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We investigate the occurrence of extreme and rare events, i.e., giant and rare light pulses, in a periodically

modulated CO2 laser model. Due to nonlinear resonant processes, we show a scenario of interaction between

chaotic bands of different orders, which may lead to the formation of extreme and rare events. We identify

a crisis line in the modulation parameter space, and we show that, when the modulation amplitude increases,

remaining in the vicinity of the crisis, some statistical properties of the laser pulses, such as the average and

dispersion of amplitudes, do not change much, whereas the amplitude of extreme events grows enormously,

giving rise to extreme events with much larger deviations than usually reported, with a significant probability

of occurrence, i.e., with a long-tailed non-Gaussian distribution. We identify recurrent regular patterns, i.e.,

precursors, that anticipate the emergence of extreme and rare events, and we associate these regular patterns with

unstable periodic orbits embedded in a chaotic attractor. We show that the precursors may or may not lead to

the emergence of extreme events. Thus, we compute the probability of success or failure (false alarm) in the

prediction of the extreme events, once a precursor is identified in the deterministic time series. We show that this

probability depends on the accuracy with which the precursor is identified in the laser intensity time series.

DOI: 10.1103/PhysRevE.96.012216

I. INTRODUCTION

Many natural and engineered systems can exhibit extreme

and rare events. Extreme means that the events have large

magnitude when compared with the average magnitude of

their statistical distribution, and rare means that the extreme

events (EEs) have a low probability of occurrence. Despite

the fact that EEs have a low probability of occurrence, many

systems have shown situations in which the probability of

occurrence of the EEs is significantly higher than expected

from Gaussian distributions. Recently, investigations on EEs

have received a considerable amount of attention from the

scientific community, especially in the context of rogue or

freak wave phenomena in hydrodynamics and optics [1–6],

but also in other contexts including geophysics, space plasmas,

and finance [7–9].

The interest in the subject is justified by several factors. One

is due to practical reasons, for example the obvious destructive

power that such events could result in different contexts. Other

factors include the generality of the phenomenon, that is, a

wide variety of different systems may exhibit EEs, and the

fact that EEs are associated with very complicated dynamics,

including chaotic and turbulent regimes. Such situations are

less known and exploited than more regular situations usually

investigated in different models and systems, which appear in

many contexts.

In recent years, many efforts have been made to increase

our understanding of the dynamics of EEs. From a theoretical

point of view, EEs are often described or investigated in

modeling based on partial differential equations (PDEs),

ordinary differential equations (ODEs), or delay differential

equations (DDEs). In the case of PDEs, EEs involve spa-

tiotemporal dynamics (in many cases they are called rogue,

freak, extreme, or giant waves). In the case of ODEs or

DDEs, EEs involve only temporal dynamics. Among the main

problems that have been considered, two themes have received

a great deal attention. One is with respect to the mechanisms

responsible for the appearance of EEs, and the other concerns

the predictability of EEs.
The origin of EEs has been the subject of intense debate. In

fact, different systems or levels of description have revealed
various mechanisms responsible for the formation of EEs.
The emergence of EEs has been associated with linear and
nonlinear regimes. The generation of EEs in linear systems
has been reported by different authors [10–16]. With respect
to nonlinear systems, the most prominent case, generally
accepted as forming the EEs (in the context of rogue waves
studies), is the Benjamin-Feir (or modulational) instabil-
ity [17–21]. This condition has recently been questioned
for the case of ocean waves [22]. Other nonlinear scenarios
associated with EE formation include chaotic dynamics in low-
dimensional systems [23], stochastically induced transitions in
multistable systems [24], collisions of breather-solitons [25],
integrable turbulence [26], spatiotemporal chaos [27], vortex
dynamics [28], vortex turbulence [29], and delayed-feedback
systems [30,31]. In the case of low-dimensional chaotic
systems, crises have been identified as one of the mechanisms
associated with the emergency of EEs [32], and they have
recently received some attention [33–35].

Another issue of great interest in EE study, of obvious

practical importance, is the possibility to predict rare events

of great magnitude with some advance in time. As the subject

is very interdisciplinary, many efforts, in different contexts,

have been directed to this problem (see, e.g., [36–39]). Due to

the possibility of EEs being associated with a deterministic

origin, some degree of predictability is expected in these

situations. Recently, some progress has been made in this

direction, with the most sound result being the identification of

certain regular patterns that occur anticipating the emergence

of EEs [32,35,40].

The aim of this manuscript is to investigate some novel

aspects related to these two important points in the study of

EEs, that is, the mechanism of formation and the predictabil-

ity of EEs, using a relatively simple low-dimensional and
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deterministic chaotic system, namely a periodically modulated

CO2 laser. Concerning the mechanism, we identify a crisis

line in the parameter space of the CO2 laser model, and we

investigate the emergence of EEs in the vicinity and along

this line. We show that, when the modulation amplitude is

increased (staying in the vicinity of the crisis), the average and

dispersion of the laser pulse amplitudes do not increase much,

but the amplitude of EEs increases enormously. Usually, EEs

are found with amplitudes exceeding slightly four or eight

standard deviations over the average amplitude of the events.

Here, we show EEs that significantly exceed this criterion.

We call these “superextreme events” (SEEs), in analogy to

the discovery of “super rogue waves” in a hydrodynamical

system [41], and we explain their formation in terms of

a nonlinear resonance route. We present a comprehensive

study on the formation of extreme and rare events along a

two-parameter space, where we show the evolution of EEs

with deviations that increase progressively, and, importantly,

we show that large-deviation events are related to solutions of

different orders. We further perform an original study of the

behavior of the coefficient of variation of the chaotic dynamics

of laser intensity when crossing a transition between chaotic

attractors with very different statistical properties, which helps

us to understand the dynamics of extremely large deviation

events. With regard to the prediction of EEs, as we mentioned

above, recent results show that there are regular patterns that

anticipate the occurrence of EEs. However, a more detailed

study of these regular patterns has not yet been performed.

