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Abstract. We classify the extreme points of the compact convex set of affine
maps of IR" which map into itself the closed unit ball. This work is a preliminary
step towards solving the problem of finding the extreme points of the compact
convex set of affine maps of the N x N density matrices (dynamical maps of
an iV-level system) and for n = 3 furnishes the solution of the problem in the
simplest case of a two-level system.

1. Introduction

Let Dn(n= 1,2, 3,...) denote the set of affine maps lRn->lR" which map into itself
the closed unit ball Bn. Dn is convex, compact and finite-dimensional, hence each
point of Dn can be written as a finite convex combination of extreme points of Dn.
In this note we prove a theorem which classifies the extreme points of Dn. The
theorem was stated and commented upon in [1] and is a first step towards solving
the problem of finding the extreme points of the compact convex set FN of the affine
maps KN-*KN, where KN={ρ\ρ anΛίxJV complex matrix, ρ^O,Ύr(ρ)= 1} is the
convex set of N x N density matrices. Indeed, F2 can be identified to D3 through
the identification of K2 to B3 by means of the representation of a 2 x 2 density
matrix as ρ = (l/2)(l 2 + £?=i α ίσ ί)->α={α l 5 α 2 ,α 3 } , where {σi,σ2,σ3} are the
familiar Pauli matrices or, more generally, any maximal set of 2 x 2 self-adjoint
traceless matrices satisfying Tr(σI σ7 ) = 2<5I 7 . The structure analysis of FN is of
interest in connection with the study of the dynamics of an ΛMevel quantum me-
chanical open system, since the dynamical evolution of such a system is represented
by a one parameter family t-*At9 ίe[0, oo), AteFN, A0 = l9 whereby the density
matrix (state) ρt of the system at time t is given in terms of the initial state ρ0 by
ρt = Atρ0 (for this reason, we refer to the elements of FN as dynamical maps [2]).
Familiar examples are encountered in spin magnetic resonance and relaxation
[3, 4] and in quantum optics [5, 6].

After the completion of this work we became aware that, as a particular case
of our theorem, a result equivalent to the classification of the extreme points of
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D3 had been previously obtained by Stormer [7]. However, the geometrical
aspect of the problem and the symmetry properties of the extreme points are not
readily apparent in St0rmer's treatment, since he works in a dual context. On the
other hand, we feel that symmetry considerations should play an important role
in the determination of the extreme points of FN. We refer to [1] for a discussion
thereof and for an explicit (though as yet unproved) conjecture in this connection.

In Section 2 we collect a few notations. In Section 3 we give two instrumental
parametrizations of Dn (Theorem 1). In Section 4 we determine the extreme points
of Dn (Theorem 2). In Section 5 we briefly comment upon the geometrical meaning
of Theorems 1 and 2.

2. Notations

If n is a positive integer, !Rn = {x|x = {xJ i = i,...,π;xJ elR,j==l J...,n} is the n-
dimensional euclidean space and we denote by M(n) [respectively, by AF(n)]
the real algebra of linear maps (respectively of affine maps) of IR" into itself. An
element A of AF(n) acts on IR" as A : x^ Tx + b: = (ft, T)x, x e IR", b e IR", Te M(n)
and we can identify A to the pair (b, T\ where T can in turn be identified to an
nxn matrix with real entries {Tij}ij=lt_tn (we refer to b and respectively as the
translation and the linear parts of A). This establishes a canonical topological
vector space isomorphism between AF(n) [respectively, M(n)] and IR"("+1)

