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EXTREME DECONVOLUTION: INFERRING COMPLETE
DISTRIBUTION FUNCTIONS FROM NOISY, HETEROGENEOUS

AND INCOMPLETE OBSERVATIONS

BY JO BOVY1, DAVID W. HOGG1,2 AND SAM T. ROWEIS3

New York University

We generalize the well-known mixtures of Gaussians approach to density
estimation and the accompanying Expectation–Maximization technique for
finding the maximum likelihood parameters of the mixture to the case where
each data point carries an individual d-dimensional uncertainty covariance
and has unique missing data properties. This algorithm reconstructs the error-
deconvolved or “underlying” distribution function common to all samples,
even when the individual data points are samples from different distributions,
obtained by convolving the underlying distribution with the heteroskedastic
uncertainty distribution of the data point and projecting out the missing data
directions. We show how this basic algorithm can be extended with conju-
gate priors on all of the model parameters and a “split-and-merge” procedure
designed to avoid local maxima of the likelihood. We demonstrate the full
method by applying it to the problem of inferring the three-dimensional ve-
locity distribution of stars near the Sun from noisy two-dimensional, trans-
verse velocity measurements from the Hipparcos satellite.

1. Introduction. Inferring a distribution function given a finite set of sam-
ples from this distribution function and the related problem of finding clusters
and/or overdensities in the distribution is a problem of significant general interest
[e.g., McLachlan and Basford (1988); Rabiner and Biing-Hwang (1993); Dehnen
(1998); Helmi et al. (1999); Skuljan, Hearnshaw and Cottrell (1999); Hogg et
al. (2005)]. Performing this inference given only a noisy set of measurements is
a problem commonly encountered in many of the sciences [see examples in Carroll
et al. (2006)]. In many cases of interest, the noise properties of the observations are
different from one measurement to the next (i.e., they are heteroskedastic), even
though the uncertainties are well characterized for each observation. This is, for
example, often the case in astronomy, where in many cases the dominant source
of uncertainty is due to well-characterized photon-counting statistics, while spatial
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and temporal variations in the atmosphere cause the uncertainties to significantly
vary even for sources of the same apparent brightness observed with the same
telescope.

The description you are interested in as a scientist is not the observed distri-
bution, what you really want is the description of the distribution that you would
have if you had good data, that is, data with vanishingly small uncertainties and
with all of the dimensions measured. In the low signal-to-noise regime the data
never have these two properties such that the underlying, true distribution cannot
be found without taking the noise properties of the data into account. If you want
to know the underlying distribution, in order to compare your model with the data,
you need to convolve the model with the data uncertainties, not deconvolve the
data. When the given set of data has heterogeneous noise properties, that is, when
the uncertainty convolution is different for each data point, each data point is a
sample of a different distribution, that is, the distribution obtained from convolv-
ing the true, underlying distribution with the noise of that particular observation.
Incomplete data poses a similar problem when the part of the data that is missing
is different for different data points.

Most existing approaches to density estimation only apply in the high signal-to-
noise regime [e.g., McLachlan and Basford (1988); Silverman (1986); Diebolt and
Robert (1994)], and most approaches to density estimation from noisy samples
are nonparametric techniques that assume that the noise is homoskedastic [e.g.,
Stefanski and Carroll (1990); Zhang (1990)]. The case of heteroskedastic uncer-
tainties has only recently attracted attention [e.g., Delaigle and Meister (2008);
Staudenmayer, Ruppert and Buonaccorsi (2008)], and all of the approaches that
have been developed so far are nonparametric. None of these approaches can be
used when only incomplete data are available, although parametric techniques that
properly account for incomplete, but noiseless, data have been developed [Ghahra-
mani and Jordan (1994a, 1994b)].

In this paper we show that the frequently used Gaussian-mixture-model ap-
proach to density estimation can be generalized in the presence of noisy, hetero-
geneous and incomplete data. The likelihood of the model for each data point is
given by the model convolved with the (unique) uncertainty distribution of that
data point; the objective function is obtained by simply multiplying these indi-
vidual likelihoods together for the various data points. Optimizing this objective
function, one obtains a maximum likelihood estimate of the distribution (more
specifically, of its parameters).

While optimization of this objective function can, in principle, be performed
by a generic optimizer, we develop an Expectation–Maximization (EM) algorithm
that optimizes the objective function. This algorithm works in much the same way
as the normal EM algorithm for mixture-of-Gaussians density estimation, except
that an additional degree of incompleteness is given by the actual values of the
observables, since we only have access to noisy projections of these; in the ex-
pectation step these actual values are estimated based on the noisy and incomplete
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measured values and the current estimate of the distribution function. In the limit
in which the noise is absent but the data are lower dimensional projections of the
quantities of interest, this algorithm reduces to the algorithm described in Ghahra-
mani and Jordan (1994a, 1994b).

We also show how prior distributions for a Bayesian version of the calculation
reporting a MAP estimate can be naturally included in this algorithm as well as
how a split-and-merge procedure that heuristically searches parameter space for
better approximations to the global maximum can also be incorporated in this ap-
proach. These priors and the split-and-merge procedure can be important when
applying the EM algorithm developed here in situations with real data where the
likelihood surface can have a very complicated structure. We also briefly discuss
the practical issues having to do with model selection in the mixture model ap-
proach.

An application to a real data set is given in Section 5, where we fit the distri-
bution of stellar velocities near the Sun. The observed velocities of stars that we
use for this purpose have all of the properties that the approach developed in this
paper handles correctly: The velocity measurements are noisy, and since we only
use observations of the velocity components in the plane of the sky, the data are
incomplete, and this incompleteness is different for each velocity measurement,
which covers the full sky. Nevertheless, we are able to obtain good agreement with
other fits of the velocity distribution based on complete data.

The technique we describe below has many applications besides returning
a maximum likelihood fit to the error-deconvolved distribution function of a data
sample. For instance, when an estimate of the uncertainty in the estimated pa-
rameters or distribution function is desired or when a full Bayesian analysis of
the mixture model preferred, the outcome of the maximum likelihood technique
developed here can be used as a seed for Markov Chain Monte Carlo (MCMC)
methods for finite mixture modeling [e.g., Diebolt and Robert (1994); Richardson
and Green (1997)].

2. Likelihood of a mixture of Gaussian distributions given a set of het-
erogeneous, noisy samples. Our goal is to fit a model for the distribution of
a d-dimensional quantity v using a set of N observational data points wi . There-
fore, we need to write down the probability of the data under the model for the
distribution. The observations are assumed to be noisy projections of the true
values vi ,

wi = Rivi + noise,(1)

where the noise is drawn from a Gaussian with zero mean and known covariance
matrix Si . The case in which there is missing data occurs when the projection ma-
trix Ri is rank-deficient. Alternatively, we can handle the missing data case by de-
scribing the missing data as directions of the covariance matrix that have a formally
infinite eigenvalue. In practice, we use very large eigenvalues in the noise-matrix.