Here we shed some light on this subject. Specifically, (a)

we show that these regular patterns can appear without the

emergence of EEs (i.e., we can have false alarms), (b) we

associate the oscillation period of these regular patterns with

certain unstable periodic orbits embedded in the laser chaotic

dynamics, and (c) we investigate the probability of predicting

EEs in terms of the precision with which we can find a

precursor in the time series.

II. MODEL

The single-mode dynamics of the loss-modulated CO2 laser

involves two coupled degrees of freedom and a time-dependent

parameter, which we write, as usual [42–44],

dI

dt
=

1

τ
(N − k)I,

dN

dt
= (N0 − N )γ − IN.

(1)

Here, I is proportional to the laser intensity, N and N0 are

the gain and unsaturated gain in the medium, respectively, τ

denotes the transit time of the light in the laser cavity, γ is the

gain decay rate, and k ≡ k(t) represents the total cavity losses.

The losses are modulated periodically as

k(t) = k0(1 + a cos 2πf t), (2)

where k0 is the constant part of the losses, and a and

f are the amplitude and frequency of the modulation,

respectively. The parameters a and f are varied in the

numerical simulations. The remaining parameters are fixed

at γ = 1.978 × 105 s−1, τ = 3.5 × 10−9 s, N0 = 0.175, and

k0 = 0.17. Integrations were done using the standard fourth-

order Runge-Kutta scheme with a fixed time step, equal to

h = 2 × 10−8.

In the absence of modulation (k = k0), the laser behaves

like a damped oscillator. From an initial operating condition,

the laser output power displays damped relaxation oscillations

converging to a steady state given by

IS = γ

(

N0

k0

− 1

)

, (3)

NS = k0, (4)

where the relaxation oscillation frequency is given by

fRO ≈
1

2π

√

γ k0

τ

(

N0

k0

− 1

)

, (5)

where we used the fact that the CO2 laser is a class-B laser [44].

When the modulation parameters (a,f ) are turned on, the

laser displays a complicated set of resonances and instabilities,

which may lead to EEs, as we explain in the following section.

III. ROUTE TO SUPEREXTREME EVENTS

In this section, we show how the modification of the

CO2 laser modulation parameters gives rise to EEs, with

the possibility of events with exceptionally large amplitudes

when compared to the average amplitude of the laser intensity

oscillations.

By varying the modulation parameters of the CO2 laser,

is well known that, when the modulation frequency is near

the relaxation oscillation frequency, the laser has a number of

phenomena and dynamical instabilities [44–51]. In particular,

the laser exhibits the usual route to chaos via subharmonic (or

period-doubling) bifurcations, as shown much earlier [42].

In Fig. 1 we show a phase diagram illustrating various

instabilities occurring in the CO2 laser, as a function of

the modulation parameters. Briefly, the main instabilities to

which we refer are as follows: (a) starting from the period-1

orbit, a sequence of subharmonic bifurcations occurs until the

appearance of chaos, denoted by region I; (b) new periodic

orbits are created through saddle-node bifurcations of limit

cycles, denoted by the numbers 3, 4, 5, 6, and 7, which refer

to the period of the orbits (these saddle-node bifurcations

are sometimes called primary saddle-node bifurcations [47]);

(c) each periodic orbit created develops a sequence of

subharmonic bifurcations, leading to different chaotic regions

in parameter space, which we denote by III, IV, V, VI, and

VII; and (d) typically, each chaotic region ends when a crisis

occurs [53]. In this work, we focus on the crisis denoted by

the dashed line in Fig. 1, where there is a transition between

the chaotic region I and the other chaotic regions. For the sake

of clarity, we classify the chaotic regions in a hierarchical

order. The chaotic region I is the lowest order, and we refer

to the other chaotic regions as higher-order chaotic regions

(or chaotic bands), where, for simplicity, we associate the

“order” of the chaotic region with the period of the primary

saddle-node bifurcation that gives rise to it.
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FIG. 1. Phase diagram of the CO2 laser model as a function

of modulation parameters. The diagram was computed through the

Lyapunov exponents method [51]. Gray shades denote periodic

solutions, and yellow-red shades denote chaotic solutions. The dashed

line denotes the locus of a crisis between two chaotic attractors (see

text for details). Arabic numbers indicate the period of some periodic

regions, and roman numbers denote chaotic bands. Modulation

parameters (a,f ) are A = (0.045,163.725), B = (0.070,185.650),

C = (0.120,200.170), and D = (0.190,208.250). The blue arrows

in the vertical axis mark fRO and 2fRO, i.e., modulation frequencies

associated with the fundamental resonance and the main subharmonic

resonance [48,52], respectively. Frequencies are in kHz.

It is important to mention that the chaotic regions to

which we refer here are densely populated with periodic

windows [51]. Each periodic window created by a saddle-node

bifurcation develops a sequence of subharmonic bifurcations

leading to the appearance of different chaotic regions. So,

strictly speaking, the parameters where chaotic behaviors

occur are not continuous, but they form a complicated fractal

structure. For simplicity, we call the regions I, III, IV, etc.,

“chaotic regions” (or “chaotic bands”), without worrying about

their internal structures. Another consequence of the periodic

windows embedded in the chaotic regions is that the crisis line

may not form a continuous segment. It was shown that a crisis

line, for the case of another type of crisis, i.e., a boundary

crisis, contains gaps and is divided into segments that form a

fractal structure [54]. Again, for simplicity, we use the term

“line” to denote the locus of the investigated crisis, without

worrying about its fine structure.

