Extremal trees with fixed degree sequence for atom-bond connectivity index

Rundan Xing ${ }^{\text {a }}$, Bo Zhou ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, South China Normal University, Guangzhou 510631, China

Abstract

The atom-bond connectivity (ABC) index of a graph G is the sum of $\sqrt{\frac{d(u)+d(v)-2}{d(u d d(v)}}$ over all edges $u v$ of G, where $d(u)$ is the degree of vertex u in G. We characterize the extremal trees with fixed degree sequence that maximize and minimize the $A B C$ index, respectively. We also provide algorithms to construct such trees.

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex $v \in V(G)$, denote by $d_{G}(v)$ or $d(v)$ the degree of v in G.

The atom-bond connectivity (ABC) index of G is defined as [1]

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u) d(v)}} .
$$

The ABC index displays an excellent correlation with the heat of formation of alkanes [1], and from it a basically topological approach was developed to explain the differences in the energy of linear and branched alkanes both qualitatively and quantitatively [2]. Various properties of the ABC index have been established, see [3-8].

The (general) Randić index of a graph G is defined as [9]

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha}
$$

where α is a nonzero real number. Delorme et al. [10] described an algorithm that determines a tree of fixed degree sequence that maximizes the (general) Randić index for $\alpha=1$ (also known as the second Zagreb index [11]). Then Wang [12] characterized the extremal trees with fixed degree sequence that minimize the (general) Randić index for $\alpha>0$, and maximize the (general) Randić index for $\alpha<0$.

In this note, we use the techniques from [10, 12] to characterize the extremal trees with fixed degree sequence to maximize and minimize the $A B C$ index.

[^0]
2. Preliminaries

For a tree T, the degree sequence of T is the sequence of degrees of the non-pendent vertices arranged in a non-increasing order.

First we give two lemmas.
Let $f(x, y)=\sqrt{\frac{x+y-2}{x y}}$ for $x, y \geq 1$ with $x+y>2$.
Lemma 2.1. ([5]) If $y \geq 2$ is fixed, then $f(x, y)$ is decreasing in x.
For $s>r \geq 1$, let $g_{r, s}(x)=f(x, r)-f(x, s)$.
Lemma 2.2. The fuction $g_{r, s}(x)$ is increasing in x.
Proof. Obviously, $g_{r, s}(x)=\sqrt{\frac{1}{x}+\frac{1}{r}-\frac{2}{r x}}-\sqrt{\frac{1}{x}+\frac{1}{s}-\frac{2}{s x}}$. Then

$$
\begin{aligned}
g_{r, s}^{\prime}(x) & =\frac{1}{2} \sqrt{\frac{r x}{r+x-2}}\left(-\frac{1}{x^{2}}+\frac{2}{r x^{2}}\right)-\frac{1}{2} \sqrt{\frac{s x}{s+x-2}}\left(-\frac{1}{x^{2}}+\frac{2}{s x^{2}}\right) \\
& =\frac{\sqrt{x}}{x^{2} \sqrt{r+x-2}}\left(\frac{1}{\sqrt{r}}-\frac{\sqrt{r}}{2}\right)-\frac{\sqrt{x}}{x^{2} \sqrt{s+x-2}}\left(\frac{1}{\sqrt{s}}-\frac{\sqrt{s}}{2}\right) . \\
& =\frac{\sqrt{x}}{2 x^{2}}\left(\frac{2-r}{\sqrt{r(r+x-2)}}-\frac{2-s}{\sqrt{s(s+x-2)}}\right) .
\end{aligned}
$$

Let $h(t)=\frac{2-t}{\sqrt{t(t+x-2)}}$ for $t \geq 1$ with $t+x>2$. It is easily seen that $h^{\prime}(t)=-\frac{x t+2(t+x-2)}{2(t(t+x-2))^{\frac{3}{2}}}<0$, implying that $h(t)$ is decreasing in t. Recall that $r<s$. Then $g_{r, s}^{\prime}(x)=\frac{\sqrt{x}}{2 x^{2}}(h(r)-h(s))>0$, and thus result follows.

For a tree T and $i=0,1, \ldots$, let $L_{i}=L_{i}(T)$ be the set of vertices in T, the minimum distance from which to the set of pendent vertices of T is i. Clearly, L_{0} is exactly the set of pendent vertices in T.

For a graph G with $F \subseteq E(G)$, denote by $G-F$ the subgraph of G obtained by deleting the edges of F. Similarly, $G+W$ denotes the graph obtained from G by adding edges in W, where W is an subset of edge set of the complement of G.

