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Abstract. Given a smoothly embedded 2-manifold in R3, we define the elevation of a
point as the height difference to a canonically defined second point on the same manifold.
Our definition is invariant under rigid motions and can be used to define features such as lines
of discontinuous or continuous but non-smooth elevation. We give an algorithm for finding
points of locally maximum elevation, which we suggest mark cavities and protrusions and
are useful in matching shapes as for example in protein docking.

1. Introduction

The starting point of our work is the desire to identify features that are useful in finding
a fit between solid shapes in R3. We are looking for cavities and protrusions and a way
to measure their size. The problem is made difficult by the interaction of these features,
which typically exist at various scales. We therefore take an indirect approach, defining
a real-valued function on the surface that is sensitive to the features of the shape. We
call this the elevation function because it has similarities to the elevation measured on
the surface of the Earth, but the problem for general surfaces is more involved and the
analogy is not perfect.
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86013, CCR-02-04118, DMS-01-07621, and by the U.S.–Israel Binational Science Foundation.



554 P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang

Related Work in Protein Docking. The primary motivation for work reported in this
paper is protein docking, which is the computational approach to predicting protein
interaction, a biophysical phenomenon at the very core of life. The phenomenon is
clearly important, and the interest in protein docking is correspondingly wide-spread.
We refer to survey articles by Elcock et al. [11], Halperin et al. [15], and Janin and Wodak
[17]. The idea of docking by matching cavities with protrusions goes back to Crick [7]
and Connolly [6]. Connolly also introduced the idea of using the critical points of a
real-valued function defined on the protein surface to identify cavities and protrusions.
The particular function he used is the fraction of a fixed-size sphere that is buried inside
the protein volume as we move the sphere center on the protein surface. In the limit,
when the size of the sphere goes to zero, this function has the same critical points as
the mean curvature function [4]. A similar but different function suggested for the same
purpose is the atomic density [19]. Here we take the buried fraction of the ball bounded
by the sphere but we also vary its radius from 0 to about 10 Å. At every point of the
protein surface, the function value is the fraction of buried volume averaged over the
different size balls centered at that point.

Results. The main contribution of this paper is the description and computation of
a new type of feature points that mark extreme cavities and protrusions on a surface
embedded in R3. More specifically,

• we extend the concept of topological persistence [9] to form a pairing between all
critical points of a function on a 2-manifold embedded in R3;
• we use the pairings obtained for a two-parameter family of height functions to

define the elevation function on the 2-manifold;
• we classify the generic local maxima of the elevation function into four types;
• we develop and implement an algorithm that computes all local maxima of the

elevation function defined on a triangulated surface in R3.

The elevation differs from Connolly’s and the atomic density functions in two major
ways: it is independent of scale, and it provides, beyond location, estimates for the
direction and size of shape features. Both additional pieces of information are useful
in shape characterization and matching. Examples of the four generic types of local
maxima are illustrated in Fig. 1. In each but the first case, the maximum is obtained at
an ambiguity in the pairing of critical points. In all cases the endpoints of the legs share
the same normal line, and the legs have the same length if measured along that line. The

Fig. 1. From left to right: a one-, two-, three-, and four-legged local maximum of the elevation function. In
the examples shown, the outer normals at the endpoints of the legs are all parallel (the same). Each of the four
types also exists with anti-parallel outer normals.
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case analysis is delicate and aided by a transformation of the original 2-manifold to its
pedal surface, which maps tangent planes to points and represents points with common
tangent planes as self-intersections. The algorithm we describe for enumerating all local
maxima is inspired by our analysis of the smooth case but works on piecewise linear
data.

Outline. Section 2 defines the pairing of the critical points. Section 3 introduces the
height and elevation as functions on a 2-manifold. Section 4 describes a dual view of these
concepts. Section 5 uses surgery to make elevation continuous. Section 6 characterizes
the four types of generic local maxima. Section 7 sketches an algorithm for enumerating
all local maxima. Section 8 concludes the paper.

2. Pairing

The elevation function is based on a canonical pairing of the critical points, which we
describe in this section.

Traditional Persistence. Let M be a compact, connected, and orientable 2-manifold
and let f : M→ R be a smooth function. A point x ∈M is critical if the derivative of f
at x is identically zero, and it is non-degenerate if the Hessian at the point is invertible.
It is convenient to assume that f is generic:

I. all critical points are non-degenerate;
II. all critical points have distinct function values.

A function that satisfies Conditions I and II is usually referred to as a Morse function
[18]. It has three types of critical points: minima, saddles, and maxima, distinguished by
the number of negative eigenvalues of the Hessian. Imagine we sweepM in the direction
of the increasing function value, advancing across a level set of closed curves. We write
Ma = {x ∈M | f (x) ≤ a} for the swept portion of the 2-manifold. This portion changes
the topology whenever the level set passes through a critical point. A component ofMa

starts at a minimum and ends when it merges with another, older component at a saddle.
A hole in the 2-manifold starts at a saddle and ends when it is closed off at a maximum.
After observing that each saddle either merges two components or starts a new hole,
but not both, it is natural to pair up the critical point that starts a component or a hole
with the critical point that ends it. In a nutshell, this is the idea of topological persistence
introduced in [9]. It is clear that a small perturbation of the function that preserves the
sequence of critical events does not affect the pairing, other than by perturbing each
pair locally. The method pairs all critical points except for the first minimum, the last
maximum, and the 2g saddles starting the 2g cycles that remain when the sweep is
complete, where g is the genus ofM. These 2+2g unpaired critical points are the reason
we need an extension to the method, which we describe next.