1660 J. BOVY, D. W. HOGG AND S. T. ROWEIS

When the data has only a small degree of incompleteness, that is, when each data
point has only a small number of unmeasured dimensions, this latter approach is
often the best choice, since one often has some idea about the unmeasured val-
ues. For example, in the example given below of inferring the velocity distribution
of stars near the Sun, we know that the stars are moving at velocities that do not
exceed the speed of light, which is not very helpful, but also that none of the veloc-
ities exceed the local Galactic escape speed, since we can safely assume that all the
stars are bound to the Galaxy. However, in situations in which each data point has
observations of a dimensionality � d using the projections matrices will greatly
reduce the computational cost, since, as will become clear below, the most com-
putationally expensive operations all take place in the lower dimensional space of
the observations.

We will model the probability density p(v) of the true values v as a mixture of
K Gaussians,

p(v) =
K∑

j=1

αj N (v|mj ,Vj ),(2)

where the amplitudes αj sum to unity and the function N (v|m,V) is the Gaussian
probability density function with mean m and variance matrix V,

N (v|m,V) = (2π)−d/2 det(V)−1/2 exp
[−1

2(v − m)�V−1(v − m)
]
.(3)

For a given observation wi the likelihood of the model parameters θ =
(αj ,mj ,Vj ) given that observation and the noise covariance Si , which we will
write as p(wi |θ), can be written as

p(wi |θ) ≡ p(wi |Ri ,Si , θ) = ∑
j

∫
v

dvp(wi ,v, j |θ)

(4)
= ∑

j

∫
v

dvp(wi |v)p(v|j, θ)p(j |θ),

where

p(wi |v) = N (wi |Riv,Si),

p(v|j, θ) = N (v|mj ,Vj ),(5)

p(j |θ) = αj .

This likelihood works out to be itself a mixture of Gaussians

p(wi |θ) = ∑
j

αj N (wi |Rimj ,Tij ),(6)

where

Tij = RiVj R�
i + Si .(7)
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The free parameters of this model can now be chosen such as to maximize an
explicit, justified, scalar objective function φ, given here by the logarithm (log)
likelihood of the model given the data, that is,

φ = ∑
i

lnp(wi |θ) = ∑
i

ln
K∑

j=1

αj N (wi |Rimj ,Tij ).(8)

This function can be optimized in several ways, one of which is to use a generic
optimizer to increase the likelihood until it reaches a maximum. This approach
is complicated by parameter constraints (e.g., the amplitudes αj must all be non-
negative and add up to one, the variance matrices must be positive definite and
symmetric) and multimodality of the likelihood surface. In what follows we will
describe a different approach that is natural in this setting: An EM algorithm that
iteratively and monotonically maximizes the likelihood, while naturally respecting
the restrictions on the parameters.

3. Fitting mixtures with heterogeneous, noisy data using an EM algorithm.
To optimize the likelihood in equation (8), we can extend the standard EM ap-
proach to Gaussian mixture estimation. In the case of complete and precise obser-
vations, the problem is framed as a tractable missing-data problem by positing that
the labels or indicator variables qij indicating which Gaussian j a data point i was
drawn from are missing [Dempster, Laird and Rubin (1977)]. We extend this ap-
proach by including the true values vi as extra missing data. This is a well-known
approach for handling measurement uncertainty in latent variable or random ef-
fects models [e.g., Schafer (1993); Schafer and Purdy (1996)].

We write down the “full data” log likelihood—the likelihood we would write
down if we had the true values vi and the labels qij ,

� = ∑
i

∑
j

qij lnαj N (vi |mj ,Vj ).(9)

We will now show how we can use the EM methodology to find straightforward
update steps that maximize the full data likelihood of the model. In Appendix A
we prove that these updates also maximize the likelihood of the model given the
noisy observations.

The E-step consists as usual of taking the expectation of the full data likeli-
hood with respect to the current model parameters θ . Writing out the full data log
likelihood from equation (9), we find

� = ∑
i

∑
j

qij

[
lnαj − d

2
ln(2π)

(10)

− 1

2
ln det Vj − 1

2
(vi − mj )

�V−1
j (vi − mj )

]
,
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which shows that in addition to the expectation of the indicator variables qij for
each component we also need the expectation of the qij vi terms and the expecta-
tion of the qij viv�

i terms given the data, the current model estimate and the com-
ponent j . The expectation of the qij is equal to the posterior probability that a data
point wi was drawn from the component j . The expectation of the vi and the viv�

i

can be found as follows: Consider the joint distribution for the true and observed
velocities, denoted by the expanded vector [v�

i w�
i ]�, given the model estimate and

the component j . From the description of the problem, we can see that this vector
is distributed normally with mean

m′ =
[

mj

Rimj

]
(11)

and covariance matrix

V′ =
[

Vj Vj R�
i

RiVj Tij

]
.(12)

The conditional distribution of the vi given the data wi is normal with mean

bij ≡ mj + Vj R�
i T−1

ij (wi − Rimj )(13)

and covariance matrix

Bij ≡ Vj − Vj R�
i T−1

ij RiVj .(14)

Thus, we see that the expectation of vi given the data wi , the model estimate and
the component j is given by bij , whereas the expectation of the viv�

i given the
same is given by Bij + bij b�

ij .
Given this, the expectation of the full data log likelihood is given by

〈�〉 = ∑
i,j

qij

[
lnαj − d

2
ln(2π)

(15)

− 1

2
Trace

[
ln Vj + (

Bij + (mj − bij )(mj − bij )
�)

V−1
j

]]
.

Straightforward optimization of this with respect to the model parameters gives
the following algorithm:

E-step: qij ← αj N (wi |Rimj ,Tij )∑
k αk N (wi |Rimk,Tik)

,

bij ← mj + Vj R�
i T−1

ij (wi − Rimj ),

Bij ← Vj − Vj R�
i T−1

ij RiVj ,(16)
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M-step: αj ← 1

N

∑
i

qij ,

mj ← 1

qj

∑
i

qij bij ,

Vj ← 1

qj

∑
i

qij [(mj − bij )(mj − bij )
� + Bij ],

where qj = ∑
i qij .

In Appendix A we prove that this procedure for maximizing the full data likeli-
hood also monotonically increases the likelihood of the data wi given the model,
as is the case for the EM algorithm for noiseless and complete measurements
[Dempster, Laird and Rubin (1977); Wu (1983)].