3. Upper bound for the $A B C$ index of trees with fixed degree sequence

In this section, we characterize the extremal trees with maximum $A B C$ index among the trees with fixed degree sequence, and provide an algorithm to construct such trees.

Lemma 3.1. Let T be a tree with maximum $A B C$ index among the trees with fixed degree sequence. Let $P=$ $v_{0} v_{1} v_{2} \ldots v_{t}$ be a path in T, where $d\left(v_{0}\right)=d\left(v_{t}\right)=1$. For $1 \leq i \leq \frac{t}{2}$, we may always assume
(i) if i is odd, then $d\left(v_{i}\right) \geq d\left(v_{t-i}\right) \geq d\left(v_{j}\right)$ for $i+1 \leq j \leq t-i-1$;
(ii) if i is even, then $d\left(v_{i}\right) \leq d\left(v_{t-i}\right) \leq d\left(v_{j}\right)$ for $i+1 \leq j \leq t-i-1$.

Proof. We argue by induction on i. Suppose that $d\left(v_{1}\right)<d\left(v_{j}\right)$ for some $2 \leq j \leq t-2$. Let $T^{\prime}=T-$ $\left\{v_{0} v_{1}, v_{j} v_{j+1}\right\}+\left\{v_{0} v_{j}, v_{1} v_{j+1}\right\}$. Obviously, T^{\prime} has the same degree sequence as T. Note that $d\left(v_{0}\right)=1$. Since $j+1 \leq t-1$, we have $d\left(v_{j+1}\right) \geq 2>1$. Since $d\left(v_{j}\right)>d\left(v_{1}\right) \geq 1$, we know by Lemma 2.2 that the function $g_{d\left(v_{1}\right), d\left(v_{j}\right)}(x)$ is increasing in x, and then

$$
\begin{aligned}
A B C(T)-A B C\left(T^{\prime}\right) & =f\left(d\left(v_{0}\right), d\left(v_{1}\right)\right)+f\left(d\left(v_{j}\right), d\left(v_{j+1}\right)\right)-f\left(d\left(v_{0}\right), d\left(v_{j}\right)\right)-f\left(d\left(v_{1}\right), d\left(v_{j+1}\right)\right) \\
& =\left(f\left(d\left(v_{0}\right), d\left(v_{1}\right)\right)-f\left(d\left(v_{0}\right), d\left(v_{j}\right)\right)\right)-\left(f\left(d\left(v_{1}\right), d\left(v_{j+1}\right)\right)-f\left(d\left(v_{j}\right), d\left(v_{j+1}\right)\right)\right) \\
& =g_{d\left(v_{1}\right), d\left(v_{j}\right)}\left(d\left(v_{0}\right)\right)-g_{d\left(v_{1}\right), d\left(v_{j}\right)}\left(d\left(v_{j+1}\right)\right) \\
& =g_{d\left(v_{1}\right), d\left(v_{j}\right)}(1)-g_{d\left(v_{1}\right), d\left(v_{j}\right)}\left(d\left(v_{j+1}\right)\right)<0,
\end{aligned}
$$

which is a contradiction. Thus $d\left(v_{1}\right) \geq d\left(v_{j}\right)$ for $2 \leq j \leq t-2$. Similarly, we have $d\left(v_{t-1}\right) \geq d\left(v_{j}\right)$ for $2 \leq j \leq t-2$. Thus we may assume that $d\left(v_{1}\right) \geq d\left(v_{t-1}\right) \geq d\left(v_{j}\right)$ for $2 \leq j \leq t-2$. The result for $i=1$ follows.

Suppose that the result is true for $i=k \geq 1$. We consider the case $i=k+1$. Suppose that k is odd. Then $k+1$ is even, and by the induction hypothesis, we have $d\left(v_{k}\right) \geq d\left(v_{t-k}\right) \geq d\left(v_{j}\right)$ for $k+1 \leq j \leq t-k-1$. Suppose that $d\left(v_{k+1}\right)>d\left(v_{j}\right)$ for some j with $k+2 \leq j \leq t-k-2$. Let $T^{\prime \prime}=T-\left\{v_{k} v_{k+1}, v_{j} v_{j+1}\right\}+\left\{v_{k} v_{j}, v_{k+1} v_{j+1}\right\}$. Obviously, $T^{\prime \prime}$ has the same degree sequence as T. Note that the path P in T is changed into the path $Q=v_{0} v_{1} \ldots v_{k} v_{j} v_{j-1} \ldots v_{k+2} v_{k+1} v_{j+1} v_{j+2} \ldots v_{t}$ in $T^{\prime \prime}$, and the degree of the $(k+1)$-th vertex $\left(v_{j}\right)$ of Q is less than the degree of the j-th vertex $\left(v_{k+1}\right)$ of Q in $T^{\prime \prime}$. Since $j+1 \leq t-k-1$, we have $d\left(v_{k}\right) \geq d\left(v_{j+1}\right)$. Similarly as above, we have