Since we are interested in investigating EEs, i.e., rare

light pulses emitted with large amplitude, it is worthwhile

to keep in mind how large-amplitude events appear in the

laser, when we vary the modulation parameters. Dynamically,

the laser is a nonlinear damped oscillator with a parametric

modulation, i.e., a nonlinear oscillator subject to a periodic

perturbation. For low modulation amplitude, the laser response

to a periodic perturbation is approximately linear. It is well

known that, in a linear damped oscillator subject to a periodic

perturbation, the largest oscillation amplitude occurs at the

resonance frequency, i.e., when the perturbation frequency is

equal to the natural oscillation frequency. Figure 2(a) illustrates
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FIG. 2. Amplitude of the laser intensity pulses (IA) as a function

of modulation frequency. Arabic numbers denote the period of some

periodic orbits, and roman numbers denote some different chaotic

bands. The modulation amplitude is fixed in each diagram, and the

values are (a) a = 0.005, (b) a = 0.020, (c) a = 0.045, (d) a = 0.070,

and (e) a = 0.190. Other parameters are not changed. Green arrows

denote resonant solutions, i.e., the largest intensity responses for a

sequence of different periodic orbits. The blue arrow [in (c)] denotes

a crisis without EEs, the red arrow [in (d)] denotes a crisis with EEs

and the purple arrow [in (e)] denotes a crisis with SEEs.

this case approximately linearly, where the amplitude of the

laser intensity oscillations is plotted against the modulation

frequency for low modulation amplitude. In this case, we

clearly observe the resonance when the modulation frequency

coincides with the relaxation oscillation frequency.

When the modulation amplitude increases, nonlinear phe-

nomena become important, as shown in Figs. 2(b)–2(e).

Figure 2(b) illustrates the case in which the period-1 oscillation

bifurcates to a period-2 oscillation. In this case, it is observed

that each of the periodic orbits has a maximum amplitude

response (shown by green arrows) for specific levels of

modulation frequency. That is, each periodic solution has

its own resonant frequency. The largest value of the laser

amplitude response (global maximum) remains the period-1

oscillation. Notice that the resonance frequency of the period-1

solution has been shifted and is less than fRO (i.e., it is

redshifted).

For higher levels of modulation amplitude, chaotic oscilla-

tions occur and new periodic solutions are created through

saddle-node bifurcation of limit cycles, as illustrated by

Figs. 2(c)–2(e). Again, each periodic orbit has its own resonant
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frequency (shown by green arrows). These created orbits

follow a route of subharmonic bifurcations and give rise

to the chaotic bands already mentioned. The interaction

between different chaotic bands can lead to large variations

in amplitude of the laser intensity oscillations. Notice that the

largest oscillation amplitudes remain from the fundamental

resonance, i.e., when f ∼ fRO. However, for these modulation

frequencies, the large-amplitude oscillations are very common,

and the laser pulses do not display an EE statistics (with a

long tail). The situation completely changes when considering

modulation frequencies around the subharmonic resonance,

i.e., when f � 2fRO. In this case, the chaotic region I exhibits

small-amplitude oscillations, and large intensity variations can

occur when this chaotic region interacts with other chaotic

bands (which display larger amplitudes). When moving from

the chaotic region I to the other chaotic regions (by decreasing

the modulation frequency), the small-amplitude chaotic attrac-

tor that exists in the region I undergoes a sudden expansion

to a larger chaotic attractor. In the case we investigate here,

this occurs when an unstable period-3 orbit (a saddle branch

that is born through a saddle-node bifurcation) touches the

chaotic solution that lies in the region I. This process, that is,

the sudden size variation of the chaotic attractor due to the

collision with an unstable periodic orbit, has been called by

different names in the literature, such as interior crisis [53,55],

explosive bifurcation [56], or external crisis [57]. To illustrate

the usage of different nomenclature, in examples relating to

a CO2 laser, see, e.g., Refs. [33,58]. The locus of this crisis,

in the frequency-amplitude space (a,f ), is denoted by the

dashed line in Fig. 1. The blue, red, and purple arrows in

Figs. 2(c)–2(e) denote the occurrence of the crisis and illustrate

the amplitude variations of the interaction between the chaotic

region I and the chaotic regions III, IV, and VII, respectively.

It is important to mention that the occurrence of a crisis does

not necessarily imply the appearance of an EE, since the

amplitudes of the oscillations should satisfy some previously

arbitrated definition of an EE, as we discuss below.

When the modulation parameters are set for the laser

operation in the chaotic regions III, IV, etc., sufficiently near

the crisis line, abrupt amplitude variations can occur in the

laser intensity oscillations. Figure 3(a) shows a typical time

series of the laser intensity when the laser operates in region

III, near the crisis (corresponding to point A in Fig. 1). As

usual, to check quantitatively whether or not a given event

meets the EE criterion (or rogue event criterion), we compare

the intensity amplitude of the event with the average of the

events plus a number n of standard deviations, σ , that we call

the nσ criterion (see, e.g., [59] or [23,29]). We denote as σI

the standard deviation of the average intensity, 〈I 〉, and σA

denotes the standard deviation of the average peak amplitude,

〈IA〉. Alternatively, it is possible to use an EE definition based

on the calculation of the abnormality index, AI ≡ IA/IA1/3
,

where IA is the amplitude of the intensity pulses, and IA1/3
is

the “significant intensity,” which is the average of the one-third

highest amplitudes (as the “significant wave height” definition,

in rogue wave studies). Usually, every amplitude with AI > 2

is defined as an EE (or a rogue event) (see, e.g., [1,60]

or [4,5]). The probability distribution function (PDF) of the

laser intensity (where the statistics is performed for all intensity

values, taken at each step h of integration) is shown in Fig. 3(b).
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FIG. 3. Temporal behavior of the laser intensity (a) and the

respective PDF (b). PDF of the pulse amplitude (c). Solid lines

mark EE definitions, and numbers correspond to how many standard

deviations exceed the average of the events. The dashed line marks

another EE definition based on AI = 2. Modulation parameters

correspond to point A in Fig. 1 (a = 0.045,f = 163.725 kHz).

By applying the definition IEE = 〈I 〉 + nσI , intensity events

exceeding IEE are easily obtained for n = 4 or even 8. When we

perform the statistics of amplitude of the intensity pulses and

apply the definition IAEE
= 〈IA〉 + nσA, no amplitude satisfies

the 4σ criterion. The same situation occurs by using the

AI criterion, where no EEs are found for this distribution

[see Fig. 3(c)]. As we can see, the definitions based on

the 4σ and AI criterion are not coincident, but they do not

differ significatively, for this distribution. Both definitions are

arbitrary and each one can be used to define an EE.