Extended Persistence. It is natural to pair the remaining minimum with the remaining
maximum. The remaining 2g saddles are paired in a way that reflects how they introduce
cycles during the sweep. This pairing is best described using the Reeb graph obtained by
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Fig. 2. (a) A 2-manifold whose points are mapped to the distance above a horizontal plane. (b) The Reeb
graph in which the critical points of the function appear as degree-1 and degree-3 nodes. The labels indicate
the pairing. (c) The tree representing the Reeb graph from slightly above B downwards.

mapping each component of each level set to a point, as illustrated in Fig. 2. As proved
in [5], the Reeb graph has a basis of g loops such that any loop is the sum (modulo 2) of
loops in the basis. Each loop has a unique lowest and a unique highest point, referred to
as the lo-point and the hi-point. We say the lo- and hi-points span this loop but note that
the same two points may span more than one loop. Each lo-point is an up-fork in the
Reeb graph, and each hi-point is a down-fork. We pair each lo-point x with the lowest
hi-point y that spans a loop with x . Note that x is also the highest lo-point that spans a
loop with y. Indeed, if this were not the case, then we could add the loop spanned by y
and x with the loop spanned by y and the lo-point higher than x . The new loop consists
of all edges that are either in the first or the second loop but not in both. Its lo-point is
x but it does not contain y so its hi-point must be lower than y, a contradiction. This
implies that each lo-point and each hi-point belongs to exactly one pair, giving a total of
g pairs between up- and down-forking saddles, as desired.

Algorithm. We construct the Reeb graph of a piecewise-linear function on a triangula-
tion with n edges in time O(n log n) using the algorithm in [5]. It simulates the sweep
of a 2-manifold, maintaining the level set as a collection of cyclic lists. The pairing is
computed within the same time bound by maintaining a tree during a sequence of lowest
common ancestor queries. Specifically, we represent the Reeb graph of Ma as a forest
obtained by gluing branches to each other in a way that eliminates all loops; see Fig. 2.
The leaves are cyclic lists representing components of f −1(a). We take the following
steps at reaching a critical point x , merging two arcs across a degree-2 node whenever
one is created:

Case 1: x is a minimum. We add a new tree, consisting of an interior node (the minimum)
connected to a single leaf, to the forest.

Case 2: x is an up-forking saddle. We turn the corresponding leaf into an internal node,
adding two new leaves as its children.
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Case 3: x is a down-forking saddle, connecting leaves u and v. We glue the two downward
paths emanating from u and v, ending the gluing at y. If the two paths are disjoint and
end at different roots then y is the higher root, a minimum, which we now pair with x
(this is a traditional persistence pair). If the downward paths meet then y is the lowest
common ancestor (highest in the way we draw trees), an up-fork, which we now pair
with x (this is an extended persistence pair).

Case 4: x is a maximum. We pair it with its parent y and remove the joining edge
together with the two nodes; y can be either an up-forking saddle, producing a traditional
persistence pair, or a minimum, producing an extended persistence pair.

In order to perform these operations efficiently, we use the linking and cutting tree data
structure described by Sleator and Tarjan [20]. It decomposes each tree in the forest into
vertex-disjoint paths, representing each path using a binary search tree. By maintaining
a linking and cutting tree data structure, Cases 1, 2, and 4 can be handled in O(n log n)
overall time. Focusing on Case 3, we spend O(log n) time to find y using the operations
supported by the data structure. The only extra operation we need is gluing two paths of
length k ≤ m each. As recently shown by Georgiadis et al. [13], this gluing operation
can be implemented in O(log n) amortized time. In total, we thus have an algorithm that
computes all pairs in time O(n log n).

Symmetry. The negative function,− f : M→ R, has the same critical points as f . We
claim that it also generates the same pairing.

Symmetry Lemma. Two critical points x and y are paired for f iff they are paired
for − f .

Proof. The claim is true for the first minimum, x , and the last maximum, y. Every
other pair of f contains at least one saddle. We assume without loss of generality that
x is a saddle and that f (x) < f (y). Consider again the sweep of the 2-manifold in the
direction of increasing values of f . When we pass a = f (x) we split a cycle in the
level set into two. The two cycles belong to the boundary of M̄a , the set of points with
function value a or higher. If the two cycles belong to the same component of M̄a , such
as for the point labeled 2 in Fig. 2, then x is a lo-point and y is the lowest hi-point that
spans a cycle with x . The claim follows because x is also the highest lo-point that spans
a cycle with y. If, on the other hand, the two cycles belong to two different components
of M̄a , such as for the point labeled B in Fig. 2, then y is the lower of the two maxima
that complete the two components. In the backward sweep (the forward sweep for− f ),
y starts a component that merges into the other, older component at x . Again x and y
are also paired for − f , which implies the claimed symmetry.