$$
\begin{aligned}
A B C(T)-A B C\left(T^{\prime \prime}\right) & =f\left(d\left(v_{k}\right), d\left(v_{k+1}\right)\right)+f\left(d\left(v_{j}\right), d\left(v_{j+1}\right)\right)-f\left(d\left(v_{k}\right), d\left(v_{j}\right)\right)-f\left(d\left(v_{k+1}\right), d\left(v_{j+1}\right)\right) \\
& =\left(f\left(d\left(v_{j}\right), d\left(v_{j+1}\right)\right)-f\left(d\left(v_{k+1}\right), d\left(v_{j+1}\right)\right)\right)-\left(f\left(d\left(v_{k}\right), d\left(v_{j}\right)\right)-f\left(d\left(v_{k}\right), d\left(v_{k+1}\right)\right)\right) \\
& =g_{d\left(v_{j}\right), d\left(v_{k+1}\right)}\left(d\left(v_{j+1}\right)\right)-g_{d\left(v_{j}\right), d\left(v_{k+1}\right)}\left(d\left(v_{k}\right)\right) \leq 0 .
\end{aligned}
$$

Thus we may assume that $d\left(v_{k+1}\right) \leq d\left(v_{j}\right)$ for $k+2 \leq j \leq t-k-2$. Similarly, we may also have $d\left(v_{t-k-1}\right) \leq d\left(v_{j}\right)$ for $k+2 \leq j \leq t-k-2$. If $d\left(v_{k+1}\right)>d\left(v_{t-k-1}\right)$, then as above, we have $A B C(T) \leq A B C\left(T-\left\{v_{k} v_{k+1}, v_{t-k-1} v_{t-k}\right\}+\right.$ $\left.\left\{v_{k} v_{t-k-1}, v_{k+1} v_{t-k}\right\}\right)$. Thus we may assume that $d\left(v_{k+1}\right) \leq d\left(v_{t-k-1}\right) \leq d\left(v_{j}\right)$ for $k+2 \leq j \leq t-k-2$. The result follows for $i=k+1$ with odd k. Similarly, the result follows for $i=k+1$ with even k.

From Lemma 3.1, the following corollary follows easily.
Corollary 3.2. Let T be a tree with maximum $A B C$ index among the trees with fixed degree sequence. For $v_{i} \in L_{i}$ and $v_{j} \in L_{j}$ with $j>i \geq 1$, if i is odd, then $d\left(v_{i}\right) \geq d\left(v_{j}\right)$, and if i is even, then $d\left(v_{i}\right) \leq d\left(v_{j}\right)$.

Given the degree sequence $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, an extremal tree T that achieves the maximum ABC index among the trees with degree sequence D can be constructed as follows:
(i) If $d_{m} \geq m-1$, then by Corollary 3.2 , the vertices with degrees respectively $d_{1}, d_{2}, \ldots, d_{m-1}$ are all in L_{1}, and thus we construct an extremal tree T by rooting at vertex u with d_{m} children with degrees $d_{1}, d_{2}, \ldots, d_{m-1}$ and $\underbrace{1, \ldots, 1}$.
$d_{m}-m+1$ times
(ii) Suppose that $d_{m} \leq m-2$.
(a) For the extremal tree T, by Corollary 3.2, the vertices in L_{1} take some largest degrees and they are adjacent to the vertices in L_{2} with some smallest degrees. We construct some subtrees that contain vertices in L_{0}, L_{1} and L_{2} first. We produce subtree T_{1} : rooted at vertex u_{1} with $d_{m}-1$ children with degrees $d_{1}, d_{2}, \ldots, d_{d_{m}-1}$, where $u_{1} \in L_{2}, d_{T}\left(u_{1}\right)=d_{m}$, and the children of u_{1} are all in L_{1}. Removing T_{1} except the root u_{1} from T results in a new tree S_{1} with degree sequence $D_{1}=\left\{d_{d_{m}}, d_{d_{m}+1}, \ldots, d_{m-1}\right\}$. By Lemma 3.1 and Corollary $3.2, S_{1}$ is a tree with maximum ABC index among the trees with the degree sequence D_{1}. Then do the same to S_{1} to get T_{2} and S_{2}, and then T_{3} and S_{3}, and so on, until S_{k} satisfies the condition of (i).
(b) For $i=k, k-1, \ldots, 1$, the remaining is to identify u_{i} with which pendent vertex of S_{i}. Let v_{i} be the pendent vertex in S_{i} with which u_{i} is identified, and let w_{i} be the unique neighbor of v_{i} in S_{i}. Since T is a tree of degree sequence D with maximum ABC index, we need to maximize

