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Extremal trees with fixed degree sequence for atom-bond connectivity
index
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Abstract. The atom-bond connectivity (ABC) index of a graph G is the sum of
√

d(u)+d(v)−2
d(u)d(v) over all edges uv

of G, where d(u) is the degree of vertex u in G. We characterize the extremal trees with fixed degree sequence
that maximize and minimize the ABC index, respectively. We also provide algorithms to construct such
trees.

1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). For any vertex v ∈ V(G),
denote by dG(v) or d(v) the degree of v in G.

The atom-bond connectivity (ABC) index of G is defined as [1]

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v) − 2

d(u)d(v)
.

The ABC index displays an excellent correlation with the heat of formation of alkanes [1], and from it
a basically topological approach was developed to explain the differences in the energy of linear and
branched alkanes both qualitatively and quantitatively [2]. Various properties of the ABC index have been
established, see [3–8].

The (general) Randić index of a graph G is defined as [9]

Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α,

where α is a nonzero real number. Delorme et al. [10] described an algorithm that determines a tree of fixed
degree sequence that maximizes the (general) Randić index for α = 1 (also known as the second Zagreb
index [11]). Then Wang [12] characterized the extremal trees with fixed degree sequence that minimize the
(general) Randić index for α > 0, and maximize the (general) Randić index for α < 0.

In this note, we use the techniques from [10, 12] to characterize the extremal trees with fixed degree
sequence to maximize and minimize the ABC index.
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2. Preliminaries

For a tree T, the degree sequence of T is the sequence of degrees of the non-pendent vertices arranged
in a non-increasing order.

First we give two lemmas.

Let f (x, y) =
√

x+y−2
xy for x, y ≥ 1 with x + y > 2.

Lemma 2.1. ([5]) If y ≥ 2 is fixed, then f (x, y) is decreasing in x.

For s > r ≥ 1, let 1r,s(x) = f (x, r) − f (x, s).

Lemma 2.2. The fuction 1r,s(x) is increasing in x.

Proof. Obviously, 1r,s(x) =
√

1
x +

1
r − 2

rx −
√

1
x +

1
s − 2

sx . Then

1′r,s(x) =
1
2

√
rx

r + x − 2

(
− 1

x2 +
2

rx2

)
− 1

2

√
sx

s + x − 2

(
− 1

x2 +
2

sx2

)
=

√
x

x2
√

r + x − 2

(
1√

r
−
√

r
2

)
−

√
x

x2
√

s + x − 2

(
1√

s
−
√

s
2

)
.

=

√
x

2x2

 2 − r√
r(r + x − 2)

− 2 − s√
s(s + x − 2)

 .
Let h(t) = 2−t√

t(t+x−2)
for t ≥ 1 with t + x > 2. It is easily seen that h′(t) = − xt+2(t+x−2)

2(t(t+x−2))
3
2
< 0, implying that h(t) is

decreasing in t. Recall that r < s. Then 1′r,s(x) =
√

x
2x2 (h(r) − h(s)) > 0, and thus result follows.

For a tree T and i = 0, 1, . . . , let Li = Li(T) be the set of vertices in T, the minimum distance from which
to the set of pendent vertices of T is i. Clearly, L0 is exactly the set of pendent vertices in T.

For a graph G with F ⊆ E(G), denote by G − F the subgraph of G obtained by deleting the edges of F.
Similarly, G +W denotes the graph obtained from G by adding edges in W, where W is an subset of edge
set of the complement of G.

3. Upper bound for the ABC index of trees with fixed degree sequence

In this section, we characterize the extremal trees with maximum ABC index among the trees with fixed
degree sequence, and provide an algorithm to construct such trees.

Lemma 3.1. Let T be a tree with maximum ABC index among the trees with fixed degree sequence. Let P =
v0v1v2 . . . vt be a path in T, where d(v0) = d(vt) = 1. For 1 ≤ i ≤ t

2 , we may always assume
(i) if i is odd, then d(vi) ≥ d(vt−i) ≥ d(v j) for i + 1 ≤ j ≤ t − i − 1;
(ii) if i is even, then d(vi) ≤ d(vt−i) ≤ d(v j) for i + 1 ≤ j ≤ t − i − 1.