(respectively IR"2). We use the standard notations for the real orthogonal
group in n dimensions and for its connected component, respectively O(n) =
{Q\Q E M(n), QQT= 1 „} and SO(n)= {Q\Q e O(n), detβ! = 1} (Aτ denotes the trans-
pose of a matrix A). Whenever Q e O(n), we write Q in place of (0, Q) and if G is
a subgroup of O(n) and x e IR" we denote by Gx the stabilizer of x relative to the
canonical action of G on IR". ln and 0n denote respectively the identity and the
zero map of IR" and diag{aj i = 1>>>iflI denotes a diagonal matrix with diagonal
elements α x , . . . , απ. If X is a convex subset of IR* we denote by extr X the set of the
extreme points of X. Bn={x\xGW\ \\x\\ = ( £ ? = 1 x?)*^l} and Sn = extΐBn =
{x\x eIR", ||x|| = 1} are respectively the closed unit ball and the unit sphere in IR".
We define Dn={A\A e AF(n), xe Bn=>Axe Bn). Dn is a compact convex subset
of AF(n), whose boundary is given by D'n = {A\A eDn,AxeSn for some xeSn}.
We call an element A=(a9Λ) of AF(n) canonical if α i ^ 0 , ΐ = l , . . . , n , a n d Λ —
diag{^}/ = l 5 „, λx ^ . . . tλn^0. If Yis a subset of AF(n), we define Y= {A\A eY,A
canonical}.

3. Two Parametrizations of Dn

The following theorem establishes two parametrizations of Dn which will be used
in the following section.

Theorem 1.

ai = βξi(ί-(xωf)J=U...,n;
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1=1 Qi — ι s

ii) Dn={(b9 T)\beTRT; Te M(n); (b, Γ M & α , Q1ΛQ2); Ql9 β 2 eθ(n);

a~βξi(l-<x,vηf),i=l9...9n;

Proof. Using the polar decomposition of a matrix A e M(n) as A = QS, Q e O(n),
5 symmetric and positive [8], any element A of AF(n) can be written in the form
Δ=(Qίa, Q\ΛQ2\ where (α, /I) is canonical. Write

Δ{a;β;ξu...,ξn;ωu...,ωn)

M ( Σ 3 M ) * } )
Then, in order to prove i), it is enough to show that

%={A\ΔeAF{ny9A=Δ{<x;Uξl9...9ξn;ωί9...9ωn);

To this purpose, we first note that if x, y and z are elements of 1R" such that
||x|| = \\y\\ = 1 and z\ = 1, then the following identity holds

Σ7= i KΣ"= i yW^i+y, (i - z ? ) ] 2 = i - Σ?= i (i - ^

(3.3)

as can be readily verified by expanding the squares. Hence, under the conditions

0 ^ ω B g . . . g ω 1 = l ; 0 ^ ξ ί ^ l , / = l , . . . , π ; Σ ? = 1 ξ J

2 = l , (3.4)

it follows from (3.3) setting y = ξ and z = ω that

Note that Δ(U l;ξ;ω)=ln if ωw = 1 and that J ( l ; 1; ξ; ω) = (ξ, 0tt) if £7=1 ξfωf=O9

whereas if ωn < 1 and ]ΓjL x ξf ω? φ 0 one has

{x\xeSn9Δ(Ul9ξ;ω)xeSn}

= {x\xESn,xι = ξιωι(Σi=iξfωfyM = s+l..^n, (3.5)

if ω s = l , and ω s + 1 < l } .

Now let Δ=(a,dia.g{λι}ι = 1 J e ΰ J and distinguish two cases, according to
whether λ1 =0 or /^ >0. The first case implies ||α|| = 1 and is obtained by setting
α = 0 in (3.2). If λx>0 define

ωj = λj/λl9 j=l9...9n (3.6)

and let ξe A(Sn)nSn, with ξi^O, Ϊ = 1 , . . . , W (since zl is canonical it is possible to
fulfill the latter requirement). Then £ " = 1 ξfωfφO. Indeed, assume the contrary
and let ξ1 = ... = ξs_1 = O and ^ s > 0 , s = 2,...,n. Then ω s = . . . = ω w = 0, or
^ = . . . = ^ n = 0, so that <j;r = 0 r,r = s,...,n and hence Σ ? = S Λ ? = Σ?= s ξ? = l. This
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implies ai = λi = 0,i=l,...,s—l, which contradicts the hypothesis. Then set
a = ^i(Z?=i ζfωϊ)""*> whence λi = aωi(£j=1ξ