4. Extensions to the basic algorithm. Singularities and local maxima are
two problems that can severely limit the generalization capabilities of the com-
puted density estimates for inferring the densities of unknown data points. These
are commonly encountered when using the EM algorithm to iteratively compute
the maximum likelihood estimates of Gaussian mixtures: Singularities arise when
the covariance in equation (16) becomes singular; the EM updates might get stuck
in a local maximum because of the monotonic increase in likelihood ensured by
the EM algorithm. The latter can be avoided through the use of a stochastic EM
procedure [Broniatowski, Celeux and Diebolt (1983); Celeux and Diebolt (1985);
Celeux and Diebolt (1986)] or through the split and merge procedure described
below.

4.1. Bayesian-inspired regularization. The problem of singular covariances
can be mitigated through the use of priors on the model parameters in a Bayesian
setting [Ormoneit and Tresp (1996)]. It should be emphasized here that this calcu-
lation is only Bayesian in the sense of producing a maximum a posteriori (MAP)
point estimate rather than a maximum likelihood estimate, and that this is no differ-
ent than penalized maximum likelihood. We briefly show here that this procedure
can be applied here as well.

The regularization scheme of Ormoneit and Tresp (1996) introduces con-
jugate priors on the Gaussian mixtures parameters space θ = (αj ,mj ,Vj ) as
penalty terms. These conjugate priors are the following: A normal density
N (mj |m̂, η−1Vj ) for the mean of each Gaussian, a Wishart density W(V−1

j |ω,W)

[Gelman et al. (2000)],

W (V−1
j |ω,W) = c(ω,W)|V−1

j |ω−(d+1)/2 exp[−Trace[WV−1
j ]],(17)

with c(ω,W) a normalization constant, for the covariance of each Gaussian, and
a Dirichlet density D(α|γ ), given by

D(α|γ ) = b
∏
j

α
γj−1
j ,(18)



1664 J. BOVY, D. W. HOGG AND S. T. ROWEIS

where b is a normalizing factor, for the amplitudes {αj }. Optimizing the posterior
distribution for the model parameters replaces the M-step of equation (16) with

αj ←
∑

i qij + γj − 1

N + ∑
k γk − K

, mj ←
∑

i qij bij + ηm̂
qj + η

,

Vj ←
(∑

i

qij [(mj − bij )(mj − bij )
� + Bij ]

(19)

+η(mj − m̂)(mj − m̂)� + 2W
)

/
qj + 1 + 2

(
ω − (d + 1)/2

)
.

Hyperparameters can be set by leave-one-out cross-validation. Vague priors on the
amplitude and the means are obtained by setting

γj = 1 ∀j, ω = (d + 1)/2, η = 0.(20)

Since we are only interested in the MAP estimate, propriety of the resulting poste-
rior is not an issue with the improper prior resulting from this choice.

The label-switching problem in Bayesian mixtures [Jasra, Holmes and Stephens
(2005)] is not an issue for the maximization of the posterior distribution here.

4.2. Avoiding local maxima. The split and merge algorithm starts from the ba-
sic EM algorithm, with or without the Bayesian regularization of the variances, and
jumps into action after the EM algorithm has reached a maximum, which more of-
ten than not will only be a local maximum. At this point, three of the Gaussians in
the mixture are singled out and two of these Gaussians are merged, while the third
Gaussian is split into two Gaussians [Ueda et al. (1998)]. An alternative, but sim-
ilar, approach to local maxima avoidance is given by the birth and death moves in
reversible jump MCMC [Richardson and Green (1997)] or variational approaches
[Ghahramani and Beal (2000); Beal (2003)] to mixture modeling. These moves do
not conserve the number of mixture components and are therefore less suited for
our fixed-K approach to mixture modeling.

Full details of the split and merge algorithm are given in Appendix B.

4.3. Setting the remaining free parameters. No real world application of
Gaussian mixture density estimation is complete without a well-specified method-
ology for setting the number of Gaussian components K and any hyperparameters
introduced in the Bayesian regularization described above, the covariance regular-
ization W. If we further assume that W = wI, then this covariance regularization
parameter basically sets the square of the smallest scale of the distribution function
on which we can reliably infer small-scale features. Therefore, this scale could be
set by hand to the smallest scale we believe we have access to based on the prop-
erties of the data set.
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In order to get the best results, the parameters K and w should be set by
some objective procedure. As mentioned above, leave-one-out cross-validation
[Stone (1974)] could be used to set the regularization parameter w, and the num-
ber of Gaussians could be set by this procedure as well. Other techniques include
methods based on Bayesian model selection [Roberts et al. (1998)] as well as ap-
proaches based on minimum encoding inference [Wallace and Boulton (1968);
Oliver, Baxter and Wallace (1996); Rissanen (1978); Schwartz (1978)], although
these methods have difficulty dealing with significant overlap between components
(such as the overlap we see in the example in Figure 1), but there are methods to
deal with these situations [Baxter (1995)]. Alternatively, when a separate, exter-
nal data set is available, we can use this as a test data set to validate the obtained
distribution function. All of these methods are explored in an accompanying paper
on the velocity distribution of stars in the Solar neighborhood from measurements
from the Hipparcos satellite [see below; Bovy, Hogg and Roweis (2009)].

A rather different approach to the model selection problem is to avoid it al-
together. That is, by introducing priors over the hyperparameters and including
them as part of the model it is often possible to infer, or fully marginalize over,
them simultaneously with the parameters of the components of the mixture. These
methods also address uncertainty quantification throughout the model. Such ap-
proaches include reversible jump MCMC methods [Richardson and Green (1997)],
mixtures consisting of an infinite number of components based on the Dirichlet
process [Rasmussen (2000)], or approximate, variational algorithms [Ghahramani
and Beal (2000); Beal (2003)]. Extending these approaches to deal with noisy, het-
erogeneous and incomplete data is beyond the scope of this paper, but it is clear
that this extension is, in principle, straightforward: the MCMC methods mentioned
above can include the true values of the observations vi—known in the Bayesian
MCMC literature as data augmentation—and these can be Gibbs sampled given
the current model and the observed values wi in an MCMC sweep from the Gaus-
sian with mean given in equation (13) and variance given in equation (14).

5. The velocity distribution from Hipparcos data. We have applied the
technique developed in this paper to the problem of inferring the velocity dis-
tribution of stars in the Solar neighborhood from transverse angular data from
the Hipparcos satellite and we present in this section some results of this study
to demonstrate the performance of the algorithm on a real data set. A more de-
tailed and complete account of this study is presented elsewhere [Bovy, Hogg and
Roweis (2009)].