3. Height and Elevation

In this section we define the elevation as a real-valued function on a 2-manifold in R3.
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Measuring Height and Elevation on Earth. Even on Earth, defining the elevation of
a point x on the surface is a non-trivial task. Traditionally, it is defined relative to the
mean sea level (MSL) in the direction of the measured point. In other words, the MSL
elevation of a point x is the difference between the distance of x from the center of mass
and the distance of the MSL from the center of mass in the direction of x . The difficulty
of measuring height in the middle of a continent was overcome by introducing the geoid,
which is a level surface of the Earth’s gravitational potential and roughly approximates the
MSL while extending it across land. The orthometric height above (or below) the geoid
is thus more general but otherwise about the same as the MSL elevation. It is perhaps
surprising that the geoid differs significantly from its best ellipsoidal approximation due
to non-uniform density of the Earth’s crust [12]. Standard global positioning systems
(GPS) indeed return the ellipsoidal height, which is elevation relative to a standard
ellipsoidal representation of the Earth’s surface. They also include knowledge of the
geoid height relative to the ellipsoid and compute the orthometric height of x as its
ellipsoidal height minus the geoid height in the direction of x .

A simplifying factor in the discussion of height and elevation on Earth is the existence
of a canonical core point, the center of mass. For general surfaces, distance measurements
from a fixed center make much less sense. We are interested in this general case, which
includes surfaces with non-zero genus for which there is no simple notion of core. Like
on Earth, we define the elevation of a point x as the difference between two distances,
except we no longer use a reference surface, such as the MSL or the geoid, but instead
measure relative to a canonically associated other point on the surface. To explain how
this works, we give different meanings to the “height” of a point, which we define for
every direction, and its “elevation,” which is the difference between two heights. While
height depends on an arbitrarily chosen origin, we will see that elevation is independent
of that choice. Indeed, the technical concept of elevation, as introduced shortly, will be
similar in spirit to the idea of orthometric height, with the exception that it substitutes
the canonical associated point for a globally defined reference surface.

Height, Persistence, and Elevation. LetM be a smoothly embedded 2-manifold in R3.
We assume that M is generic but it is too early to say what exactly that should mean.
We define the height in a given direction as the signed distance from the plane normal
to that direction and passing through the origin. Formally, for every unit vector u ∈ S2,
we call fu(x) = 〈x,u〉 the height of x in the direction u. This defines a two-parameter
family of height functions,

Height: M× S2 → R,

where Height(x,u) = fu(x). The height is a Morse function onM for almost all direc-
tions. We pair the critical points of fu as described in Section 2. Following [8], we define
the persistence of a critical point as the absolute difference in height to the paired point:
pers(x) = pers(y) = | fu(y)− fu(x)|.

Each point x ∈M is critical for exactly two height functions, namely for the ones in
the direction of its outer and inner normals: u = ±nx . We proved in Section 2 that the
pairs we get for the two opposite directions are the same. Hence, each point x ∈M has
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Fig. 3. A 1-manifold with marked (white and shaded) critical points of the vertical height function. The shaded
strips along the curve connect paired critical points. The black and shaded dots mark two- and one-legged
elevation maxima.

a unique persistence, which we use to introduce the elevation function,

Elevation: M→ R,

defined by Elevation(x) = pers(x). We note that the elevation is invariant under trans-
lation and rotation ofM in R3.

Two-Dimensional Example. We illustrate the definitions of the height and elevation
functions for a smoothly embedded 1-manifoldM inR2. The critical points of fu: M→
R are the points x ∈ M with normal vectors nx = ±u. Figure 3 illustrates a sweep
in the vertical upward direction u. Each critical point of fu starts a component, ends
a component by merging it into an older component, or closes the curve. The critical
points that start components get paired with the other critical points.

The elevation is zero at inflection points and increases as we move away in either
direction. The function may experience a discontinuity at points that share tangent lines
with others, such as endpoints of segments that belong to the boundary of the convex hull.
The elevation may reach a local maximum at points that either maximize the distance
to a shared tangent line or the distance to another critical point in the normal direction.
Examples of the first case are the black dots in Fig. 3, where the elevation peaks in a
non-differentiable manner. An example of the second case is the grey point, where the
elevation forms a smooth maximum.

