence of I
on � and L. Our conclusion is that

I/I0 = �0W/L �1.1�

at the Dirac point, with I0 the incident current per mode and
�0 an effective interface transparency. The properties of the

interfaces determine the proportionality constant �0, and they
also determine whether I as a function of � has a minimum
or a maximum near the Dirac point, but they leave the 1/L
scaling unaffected.

In Sec. II we formulate the wave equations inside and
outside the medium. The Helmholtz equation in free space is
matched to the Dirac equation inside the photonic crystal by
means of an interface matrix in Sec. III. This matrix could be
calculated numerically, for a specific model for the termina-
tion of the crystal, but to arrive at general results we work
with the general form of the interface matrix �constrained by
the requirement of current conservation�. The mode depen-
dent transmission probability through the crystal is derived
in Sec. IV. It depends on a pair of interface parameters for
each of the two interfaces. In Sec. V we then show that the
extremal transmission near the Dirac point scales �1/L re-
gardless of the values of these parameters. We conclude in
Sec. VI with suggestions for experiments.

II. WAVE EQUATIONS

We consider a two-dimensional photonic crystal consist-
ing of a triangular or honeycomb lattice in the x-y plane
formed by cylindrical air-filled holes along the z axis in a
dielectric medium �see Fig. 1�. The crystal has a width W
along the y direction and a length L along the x direction,
both dimensions being large compared to the lattice constant
a. Monochromatic radiation �frequency �� is incident on the
plane x=0, with the electric field E�x ,y�ei�t polarized along
the z axis.

In the free space outside of the photonic crystal �x�0 and
x�L� the Maxwell equations reduce to the Helmholtz equa-
tion

��x
2 + �y

2�E�x,y� +
�2

c2 E�x,y� = 0. �2.1�

The mean �time averaged� photon number flux in the x di-
rection is given by �6�

jH =
�0c2

4i��2�E*�E

�x
− E

�E*

�x
� . �2.2�
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Inside the photonic crystal �0�x�L� the Maxwell equa-
tions reduce to the Dirac equation �1�

� 0 − ivD��x − i�y�
− ivD��x + i�y� 0

���1

�2
� = �� − �D���1

�2
� ,

�2.3�

for the amplitudes �1, �2 of a doublet of two degenerate
Bloch states at one of the corners of the hexagonal first Bril-
louin zone.

As explained by Raghu and Haldane �1,7�, the modes at
the six zone corners Kp, Kp� �p=1,2 ,3�, which are degenerate
for a homogeneous dielectric, are split by the periodic dielec-
tric modulation into a pair of doublets at frequency �D and a
pair of singlets at a different frequency. The first doublet and
singlet have wave vectors at the first set of equivalent corners
Kp, while the second doublet and singlet are at Kp�. Each
doublet mixes and splits linearly forming a Dirac point as the
wave vector is shifted by 	k from a zone corner. The Dirac
equation �2.3� gives the envelope field �ei	k·r of one of these
doublets.

The frequency �D and velocity vD in the Dirac equation
depend on the strength of the periodic dielectric modulation,
tending to �D=c��Kp�=c��Kp��=4
c� /3a and vD=c� /2 in the
limit of weak modulation. �The speed of light c� in the ho-
mogeneous dielectric is smaller than the free space value c.�

Equation �2.3� may be written more compactly as

− ivD�� · ��� = 	��, 	� � � − �D, �2.4�

in terms of the spinor �= ��1 ,�2� and the vector of Pauli
matrices �= ��x ,�y�. In the same notation, the velocity op-
erator for the Dirac equation is vD�. The mean photon num-
ber flux jD in the x direction is therefore given by

jD = vD�*�x� = vD��1
*�2 + �2

*�1� . �2.5�

The termination of the photonic crystal in the y direction
introduces boundary conditions at the edges y=0 and y=W
which depend on the details of the edges, for example, on
edges being of zigzag, armchair, or other type. For a wide
and short crystal, W�L, these details become irrelevant and
we may use periodic boundary conditions ���x ,0�
=��x ,W�� for simplicity.