Proof. We argue by induction on i. Suppose that d(v1) < d(v j) for some 2 ≤ j ≤ t − 2. Let T′ = T −
{v0v1, v jv j+1} + {v0v j, v1v j+1}. Obviously, T′ has the same degree sequence as T. Note that d(v0) = 1. Since
j + 1 ≤ t − 1, we have d(v j+1) ≥ 2 > 1. Since d(v j) > d(v1) ≥ 1, we know by Lemma 2.2 that the function
1d(v1),d(v j)(x) is increasing in x, and then

ABC(T) − ABC(T′) = f (d(v0), d(v1)) + f (d(v j), d(v j+1)) − f (d(v0), d(v j)) − f (d(v1), d(v j+1))

=
(

f (d(v0), d(v1)) − f (d(v0), d(v j))
)
−

(
f (d(v1), d(v j+1)) − f (d(v j), d(v j+1))

)
= 1d(v1),d(v j)(d(v0)) − 1d(v1),d(v j)(d(v j+1))
= 1d(v1),d(v j)(1) − 1d(v1),d(v j)(d(v j+1)) < 0,



R. Xing, B. Zhou / Filomat 26:4 (2012), 683–688 685

which is a contradiction. Thus d(v1) ≥ d(v j) for 2 ≤ j ≤ t−2. Similarly, we have d(vt−1) ≥ d(v j) for 2 ≤ j ≤ t−2.
Thus we may assume that d(v1) ≥ d(vt−1) ≥ d(v j) for 2 ≤ j ≤ t − 2. The result for i = 1 follows.

Suppose that the result is true for i = k ≥ 1. We consider the case i = k + 1. Suppose that k is odd. Then
k + 1 is even, and by the induction hypothesis, we have d(vk) ≥ d(vt−k) ≥ d(v j) for k + 1 ≤ j ≤ t − k − 1.
Suppose that d(vk+1) > d(v j) for some j with k+ 2 ≤ j ≤ t− k− 2. Let T′′ = T− {vkvk+1, v jv j+1}+ {vkv j, vk+1v j+1}.
Obviously, T′′ has the same degree sequence as T. Note that the path P in T is changed into the path
Q = v0v1 . . . vkv jv j−1 . . . vk+2vk+1v j+1v j+2 . . . vt in T′′, and the degree of the (k+ 1)-th vertex (v j) of Q is less than
the degree of the j-th vertex (vk+1) of Q in T′′. Since j + 1 ≤ t − k − 1, we have d(vk) ≥ d(v j+1). Similarly as
above, we have

ABC(T) − ABC(T′′) = f (d(vk), d(vk+1)) + f (d(v j), d(v j+1)) − f (d(vk), d(v j)) − f (d(vk+1), d(v j+1))

=
(

f (d(v j), d(v j+1)) − f (d(vk+1), d(v j+1))
)
−

(
f (d(vk), d(v j)) − f (d(vk), d(vk+1))

)
= 1d(v j),d(vk+1)(d(v j+1)) − 1d(v j),d(vk+1)(d(vk)) ≤ 0.

Thus we may assume that d(vk+1) ≤ d(v j) for k+2 ≤ j ≤ t−k−2. Similarly, we may also have d(vt−k−1) ≤ d(v j)
for k + 2 ≤ j ≤ t− k − 2. If d(vk+1) > d(vt−k−1), then as above, we have ABC(T) ≤ ABC(T − {vkvk+1, vt−k−1vt−k}+
{vkvt−k−1, vk+1vt−k}). Thus we may assume that d(vk+1) ≤ d(vt−k−1) ≤ d(v j) for k + 2 ≤ j ≤ t − k − 2. The result
follows for i = k + 1 with odd k. Similarly, the result follows for i = k + 1 with even k.

From Lemma 3.1, the following corollary follows easily.

Corollary 3.2. Let T be a tree with maximum ABC index among the trees with fixed degree sequence. For vi ∈ Li
and v j ∈ L j with j > i ≥ 1, if i is odd, then d(vi) ≥ d(v j), and if i is even, then d(vi) ≤ d(v j).

Given the degree sequence D = {d1, d2, . . . , dm}, an extremal tree T that achieves the maximum ABC
index among the trees with degree sequence D can be constructed as follows:

(i) If dm ≥ m− 1, then by Corollary 3.2, the vertices with degrees respectively d1, d2, . . . , dm−1 are all in L1,
and thus we construct an extremal tree T by rooting at vertex u with dm children with degrees d1, d2, . . . , dm−1
and 1, . . . , 1︸  ︷︷  ︸

dm−m+1 times

.