Singular Tangencies. The elevation is continuous on M, except possibly at points
with singular tangencies. These points correspond to transitional violations of the two
genericity conditions of Morse functions. Such violations are unavoidable as Height is
a two-parameter family within which we can transition between Morse functions:

• two critical points may converge and meet at a birth–death point where they cancel
each other;
• two critical points may interchange their positions in the ordering by height, passing

a direction at which they share the same height.
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The first transition corresponds to an inflection point of a geodesic on M. Such points
are referred to as flat or parabolic, indicating that their Gaussian curvature is zero. The
second transition corresponds to two points x �= y that share the same tangent plane,
Tx = Ty . Both types of singularities are forced by varying one degree of freedom and are
turned into curves by varying the second degree of freedom. These curves pass through
co-dimension two singularities formed by two simultaneous violations of Conditions I
and II. There can be two concurrent birth–death points, a birth–death point concurrent
with an interchange, or two concurrent interchanges. In each case the singularity is
defined by two pairs of critical points and we get two types each because these pairs may
be disjoint or share one of the points. See Table 1 for the features onM that correspond
to the six types of co-dimension two singularities. We can now be more precise about
what we mean by a generic 2-manifold, namely that it has a generic family of height
functions.

Genericity Assumption A. The two-parameter family of height functions on M has
no violations of Conditions I and II for Morse functions other than the ones mentioned
above (and enumerated in Table 1 below).

Some of these violations are discussed in more detail later as they can be locations
of maximum elevation. The properties claimed by the assumption can be enforced by
arbitrarily small perturbations of the 2-manifold [2]. Alternatively, we can enforce the
assumption by perturbing the family of functions, which is easier and suffices for our
purposes. A second genericity assumption, referring specifically to the elevation function,
is stated in Section 5.

4. Pedal Surface

In this section we take a dual view of the height and elevation functions based on a
transformation ofM to another surface inR3. We take this view to help our understanding
of the singularities of Height, but it is of course also possible to study them directly using
standard results in the field [1], [16].

Pedal Function. Recall that Tx is the plane tangent toM that passes through x ∈M. The
pedal p of x is the orthogonal projection of the origin onto Tx . We write p = Pedal(x)
and obtain a function

Pedal: M→ R3,

whose image P = Pedal(M) is the pedal surface ofM [3]. If the line 0x is normal to Tx

then p = x . More generally, we can construct p by drawing the diameter sphere with
center x/2 passing through 0 and x . This sphere intersects Tx in a circle with center
(x + p)/2 that passes through x and p = Pedal(x). In fact, P is the evolute of the
diameter spheres defined by the origin and the points x ∈M, as illustrated in Fig. 4. The
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Fig. 4. A smoothly embedded (boldface solid) closed curve and the (solid) image of the pedal function
constructed as the evolute of the (dotted) diameter circles between the curve and the origin.

following three properties are useful in understanding the correspondence between M
and its pedal surface:

• points on M have parallel and anti-parallel normal vectors iff their images under
the pedal function lie on a common line passing through the origin;
• the height of a point x ∈M in the direction of its normal vector is equal to plus or

minus the distance of Pedal(x) from the origin;
• from p ∈ P and the angle ϕ between the vector p and the normal np of P at p, we

can compute the radius � of the corresponding diameter sphere and the preimage
x at distance 2� sinϕ from p in the direction normal to p and p × np.

The third property implies that the pedal surface determines the 2-manifold.

Co-Dimension One Singularities. We are interested in singularities of the pedal func-
tion as they correspond to directions along which the height function is not generic.
For example, a birth–death point of Height corresponds to a cusp point of P. To see
this recall that the birth–death points correspond to parabolic points x ∈ M. A generic
geodesic through this point has an inflection at x , causing the tangent plane to reverse
the direction of its rotating motion as we pass through x . Similarly, it causes a sudden
reversal of the motion of the image of the origin thus forming a cusp at Pedal(x). In
contrast, an interchange of Height, which corresponds to a plane tangent to M in two
points, maps to a point of self-intersection (an xing) of P. These two cases exhaust the
co-dimension one singularities of Height, which are listed in the upper block of Table 1.

Co-Dimension Two Singularities. There are six types of co-dimension two singularities
listed in the lower block of Table 1. Perhaps the most interesting is formed by two
concurrent birth–death points that share a critical point, thus forcing a second interchange.
As illustrated in Fig. 5(a), the corresponding dovetail point in the pedal surface is the
endpoint of two cusps but also of a self-intersection curve. The second most interesting
type is formed by two concurrent interchanges that share a critical point and therefore
force a third concurrent interchange of the other two critical points. It corresponds to
three self-intersection curves formed by three sheets of P that intersect in a triple point,
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Table 1. Correspondence between singularities of tangents of the manifold,
the two-parameter family of height functions, and the pedal surface. There
are two singularities of co-dimension one: curves of cusps and curves of self-
intersections (xings). There are six singularities of co-dimension two, but only

two have names in the original domain of tangent planes toM.

Dictionary of singularities

M Height P

Parabolic point Birth–death (bd) point Cusp
Double tangency Interchange Xing

Jacobi point 2 bd-pts + interchange Dovetail point
Triple tangency 3 interchanges Triple point

bd-pt. + 2 interchanges Cusp xing

2 bd-pts Cusp–cusp overpass
2 interchanges Xing–xing overpass
bd-pt. + interchange Cusp–xing overpass

as shown in Fig. 5(b). Third, we may have a concurrent birth–death point and interchange
that share a critical point. As illustrated in Fig. 5(c), this corresponds to a cusp curve that
passes through another sheet of the pedal surface. There are three parallel types in which
the concurrency happens in the same direction u but not in space. They correspond to two
curves on the pedal surface that cross each other as seen from the origin but do not meet
in R3. As before, a birth–death point corresponds to a cusp curve and an interchange to
a curve of self-intersections.