2ω2)kJ=i,...,n, and consider the
affine map A(a; 1 ξ\ ω). One has

;ξ;ω) (3.7)

and setting

^ = ^ ( Σ ? = i ί ? ω ? ) - - , / = l , . . . , n , (3.8)

one gets

( J ( α ; l ; £ ; ω H = £z, J = l , . . . , « . (3.9)

Therefore, the two affine maps A and Δ(cn\ 1 ξ; ω) have the same linear part, the
point ξ belongs to SnnA(Sn)nA((x;l;ξ;ω)(Sn) and SΛ, A(Sn) and Λ(α; l;£;ω)(Sπ)
all lie in one and the same, say σ, of the two closed half-spaces determined by the
hyperplaneπ which is tangent to Sn at ξ. Let candd={ξi(ί — oίωi)}i = li2,...,n denote
the translation parts of A and, respectively, of A(a; 1; ξ; ω) and set e=d-c. We
have A(oc; 1; ξ;ω)v = ξ and let xeS,, such that Ax = ξ. Then Δv=ξ — eeσ and
J(α; l ; ί ; ω ) x = ξ + ̂ 6σ. This implies ξ - e e π which, in turn, implies e = 0since,
by hypothesis, zl GD^. Hence A = A(a;l;ξ;ω). By (3.7) and since Dn is convex
we have A(oc; 1 ξ\ω)eD[1 if α e [0,1]. On the other hand, it is easy to check that
A(oc;l;ξ; ω)x φ Bn for some x e Bn if a> 1. Indeed, set

and α = l + ε , ε > 0 . Then | |J(α; 1; ξ; c φ | | 2 = l + 4ε(ε+ l)ξ?> 1 if ^ > 0 . If ^ = 0,
let r be the smallest integer for which ξr>0(2^r^ή) and note that ω r > 0 since
Σ?=i ^ i ω i + 0 . Consider the intersections C = Snnρ and E = A(a; l;ξ;ω)(Sn)nρ,
whereρ is the 2-plane {x|xelRn; x2 = .. :=xr-1=0,Xι = ξb Z = r + l , . . . , n } . C a n d £
are respectively a circle and an ellipse whose equations are C\x2

r +xl = ξ, and
E:[^xr-ξχi-(xωΐ)¥/((xξrωΐ)2 + x2

1/((xξrωr)
2 = l. At their common point (09ξr)

the second derivatives are respectively C:(d2xr/dxj)\Xί = 0= — l/ξr and
£:(d2x r/dxί)|X l = 0 = — l/α<!;r In order that Δ(<x; 1; ξ;ω)(Sn)QSn one must have
l/ξ r ^ l/αξr or α ^ 1. This completes the proof i). In order to prove ii) take without
loss of generality Σ?=i ^ ? ω ? + 0 i n the parametrization i) and set v= Σ?=i ^?ω?
and η^ω^'^, / = 1 , 2,..., n. I

4. Extreme Points of /)„

We classify the extreme points of Dn by means of the following

Theorem 2.

ExtvDn={(b, T)\beW; ΓeM(n);(6, T) = (β 1 α,β 1 ^lQ 2 ) ;

β 1 ,β 2 eO(n);(α,y l ) = J ( l ; l ; 0 , . . . , 0 , ( l - 5 2 ) * δ ; l , . . . , l , κ ) ; (4.1)

For ^ = 1 the result is trivial, so we assume n^2. First note that if
(b, T ) G extrDrt and Q, β ' e θ ( n ) , then {Qb, QTQf) e εxtrDn. Thus it is enough to
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look for the extreme points of Dn which are canonical, and these belong to iχ.
If Σΐ=i ξfωf + 0, we get from (3.7) that J(α; 1; ξ ω) is not extreme if 0 < α < l .
Consider A(0; 1; ξ; ω). It is an extreme since it maps extreme points of Bn to ex-
treme points of Bn and it is obtained by setting δ = 1, κ = 0 in (4.1) and by choosing
therein Qx such that QιP = ξ, where p is the "north pole",

p={0, . . . ,0 , l } . (4.2)