$$
A B C(T)=f\left(d_{T_{i}}\left(u_{i}\right)+1, d_{S_{i}}\left(w_{i}\right)\right)+F
$$

where F is a constant independent of the pendent vertex of S_{i} that we identify u_{i} with. Note that $d_{T_{i}}\left(u_{i}\right)+1 \geq 2$. By Lemma 2.1, we need to minimize $d_{S_{i}}\left(w_{i}\right)$.

Hence, we construct T as: identifying u_{i} with a pendent vertex v_{i} in S_{i}, where w_{i} is the unique neighbor of v_{i} in S_{i}, such that $w_{i} \in L_{1}\left(S_{i}\right)$ and $d_{S_{i}}\left(w_{i}\right)=\min \left\{d_{S_{i}}(x): x \in L_{1}\left(S_{i}\right)\right\}$.

For an example, consider the degree sequence $\{4,4,3,3,3,2,2\}$. First, by (ii) a, we have the subtree T_{1} and new degree sequence $D_{1}=\{4,3,3,3,2\}$, and similarly, the tree T_{2} and still new degree sequence $D_{2}=\{3,3,3\}$. It is easily seen that D_{2} satisfies the condition of (i), and thus we have S_{2}. There are three vertices in $L_{1}\left(S_{2}\right)$ with degree three, two of which are symmetric in S_{2}, and then by (ii) b, we have two types of S_{1} by identifying u_{2} of T_{2} and a pendent vertex of S_{2}. Similarly, by identifying u_{1} of T_{1} and a pendent
vertex of S_{1}, we have three extremal trees (of fixed degree sequence $\{4,4,3,3,3,2,2\}$) with maximum ABC index, see Fig. 1.

From degrees 4 and 2
$D_{1}=\{4,3,3,3,2\}$

From degrees 4 and 2

$$
D_{2}=\{3,3,3\}
$$

From degrees 3, 3 and 3

Attaching subtree T_{2} to S_{2} to get two types of S_{1}

T

T^{\prime}

$T^{\prime \prime}$

Attaching subtree T_{1} to S_{1} to get three extremal trees T, T^{\prime} and $T^{\prime \prime}$
Fig. 1. The procedure to construct extremal trees of degree sequence $\{4,4,3,3,3,2,2\}$ with maximum ABC index.
Compared with the result in [12], an extremal tree T that achieves the maximum ABC index is just the tree that achieves the maximum (general) Randić index for $\alpha<0$ among the trees with fixed degree sequence.

4. Lower bound for the ABC index of trees with fixed degree sequence

In this section, we characterize the extremal trees with minimum $A B C$ index among the trees with fixed degree sequence, and provide an algorithm to construct such trees.

Lemma 4.1. Let T be a tree with minimum $A B C$ index among the trees with fixed degree sequence. Let $P=v_{1} v_{2} \ldots v_{t}$ be a path in T, where $t \geq 4$ and $d\left(v_{1}\right)<d\left(v_{t}\right)$. Then $d\left(v_{2}\right) \leq d\left(v_{t-1}\right)$.
Proof. Suppose that $d\left(v_{2}\right)>d\left(v_{t-1}\right)$. Let $T^{\prime}=T-\left\{v_{1} v_{2}, v_{t-1} v_{t}\right\}+\left\{v_{1} v_{t-1}, v_{2} v_{t}\right\}$. Obviously, T^{\prime} has the same degree sequence as T. Since $d\left(v_{1}\right)<d\left(v_{t}\right)$, we know by Lemma 2.2 that the function $g_{d\left(v_{1}\right), d\left(v_{t}\right)}(x)$ is increasing in x, and then