5. Continuity

We are interested in the local maxima of the elevation function, which are the counterparts
of mountain peaks and deepest points in the sea. However, they are not well defined
because the elevation can be discontinuous. We remedy this shortcoming through surgery.

dovetail point cusp intersectiontriple point

(a) (b) (c)

Fig. 5. (a) A portion of the pedal surface in which a self-intersection and two cusps end at a dovetail point.
(b) Three sheets of the pedal surface intersecting in a triple point. (c) A cusp intersecting another sheet of the
pedal surface.
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Fig. 6. The four white points share the same normal direction, as do the four light shaded and the four dark
shaded points. The strips indicate the pairing, which switches when the height function passes through the
vertical direction. The insert on the right illustrates the effect of surgery at y and z on the pedal curve.

Discontinuities at Interchanges. As mentioned in Section 2, the pairs vary continuously
as long as the height function varies without passing through birth–death points and
interchanges (Conditions I and II). It follows that the elevation is continuous in regions
where this is guaranteed. Around a birth–death point, the elevation is necessarily small
and goes to zero as we approach the birth–death point. The only remaining possibility
for discontinuous elevation is thus at interchanges, which happen when two points share
the same tangent plane. As mentioned in Table 1, this corresponds to a point at which
the pedal surface intersects itself. Figure 6 shows that discontinuities in the elevation
can indeed arise at co-tangent points. We see four points with a common vertical normal
direction, of which y and z are co-tangent. Consider a small neighborhood of the vertical
direction, u, and observe that the critical points vary in neighborhoods of their locations
for fu. The critical point near x changes its partner from the right side of y to the left
side of z as it varies from left to right in the neighborhood of x . Similarly, the critical
point near w changes its partner from the right side of z to the left side of y as it varies
from left to right in the neighborhood of w. Since the height difference is the same at
the time of the interchange, the elevation at x and w is still continuous. However, it is
not continuous at y and at z, which both change their partners, either from x to w or
the other way round. Not all interchanges cause discontinuities, only those that affect
the pairing. These are the interchanges that affect a common topological feature arising
during the sweep ofM in the height direction.

Continuity through Surgery. We apply surgery to M to obtain another 2-manifold, N,
on which the elevation function is continuous. Specifically, we cut M along curves at
which Elevation: M → R is discontinuous, resulting in a 2-manifold with boundary,
B. Then we glue B along its boundary, making sure that glued points have the same
elevation. Formally, we cut by applying the inverse of a surjection B→M, and we glue
by applying a surjective map from B to N:

M
Cut−→ B

Glue−→ N.
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As argued above, each boundary curve ofB is defined by an interchange and corresponds
to a self-intersection curve (an xing) of the pedal surface. The latter view is perhaps the
most direct one in which surgery means cutting along xings and gluing the resulting four
sheets in a pairing that resolves the self-intersection. This is illustrated in Fig. 6 for a
1-manifold where on the right we see a self-intersection being resolved by cutting the
two curves and gluing the upper ends to each other and similarly the lower ends. In the
original boldface curve on the left, this operation corresponds to cutting at y and z and
gluing the four ends to form two closed curves: one from y to x to z = y and the other
from y to w to z = y. As mentioned earlier, not all xings correspond to discontinuities
and we perform surgery only on the subsets that do. In general, a discontinuity follows
an xing until it runs into a dovetail or a triple point. In the former case the xing and the
discontinuity both end. In the latter case the xing continues through the triple point and
the discontinuity may follow, turn, or even branch to other xings passing through the same
triple point. There are two possible configurations created by surgery in the neighborhood
of a triple point p. Their particular significance in the recognition of local maxima will be
discussed shortly. Whatever the situation, the subset of xings along which the elevation
is discontinuous together with the gluing pattern across these xings provides a complete
picture of how to use surgery to change P into a new surface, Q. The 2-manifold N is
the one for which this is the pedal surface: Q = Pedal(N). That N is indeed a manifold
can be shown by (tedious) examination of all cut-and-glue patterns that may occur.
After surgery, we have a continuous function Elevation: N→ R. Furthermore, we have
continuously varying pairs of critical points. To formalize this idea, we introduce a new
map

Antipode: N→ N

that maps a point x to its paired point y = Antipode(x). The function Antipode is a
homeomorphism and its own inverse. We note in passing that we could construct yet
another 2-manifold by identifying antipodal points. Each local maximum of the elevation
function on this new manifold corresponds to a pair of equally high maxima in N. This
construction is the reason we blur the difference between maxima and antipodal pairs of
maxima in the next few sections.