We now prove that Δ(l; 1; £ 1 ? . . . ,£„; 1,..., 1, ωn) is extreme if 0 < ξ w < l . First
we note that the statement is trivial if ωn = 1 and that if ωn < 1 the map

is not extreme since it equals the convex combination [(1+ωw)/2] lw+[(1—ωw)/2]Pw,
where

^ , , . . ^ , εI = l if /Φj\ fij=-l. (4.3)

Then, let

0 < £ π < l , 0 ^ ω Λ < l (4.4)

and assume Δ(ξn,ωn) = :Δ(ί; l\ξί9...,ξn;l,..., l,ωn) to be a convex combination

A(ξn,ωn) = γAι+(l-γ)A2;A1,A2eDn,O<γ<l. (4.5)

From (4.4) we get 0 < [(1 - ξ2) + ξ2

nω
2j> and

{l-ξl) + ζ2

Hωir*<ξH. (4.6)

Defining Γ={x|xelR"; ||x|| = l,xΛ = Mw}andf ={x|xe!Rπ, ||x|| = l,χπ = ̂ } we have
A (ξn, ωn) (Σ) = Σ and one checks easily that if Δ e D^ and zl (21) = Σ, then A—A (ξn, ωn).
Then, since Sn = QxtrBn, we have that

ue Σ^>A(ξn, ωn)u = A1u = A2u . (4.7)

Write Δ1 = Q1ΔiQ2 with i x canonical, A1 = Δ(a; 1; | 1 ? . . . , ^ ; ώ 1 ? ...,ώΛ). From

(4.7) we have i i [ Q 2 ( ^ ) ] = 6 Γ 1 ( ί ) τ h e n

?

 s i n c e Q2W and β Γ 1 ^ ) a r e (w-2)-
dimensional subspheres of Sn, from (3.5) and (3.7) we obtain ά = 1 and c&M_! = 1.
β2(Σ) and β Γ 1 ^ ) have radiuses respectively (1 — ύffi and (1—| 2)*, where
βn = ξnώnl{\ - ID + ξ2

nώ
2

ny\ Since β l 9 β 2 e O(n), there follows ξH = ξn and ύn = un9

hence also ώn = ωn. Therefore, we have A1=A(ξn,ωn) and QiP = (—l)lp, where
Z = 0 or / = 0,l according to whether ωn>0 or ωπ = 0. Then

zJx = β z l ( ( - i y C ω J (4.8)

where β = β x β 2 and, by (4.6), Δ{ξn9 ωn)u = QA{{- l)ιξn, ωn)u, Vw e Σ, which implies
Q = Pι

n. Substituting into (4.8) gives A1 = A(ξn,ωn) which proves that under con-
ditions (4.4) Δ(ξn, ωn) is extreme.

Next we show that if n^3 and Σ? = i£?ωfφ0, the map Δ(ί; 1; ξu ..., ξw;
ω x , . . . , ωn, is not extreme if ωn_ 1 < 1. To this purpose, we use parametrization ii)
established in Theorem 1. Then, writing

= 1 „), (4.9)
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we must prove that Γ(v; ξ η) is not extreme if ηn_1 < v~^. First remark that the
map (4.9) satisfies the following composition law

Γ(v'; ξ; η')Γ(v"; η'ζ; f,") = Γ(v'v"; ξ η'η"), (4.10)

where we have used the notation x y ^ t e ^ ^ !,...,„• Now, let r be the smallest
integer for which ηr < v~^ (by hypothesis, 2 ^ r ̂  n — 1). If ηr = 0, we have

where,

ξ = {ξu ...>ί r-1 >O,(ξ? + ξ Γ

2

+ 1 )*ξ Γ + 2 > . . . > U.*?r=

and

β ξ = I , β e so(n), β - 1 diag fo,}β=diag {»/,}.