By comparing the histograms of intensity and amplitude

[Figs. 3(b) and 3(c)], we found different results from what

was observed in investigations with an optically injected

semiconductor laser [23], where there were no significant

differences between the intensity and amplitude statistics. This

may be explained due to the particularity of the pulses emitted

by each laser system. In the case of the modulated CO2 laser,

in the regime that we investigate here, pulses typically occur

in the form of pronounced spikes, that is, the laser operates

for a longer time with low intensity and eventually triggers

a high-intensity pulse, causing the intensities close to zero to

be much more frequent, in comparison with other intensities.

This is not the case of the semiconductor laser, leading to the

different statistical properties.

In this work, from this point on, we will only consider statis-

tics of amplitude to investigate the occurrence of EEs, using the

nσ criterion. Thus, the intensity oscillations shown in Fig. 3

do not exhibit EEs. However, for higher levels of modulation

amplitude, near the crisis line, EEs begin to be observed. This

fact occurs because, when the modulation amplitude increases,

the amplitudes of the chaotic oscillations in the region I do not

grow much, but the amplitudes of the chaotic oscillations in

the regions III, IV, etc., increase significantly. Accordingly,

EEs with increasing amplitudes are observed. Figure 4 shows

the PDFs of the amplitude and the respective time series

of the laser intensity for some representative modulation

parameters. The laser intensity oscillations corresponding to

points B, C, and D, shown in Fig. 1, exhibit EEs satisfying

the 4σ , 8σ , and 12σ criterion, respectively. Indeed, if we keep
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FIG. 4. Left column: PDFs of the pulse amplitude. The green lines

denote the average amplitude (〈IA〉). Solid lines mark the EE defini-

tions, and numbers correspond to how many standard deviations ex-

ceed 〈IA〉. Modulation parameters (a,f ) are (a) (0.070,185.65 kHz),

(b) (0.120,200.17 kHz), and (c) (0.190,208.25 kHz), corresponding

to points B, C, and D in Fig. 1, respectively. Right column: The

respective time series of the laser intensity.

increasing the modulation amplitude, EEs with exceptionally

large amplitudes are observed near the crisis line.

Figure 5 shows how the maximum amplitude of the EE

varies as we increase the modulation amplitude, and, more

importantly, how its deviation from the average amplitude

increases significantly. In Fig. 5(a), the modulation parameters

were varied near the crisis, in a representative case, with

modulation frequencies 50 Hz below the crisis line. It is easy

to observe that the amplitude of the EE increases considerably,

whereas the average amplitude of the laser pulses, 〈IA〉, and

its standard deviation, σA, does not increase as much. This

leads to EEs with increasing deviations in relation to the

average amplitude (i.e., EEs exceeding a larger number of

standard deviations relative to the average amplitude) when the

modulation amplitude is increased. In Fig. 5(b), we compute

the number n of standard deviations that exceeds the average

amplitude of the laser pulses according to

n =
max

(

IAEE

)

− 〈IA〉

σA

, (6)

where max(IAEE
) is the most EE found in an intensity time

series after a large number of numerical integrations. It is

important to realize that n depends on how far the modulation

parameters are from the crisis, since both 〈IA〉 and σA decrease

when approaching the crisis (transversally) by increasing the

modulation frequency. In Fig. 5(b) we estimate the limit case,

that is, we compute n over the crisis line. For a fixed modulation

amplitude, n starts to decrease when moving away from the

crisis by decreasing the modulation frequency.

To understand how the system behaves near the criti-

cal transition (crisis), we analyze the dynamics of chaotic

pulses in terms of the coefficient of variation, CV , which is

defined as the ratio of the standard deviation to the mean

(CV = σA/〈IA〉). The coefficient of variation is also called
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FIG. 5. (a) Maximum amplitude of EE, average amplitude (〈IA〉),

and its standard deviation (σA) when the modulation parameters

are varied slightly (50 Hz) below the crisis line. (b) Number of

standard deviations (σA) exceeding the average amplitude of the laser

pulses when the modulation parameters are varied over the crisis

line. The red-dotted line and purple-dotted line mark the 4σ and

12σ criterion, respectively. “No EE,” “EE,” and “SEE” stand for

“without extreme event,” “extreme event,” and “superextreme event,”

respectively, and they illustrate ranges of modulation amplitudes with

increasing amplitudes for the observed rare events.

relative standard deviation (RSD), and it is sometimes ex-

pressed as a percentage. The main findings we obtained are

illustrated in Fig. 6. Far away from the crisis, σA > 〈IA〉,

where we found typically CV ≈ 2. When approaching the

crisis, both 〈IA〉 and σA decrease, but at different rates,

converging to σA ≈ 〈IA〉 close to the critical transition, and

then σA < 〈IA〉 when crossing the critical transition. Figure 6

gives us important insights about the behavior of the system
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for a = 0.19. The dashed line marks the crisis location (f ≈

208.27 kHz).
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FIG. 7. (a) Temporal behavior of the laser intensity. The box on

the left is magnified in (b) and the box on the right is magnified in

(d). Parts (c) and (e) show only the amplitudes for the magnified

boxes, respectively. The blue and red boxes are discussed in the

text. The red lines denote the EE definition, according to the 4σ

criterion. Modulation parameters correspond to point B in Fig. 1

(a = 0.07,f = 185.65 kHz).

close to the crisis bifurcation shown in Fig. 1 and its connection

with the generation of large deviation events. We will come

back to this point in Sec. V.

IV. PRECURSORS OF EXTREME

AND SUPEREXTREME EVENTS

In this section, we consider the problem of prediction of

EEs for the loss-modulated CO2 laser. First, we investigate the

existence of precursors of EEs, i.e., the existence of regular

patterns that anticipate the occurrence of EEs. Second, and

more importantly, we analyze the effectiveness of predicting

an EE once a given precursor is identified.