Smoothness. The elevation function on N is smooth almost everywhere. To describe
the violations of smoothness, let BdB denote the boundary of the intermediate manifold.
Let B = Glue(BdB) and define S = B ∪ Antipode(B), the set of points at which the
elevation function is not smooth. By Genericity Assumption A, S is a graph, consisting
of nodes and arcs. We have degree-1 and degree-3 nodes that correspond to dovetail
points and triple points in the pedal surface, respectively, as well as degree-4 nodes that
correspond to overpasses between xings. Each degree-4 node is the crossing of an arc in
B and an arc in the antipodal image of B. We think of this construction as a stratification
of N. Its strata are

• the three kinds of nodes of S;
• the open and closed arcs of S;
• the open connected regions in N− S.
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Fig. 7. Stratification of the 2-sphere obtained by overlaying a spherical tetrahedron with its antipodal image.
The (shaded) degree-4 nodes are crossings between B and its antipodal image.

Figure 7 illustrates the construction by showing how such a stratification may look like.
Because of Genericity Assumption A, the restriction of the elevation function to a stratum
is smooth and a Morse function if we remove the points where it is zero. Let N0 be N
minus the points x with Elevation(x) = 0. The set S defines a stratification of N0 whose
strata are the components of the earlier strata after removing the zero elevation points.
A stratified Morse function on N0 satisfies

(i) its restriction to a stratum is a Morse function;
(ii) the limit of the derivative as we approach a critical point on the boundary of a

stratum is non-zero;

see [14]. We are now ready to state our second genericity assumption.

Genericity Assumption B. The elevation function restricted toN0 is a stratified Morse
function with strata defined by S.

The implication of this assumption will become clear after we enumerate the generic
types of local maxima of the elevation function in next section. For example, it implies
that the sphere is not generic.

6. Elevation Maxima

In this section we enumerate the generic types of local maxima of the elevation function.
They come in pairs in N which, by inverse surgery, form multi-legged creatures inM.

Classification of Local Maxima. Depending on its location, a point x ∈ N can have
one, two, or three preimages under surgery. We call this number its multiplicity, µ(x).
Specifically, x has multiplicity three if it is a node of the graph B, it has multiplicity
two if it lies on an arc of B, and it has multiplicity one otherwise. Degree-4 nodes in
the stratification of N correspond to antipodal pairs of points with multiplicity two each.
Let now x ∈ N be a local maximum of the elevation function. We know that x is not a
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parabolic point ofM, else its elevation would be zero. This simple observation eliminates
five of the eight singularities in Table 1. Furthermore, Genericity Assumption A on a 2-
manifoldM implies that a multiplicity three point can only be paired with a multiplicity
one point. This leaves the following four possible types of local maxima x :

one-legged
two-legged
three-legged
four-legged




if




µ(x) = µ(y) = 1,
µ(x) = 1 and µ(y) = 2,
µ(x) = 1 and µ(y) = 3,
µ(x) = µ(y) = 2,

where y = Antipode(x); see Fig. 1. We sometimes call the preimages of x the heads
and those of y the feet of the maximum. The most exotic of the four types is perhaps
the four-legged maximum, which corresponds to an overpass of two xings in the pedal
surface or, equivalently, a degree-4 node in the stratification. The image of x under Pedal
lies on one xing and the image of y lies on the other. Both points have two preimages
under surgery, which makes for a complete bipartite graph with two heads, two feet, and
four legs.

Neighborhood Patterns. It is instructive to look at the local neighborhood of a maximum
x inM. Most interesting is the three-legged type, with feet y1, y2, y3. A small perturbation
of the normal direction can change the ambiguous pairing of x with all three to an
unambiguous pairing of a point in the neighborhood of x with a point in the neighborhood
of one of the feet. To study these pairings, we map a neighborhood of x to a neighborhood
of nx using the Gauss map. Assuming x is not a parabolic point of M, the Gauss map
is locally homeomorphic. The unambiguous pairings are indicated by labeling every
direction in the neighborhood of nx with the index of the corresponding foot, as in Fig. 8.
The three curves passing through nx correspond to the three xings passing through the
triple point p ∈ P, which is the simultaneous image of the three feet. They decompose
the neighborhood into six slices corresponding to the six permutations of the feet. The
labeling indicates the pairing and reflects the surgery at these feet and, equivalently, at

x nx nxn

3 1 2

p p p

32 1 3 1 2

3 32112

2 1 3

Fig. 8. Top row: the three sheets of Q after possible ways of cutting and gluing the neighborhood of a triple
point p in P. Bottom row: the corresponding pairing patterns in the neighborhood of nx , each belonging to
one of the three points paired with the three feet. The (shaded) Mercedes star is necessary for a three-legged
maximum.
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the corresponding triple point in the pedal surface. Only the rightmost pattern in Fig. 8
corresponds to a maximum, the reason of which will become clear shortly.

The neighborhood pictures for the remaining three types of maxima are simpler. For
a one-legged maximum we have an undivided disk, which requires no surgery. For a
two- or four-legged maximum we have a disk divided into two parts and there is only
one way to do the surgery.

Necessary Projection Conditions. Let x ∈ N be a maximum of Elevation: N → R

with y = Antipode(x). Recall that the corresponding heads xi ∈ M all have the same
tangent plane. Similarly, the corresponding feet yj ∈ M have the same tangent plane,
which is parallel to the one of the xi . We formulate additional conditions necessarily
satisfied by maxima of the elevation function.