(ii) Suppose that dm ≤ m − 2.
(a) For the extremal tree T, by Corollary 3.2, the vertices in L1 take some largest degrees and they

are adjacent to the vertices in L2 with some smallest degrees. We construct some subtrees that contain
vertices in L0, L1 and L2 first. We produce subtree T1: rooted at vertex u1 with dm − 1 children with degrees
d1, d2, . . . , ddm−1, where u1 ∈ L2, dT(u1) = dm, and the children of u1 are all in L1. Removing T1 except the
root u1 from T results in a new tree S1 with degree sequence D1 = {ddm , ddm+1, . . . , dm−1}. By Lemma 3.1 and
Corollary 3.2, S1 is a tree with maximum ABC index among the trees with the degree sequence D1. Then
do the same to S1 to get T2 and S2, and then T3 and S3, and so on, until Sk satisfies the condition of (i).

(b) For i = k, k − 1, . . . , 1, the remaining is to identify ui with which pendent vertex of Si. Let vi be the
pendent vertex in Si with which ui is identified, and let wi be the unique neighbor of vi in Si. Since T is a
tree of degree sequence D with maximum ABC index, we need to maximize

ABC(T) = f (dTi (ui) + 1, dSi (wi)) + F,

where F is a constant independent of the pendent vertex of Si that we identify ui with. Note that dTi (ui)+1 ≥ 2.
By Lemma 2.1, we need to minimize dSi (wi).

Hence, we construct T as: identifying ui with a pendent vertex vi in Si, where wi is the unique neighbor
of vi in Si, such that wi ∈ L1(Si) and dSi (wi) = min{dSi (x) : x ∈ L1(Si)}.

For an example, consider the degree sequence {4, 4, 3, 3, 3, 2, 2}. First, by (ii) a, we have the subtree
T1 and new degree sequence D1 = {4, 3, 3, 3, 2}, and similarly, the tree T2 and still new degree sequence
D2 = {3, 3, 3}. It is easily seen that D2 satisfies the condition of (i), and thus we have S2. There are three
vertices in L1(S2) with degree three, two of which are symmetric in S2, and then by (ii) b, we have two types
of S1 by identifying u2 of T2 and a pendent vertex of S2. Similarly, by identifying u1 of T1 and a pendent
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vertex of S1, we have three extremal trees (of fixed degree sequence {4, 4, 3, 3, 3, 2, 2}) with maximum ABC
index, see Fig. 1. su1
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Fig. 1. The procedure to construct extremal trees of degree sequence {4, 4, 3, 3, 3, 2, 2}
with maximum ABC index.

Compared with the result in [12], an extremal tree T that achieves the maximum ABC index is just
the tree that achieves the maximum (general) Randić index for α < 0 among the trees with fixed degree
sequence.

4. Lower bound for the ABC index of trees with fixed degree sequence

In this section, we characterize the extremal trees with minimum ABC index among the trees with fixed
degree sequence, and provide an algorithm to construct such trees.



R. Xing, B. Zhou / Filomat 26:4 (2012), 683–688 687

Lemma 4.1. Let T be a tree with minimum ABC index among the trees with fixed degree sequence. Let P = v1v2 . . . vt
be a path in T, where t ≥ 4 and d(v1) < d(vt). Then d(v2) ≤ d(vt−1).

Proof. Suppose that d(v2) > d(vt−1). Let T′ = T − {v1v2, vt−1vt} + {v1vt−1, v2vt}. Obviously, T′ has the same
degree sequence as T. Since d(v1) < d(vt), we know by Lemma 2.2 that the function 1d(v1),d(vt)(x) is increasing
in x, and then

ABC(T) − ABC(T′) = f (d(v1), d(v2)) + f (d(vt−1), d(vt)) − f (d(v1), d(vt−1)) − f (d(v2), d(vt))
=

(
f (d(v1), d(v2)) − f (d(v2), d(vt))

) − (
f (d(v1), d(vt−1)) − f (d(vt−1), d(vt))

)
= 1d(v1),d(vt)(d(v2)) − 1d(v1),d(vt)(d(vt−1)) > 0,

which is a contradiction.

By Lemma 4.1, we have the following corollaries, as in [10].

Corollary 4.2. Let T be a tree with minimum ABC index among the trees with fixed degree sequence. Then there is
no path P = v1v2 . . . vt in T with t ≥ 3 such that d(v1), d(vt) > d(vi) for some 2 ≤ i ≤ t − 1.

Corollary 4.3. Let T be a tree with minimum ABC index among the trees with fixed degree sequence. For every
positive integer d, the vertices with degrees at least d induce a subtree of T.