By analyzing the time series of the laser intensity, when the

modulation parameters are set to operate within the chaotic

regions III, IV, etc., near the crisis line, we identified the

existence of very regular patterns prior to the occurrence

of EEs. Figure 7(a) shows a typical time series of the

laser intensity, which corresponds to point B in Fig. 1. A

magnification of this time series, in the vicinity of an EE, is

shown in Figs. 7(b) and 7(c). A magnification of another part

of the time series, far from the vicinity of an EE, is shown

in Figs. 7(d) and 7(e). Regular patterns that exist embedded

in the chaotic time series are shown highlighted by colored

boxes. The red box shows two visitations to what resembles

a period-3 orbit (with three different local maxima). We label

this excursion in phase space (resembling a period-3 orbit) as

a pseudo-orbit of period three (POP3). The blue box shows a

visitation in phase space that resembles a period-5 orbit (with

five different local maxima). We label this excursion in phase
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FIG. 8. Superposition of 200 time series (a) showing a regular

pattern preceding an EE and (b) showing the same regular pattern

without the emergence of an EE. Only the amplitudes of the laser

pulses are plotted. T denotes the index of the successive local maxima

of laser intensity. The color scale shows how many times each

amplitude bin is visited (see text for details). Modulation parameters

are as in Fig. 7.

space as a pseudo-orbit of period five (POP5). Below, we show

that these visitations in phase space occur recurrently in the

chaotic time series, and we discuss their origin.

To show that these regular patterns appear recurrently in the

chaotic time series of the laser intensity, where they may or may

not anticipate the occurrence of EEs, we overlap many time

series, starting from random initial conditions. Figures 8(a)

and 8(b) show the superposition of 200 time series of the laser

intensity, where only the amplitudes of the laser pulses are

plotted. The overlays of the time series were performed as

explained below. In Fig. 8(a), every time an EE is found, that

is, when the intensity exceeds a certain threshold, we center the

time series in this position and plot the 80 previous maxima and

the 80 subsequent maxima. (To simplify the visualization, we

take care to select pieces of time series in which only one EE

is displayed in the considered time interval.) On the horizontal

scale, instead of precisely indicating the occurrence time of the

maxima, we simply use the occurrence index of the maxima,

denoted by T . In Fig. 8(b), we identify numerically different

POP3s that are not followed by the occurrence of an EE. The

superposition of the time series was done centered on a local

maximum of the POP3 and then by plotting the 80 previous

maxima and the 80 subsequent maxima. To obtain information

about the frequently visited regions of many different laser

intensity trajectories in phase space, the vertical scale in Fig. 8

was divided into 60 bins, and a histogram for each T is shown

in the color scale. In this way, we can clearly identify regular
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FIG. 9. (a) Time traces of two unstable period-5 orbits of laser

intensity (magenta and blue lines) and (b) projection in phase space

(I,N ). (c) Time trace of an unstable period-3 orbit of laser intensity

(red line) and (d) projection in phase space (I,N ). In gray, in the

panels (b) and (d), is shown the superposition of 50 visitations along

POP5 and POP3, respectively. Modulation parameters are as in Fig. 7.

patterns formed by visitations containing POP5 followed by

POP3. After this regular pattern, the emergence of an EE may

or may not occur.

Below, we examine the origin of these regular patterns,

formed by POP5 and POP3, which may occur with or

without the emergence of an EE. As discussed in the previous

section, with the variation of the modulation parameters, the

laser shows a number of dynamic instabilities. Stable and

unstable orbits are born through saddle-node bifurcations

of limit cycles. When stable orbits undergo a subharmonic

bifurcation, they do not disappear and continue to exist, but

in an unstable form. Thus, there is a plethora of unstable

periodic orbits embedded in the chaotic phases (in fact, an

infinite number), making the dynamics in phase space rather

complicated. Despite the complicated dynamics, with the usual

sensitivity to initial conditions, the laser chaotic dynamic

displays certain recurring regular patterns, such as the POP3

and POP5 discussed here. We can associate these regular

patterns with the existence of unstable periodic orbits that are

embedded in the chaotic phases. To elucidate this point, we

compute some unstable periodic orbits for Eq. (1), using the

software for numerical continuation, AUTO [61]. Figure 9(a)

shows two unstable period-5 orbits. These orbits are born

by a saddle-node bifurcation of a limit cycle, which forms

a period-5 window (marked by an arrow in Fig. 1). At birth,

one of the orbits is stable and one is unstable, but, for the

modulation parameters that we investigate here, both orbits

are unstable (since the stable orbit loses its stability in a

subharmonic bifurcation). Figure 9(b) shows a projection of

these two orbits in phase space (I,N ). Together with these

two unstable period-5 orbits, we plot the superposition of

many POP5s (in gray), obtained by numerical integration of 50

different time series. We can observe that trajectories, coming

from different regions in phase space, are trapped between

the two unstable period-5 orbits, forming the POP5. After the

excursion along the POP5, the trajectories are mapped to the

FIG. 10. In blue: number of precursors identified leading to

the emergence of an EE. In red: number of precursors identified

corresponding to false alarms, i.e., not leading to the emergence of

an EE. The number of precursors (NP) identified in each case is

normalized to the total number of local maxima (Ntot = 7.4 × 108)

of each spanned time series. � is proportional to the precision in

which a precursor is identified (see text for details). The modulation

amplitude is fixed at a = 0.07. The modulation frequency is varied

in each panel: (a) f = 185.650 kHz (corresponding to point B in

Fig. 1), (b) f = 185.660 kHz, (c) f = 185.665 kHz, and (d) f =

185.669 kHz.

vicinity of an unstable period-3 orbit [see Figs. 9(c) and 9(d)].