The local velocity distribution is interesting because we can learn about the
structure and evolution of the Galactic disk from deviations from the smooth, close
to Gaussian velocity distribution expected in simple, axisymmetric models of the
disk. It has been shown that the dynamical effects of a bar-shaped distribution
of stars in the central region of our Galaxy can resonate in the outer parts of the
disk and give rise to structure in the velocity distribution [e.g., Dehnen (2000);
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FIG. 1. Two-dimensional projections of the three-dimensional velocity distribution of Hipparcos
stars using 10 Gaussians and w = 4 km2 · s−2. The top right plot shows 1-sigma covariance ellipses
around each individual Gaussian in the vx–vy plane; the thickness of each covariance ellipse is pro-
portional to the natural logarithm of its amplitude αj . In the other three panels the density grayscale
is linear and contours contain, from the inside outward, 2, 6, 12, 21, 33, 50, 68, 80, 90, 95, 99 and
99.9 percent of the distribution. 50 percent of the distribution is contained within the innermost dark
contour. The feature at vy ≈ −100 km · s−1 is real and corresponds to a known feature in the velocity
distribution: the Arcturus moving group; Indeed, all the features that appear in these projections are
real and correspond to known features.

Bovy (2010)]. Similarly, steady-state or transient spiral structure can effect the
velocities of stars in a coherent way, such that we can see this effect locally [e.g.,
Quillen and Minchev (2005); De Simone, Wu and Tremaine (2004)]. Inferring the
local velocity distribution from observational data is therefore necessary to assess
whether these dynamical signatures are observed.

Velocities of stars are not directly observable. Rather, they need to be patched to-
gether from observations of the stars’ directions on the sky at different times—the
branch of astronomy known as astrometry—and spectroscopic observations to de-
termine the velocity along the line of sight. The annual motion of the Earth around
the Sun gives rise to an apparent displacement of a star relative to background ob-
jects that is inversely proportional to the distance to the star. Measurements of this
apparent shift, or parallax, can thus be used to determine the distance to stars. Par-
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allaxes are traditionally reported in units of arcseconds; a star with a parallax of 1
arcsecond is defined to be at a distance of 1 parsec (pc), which equals 3 × 1016 m.
The intrinsic motion of a star also gives rise to a systematic shift in its position
relative to background sources, such that its angular motion—known as its proper
motion—can be measured. Combining the distance and angular velocity gives the
components of the space velocity of a star that are perpendicular to the line of
sight.

The astrometric ESA space mission Hipparcos, which collected data over
a 3.2 year period around 1990, provided for the first time an all-sky catalogue of ab-
solute parallaxes and proper motions, with typical uncertainties in these quantities
on the order of milli-arcseconds [ESA (1997)]. From this catalogue of ∼100,000
stars, kinematically unbiased samples of stars with accurate positions and veloci-
ties can be extracted [Dehnen and Binney (1998)]. Since this was a purely astro-
metric mission, and the only components of a star’s velocity that can be measured
astrometrically are the components perpendicular to the line of sight, the line-of-
sight velocities of the stars in the Hipparcos sample were not obtained during the
mission.

Distances in astronomy are notoriously hard to measure precisely, and at the
accuracy level of the Hipparcos mission distances can only be reliably obtained
for stars near the Sun (out to ∼100 pc; the diameter of the Galactic disk is about
30,000 pc). In addition to this, since distances are measured as inverse distances
(parallaxes), only distances that are measured relatively precisely will have ap-
proximately Gaussian uncertainties associated with them. Balancing the size of
the sample with the accuracy of the distance measurement leaves us with distance
uncertainties that are typically ∼10-percent, such that the velocities perpendicular
to the line of sight that are obtained from the proper motions and the distances have
low signal-to-noise. Since the dominant source of noise is due to simple photon-
counting statistics [van Leeuwen (2007a)], the uncertainties are well characterized
and can be assumed to be known, as is necessary for the technique developed in
this paper to apply. Star-to-star correlations are negligible and can be ignored [van
Leeuwen (2007a)].

Of course, if we want to describe the distribution of the velocities of the stars
in this sample, we need to express the velocities in a common reference frame,
which for kinematical studies of stars around the Sun is generally chosen to be the
Galactic coordinate system, in which the x-axis points toward the Galactic center,
the y-axis points in the direction of Galactic rotation, and the z-axis points toward
the North Galactic Pole [Blaauw et al. (1960); Binney and Merrifield (1998)]. The
measured velocities perpendicular to the line of sight are then projections of the
three-dimensional velocity of a star with respect to the Sun in the two-dimensional
plane perpendicular to the line of sight to the star. Therefore, this projection is
different for each individual star.

Observations of celestial objects are expressed in the equatorial coordinate sys-
tem, in which the Earth’s geographic poles and equator are projected onto the
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celestial sphere. The components of the three-dimensional velocities v of the stars
in the Galactic coordinate system in terms of the observed quantities in the equa-
torial coordinate frame—angular position on the sky (α, δ), inverse distance (π ),
angular motion on the sky (μα , μδ), and line-of-sight velocity (vr )—are given by

v ≡
⎡
⎣vx

vy

vz

⎤
⎦ = TA

⎡
⎢⎢⎢⎣

vr
k

π
μα cos δ

k

π
μδ

⎤
⎥⎥⎥⎦ ,(21)

where k = 4.74047, [vr ] = km · s−1, [π ] = arcsec, [μα] = [μδ] = arcsec · yr−1.
The matrix T transforms the velocities from the equatorial reference frame in
which the observations are made to the Galactic coordinate frame; it depends on a
few parameters defining this coordinate transformation and is given by

T =
⎡
⎣ cos θ sin θ 0

sin θ − cos θ 0
0 0 1

⎤
⎦

⎡
⎣− sin δNGP 0 cos δNGP

0 1 0
cos δNGP 0 sin δNGP

⎤
⎦(22)

×
⎡
⎣ cosαNGP sinαNGP 0

− sinαNGP cosαNGP 0
0 0 1

⎤
⎦ .(23)

The matrix T depends on the epoch that the reduced data are referred to (1991.25
for Hipparcos) through the values of αNGP, δNGP and θ (the position in equatorial
coordinates of the north Galactic pole, and the Galactic longitude of the north
Celestial pole, respectively). These quantities were defined for the epoch 1950.0
as follows: [Blaauw et al. (1960)]: αNGP = 12 h 49 m, δNGP = 27◦.4, and θ = 123◦.

The matrix A depends on the position of the source on the sky,

A =
⎡
⎣ cosα − sinα 0

sinα cosα 0
0 0 1

⎤
⎦

⎡
⎣ cos δ 0 − sin δ

0 1 0
sin δ 0 cos δ

⎤
⎦ .(24)

In the context of the deconvolution technique described above, the observations
are w ≡ [vr,

k
π
μα cos δ, k

π
μδ ]� and the projection matrix is R−1 ≡ TA. Since

we do not use the radial velocities of the stars, we set vr to zero in w and use
a large uncertainty-variance for this component of the uncertainty variance Si ;
equivalently, we could remove vr from w and restrict R to the projection on the
sky.