If ,,, > 0, set ζ = Σ5= 1 # + vί?r

2 Σ?= r ̂ i2 a n d note that

Setting λ=ζ~* and τ = λv*ηr we have thus by hypothesis A>τ>0 and we define

and η'{ = τ~1ηhl = r,...,n. Then, since Γ(v ;ξ;η)eD^by hypothesis, setting v' = λ ~ 2

and v" = /l2v, it is a straightforward matter to check that the maps Γ(v'; £;*/') and
Γ(v" fί'ξ η") belong to ̂  and by (4.10) one gets Γ(v ξ η) = Γ(v' ξ ff )Πv" ^ η")
From this we obtain

(4.11)

where

^ l (4.12)

(4.13)

β^ = IQ e SO(n), β " 1 diag «;}Q = diag {ή's}

and, since 0<^ r<v~%0<(l/2)(l — v*ηr)< 1/2. Let M and N denote the linear
parts of QΔγ and, respectively, of QA2. If 4 = 0 we can take β = l w , hence
M r r = v * = - N r r i m p l y i n g 4 + J 2 . I f i r + 0,wegetMrr = v^ r + 1 K r

2 + î ^̂
and Mrir+ί = -v*ηr+ίηr

 ιξr{ξ2

r+ξ2

r+1)
 ι=-Nrtr+u whence again At*A2 pro-

vided that 4 + 1 and ηr + 1 are not both zero. On the other hand, if ξr + 0 and
ξr+i = ηr + 1=O, set ξ = (ξu...,ξr_1,0,ξnξr+2,...,ξn),ή1 = ...=ήr = v-*,ήr+1=ηr,

ηr+2 = ,,,=ηn = 0 and let β be the rotation of π/2 in the (xr,xr + 1)-plane. Then
Γ(v;ξ η) can be expressed as the following non trivial convex combination

Γ(v; ξ; »/) = (l/2)QΓ(v; | ; ^ ) β " ' +(l/2)QPrΓ(v; ξ;

It remains to show that Δ(κ)= :A(ί; l O,..., 0,1; 1,..., l,κ) is extreme if

0 < κ < l . (4.15)
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To this purpose, for a given κ satisfying (4.15) we express A(κ) as a convex combina-
tion of extreme points of Dn,

A(κ)=ΣUiyA,O<yι<UAιcextτDnJ=l...,s,Σϊ=iyi=l. (4.16)

and we show that this implies Ai = A(κ)J=l,...,s. If μ denotes the normalized
Haar measure on SO(n)p, we get from (4.16)

where P = P M _ 1 ?

Δ-SQΔ&^dμiQ), i = l , . . . , s , (4.18)

the integration being extended over SO(n)pJ and

i ^ ^ P ) , i = l , . . . , s . (4.19)

The zί/s are invariant under O(n)p, hence they have the form J t = ({0,...,0,dj,
diag{&f,..., b ί? cj) and since Δ(κ)p=p and peextrB π we have Aip = p = Aip,
i = l , . . . , s . Therefore d f = l — c f and since A^D^ i = l,...,s, the cf's and the bf's
satisfy the inequalities 0 ^ q ^ 1 and cf ^£>?, i = 1,..., s. The first inequality follows
from zft{ — p) G £„. On the other hand, if it were cf < bf one would get Atx φ Bn

for some points x of βπ in the neighbourhood of p. Then, from (4.17) we have
κ2 = Σ? = i ^icί = Σi = i ^ίfc? = (Σi = i ^ifci)2 = χ 2 w h i c h i m P l i e s ci = bf = κ2,i=l,...,s
and hence, since Σ? = i y ^ i = κ>

Δt = Δ(κ)9 i = l , . . . , s . (4.20)

Denoting by zl any given zli? since by hypothesis A e extrDn it follows from the
hitherto obtained results that it must be of the form

, (4.21)

where Δ(ξ9 ω) = Δ(U 1 0,.. . , 0 , ( l - ^ 2 ) % ξ; 1,..., l,ω). If ω = l we have
hence J = β 2 β i = Q a n d , from (4.18)-(4.20),

Applying both sides_to the zero vector we get l - % 2 = 0 which contradicts (4.15).
If ξ = 1 we have A = βJ(ω), where β eO(n)p.Then J(κ) = (l/2)ί<iμ(6)(6β^MQ""x +
Pββzl(ω)β" 1 P) and applying to the zero^ vector gives ω = κ so that, since A(κ)
is non singular, we get lπ = ( l/2)J^μ(β)(βββ" 1 + P β β β ~ 1 P ) .