This unstable period-3 orbit is born (already in an unstable

form) by a saddle-node bifurcation of limit cycle, which

gives rise to a period-3 window (marked in Fig. 1). (Another

period-3 orbit, which is born stable and loses its stability in a

subharmonic bifurcation, is located in a more distant position

in phase space and is not shown here.) Figure 9(d) shows a

projection in phase space (I,N ) of the unstable period-3 orbit

(red curve) together with the superposition of 50 trajectories

of POP3s (gray curves). The POP3 trajectories perform very

close excursions to the vicinity of the unstable period-3 orbit.

After one or more excursions in the vicinity of the unstable

period-3 orbit, two possibilities follows: either the trajectory is

mapped to the large-amplitude portion of the chaotic attractor,

with the occurrence of an EE, or the trajectory is mapped to the

small-amplitude portion of the chaotic attractor, without the

occurrence of an EE. Due to the fact that, whenever there is an

EE, it is preceded by POP3, we can use the POP3 as a precursor

for the emergence of an EE. However, the occurrence of a

precursor is not always associated with the emergence of an

EE. This situation is analyzed below.

Since not all precursors found in the time series of the laser

intensity lead to the emergence of an EE, an important question

is as follows: what is the probability of the emergence of an

EE once a precursor is identified in the time series? To answer

this question, we perform some numerical simulations, which

are summarized in Fig. 10. Using the known unstable period-3

orbit as a precursor (computed numerically with AUTO, within

a given numerical accuracy), we compare all the amplitudes

of the laser pulses in a very long time series with the ampli-

tudes of the unstable period-3 orbit, in accordance with the
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expression

�(t) =
1

6IS

6
∑

i=1

min
j=1,2,3

∣

∣IAT −i
− I ∗

j

∣

∣, (7)

where the set I ∗
j (j = 1,2,3) are the local maxima (amplitudes)

of the unstable period-3 orbit of the laser intensity, and the

number 6 is related to the minimum length (two excursions

in the vicinity of the unstable period-3 orbit) of POP3. Thus,

� is related to the accuracy with which we can determine the

precursor (POP3).

In Fig. 10, we plot in blue (red) a histogram of the values of

� leading (not leading) to the emergence of an EE. This figure

is directly related to the number of precursors found in the

time series as a function of the defined accuracy. We can see

that the visitations along the POP3 are rare. Our results show

that the probability of predicting an EE in the deterministic

time series depends on the distance between the trajectory in

phase space and the unstable period-3 orbit used as a precursor.

In other words, this probability depends on the accuracy with

which the precursor is identified. For example, in Fig. 10(a)

(which corresponds to point B in Fig. 1), for � < 0.005, the

number of precursors identified that lead to an EE is about the

same as the number that do not lead to an EE. In this case,

the probability of correctly predicting an EE is 50%. However,

for larger values of �, this probability varies widely, as we

can see in the histogram. Depending on the value of �, we

may have more precursors leading to an EE than not leading

to one, or vice versa. From a certain value of �, we move

too far from the POP3, and precursors identified with this

accuracy do not lead to the emergence of an EE. To evaluate

how sensitive these computed probabilities are with respect

to parameter variations, we repeat the same calculations

for other modulation frequencies when moving in a closely

transverse direction of the crisis. The results are shown in

Figs. 10(b)–10(d). As we approach the crisis, the EEs are

increasingly rare [Figs. 10(b) and 10(c)]. When we cross the

crisis [Fig. 10(d)], the laser operates within the chaotic region I

(where only small-amplitude chaotic dynamics occurs), and no

EEs are observed in the deterministic case that we investigate

here.

V. DISCUSSION

The main mechanism of EE formation that we report here

is related to the interaction between a chaotic region arising

from the instability of the fundamental periodic solution (the

period-1 solution) with chaotic bands arising from instabilities

of periodic orbits of period 3, 4, 5, 6, 7, etc., created by

saddle-node bifurcations of limit cycles. At the beginning of

the interaction between the chaotic region I and the chaotic

region III, through a crisis, the amplitudes of the chaotic

attractors do not differ significantly, and therefore there is

no EE statistics. For a certain level of modulation amplitude,

the amplitudes of the chaotic attractors become more different,

and EE statistics start to be observed. Since we are looking at

transitions between the chaotic region I to other higher-order

chaotic regions, i.e., I → III, I → IV, I → V, etc., the higher

the modulation amplitude is, the larger is the amplitude of
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FIG. 11. Bifurcation diagrams illustrating some differences in

amplitudes for successive branches of intensity solutions. (a) Strongly

resonant case (f ≈ fRO ), where f = 85 kHz. (b) Weakly resonant

case (f ≈ 2fRO ), where f = 170 kHz. Roman numbers denote

different chaotic bands.

the EE when compared to the average amplitude. Previous

EE statistics in a loss-modulated CO2 laser was reported

in Ref. [33], with EEs arising from interaction between

neighboring chaotic bands, such as III → IV, IV → V, V →

VI, etc. The case we show here differs from this previous

investigation since we are considering interactions between a

low-order chaotic band with other higher-order chaotic bands,

as already explained.

To understand better the mechanism of the emergence of

large-deviation EEs, which we describe here, it is illustrative

to have an overview of how amplitudes grow when we increase

the modulation amplitude, at different modulation frequencies.

Figure 11(a) shows the amplitude variations of different

chaotic bands (denoted by roman numerals) for f ≈ 2fRO.

The chaotic band I corresponds to entire chaotic region above

the crisis line in the modulation parameter space, whereas the

other higher-order chaotic bands are located below the crisis

line. When the modulation amplitude increases, amplitudes

of chaotic band I grow very little. Then we refer to the

intensity oscillations of chaotic band I as weakly resonant

solutions, i.e., intensity oscillations whose amplitudes do not

grow much when the modulation amplitude increases [to check

amplitude variations of the chaotic band I for higher levels of

modulation amplitude, see Figs. 2(c)–2(e)]. On the other hand,

amplitudes of higher-order chaotic bands grow significantly

as the modulation amplitude increases. Then we refer to the

intensity oscillations of chaotic bands III, IV, etc., as strongly

resonant solutions, i.e., intensity oscillations whose amplitude

increases significantly as the modulation amplitude increases.