Projection Conditions. The point x is a maximum of the elevation function only if

#legs = 1: nx is parallel or anti-parallel to y − x ;
#legs = 2: nx , y1 − x , y2 − x are linearly dependent and the orthogonal projection

of x onto the line of the two feet lies between y1 and y2;
#legs = 3: the orthogonal projection of x onto the plane of the three feet lies inside

the triangle spanned by y1, y2, y3;
#legs = 4: the orthogonal projections of the line segments x1x2 and y1 y2 onto a plane

parallel to both have a non-empty intersection.

In summary, x is a local maximum only if nx or −nx is a positive linear combination of
the vectors yj − xi .

It is easy to verify the analogous conditions for a smooth function on a 1-manifold.
There is only one type of pair, consisting of a minimum x and a maximum y. In the one-
legged case, y has to be right above x , in the direction nx , else we have the configuration
depicted in Fig. 9(a) and we can increase the height difference by moving the normal
direction toward the direction of y − x . To see this, consider the osculating circles
touching the 1-manifold in points x and y. Simultaneously roll a line about each circle,
keeping the two lines parallel at all times. The distance between the lines, which is the
height difference between the points at which they touch the circles, is a local maximum
iff the difference vector between these two points is normal to the rolling lines. If this

x

y2y1

x

y

(a) (b)

Fig. 9. A one-legged configuration (a) and a two-legged configuration (b). In both configurations we can
increase the height difference by tilting the normal direction toward the left.



568 P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang

is not the case, there is a small motion of the normal direction that increases the height
difference, as indicated in Fig. 9(a). We remark that the argument does not depend on
x being a minimum and y being a maximum and also works for other combinations of
critical point types. In the two-legged case, the orthogonal projection of x onto the line
of y1 and y2 has to lie between the two points. Else we have the configuration depicted
in Fig. 9(b), and we can move the normal direction toward the directions of y1 − x and
y2 − x , which lie on the same side of nx , thus increasing the height difference for both
pairs. One of the (perturbed) pairs remains paired by persistence, contradicting that x is
an elevation maximum.

The argument for a 2-manifold is essentially the same, except that we have more cases
and points with two-dimensional neighborhoods. An interesting case is the three-legged
maximum, formed by x and three feet, y1, y2, y3. Call a plane anchored if it passes
through x and contains the direction nx . To establish that the orthogonal projection of x
onto the plane of the three feet lies inside the triangle they span, we assume the opposite
and take a plane anchored at x such that all three feet lie on one side of the plane. Take a
second plane anchored at x that intersects the first plane at a right angle and project the
configuration into that plane, drawing the sectional curve parallel to the second plane for
each critical point. The picture is like Fig. 9(b), except we now have three points yj , and
we use the one-dimensional argument to contradict the maximality of this configuration.

As mentioned earlier, we have an additional necessary condition for the three-legged
case, namely that the neighborhood pattern at nx be a Mercedes star. Indeed, suppose it
is not, then the pattern contains a straight line through the center along which we read
the same label j at all points. In other words, there is a plane anchored at x such that
for all normal directions close to nx that lie in this plane the persistence algorithm pairs
(a point in the neighborhood of) x with (a point in the neighborhood of) yj . If there
is only one such plane, like in the pattern on the left in Fig. 8, genericity contradicts
maximality. Otherwise, we get two such anchored planes and use the one-dimensional
argument within these planes to show that yj−x is parallel or anti-parallel to nx . However,
x cannot simultaneously be part of a one-legged and a three-legged maximum without
contradicting the condition for the derivative of f stated in the Genericity Assumption B.

7. Algorithm

In this section we describe an algorithm for constructing all points with locally maximum
elevation. The input is a piecewise linear 2-manifold embedded in R3. The running time
of the algorithm is polynomial in the number of edges.

Smooth versus Piecewise Linear. We consider the case in which the input is a two-
dimensional simplicial complex K in R3. This data violates some of the assumptions
we used in our mathematical considerations. This causes difficulties which, with some
effort, can be overcome. For example, it makes sense to require that K be a 2-manifold
but not that it be smoothly embedded. The two-parameter family of height functions
is well-defined and continuous but not smooth. The definition of the elevation function
is more delicate as it makes reference to point pairs in all possible directions. For any
given direction, we get a well-defined collection of pairs, but how can we be sure that the
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pairs for different directions are consistent? A related difficulty is rooted in the fact that
a vertex in K is usually critical for many directions and it may be paired with different
vertices in different directions. To rationalize this phenomenon, we think of K as the limit
of an infinite series of smoothly embedded 2-manifolds. A vertex of K gets resolved
into a small patch with a two-dimensional variety of normal directions. As the patch
shrinks toward the vertex, the variety of normal directions approaches a limit region on
the 2-sphere. For different directions in this limit region, the corresponding points on the
patch may be paired with points from different other patches. It thus seems natural that,
in the limit, a vertex would be paired with more than one other point.