We have studied the velocity distribution of a sample of main sequence stars se-
lected to have accurate distance measurements (parallax uncertainties σπ/π < 0.1)
and to be kinematically unbiased (in that the sample of stars faithfully repre-
sents the kinematics of similar stars). In detail, we use the sample of 11,865 stars
from Dehnen and Binney (1998), but we use the new reduction of the Hippar-
cos raw data, which has improved the accuracy of the astrometric quantities [van
Leeuwen (2007a; 2007b)]. A particular reconstruction of the underlying velocity
distribution of the stars is shown in Figure 1, in which 10 Gaussians are used,
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a prior on the variances was used (the prior was restricted to W = wI), and this
regularization parameter w is set to 4 km2 · s−2.

These values for the hyperparameters were set using an external data set rather
than any of the other methods described in Section 4.3. For this we use a set of 7682
stars from the Geneva–Copenhagen Survey [Nordström et al. (2004); Holmberg,
Nordström and Andersen (2009)] for which the line-of-sight velocity (perpendicu-
lar to the plane of the sky) has been measured spectroscopically. This is a separate
data set from the one considered above. It partially overlaps with the previous data
set and it is also kinematically unbiased. We then fit the velocity distribution for
different choices of the hyperparameters and evaluate the probability of the line-of-
sight velocities for the best-fit velocity distribution based on tangential velocities.
The values of the hyperparameters that maximize this probability are K = 10 and
w = 4 km2 · s−2.

The recovered distribution compares favorably with other reconstructions of
the velocity distribution of stars in the Solar neighborhood, based on the same
sample of stars [using a maximum penalized likelihood density estimation tech-
nique, Dehnen (1998)], as well as with those based on other samples of stars for
which three-dimensional velocities are available [Skuljan, Hearnshaw and Cottrell
(1999); Nordström et al. (2004); Famaey et al. (2005); Antoja et al. (2008)]. In
particular, this means that the main shape of the velocity distribution agrees with
that found in previous studies and that the number and location of the peaks in the
distribution, all real and known features, are consistent with those found before.
This includes the very sparsely populated feature at vy ≈ −100 km · s−1, which
is known as the Arcturus moving group. Therefore, we conclude that the method
developed in this paper performs very well on this complicated data set. In contrast
to previous determinations of the velocity distributions, our method allows us to
study the structures found quantitatively, since it turns out that individual struc-
tures in the velocity distribution are well represented by individual components in
the mixture model. Thus, we were able to conclude that these structures are not
the remnants of a large group of stars that formed together in a cluster, but rather
that they are probably caused by dynamical effects related to the bar at the center
of the Milky Way or spiral structure [Bovy and Hogg (2010)].

The convergence of the algorithm is shown in Figure 2. Only split-and-merge
steps that improved the likelihood are shown in this plot, therefore, the actual num-
ber of iterations is much higher than the number given on the x-axis. It is clear that
all of the split-and-merge steps only slightly improve the initial estimate from the
first EM procedure, but since what is shown is the likelihood per data point, the
improvement of the total likelihood is more significant.

6. Implementation and code availability. The algorithm presented in this
paper was implemented in the C programming language, depending only on
the standard C library and the GNU Scientific Library.4 The code is available

4http://www.gnu.org/software/gsl/.

http://www.gnu.org/software/gsl/
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FIG. 2. Convergence of the full algorithm: total log likelihood at each iteration step. Shown are only
split-and-merge steps that improve the likelihood; each vertical gray line corresponds to a point at
which a successful split and merge is performed. For clarity’s sake, we show in black only the parts
of the split-and-merge steps at which the likelihood is larger than the likelihood right before that
split-and-merge procedure; the log likelihoods of the steps in a split-and-merge procedure in which
the likelihood is still climbing back up to the previous maximum in likelihood have been replaced by
horizontal gray segments. The y-axis has been cut off for display purposes: The log likelihood of the
initial condition was −2.39E−5.

at http://code.google.com/p/extreme-deconvolution/; instructions for its installa-
tion and use are given there. The code can be compiled into a shared object library,
which can then be incorporated into other projects or accessed through IDL5 or
Python6 wrapper functions supplied with the C code.

The code can do everything described above. The convergence of a single run
is quick, but when including split-and-merge iterations the convergence is rather
slow because of the large number of split-and-merge steps that can be taken by
the algorithm (the split-and-merge aspect of the algorithm, however, can easily be
turned off or restricted by setting the parameter specifying the number of steps to
go down the split-and-merge hierarchy).

7. Conclusions and future work. We have generalized the mixture of Gaus-
sians approach to density estimation such that it can be applied to noisy, heteroge-
neous and incomplete data. The objective function is obtained by integrating over

5http://www.ittvis.com/ProductServices/IDL.aspx.
6http://www.python.org/.

http://www.code.google.com/p/extreme-deconvolution/
http://www.ittvis.com/ProductServices/IDL.aspx
http://www.python.org/
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the unknown true values of the quantities for which we only have noisy and/or in-
complete observations. In order to optimize the objective function resulting from
this marginalization, we have derived an EM algorithm that monotonically in-
creases the model likelihood; this EM algorithm, in which the E-step involves
finding the expected value of the first and second moments of the true values of
the observables given the current model and the noisy observations, reduces to the
basic EM algorithm for Gaussian mixture modeling in the limit of noiseless data.
We have shown that the model can incorporate conjugate priors on all of the model
parameters without losing any of its analytical attractiveness and that the algorithm
can accommodate the split-and-merge algorithm to deal with the presence of local
maxima, which this EM algorithm, as many other EM algorithms, suffers from.

The work presented here can be extended to be incorporated in various more
nonparametric approaches to density modeling, for example, in mixture mod-
els with an infinite number of components based on the Dirichlet Process [e.g.,
Rasmussen (2000)]. In this way current advances in nonparametric modeling can
be applied to the low signal-to-noise sciences where the situation of complete and
noise-free data is more often than not an untenable and unattainable approxima-
tion.