As we move toward the resonance frequency, the amplitudes

of the intensity oscillations become even larger, as can be

seen in Fig. 11(b), for f ≈ fRO. But in this strongly resonant

regime, when the modulation amplitude increases, the average

and dispersion of the amplitudes increase considerably [see the

green and blue lines in Fig. 11(b)]. Thus, for high modulation

amplitude and f ∼ fRO, the laser pulses exhibit very large

amplitudes, but also very large variability. For example, for

a = 0.2 and f = 85 kHz, it is found that 〈IA〉 ≈ 26 and

012216-8



EXTREME AND SUPEREXTREME EVENTS IN A LOSS- . . . PHYSICAL REVIEW E 96, 012216 (2017)

σA ≈ 51. When moving toward the crisis, the average and

dispersion of amplitudes decrease (e.g., 〈IA〉 ≈ 12 and σA ≈

25 for a = 0.2 and f = 170 kHz) until a transition is observed

through the crisis in the same way as is shown in Fig. 6. In other

words, when moving from the resonance frequency toward the

crisis (by increasing the modulation frequency), at some stage,

the pulses start to get more and more “clustered” around the

average value, since the dispersion of amplitudes decreases

faster than the average. When approaching very close to the

crisis, the laser oscillations “feel” strongly the interaction with

the small-amplitude and small-dispersion chaotic attractor that

is found after the crisis. Before crossing the crisis, although

the amplitudes have a small average and small dispersion,

eventually very intense pulses can be emitted since the

chaotic attractor that lies before the crisis has a very large

amplitude.

Thus, the mechanism described in this article explains

the emergence of rare laser pulses with exceptionally large

amplitudes, including events with amplitudes that deviate

significantly from the 4σ criterion. In the same way that we

can arbitrarily define EEs as those satisfying the 4σ criterion

(or 8σ , to be more restrictive), we could arbitrarily define

SEEs as those satisfying the 10σ criterion (or 12σ , to be

more restrictive), as we suggested in Figs. 2(e) and 5(b). More

important than saying how many “σ” is the SEE definition,

since this definition is also arbitrary, is to understand how EE

deviation increases relative to the average amplitude when sys-

tem parameters are changed, as we did in Fig. 5(b). We found

EEs with deviations in the range from 4σ to 20σ , while EEs are

usually reported with deviations in the range from 4σ to 8σ .

This is a significant difference, not only because quantitatively,

of course, a 10σ event could have a much higher potential for

impact than a 4σ event, but mainly because the events with

increasing deviations are related to different order solutions,

i.e., they are qualitatively different, as we showed in this article.

This discovery leads us to suggest that “superextreme and rare

events” exist in low-dimensional chaotic systems, in analogy

with Ref. [41], where “super rogue waves” were discovered in

water waves, when investigating EEs in high-dimensional sys-

tems. It is remarkable that in Ref. [41], the super rogue waves

are related to higher-order rational solutions of the nonlinear

Schrödinger equation, whereas in the case presented here the

SEEs are related to higher-order chaotic regions, which in turn

originate from higher-order primary saddle-node bifurcation of

limit cycles. The results presented here suggest that there may

be a close connection between the higher-order rogue waves

solutions and the primary saddle-node bifurcations observed

here.

As shown in Sec. III, the occurrence of a crisis does not

guarantee the observation of EE statistics, i.e., it is not a

sufficient condition to observe an EE. Obviously, it is necessary

to satisfy a criterion that defines an event to be an EE (or

rogue event). But what else, beyond crisis, is behind the

formation of an EE? Certainly, resonance is a key element

to the formation of an EE in low-dimensional nonlinear

systems, as we investigate here. In fact, nonlinear resonant

processes, leading to the formation and interaction of different

branches of solutions (arising from fundamental, harmonic,

and subharmonic resonances), can lead to a significant spread

of amplitudes of the events, being a key element to display EE
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FIG. 12. Return maps of the laser pulse amplitude. Black points

correspond to the chaotic attractor and red points to unstable

period-3 orbit. The lines and numbers are as in Fig. 4. Modulation

parameters (a,f ) are (a) (0.07, 189.000 kHz), (b) (0.07,185.650 kHz),

(c) (0.12,200.170 kHz), and (d) (0.19,208.250 kHz). Each return map

was done with 20 000 pulse amplitudes.

statistics. From a more fundamental point of view, we could

think of synchronization or constructive interferences as key

elements for extreme wave generation in high-dimensional

systems. In a low-dimensional nonlinear system, however,

nonlinear resonances, leading to interaction between strong

(higher-order) and weak (lower-order) resonant solutions, play

a very important role in EE generation.

Regarding our study on predicting EEs, the regular pattern

identified in Sec. IV, which is embedded in the chaotic time

series and can be used to anticipate the EE, is not restricted

only to the investigated parameter (point B in Fig. 1). The

same regular pattern typically occurs in time series taken near

the crisis, over the entire extension of the crisis line. This

regular pattern is a feature of the transition from region I to the

other chaotic bands. In Fig. 12 we show some representative

return maps for modulation parameters near the crisis line.

Figure 12(a) shows the chaotic attractor within the region I

and an unstable period-3 orbit, which coexist with the chaotic

attractor. When we approach the crisis line, eventually the

unstable period-3 orbit touches the chaotic attractor, leading

to the crisis. After the crisis, a sudden expansion of the chaotic

attractor is observed. Figure 12(b) shows a return map after the

crisis, corresponding to point B in Fig. 1. The same qualitative

picture, found in the transition to point B, is observed for

other modulation parameters near the crisis line [for example,

points C and D, as shown in Figs. 12(c) and 12(d)]. The most

pronounced difference, when investigating other modulation

parameters along the crisis line, is the size of the amplitude

variations of the EE, as already discussed in Sec. III. Since

the crisis occurs via collision with an unstable period-3 orbit,

this explains the periodicity of the precursor that we have

identified preceding the EE, i.e., the POP3. When other

periodic orbits are involved in the crisis formation, for example

period 4, 5, etc., other periodicities of precursors can be
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found, respectively, anticipating the EE. An investigation in

this direction is left for future work.