Taking the trace gives n = Tr(β) which implies Q = ίn and therefore Δ = Δ(κ).
Finally, consider the case

(4.22)

= (0,...,0,^
Since A(ξ, ω) maps p ( 1 ) to p(2) [compare (3.9)] whereas Ap = p, we have from (4.21)

Δ=Q2D(ξ ,ω;mi9m2)Ql9 (4.23)
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where

Q2,βj eSO(n)p, mi=0 or 1, m2 = 0 or 1

and

where

Sn-!,„ = (- l p ξ ( l - £ 2 ) * ( l - ω 2 )

and Sy=0 if ί+j and (i,/) + (π— 1, «). Hence

+ {ί/2)\PQQD(ξ ω m,, m2)Q ~ * Pdμ(Q), (4.24)

where Q = QχQ2. Equating the (n, n) matrix elements of the linear parts of the two
sides of (4.24) gives

κ2={l-ξ2) + ξ2ω2. (4.25)

Introducing the (n— 1) x («— 1) matrix

we get from (4.24)

(1/2) jso(n-i) QQE(ξl ω; m, +m2)Q-1dμ(Q)
— « (4.ZO)

+ (V2)ίso(n-i)^ββ^;ω;m1+m2)ρ-1Prfμ(β) = κl n _ 1 ,
where we have used the same symbols for the restrictions of P, Q and Q to IR""1.
Taking the squares of the traces of both sides of (4.26) and using Schwartz's
inequality gives

(n- l)2κ2 = ΓTv(QE(ξ; ω;

x |Tr(£«;ω;

whereby, using (4.25), we get ( l - £ 2 ) + £2ω25Ξω2 which contradicts (4.22). I

5. Geometrical Considerations

Among the extreme points of Dn are those which map Sn into itself (in the physical
case n = 3 they correspond to the transformations which map pure states to pure
states). There are two types of such maps: those of the form (0, Q\ Q e O(n), and
those which map Bn onto a point of Sn. They are obtained by setting κ= 1 and,
respectively, κ = 0 and δ = 1 in (4.1). In the physical case n = 3, (0, Q) corresponds
to a unitary transformation on the density matrices Q^>UQU*, UU* = 12, if Q e SO(3).
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It corresponds to a transformation of the form ρ-^>uρτu*,uu* = l2, if β e θ ( 3 ) ,
d e t β = — 1. Transposition on the density matrices corresponds to the antiunitary
transformation {x/}->{xJ on <C2. (consider the pure states ρ={ρij = χiχj}9 then
ρij-^xiXj = ρji and extend by linearity).

We now describe the geometrical meaning of the parametrizations of Dn

given in Theorem 1. Let Δ=(b, T) be an element of Dn and write (b,T) =
(Q1a,Q1ΛQ2) with Ql9Q2eO(ή),(a,Λ) canonical, Λ = diag{λί9λ29...9λn}.(a9Λ)
maps Sn to an ellipsoid En whose axes have lengths λl9λ2,...,λn and whose center
a lies in the positive cone. If λί=0, En degenerates to a point and Δ is extreme or
not according to whether or not a e Sn. Assume λ1 > 0 and write at = βξt(\ — ocωf) =
βξiil-oίvηf) a n d λ i = aβωι{Σn