III. WAVE MATCHING

The excitation of modes near a Dirac point has been dis-
cussed by Notomi �8�, in terms of a figure similar to Fig. 2.
Because the y component of the wave vector is conserved
across the boundary at x=0, the doublet near K1= �Kx ,Ky� or
K2= �−Kx ,Ky� can only be excited if the incident radiation
has a wave vector k= �kx ,ky� with ky near Ky. The conserva-
tion of ky holds up to translation by a reciprocal lattice vec-
tor. We will consider here the case of �k�� �Kp�, where no
coupling to K3 is allowed. The actual radius of the equal
frequency contour in the free space at �=�D will depend on
a particular photonic crystal realization.

The incident plane waves Eincident=E0eik·r in free space
that excite Bloch waves at a frequency 	�=�−�D have ky
=Ky�1+O�	� /�D�� and kx=k0�1+O�	� /�D�� with

k0 = 	��D/c�2 − Ky
2. �3.1�

For 	��D we may therefore write the incident wave in the
form

x

y

W

L
a

FIG. 1. �Color online� Photonic crystal formed by a dielectric
medium perforated by parallel cylindrical holes on a triangular lat-
tice �upper panel: front view; lower panel: top view�. The dashed
lines indicate the radiation incident on the armchair edge of the
crystal, with the electric field polarized in the z direction.
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FIG. 2. Right panels: Hexagonal first Brillouin zone of the pho-
tonic crystal �top� and dispersion relation of the doublet near one of
the zone corners �bottom�. Filled and open dots distinguish the two
sets of equivalent zone corners, centered at Kp and Kp�, respectively.
The small circles centered at the zone corners are the equal-
frequency contours at a frequency � just above the frequency �D of
the Dirac point. Left panels: Equal-frequency contour in free space
�top� and corresponding dispersion relation �bottom�. A plane wave
in free space with kx close to k0 �arrows in the upper left panel�
excites Bloch waves in the photonic crystal with k close to K1 and
K2 �arrows in the upper right panel�, as dictated by conservation of
ky and � �dotted horizontal lines�.
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Eincident�x,y� = E+�x,y�eik0x+iKyy , �3.2�

with E+ a slowly varying function. Similarly, the reflected
wave will have ky 
Ky and kx
−k0, so that we may write it
as

Ereflected�x,y� = E−�x,y�e−ik0x+iKyy , �3.3�

with E− slowly varying.
The orientation of the Brillouin zone shown in Fig. 2

corresponds to an armchair edge of the triangular lattice at
x=0. For this orientation only one of the two inequivalent
doublets is excited for a given ky. �The other doublet at K1�,
K2� is excited for −ky.� A 90° rotation of the Brillouin zone
would correspond to a zigzag edge. Then a linear combina-
tion of the two inequivalent doublets is excited near ky =0.
For simplicity, we will restrict ourselves here to the case
shown in the figure of separately excitable doublets.

While the conservation of the wave vector component
parallel to the boundary determines which modes in the pho-
tonic crystal are excited, it does not determine with what
strength. For that purpose we need to match the solutions of
the Helmholtz and Dirac equations at x=0. The matching
should preserve the flux through the boundary, so it is con-
venient to write the flux in the same form at both sides of the
boundary.

The photon number flux �2.2� for the Helmholtz equation
may be written in the same form as the flux �2.5� for the
Dirac equation, by

jH = vHE*�xE , �3.4a�

vH =
�0c2k0

4��2 , E = �E+ + E−

E+ − E−
� . �3.4b�

�In the prefactor k0 we have neglected corrections of order
	� /�D.� Flux conservation then requires

vHE*�xE = vD�*�x�, at x = 0. �3.5�

The matching condition has the general form �9�

� = �vH/vD�1/2ME, at x = 0. �3.6�

The flux conservation condition �3.5� implies that the trans-
fer matrix M should satisfy a generalized unitarity condition,

M−1 = �xM
†�x. �3.7�

Equation �3.7� restricts M to a three-parameter form

M = e��ze��yei��x �3.8�

�ignoring an irrelevant scalar phase factor�. The real param-
eters � ,� ,� depend on details of the boundary at the scale of
the lattice constant—they cannot be determined from the
Helmholtz or Dirac equations �the latter only holds on length
scales �a�.

We now show that the value of � becomes irrelevant close
to the Dirac point. At the boundary the incident and reflected
waves have the form

Eincident = E0�1

1
�, Ereflected = rE0� 1

− 1
� , �3.9�

with r the reflection coefficient and E0�E+�0,y� a slowly
varying function. Both “spinors” are eigenvectors of �x,
hence the action of ei��x on E is simply a phase factor

MEincident = e��ze��yei�Eincident,

MEreflected = e��ze��ye−i�Ereflected. �3.10�

There is no need to determine the phase factor e±i�, since it
has no effect on the reflection probability �r�2.