Regular patterns preceding the occurrence of an EE have

been observed previously in low-dimensional chaotic systems,

such as semiconductor lasers [32] and solid-state lasers [35],

and also in high-dimensional turbulent systems [40]. However,

here we show that the same regular pattern, which appears

preceding the EE, can also appear without the emergence of

an EE. In this case, the precursors found in the time series,

which are not followed by the occurrence of an EE, can be

considered as false alarms.

Previous investigations of EEs have found a narrow region

in phase space that a trajectory has to visit to trigger an EE.

The authors have referred to this region as the “narrow rogue

wave door” [32] or “channel-like structure” [34]. In our work,

we have estimated the width of these narrow regions since

the width of the blue histograms (shown in Fig. 10) is closely

related to the width of the phase space that the trajectories

have to visit to trigger an EE. We have also illustrated how the

width of this narrow channel decreases when we approach the

crisis, causing the EE to occur less frequently, until it cannot be

observed anymore (after the crisis). Notice that this latter result

is in agreement with previous theoretical and experimental

investigations of the number of EEs when changing parameters

in a transverse direction to the crisis [33,35].

Despite the relative simplicity of the system investigated

(as can be observed through inspection of the return maps in

Fig. 12, typical of low-dimensional chaos), which is a noise-

free system and which we know the orbit used as a precursor

(within a good precision), we already found a complicated

dependence on the probability to predict an EE as a function

of the accuracy used to identify the precursor. It is natural

to expect additional complications in more complex systems,

which motivate us to carry our further investigations.

Since nonlinear resonances and instabilities are very com-

mon phenomena in nonlinear systems, we believe that our

findings can have a big impact beyond the selected example,

including other parametric oscillators, external forced oscil-

lators, or even autonomous systems. The results shown here

could be directly applied to certain systems involving the Toda

potential, since the laser model investigated here was shown to

be fully equivalent to the Toda oscillator in the past [62]. From

an experimental point of view, we expect that the main results

shown in this work could be observed in real-world systems,

such as modulated lasers or other physical systems. An

interesting investigation would be to search for superextreme

and rare events in some controlled experiment or to verify if

the same regular patterns that occur preceding the EE can also

occur without the emergence of the EE, and to try to quantify

the probability of occurrence of EEs and false alarms, as we

did here. We hope to work in this direction in the near future.

VI. CONCLUSION

We investigated numerically the emergence of extreme

and rare events, i.e., giant and rare light pulses, in a simple

deterministic model of a loss-modulated CO2 laser. We

identified a crisis line in the modulation parameter space where

a transition between a small-amplitude chaotic attractor and

other successive chaotic attractors of larger amplitudes occurs.

We showed that, when the modulation amplitude is increased,

remaining close to the crisis, the average and dispersion of the

laser pulse amplitudes change very little while the amplitudes

of the extreme pulses grow enormously, giving rise to events

with much larger deviations than usually reported. Normally

extreme (or rogue) events are found with amplitudes that

deviate slightly more than four or eight standard deviations

(over average amplitude), and here we found EEs with

deviations in the range from 4 to 20 standard deviations, i.e.,

we showed the possibility of the formation of EEs that exceeds

significantly the 4σ (8σ ) criterion, with a significant probabil-

ity of occurrence, which we called “superextreme events.”

We explained the mechanism of the formation of superex-

treme events through the interaction between weakly resonant

chaotic attractors (whose amplitudes do not grow much when

the modulation amplitude increases) and strongly resonant

chaotic attractors (whose amplitudes grow significantly when

the modulation amplitude increases). We showed that the

EEs with increasing deviations are qualitatively different,

since they are related with higher-order chaotic bands, i.e.,

chaotic bands that originate from different primary saddle-

node bifurcations. Thus the superextreme events could be

thought of as originating from different solution classes.

We investigated the transition from a high-order chaotic

attractor (order VI) to a low-order, weakly resonant chaotic

attractor (order I), through a crisis bifurcation, in terms of

the coefficient of variation (CV ), that is, the ratio between

the standard deviation normalized to its average value. We

showed that far away from the crisis (toward strongly resonant

solutions), CV > 1, and when approaching the crisis (toward

weakly resonant solutions) the coefficient of variation starts to

decrease, converging to CV ≈ 1, very close to the crisis, and

CV < 1 when crossing the crisis. The investigated crisis can

be thought of as a transition between a “less clustered state”

(amplitudes with large deviations in relation to the average)

to a “more clustered state” (amplitudes deviating very little in

relation to the average). Close to the border of this transition,

EEs with extremely large deviations are expected to occur,

depending on the order of the strongly resonant solution.

We identified regular patterns in the time series of the

laser intensity, which may act as precursors and anticipate

the occurrence of an EE, and we associated these precursors

with certain unstable periodic orbits that are embedded in the

chaotic attractor, which rules the laser dynamics. We showed

that these precursors may appear recurrently in the time series

of the laser intensity with or without the emergence of an EE.

Thus, we estimated the probability of predicting EEs or having

false alarms once a precursor is identified. We showed that the

probability of predicting the EE depends on the accuracy with

which we determine the precursor in the chaotic time series.

Further work is required to clarify some additional points.

It would be relevant to make a comparison with more realistic

CO2 laser models, such as those involving a fully molecular

description [63–65], where new ingredients and additional

features could be involved, possibly leading to some extra

saturation mechanism. Also, it would be important to analyze

the impact of noise, always present in real-world systems, in

the formation and prediction of large-deviation EEs. From a

more general point of view, a more challenging problem would

be to perform an analysis similar to the one we performed
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here on systems with additional degrees of freedom, such

as that exhibiting return maps more complicated, including

hyperchaotic dynamics and robust chaos. We hope to present

results in this direction in the future.
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