$$
\begin{aligned}
A B C(T)-A B C\left(T^{\prime}\right) & =f\left(d\left(v_{1}\right), d\left(v_{2}\right)\right)+f\left(d\left(v_{t-1}\right), d\left(v_{t}\right)\right)-f\left(d\left(v_{1}\right), d\left(v_{t-1}\right)\right)-f\left(d\left(v_{2}\right), d\left(v_{t}\right)\right) \\
& =\left(f\left(d\left(v_{1}\right), d\left(v_{2}\right)\right)-f\left(d\left(v_{2}\right), d\left(v_{t}\right)\right)\right)-\left(f\left(d\left(v_{1}\right), d\left(v_{t-1}\right)\right)-f\left(d\left(v_{t-1}\right), d\left(v_{t}\right)\right)\right) \\
& =g_{d\left(v_{1}\right), d\left(v_{t}\right)}\left(d\left(v_{2}\right)\right)-g_{d\left(v_{1}\right), d\left(v_{t}\right)}\left(d\left(v_{t-1}\right)\right)>0,
\end{aligned}
$$

which is a contradiction.
By Lemma 4.1, we have the following corollaries, as in [10].
Corollary 4.2. Let T be a tree with minimum $A B C$ index among the trees with fixed degree sequence. Then there is no path $P=v_{1} v_{2} \ldots v_{t}$ in T with $t \geq 3$ such that $d\left(v_{1}\right), d\left(v_{t}\right)>d\left(v_{i}\right)$ for some $2 \leq i \leq t-1$.
Corollary 4.3. Let T be a tree with minimum $A B C$ index among the trees with fixed degree sequence. For every positive integer d, the vertices with degrees at least d induce a subtree of T.
Corollary 4.4. Let T be a tree with minimum $A B C$ index among the trees with fixed degree sequence. Then there are no two non-adjacent edges $v_{1} v_{2}$ and $v_{3} v_{4}$ such that $d\left(v_{1}\right)<d\left(v_{3}\right) \leq d\left(v_{4}\right)<d\left(v_{2}\right)$.

By Corollary 4.3, the degrees of vertices in L_{i} are no more than the degrees of vertices in L_{i+1} for all $i=0,1,2, \ldots$. Thus the vertices of larger degrees have farther distances from L_{0} than the vertices of smaller degrees.

Given the degree sequence $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, let T be a tree with minimum ABC index among the trees with fixed degree sequence. If $m=1$, then $d_{1}=|V(T)|-1$, and thus T is the star. Suppose that $m \geq 2$. Delorme et al. [10] discovered that the properties of extremal trees with maximum (general) Randić index for $\alpha=1$ are the same as the features of Kruskal's classical algorithm for the minimum spanning tree problem. Wang [12] generalized it to the greedy algorithm.

Now an extremal tree T who achieves the minimum $A B C$ index among the trees with fixed degree sequence $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ can be constructed as:
(i) Label a vertex with the largest degree d_{1} as v, which is the root;
(ii) Label the neighbors of v as $v_{1}, v_{2}, \ldots, v_{d_{1}}$, such that $d\left(v_{1}\right)=d_{2} \geq d\left(v_{2}\right)=d_{3} \geq \cdots \geq d\left(v_{d_{1}}\right)=d_{d_{1}+1}$;
(iii) Label the neighbors of v_{1} except v as $v_{1,1}, v_{1,2}, \ldots, v_{1, d_{2}-1}$ such that $d\left(v_{1,1}\right)=d_{d_{1}+2} \geq d\left(v_{1,2}\right)=d_{d_{1}+3} \geq$ $\cdots \geq d\left(v_{1, d_{2}-1}\right)=d_{d_{1}+d_{2}}$, and do the same for the vertices v_{2}, v_{3}, \ldots;
(iv) Repeat (iii) for all the newly labeled vertices, and always start with the neighbors of the labeled vertex with the largest degree whose neighbors are not labeled yet.

Now we give an example to construct extremal trees of degree sequence $\{4,4,4,3,3,2,2\}$ with the minimum ABC index, see Fig. 2.

Fig. 2. Two extremal trees T and T^{\prime} of degree sequence $\{4,4,4,3,3,2,2\}$ with minimum ABC index.

Compared with the result in [12], an extremal tree T that achieves the minimum ABC index is just the tree that achieves the minimum (general) Randić index for $\alpha<0$ among the trees with fixed degree sequence.