Corollary 4.4. Let T be a tree with minimum ABC index among the trees with fixed degree sequence. Then there are
no two non-adjacent edges v1v2 and v3v4 such that d(v1) < d(v3) ≤ d(v4) < d(v2).

By Corollary 4.3, the degrees of vertices in Li are no more than the degrees of vertices in Li+1 for all
i = 0, 1, 2, . . . . Thus the vertices of larger degrees have farther distances from L0 than the vertices of smaller
degrees.

Given the degree sequence D = {d1, d2, . . . , dm}, let T be a tree with minimum ABC index among the
trees with fixed degree sequence. If m = 1, then d1 = |V(T)| − 1, and thus T is the star. Suppose that
m ≥ 2. Delorme et al. [10] discovered that the properties of extremal trees with maximum (general) Randić
index for α = 1 are the same as the features of Kruskal’s classical algorithm for the minimum spanning tree
problem. Wang [12] generalized it to the greedy algorithm.

Now an extremal tree T who achieves the minimum ABC index among the trees with fixed degree
sequence D = {d1, d2, . . . , dm} can be constructed as:

(i) Label a vertex with the largest degree d1 as v, which is the root;
(ii) Label the neighbors of v as v1, v2, . . . , vd1 , such that d(v1) = d2 ≥ d(v2) = d3 ≥ · · · ≥ d(vd1 ) = dd1+1;
(iii) Label the neighbors of v1 except v as v1,1, v1,2, . . . , v1,d2−1 such that d(v1,1) = dd1+2 ≥ d(v1,2) = dd1+3 ≥

· · · ≥ d(v1,d2−1) = dd1+d2 , and do the same for the vertices v2, v3, . . . ;
(iv) Repeat (iii) for all the newly labeled vertices, and always start with the neighbors of the labeled

vertex with the largest degree whose neighbors are not labeled yet.
Now we give an example to construct extremal trees of degree sequence {4, 4, 4, 3, 3, 2, 2} with the

minimum ABC index, see Fig. 2.
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Fig. 2. Two extremal trees T and T′ of degree sequence {4, 4, 4, 3, 3, 2, 2}with minimum ABC index.
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Compared with the result in [12], an extremal tree T that achieves the minimum ABC index is just
the tree that achieves the minimum (general) Randić index for α < 0 among the trees with fixed degree
sequence.

5. Remark

Obviously, the ABC index of a graph G may be generalized to the general ABC index, defined as

ABCα(G) =
∑

uv∈E(G)

(
d(u) + d(v) − 2

d(u)d(v)

)α
for real α , 0, where G has no isolated K2 (complete graph with two vertices) if α < 0. Then ABC 1

2
(G) =

ABC(G), and ABC−3(G) is the augmented Zagreb index of G proposed in [13].

Let fα(x, y) =
( x+y−2

xy

)α
for (integers) x, y ≥ 1 with x + y > 2. Then ∂ fα(x,y)

∂x =
α(2−y)(x+y−2)α−1

xα+1 yα . If y ≥ 2 is fixed,
then fα(x, y) is decreasing in x for α > 0 and increasing in x for α < 0.

For s > r ≥ 1, let 1α;r,s(x) = fα(x, r) − fα(x, s). Then 1′α;r,s(x) = α
xα+1 (hα(r) − hα(s)), where hα(t) =

(2−t)(t+x−2)α−1

tα

for (integer) t ≥ 1 with t + x > 2. It is easily seen that h′α(t) =
(t+x−2)α−2

tα+1 ((α − 1)xt − 2α(t + x − 2)). Obviously,
h′α(t) < 0 if 0 < α ≤ 1. Suppose that α < 0. If x ≥ 2, then hα(1) = (x − 1)α−1 > 0 = hα(2), h′α(t) < 0 if t ≥ 2, and
thus hα(t) > hα(t + 1) for (integer) t ≥ 1. If x = 1, then 1α;r,s(1) =

(
1 − 1

r

)α
−

(
1 − 1

s

)α
> 0 = 1α;r,s(2). It follows

that 1α;r,s(x) > 1α;r,s(x + 1) for (integer) x ≥ 1 if 0 < α ≤ 1 or α < 0.
With these preparations, we have by similar analysis as in Sections 3 and 4 that an extremal tree that

achieves the maximum (minimum, respectively) general ABC index for 0 < α ≤ 1 is just the extremal tree
with α = 1

2 , and an extremal tree that achieves the maximum (minimum, respectively) general ABC index
for α < 0 is just the tree that achieves the minimum (maximum, respectively) ABC index.
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