APPENDIX A: PROOF THAT THE PROPOSED ALGORITHM MAXIMIZES
THE LIKELIHOOD

We use Jensen’s inequality in the continuous case for a concave function f and
a nonnegative integrable function q , where we have assumed that q is normalized,
that is, q is a probability distribution. For each observation w we can then introduce
a function q(v, j) such that

lnp(w|θ) = ln
∑
j

∫
v

dvp(w,v, j |θ)

≥ ∑
j

∫
v

dvq(v, j) ln
p(w,v, j |θ)

q(v, j)
= F(w|q, θ),(25)

lnp(w|θ) ≥ F(w|q, θ) = 〈lnp(w,v, j |θ)〉q + H(q),

where H is the entropy of the distribution q(v, j). This inequality becomes an
equality when we take

q(v, j) = p(v, j |w, θ).(26)

The above holds for each data point, and we can write

p(v, j |wi , θ) = p(v|wi , θ, j)p(j |wi , θ).(27)

The last factor reduces to calculating the posterior probabilities qij = p(j |wi , θ)

and we can write the F function as (we drop the entropy term here, since it plays
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no role in the optimization, as it does not depend on the model parameters)

F = ∑
i,j

qij

∫
v

dvp(v|wi , θ, j) lnp(wi ,v, j |θ)

= ∑
i,j

qij

[
lnαj +

∫
v

dvp(v|wi , θ, j)

×
[
−1

2
ln det Vj − 1

2
(v − mj )

�V−1
j (v − mj )

]]
.

This shows that this reduces exactly to the procedure described above, that is, to
taking the expectation of the vi and viv�

i terms with respect to the distribution of
the vi given the data wi , the current parameter estimate and the component j . We
conclude that the E-step as described above ensures that the expectation of the full
data log likelihood becomes equal to the log likelihood of the model given the
observed data. Optimizing this log likelihood in the M-step then also increases the
log likelihood of the model given the observations. Therefore, the EM algorithm
we described will increase the likelihood of the model in every iteration, and the
algorithm will approach local maxima of the likelihood. Convergence is identified,
as usual, as extremely small incremental improvement in the log likelihood per
iteration.

APPENDIX B: SPLIT AND MERGE ALGORITHM

Let us denote the indices of the three selected Gaussians as j1, j2 and j3, where
the former two are to be merged while j3 will be split. The Gaussians correspond-
ing to the indices j1 and j2 will be merged as follows: the model parameters of the
merged Gaussian j ′

1 are

αj ′
1
= αj1 + αj2,

(28)

θj ′
1
= θj1qj1 + θj2qj2

qj1 + qj2

,

where θj stands for mj and Vj . Thus, the mean and the variance of the new Gaus-
sian is a weighted average of the means and variances of the two merging Gaus-
sians.

The Gaussian corresponding to j3 is split as follows:

αj ′
2
= αj ′

3
= αj3/2,

(29)
Vj ′

2
= Vj ′

3
= det(Vj3)

1/dI.

Thus, the Gaussian j3 is split into equally contributing Gaussians with each new
Gaussian having a covariance matrix that has the same volume as Vj3 . The means
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mj ′
2

and mj ′
3

can be initialized by adding a random perturbation vector εjm to mj3 ,
for example,

mj ′
m

= mj3 + εjm,(30)

where ||εjm ||2 � det(Vj3)
1/d and m = 1,2.

After this split and merge initialization, the parameters of the three affected
Gaussians need to be re-optimized in a model in which the parameters of the un-
affected Gaussians are held fixed. This can be done by using the M-step in equa-
tion (16) for the parameters of the three affected Gaussians, while keeping the
parameters of the other Gaussians fixed, including the amplitudes. This ensures
that the sum of the amplitudes of the three affected Gaussians remains fixed. This
procedure is called the partial EM procedure. After convergence this is then fol-
lowed by the full EM algorithm on the resulting model parameters. Finally, the
resulting parameters are accepted if the total log likelihood of this model is greater
than the log likelihood before the split and merge step. If the likelihood does not
increase, the same split and merge procedure is performed on the next triplet of
split and merge candidates.

The question that remains to be answered is how to choose the 2 Gaussians
that should be merged and the Gaussian that should be split. In general, there are
K(K − 1)(K − 2)/2 possible triplets like this which quickly reach a large number
when the number of Gaussians K gets larger. In order to rank these triplets, one
can define a merge criterion and a split criterion.

The merge criterion is constructed based on the observation that if many data
points have equal posterior probabilities for two Gaussians, these Gaussians are
good candidates to be merged. Therefore, one can define the merge criterion:

Jmerge(j, k|θ) = Pj (θ)�Pk(θ),(31)

where Pj (θ) = (qi1, . . . , qiN)� is the N -dimensional vector of posterior probabili-
ties for the j th Gaussian. Pairs of Gaussians with larger Jmerge are good candidates
for a merger.

We can define a split criterion based on the Kullback–Leibler distance between
the local data density around the lth Gaussian, which can be written in the case of
complete data as pl(w) = 1/ql

∑
i qilδ(w−wi), and the lth Gaussian density spec-

ified by the current model estimates ml and Vl . The Kullback–Leibler divergence
between two distributions p(x) and q(x) is given by [MacKay (2003)]

DKL(P ‖ Q) =
∫

dx p(x) ln
p(x)

q(x)
.(32)

Since the local data density is only nonzero at a finite number of values, we can
write this as

Jsplit(l|θ) = 1

ql

∑
i

qil

[
ln

(
qil

ql

)
− ln N (wi |ml ,Vl)

]
.(33)
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The larger the distance between the local density and the Gaussian representing it,
the larger Jsplit and the better candidate this Gaussian is to be split.

When dealing with incomplete data determining the local data density is more
problematic. One possible way to estimate how well a particular Gaussian de-
scribes the local data density is to calculate the Kullback–Leibler divergence be-
tween the model Gaussian under consideration and each individual data point per-
pendicular to the unobserved directions for that data point. Thus, we can write

Jsplit(l|θ) = 1

ql

∑
i

qil

[
ln

(
qil

ql

)
− ln N (wi |Riml ,RiVlR�

i )

]
.(34)

Candidates for merging and splitting are then ranked as follows: first the merge
criterion Jmerge(j, k|θ) is calculated for all pairs j, k and the pairs are ranked by
decreasing Jmerge(j, k|θ). For each pair in this ranking the remaining Gaussians
are then ranked by decreasing Jsplit(l|θ).

To summarize the full algorithm, we briefly list all the steps involved:

1. Run the EM algorithm as specified in equations (16) and (19). Store the result-
ing model parameters θ∗ and the corresponding model log likelihood φ∗.

2. Compute the merge criterion Jmerge(j, k|θ∗) for all pairs j, k and the split cri-
terion Jsplit(l|θ∗) for all l. Sort the split and merge candidates based on these
criteria as detailed above.