A similar reasoning applies at the boundary x=L, where
the matching condition reads

� = �vH/vD�1/2M�E, at x = L . �3.11�

Flux conservation requires that M�=e���ze���yei���x, with
real parameters �� ,�� ,��. The value of �� is again irrelevant
close to the Dirac point, because the spinor of the transmitted
wave

Etransmitted = tE0�1

1
� �3.12�

�with t the transmission coefficient� is an eigenvector of �x.
So

M�Etransmitted = e���ze���yei��Etransmitted, �3.13�

with a phase factor ei�� that has no effect on the transmission
probability �t�2.

IV. TRANSMISSION PROBABILITY

We consider the case W�L of a wide and short crystal,
when we may use periodic boundary conditions at y=0,W
for the Bloch waves ��ei	k·r. The transverse wave vector
	ky is then discretized at 	ky =2
n /W�qn, with mode index
n=0, ±1, ±2, ±3, . . .. We seek the transmission amplitude tn
of the nth mode.

We first determine the transfer matrix Mn�x ,0� of the nth
mode �n�x�eiqny through the photonic crystal, defined by

�n�x� = Mn�x,0��n�0� . �4.1�

From the Dirac equation �2.4� we obtain the differential
equation

d

dx
Mn�x,0� = � i	�

vD
�x + qn�z�Mn�x,0� , �4.2�

with solution

Mn�x,0� = cos knx +
sin knx

kn
� i	�

vD
�x + qn�z� . �4.3�

We have defined the longitudinal wave vector

kn = 	�	�/vD�2 − qn
2. �4.4�

The total transfer matrix through the photonic crystal, includ-
ing the contributions �3.6� and �3.11� from the interfaces at
x=0 and x=L, is
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M = M�−1Mn�L,0�M . �4.5�

It determines the transmission amplitude by

M�1 + rn

1 − rn
� = �tn

tn
� ⇒ �1 − rn

1 + rn
�

= M†�tn

tn
� ⇒

1

tn

=
1

2�
i=1

2

�
j=1

2

Mij
* , �4.6�

where we have used the current conservation relation M−1

=�xM†�x.
The general expression for the transmission probability

Tn= �tn�2 is rather lengthy, but it simplifies in the case that the
two interfaces at x=0 and x=L are related by a reflection
symmetry. For a photonic crystal that has an axis of symme-
try at x=L /2 both ��x� and �y��L−x� are solutions at the
same frequency. This implies for the transfer matrix the sym-
metry relation

�yM�y = M−1 ⇒ �yM��y = M ⇒ �� = �, �� = − � ,

�4.7�

and we obtain

1

Tn
= �	� sin knL

vDkn
cosh 2� − cos knL sinh 2� sinh 2�

−
qn sin knL

kn
sinh 2� cosh 2��2

+ �cos knL cosh 2�

+
qn sin knL

kn
sinh 2��2

. �4.8�

For an ideal interface �when �=0=�� we recover the trans-
mission probability of Ref. �3�.

At the Dirac point, where 	�=0⇒kn= iqn, Eq. �4.8� re-
duces further to

1

Tn
= cosh2�qnL + 2�� + sinh2 2� sinh2�qnL + 2�� .

�4.9�

More generally, for two arbitrary interfaces, the transmission
probability at the Dirac point takes the form

1

Tn
= cosh2�� − ���cosh2 �n + sinh2�� + ���sinh2 �n,

�n = qnL + � − ��. �4.10�

While the individual Tn’s depend on � and ��, this depen-
dence drops out in the total transmission �nTn.

V. PHOTON CURRENT

The transmission probabilities determine the time aver-
aged photon current I at frequency �D+	� through the pho-
tonic crystal

I�	�� = I0 �
n=−�

�

Tn�	�� , �5.1�

where I0 is the incident photon current per mode. The sum
over n is effectively cut off at �n � �W /L�1, because of the
exponential decay of the Tn’s for larger �n�. This large num-
ber of transverse modes excited in the photonic crystal close
to the Dirac point corresponds in free space to a narrow
range 	�a /L1 of angles of incidence. We may therefore
assume that the incident radiation is isotropic over this range
of angles 	�, so that the incident current per mode I0 does
not depend on n.