5. Remark

Obviously, the $A B C$ index of a graph G may be generalized to the general $A B C$ index, defined as

$$
A B C_{\alpha}(G)=\sum_{u v \in E(G)}\left(\frac{d(u)+d(v)-2}{d(u) d(v)}\right)^{\alpha}
$$

for real $\alpha \neq 0$, where G has no isolated K_{2} (complete graph with two vertices) if $\alpha<0$. Then $A B C_{\frac{1}{2}}(G)=$ $A B C(G)$, and $A B C_{-3}(G)$ is the augmented Zagreb index of G proposed in [13].

Let $f_{\alpha}(x, y)=\left(\frac{x+y-2}{x y}\right)^{\alpha}$ for (integers) $x, y \geq 1$ with $x+y>2$. Then $\frac{\partial f_{\alpha}(x, y)}{\partial x}=\frac{\alpha(2-y)(x+y-2)^{\alpha-1}}{x^{\alpha+1} y^{\alpha}}$. If $y \geq 2$ is fixed, then $f_{\alpha}(x, y)$ is decreasing in x for $\alpha>0$ and increasing in x for $\alpha<0$.

For $s>r \geq 1$, let $g_{\alpha ; r, s}(x)=f_{\alpha}(x, r)-f_{\alpha}(x, s)$. Then $g_{\alpha, r, s}^{\prime}(x)=\frac{\alpha}{x^{\alpha+1}}\left(h_{\alpha}(r)-h_{\alpha}(s)\right)$, where $h_{\alpha}(t)=\frac{(2-t)(t+x-2)^{\alpha-1}}{t^{\alpha}}$ for (integer) $t \geq 1$ with $t+x>2$. It is easily seen that $h_{\alpha}^{\prime}(t)=\frac{(t+x-2}{t^{\alpha+1}}((\alpha-1) x t-2 \alpha(t+x-2))$. Obviously, $h_{\alpha}^{\prime}(t)<0$ if $0<\alpha \leq 1$. Suppose that $\alpha<0$. If $x \geq 2$, then $h_{\alpha}(1)=(x-1)^{\alpha-1}>0=h_{\alpha}(2), h_{\alpha}^{\prime}(t)<0$ if $t \geq 2$, and thus $h_{\alpha}(t)>h_{\alpha}(t+1)$ for (integer) $t \geq 1$. If $x=1$, then $g_{\alpha ; r, s}(1)=\left(1-\frac{1}{r}\right)^{\alpha}-\left(1-\frac{1}{s}\right)^{\alpha}>0=g_{\alpha ; r, s}(2)$. It follows that $g_{\alpha ; r, s}(x)>g_{\alpha ; r, s}(x+1)$ for (integer) $x \geq 1$ if $0<\alpha \leq 1$ or $\alpha<0$.

With these preparations, we have by similar analysis as in Sections 3 and 4 that an extremal tree that achieves the maximum (minimum, respectively) general ABC index for $0<\alpha \leq 1$ is just the extremal tree with $\alpha=\frac{1}{2}$, and an extremal tree that achieves the maximum (minimum, respectively) general ABC index for $\alpha<0$ is just the tree that achieves the minimum (maximum, respectively) ABC index.

References

[1] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[2] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422-425.
[3] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009) 2828-2835.
[4] B. Zhou, R. Xing, On atom-bond connectivity index, Z. Naturforsch. 66a (2011) 61-66.
[5] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math. 158 (2010) 1536-1545.
[6] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discrete Appl. Math. 159 (2011) 1617-1630.
[7] K.C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 158 (2010) 1181-1188.
[8] K.C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, Chem. Phys. Lett. 511 (2011) 452-454.
[9] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[10] C. Delorme, O. Favaron, D. Rautenbach, Closed formulas for the numbers of small independent sets and matchings and an extremal problem for trees, Discrete Appl. Math. 130 (2003) 503-512.
[11] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[12] H. Wang, Extremal trees with given degree sequence for the Randić index, Discrete Math. 308 (2008) 3407-3411.
[13] B. Furtula, A. Graovac, D. Vukičevic, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370-380.

[^0]: 2010 Mathematics Subject Classification. Primary 05C35; Secondary 05C07, 05C90
 Keywords. Atom-bond connectivity index, tree, degree sequence
 Received: 27 June 2011; Accepted: 13 September 2011
 Communicated by Dragan Stevanović
 Research supported by the Guangdong Provincial Natural Science Foundation of China (no. S2011010005539)

 * Corresponding author

 Email addresses: rundanxing@126.com (Rundan Xing), zhoubo@scnu.edu.cn (Bo Zhou)