3. For the first triplet (j, k, l) in this sorted list set the initial parameters of the
merged Gaussian using equation (28) and the parameters of the two Gaussian
resulting from splitting the third Gaussian using equations (29) and (30). Then
run the partial EM procedure on the parameters of the three affected Gaussians,
that is, run EM while keeping the parameters of the unaffected Gaussians fixed,
and follow this up by running the full EM procedure on all the Gaussians. If
after convergence the new log likelihood φ is greater than φ∗, accept the new
parameter values θ∗ ← θ and return to step two. If φ < φ∗, return to the begin-
ning of this step and use the next triplet (j, k, l) in the list.

4. Halt this procedure when none of the split and merge candidates improve the log
likelihood or, if this list is too long, if none of the first C lead to an improvement.

Deciding when to stop going down the split-and-merge hierarchy will be dic-
tated in any individual application of this technique by computational constraints.
This is an essential feature of any search-based approach to finding global maxima
of (likelihood) functions.

Acknowledgments. It is a pleasure to thank Frédéric Arenou and Phil Mar-
shall for comments and assistance and the anonymous referee and Associate Editor
for valuable criticism.



EXTREME DECONVOLUTION 1675

REFERENCES

ANTOJA, T., FIGUERAS, F., FERNÁNDEZ, D. and TORRA, J. (2008). Origin and evolution of mov-
ing groups. I. Characterization in the observational kinematic-age-metallicity space. Astron. As-
trophys. 490 135.

BAXTER, R. A. (1995). Finding overlapping distributions with MML. Technical Report No. 244,
Dept. Computer Science, Monash Univ., Clayton, Australia.

BEAL, M. J. (2003). Variational algorithms for approximate Bayesian inference. Ph.D. thesis, Gatsby
Computational Neuroscience Unit, Univ. College London.

BINNEY, J. and MERRIFIELD, M. (1998). Galactic Astronomy. Princeton Univ. Press, Princeton,
NJ.

BLAAUW, A., GUM, C. S., PAWSEY, J. L. and WESTERHOUT, G. (1960). The new IAU system of
galactic coordinates (1958 revision). Mon. Not. R. Astron. Soc. 121 123.

BOVY, J. (2010). Tracing the Hercules stream around the galaxy. Astrophys. J. 725 1676.
BOVY, J., HOGG, D. W. and ROWEIS, S. T. (2009). The velocity distribution of nearby stars from

Hipparcos data I. The significance of the moving groups. Astrophys. J. 700 1794.
BOVY, J. and HOGG, D. W. (2010). The velocity distribution of nearby stars from Hipparcos data II.

The nature of the low-velocity moving groups. Astrophys. J. 717 617.
BRONIATOWSKI, M., CELEUX, G. and DIEBOLT, J. (1983). Reconaissance de Densités par un Al-

gorithme d’Apprentissage Probabiliste. In Data Analysis and Informatics, Vol. 3 359–373. North-
Holland, Amsterdam. MR0787647

CARROLL, R. J., RUPPERT, D., STEFANSKI, L. A. and CRAINICEANU, C. M. (2006). Measure-
ment Error in Nonlinear Models: A Modern Perspective, 2nd ed. Chapman and Hall/CRC, Boca
Raton, FL. MR2243417

CELEUX, G. and DIEBOLT, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived
from the EM algorithm for the mixture problem. Comput. Statist. Quart 2 73.

CELEUX, G. and DIEBOLT, J. (1986). L’Algorithme SEM: un Algorithme d’Apprentissage Proba-
biliste pour la Reconnaisance de Mélanges de Densités. Rev. Stat. Appl. 34 35.

DE SIMONE, R., WU, X. and TREMAINE, S. (2004). The stellar velocity distribution in the solar
neighbourhood. Mon. Not. R. Astron. Soc. 350 627.

DEHNEN, W. (1998). The distribution of nearby stars in velocity space inferred from Hipparcos data.
Astron. J. 115 2384.

DEHNEN, W. (2000). The effect of the outer Lindblad resonance of the galactic bar on the local
stellar velocity distribution. Astron. J. 119 800.

DEHNEN, W. and BINNEY, J. J. (1998). Local stellar kinematics from Hipparcos data. Mon. Not. R.
Astron. Soc. 298 387.

DELAIGLE, A. and MEISTER, A. (2008). Density estimation with heteroscedastic error. Bernoulli
14 562–579. MR2544102

DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. Stat. 39 1–38. MR0501537

DIEBOLT, J. and ROBERT, C. P. (1994). Estimation of finite mixture distributions through Bayesian
sampling. J. R. Stat. Soc. Ser. B Methodol. Stat. 56 363–375. MR1281940

ESA (1997). The Hipparcos and Tycho Catalogues. ESA SP-1200, Noordwijk.
FAMAEY, B., JORISSEN, A., LURI, X., MAYOR, M., UDRY, S., DEJONGHE, H. and TURON, C.

(2005). Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisit-
ing the concept of superclusters. Astron. Astrophys. 430 165.

GELMAN, A., CARLIN, J. B., STERN, H. S. and RUBIN, D. B. (2000). Bayesian Data Analysis.
Chapman and Hall/CRC, Boca Raton, FL. MR1385925

GHAHRAMANI, Z. and BEAL, M. J. (2000). Variational inference for Bayesian mixtures of factor
analysers. In Advances in Neural Information Processing Systems 12 (S. A. Solla, T. K. Leen and
K. R. Muller, eds.) 449. MIT Press, Cambridge, MA.

http://www.ams.org/mathscinet-getitem?mr=0787647
http://www.ams.org/mathscinet-getitem?mr=2243417
http://www.ams.org/mathscinet-getitem?mr=2544102
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=1281940
http://www.ams.org/mathscinet-getitem?mr=1385925


1676 J. BOVY, D. W. HOGG AND S. T. ROWEIS

GHAHRAMANI, Z. and JORDAN, M. I. (1994a). Learning from incomplete data. CBCL Technical
Report No. 108. Center for Biological and Computational Learning, MIT.

GHAHRAMANI, Z. and JORDAN, M. I. (1994b). Supervised learning from incomplete data via an
EM approach. In Advances in Neural Information Processing Systems 6 (J. D. Cowan, G. Tesauro
and J. Alspector, eds.) 120–127. Morgan Kaufman, San Francisco.

HELMI, A., WHITE, S. D. M., DE ZEEUW, P. T. and ZHAO, H. (1999). Debris streams in the solar
neighbourhood as relicts from the formation of the milky way. Nature 402 53–55.

HOGG, D. W., BLANTON, M. R., ROWEIS, S. T. and JOHNSTON, K. V. (2005). Modeling com-
plete distributions with incomplete observations: The velocity ellipsoid from Hipparcos data. As-
trophys. J. 629 268.

HOLMBERG, J., NORDSTRÖM, B. and ANDERSEN, J. (2009). The Geneva–Copenhagen survey of
the solar neighbourhood III. Improved distances, ages, and kinematics. Astron. Astrophys. 501
941.