Since W /L�1 the sum over modes may be replaced by
an integration over wave vectors �n=−�

� → �W /2
��−�
� dqn.

The resulting frequency dependence of the photon current
around the Dirac frequency is plotted in Figs. 3 and 4, for
several values of the interface parameters. As we will now
discuss, the scaling with the separation L of the interfaces is

β = 1
β = 0.5
β = 0.3

β = 0

(L/vD)δω

(L
/
W

)I
/
I 0

1050-5-10

2.5

2

1.5

1

0.5

0

γ = 1
γ = 0.5
γ = 0.3

γ = 0

(L/vD)δω

(L
/
W

)I
/
I 0

1050-5-10

2.5

2

1.5

1

0.5

0

FIG. 3. Frequency dependence of the transmitted current, for
interface parameters ��=�, ��=−�. In the top panel we take �=0
and vary �, while in the bottom panel we take �=0 and vary �. The
solid curves ��=�=0� correspond to maximal coupling of the pho-
tonic crystal to free space. The curves are calculated from Eqs. �4.8�
and �5.1�, in the regime W /L�1 where the sum over modes may be
replaced by an integration over transverse wave vectors.

β = γ = 1
β = γ = 0.5
β = γ = 0.3

(L/vD)δω

(L
/
W

)I
/
I 0

1050-5-10

2.5

2

1.5

1

0.5

0

FIG. 4. Same as Fig. 3 for � and � both nonzero.
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fundamentally different close to the Dirac point than it is
away from the Dirac point.

Substitution of Eq. �4.10� into Eq. �5.1� gives the photon
current at the Dirac point

I�	� = 0� = I0�0
W

L
,

�0 =
arctan�sinh�� + ���/cosh�� − ����


 sinh�� + ���cosh�� − ���
, �5.2�

independent of the parameters � ,��. For two ideal interfaces
we reach the limit

lim
�,��→0

I�	� = 0�/I0 =
1




W

L
, �5.3�

in agreement with Refs. �2,3�. Equation �5.2� shows that,
regardless of the transparency of the interfaces at x=0 and
x=L, the photon current at the Dirac point is inversely pro-
portional to the separation L of the interfaces �as long as a
LW�.

As seen in Figs. 3 and 4, the photon current at the Dirac
point has an extremum �minimum or maximum� when either
� or � are equal to zero. If the interface parameters � ,� are
both nonzero, then the extremum is displaced from the Dirac
point by a frequency shift 	�c. The photon current I�	�c� at
the extremum remains inversely proportional to L as in Eq.
�5.2�, with a different proportionality constant �0 �which
now depends on both � and ��.

The 1/L scaling of the photon current applies to a fre-
quency interval �	���vD /L around the Dirac frequency �D.
For �	���vD /L the photon current approaches the
L-independent value

I� = I0�
W	�


vD
, �5.4�

with rapid oscillations around this limiting value. The effec-
tive interface transmittance � is a rather complicated func-
tion of the interface parameters � ,�� ,� ,��. It is still some-
what smaller than unity even for maximal coupling of the
photonic crystal to free space ��=
 /4 for �=�=0�.

VI. CONCLUSION

While several experiments �10,11� have studied two-
dimensional photonic crystals with a honeycomb or triangu-
lar lattice, the emphasis has been on the frequency range
where the band structure has a true gap, rather than on fre-
quencies near the Dirac point. Recent experiments on elec-
tronic conduction near the Dirac point of graphene have
shown that this singularity in the band structure offers a
qualitatively new transport regime �12�. Here we have ex-
plored the simplest optical analog, the pseudodiffusive trans-
mission extremum near the Dirac point of a photonic crystal.
We believe that photonic crystals offer a particularly clean
and controlled way to test this prediction experimentally. The
experimental test in the electronic case is severely hindered
by the difficulty to maintain a homogeneous electron density
throughout the system �13�. No such difficulty exists in a
photonic crystal.

If this experimental test is successful, there are other un-
usual effects at the Dirac point waiting to be observed. For
example, disorder has been predicted to increase—rather
than decrease—the transmission at the Dirac point �14–16�.
Photonic crystals could provide an ideal testing ground for
these theories.
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