j=1ξtω3)* = aίβvηi9i = l929...9n9 a s in T h e o r e m 1.
The geometrical meaning of the parameters ω 1 ) ω 2 , . . . 5 ω B i s clear from the rela-
tion ωi = λi/λ1. As regards the vector £, take β = ί and α < l . Then EnnSn={ξ}.
By (3.9), the point v of Sn which is mapped to £ by (a, A) = Δ((x; 1; £; ω), α< 1, is
given by (3.8) and we have η^vjξ^ As an illustration, in the case n = 3, for fixed
£ and as ω2 and ω 3 range in their domain 0 ^ ω 3 r g ω 2 : g 1, the point v sweeps the
spherical triangle whose vertices are the points £,(1,0,0) and (£i/(£i+ £!)*>
£2/(£i+£?,)% 0). β and α are parameters of convex combinations. Indeed we have

Uξ;ω) + (l-β)A(a;O;ξ;ω) [note that zl(α;0; £; ω) = (0, OJ]
and ii) Δ(tx; 1; ξ;ω) = aΔ(l; 1; £;ω) + (l-α)zl(0; 1; ξ ω) [see (3.7) and note that
ξeΔ{l'9l;ξ'9ω)(Sn)nSn and that J ( 0 ; l ; £ ; ω ) maps Bn to £]. Now take α = j8=l
and £ i>0. Then, as it is seen from (3.5), if ω s = l and ω s + 1 < l the intersection
EnnSn is an (s— l)-dimensional sphere and we obtain an extreme map if s = n— 1
[<5< 1 in (4.1)]. The remaining extreme maps are obtained as the limit of the latter
as £n->l for which the (n — 2)-dimensional sphere EnnSn degenerates to the
"north pole" p = (0,...,0,1) [<5 = 1 in (4.1)]. To be specific, divide extrP,, into the
two subsets A and B which correspond to taking δ = l and, respectively,
0<(5<l,κ<l in (4.1): A = {Δ{ί9κ)\0^κ^l} and B={Δ(δ9κ)\O<δ<l;κ<l}.

We have Δ{l9κ)(Sn)nSn=p if κ < l whereas, if δ<ί and κ<ί,Δ(δ9κ)(Stt)nSn

is the (n — 2)-dimensional hypersphere Σ= {x\x e Sn, xn = δ}. Now assume Δ to be
an element of D'n such that Δ(Sn)nSn is reduced to a point q and assume that Δ
can be expressed as a non trivial convex combination Δ = γΔ1 +(1 — y)Δ2 of
elements of Dn. Then, there is at least one direction in the hyperplane which is
tangent to Sn at q along which either Δ^S,) or Δ2(Sn) have at q a smaller curvature
than Δ(Sn) has at q along the same direction. If Δ=Δ(l, κ) this is impossible since
Δ(ί, κ)(Sn) has at q and along all directions the same curvature as Sn. This explains
intuitively why the elements of A are extreme. As to the elements of B, if we write
Δ(δ,κ) as a convex combination Δ(δ,κ) = yΔί+(l — y)Δ2, we must have that
Δ(δ, κ\ A1 and Δ2 agree on the (n — 2)-dimensional hypersphere Σ={x\xe Stv xn =
wj, where un is given by (4.6) with ξn = δ,ωn = κ. Here, the dimensionality of Σ is
just large enough as to imply Δ1 = Δ2 = Δ(δ, κ). On the other hand, it is no more
so if Δl9 Δ2 and A( = yAx +(l — y)Δ2) are to agree on an hypersphere of Sn whose
dimension is less than n — 2 (except in the case when A = QXΔ Q2 with Ql9Q2e O(n)
and Δ e A).

Finally, we remark that the extreme elements of Dn have a high simmetry.
Precisely, if (b, T) e D'n is extreme, then there exists C e O(n) and a subgroup of
O(n), say Γ, isomorphic to O ( n - l ) , such that QTC~1Q'ίC = Tand Qb = b for
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every Qe Γ. However, this condition is not sufficient for (b, T) to be extreme, as
the example j8 = α = ω f J_1 = l , ω π < l , £ π = 0 shows.
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