JASRA, A., HOLMES, C. C. and STEPHENS, D. A. (2005). Markov chain Monte Carlo methods and
the label switching problem in Bayesian mixture modeling. Statist. Sci. 20 50–67. MR2182987

MACKAY, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge
Univ. Press, Cambridge. MR2012999

MCLACHLAN, G. J. and BASFORD, K. (1988). Mixture Models: Inference and Application to Clus-
tering. Dekker, New York. MR0926484

NORDSTRÖM, B., MAYOR, M., ANDERSEN, J., HOLMBERG, J., PONT, F., JØRGENSEN, B. R.,
OLSEN, E. H., UDRY, S. and MOWLAVI, N. (2004). The Geneva–Copenhagen survey of the
solar neighbourhood. Ages, metallicities, and kinematic properties of ∼14 000 F and G dwarfs.
Astron. Astrophys. 418 989.

OLIVER, J. J., BAXTER, R. A. and WALLACE, C. S. (1996). Unsupervised learning using MML.
In Machine Learning: Proceedings of the Thirteenth International Conference (ICML 96) 364.
Morgan Kaufmann, San Francisco.

ORMONEIT, D. and TRESP, V. (1996). Improved Gaussian mixture density estimates using Bayesian
penalty terms and network averaging. In Advances in Neural Information Processing Systems 8,
NIPS, Denver, CO, November 27–30, 1995 (D. S. Touretzky, M. Mozer and M. E. Hasselmo, eds.)
542–548. MIT Press, Cambridge.

QUILLEN, A. C. and MINCHEV, I. (2005). The effect of spiral structure on the stellar velocity
distribution in the solar neighborhood. Astron. J. 130 576.

RABINER, L. and BIING-HWANG, J. (1993). Fundamentals of Speech Recognition. Prentice-Hall,
New York.

RASMUSSEN, C. (2000). The infinite Gaussian mixture model. In Advances in Neural Information
Processing Systems 12 (S. A. Solla, T. K. Leen and K. R. Muller, eds.) 554–560. MIT Press,
Cambridge.

RICHARDSON, S. and GREEN, P. J. (1997). On Bayesian analysis of mixtures with an unknown
number of components. J. R. Stat. Soc. Ser. B Methodol. Stat. 59 731–792. MR1483213

RISSANEN, J. (1978). Modeling by shortest data description. Automatica 14 465.
ROBERTS, S. J., HUSMEIER, D., REZEK, I. and PENNY, W. (1998). Bayesian approaches to Gaus-

sian mixture modeling. IEEE Trans. Pattern Anal. Mach. Intell. 20 1133.
SCHAFER, D. W. (1993). Likelihood analysis for probit regression with measurement errors.

Biometrika 80 899.
SCHAFER, D. W. and PURDY, K. G. (1996). Likelihood analysis for errors-in-variables regression

with replicate measurements. Biometrika 83 813–824. MR1440046
SCHWARTZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464. MR0468014
SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall,

Boca Raton, FL. MR0848134
SKULJAN, J., HEARNSHAW, J. B. and COTTRELL, P. L. (1999). Velocity distribution of stars in the

solar neighbourhood. Mon. Not. R. Astron. Soc. 308 731.

http://www.ams.org/mathscinet-getitem?mr=2182987
http://www.ams.org/mathscinet-getitem?mr=2012999
http://www.ams.org/mathscinet-getitem?mr=0926484
http://www.ams.org/mathscinet-getitem?mr=1483213
http://www.ams.org/mathscinet-getitem?mr=1440046
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=0848134


EXTREME DECONVOLUTION 1677

STAUDENMAYER, J., RUPPERT, D. and BUONACCORSI, J. (2008). Density estimation in the pres-
ence of heteroscedastic measurement error. J. Amer. Statist. Assoc. 103 726–736. MR2524005

STEFANSKI, L. A. and CARROLL, R. J. (1990). Deconvoluting kernel density estimators. Statistics
21 169–184. MR1054861

STONE, M. (1974). Cross-validation choice and assessment of statistical predictions. J. R. Stat. Soc.
Ser. B Methodol. Stat. 36 111–147. MR0356377

UEDA, N., NAKANO, R., GHAHRAMANI, Z. and HINTON, G. E. (1998). Split and merge EM
algorithm for improving Gaussian mixture density estimates. In Neural Networks for Signal Pro-
cessing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop 274–283.
IEEE.

VAN LEEUWEN, F. (2007a). Hipparcos, the New Reduction of the Raw Data. Astrophysics and Space
Science Library 250. Springer, Dordrecht.

VAN LEEUWEN, F. (2007b). Validation of the new Hipparcos reduction. Astron. Astrophys. 474 653.
WALLACE, C. S. and BOULTON, D. M. (1968). An information measure for classification. Com-

put. J. 11 185.
WU, C. F. J. (1983). On the convergence properties of the EM algorithm. Ann. Statist. 11 95–103.

MR0684867
ZHANG, C. H. (1990). Fourier methods for estimating mixing densities and distributions. Ann.

Statist. 18 806–831. MR1056338

J. BOVY

D. W. HOGG

CENTER FOR COSMOLOGY

AND PARTICLE PHYSICS

DEPARTMENT OF PHYSICS

NEW YORK UNIVERSITY

4 WASHINGTON PLACE

NEW YORK, NEW YORK 10003
USA
E-MAIL: jo.bovy@nyu.edu

david.hogg@nyu.edu

S. T. ROWEIS

COURANT INSTITUTE

OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY

251 MERCER STREET

NEW YORK, NEW YORK 10012
USA
E-MAIL: roweis@cs.nyu.edu

http://www.ams.org/mathscinet-getitem?mr=2524005
http://www.ams.org/mathscinet-getitem?mr=1054861
http://www.ams.org/mathscinet-getitem?mr=0356377
http://www.ams.org/mathscinet-getitem?mr=0684867
http://www.ams.org/mathscinet-getitem?mr=1056338
mailto:jo.bovy@nyu.edu
mailto:david.hogg@nyu.edu
mailto:roweis@cs.nyu.edu

	Introduction
	Likelihood of a mixture of Gaussian distributions given a set of heterogeneous, noisy samples
	Fitting mixtures with heterogeneous, noisy data using an EM algorithm
	Extensions to the basic algorithm
	Bayesian-inspired regularization
	Avoiding local maxima
	Setting the remaining free parameters

	The velocity distribution from Hipparcos data
	Implementation and code availability
	Conclusions and future work
	Appendix A: Proof that the proposed algorithm maximizes the likelihood
	Appendix B: Split and merge algorithm
	Acknowledgments
	References
	Author's Addresses