Next, we introduce a combinatorial notion of the variety of normal directions. Let σ
be a simplex in K and recall that the link of σ is empty if σ is a triangle, it is a pair of
vertices if σ is an edge, and it is a cycle of vertices and edges if σ is a vertex. Let u ∈ S2

be a direction such that 〈u, x〉 = 〈u, z〉 for all points x, z ∈ σ . Given u, the upper link
of σ consists of all points y in the link for which 〈u, y〉 > 〈u, x〉. We say x is critical
for the height function in the direction u if the complement of the upper link is not
contractible. For example, the empty lower link of a minimum and the complete circle of
a maximum are not both contractible. Let N(x) ⊆ S2 be the set of directions along which
x is critical. Generically, the set N is a pair of opposite points on the sphere for a point
inside a triangle of K , a pair of opposite open great-circle arcs for a point on an edge, and
a pair of opposite open spherical polygons for a vertex. Here, the word “generic” applies
to a simplicial complex in R3, where it simply means that the vertices are in general
position. Computationally, this assumption can be simulated by a symbolic perturbation
[10]. We write N(x, y, . . .) for the common intersection of the sets N of x , y, and
so on.

Finite Candidate Sets. Given a candidate for a maximum, we can use the extended
persistence algorithm to decide whether or not it really is a maximum. More specifically,
we need a point x and a direction u along which the sweep defining the pairing proceeds.
The details of this decision algorithm will be discussed shortly. We use the Projection
Conditions, which are necessary for local maxima, to get four kinds of candidates:

#legs = 1: pairs of points x and y on K with the direction (y− x)/‖y − x‖ contained
in N(x, y);

#legs = 2: triplets of points x, y1, y2 such that the orthogonal projection z of x onto
the line of y1 and y2 lies between the two points and the direction (z− x)/‖z − x‖
is contained in N(x, y1, y2);

#legs = 3: quadruplets of points x, y1, y2, y3 such that the orthogonal projection z of x
onto the plane of y1, y2, y3 lies inside the triangle and the direction (z−x)/‖z − x‖
is contained in N(x, y1, y2, y3);

#legs = 4: quadruplets of points x1, x2, y1, y2 such that the shortest line segment zw
connecting the lines of x1, x2 and y1, y2 also connects the two line segments and
the direction (z − w)/‖z − w‖ is contained in N(x1, x2, y1, y2).

With the assumption of a generic simplicial complex K , we get a finite set of candidates
of each kind. Since this might not be entirely obvious, we discuss the one-legged case in
some detail. Let σ and τ be two simplices and let x and y be points in their interiors. For
a generic K , the intersection of normal directions, N(x, y), is non-empty only if one of
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the two simplices is a vertex or both are edges. If x = σ is a vertex then y is necessarily
the orthogonal projection of x onto τ , which may or may not exist. If σ and τ are both
edges then xy is necessarily the line segment connecting σ and τ and forming a right
angle with both, which again may or may not exist. In the end we get a set of O(n2)

candidate pairs x and y, where n is the number of edges in K . For the two-legged case,
we get O(n3) candidates, each a triplet of vertices or a pair of vertices together with a
point on an edge. For the three- and four-legged cases, we get O(n4) candidates, each a
quadruplet of vertices, giving a total of O(n4) candidates.

Verifying Candidates. Let x, y ∈ N be a pair of points whose heads and feet all have
parallel or anti-parallel normal directions. In the smooth case, two of the necessary
conditions for x and y to define an elevation maximum are:

(a) the Projection Conditions of Section 6;
(b) the requirement that y = Antipode(x).

We subsume the Mercedes star property in (b) since it depends on the antipodality map
or, equivalently, on the pairing by extended persistence. If x and y are indeed a maximum
pair, then they also satisfy a constraint on their curvature that ensures a local decrease of
the height difference in a neighborhood of nx . In the piecewise linear case, this curvature
constraint is redundant because the curvature concentrates at the vertices and edges, and
thus we have only (a) and (b). We have seen above how to translate (a) to the piecewise
linear case. It remains to test (b), which reduces to answering a constant number of
antipodality queries: given a direction u and a critical point x of fu, find the paired
critical point y. This is part of what the algorithm described in Section 2 computes while
sweeping K in the direction u. More precisely, the algorithm computes one of the possible
pairs, if applied in non-generic directions in which two or more vertices share the same
height. Most of our candidates generate non-generic directions, and we cope with this
situation by running the algorithm several times, namely once for each combination of
permutations of the heads and of the feet. Each combination corresponds to a generic
direction that is infinitesimally close to the non-generic direction. The largest number of
combinations is six, which we get for three-legged maxima. This is also how we decide
the Mercedes star property: each foot is the answer to two of the six antipodality queries,
giving rise to the pattern in Fig. 8. Letting n be the number of edges, the algorithm takes
time O(n log n) to answer an antipodality query. Since we have O(n4) candidates to test,
this amounts to a total running time of O(n5 log n).

8. Discussion

The main contribution of this paper is the definition of elevation as a real-valued func-
tion on a 2-manifold embedded in R3 and the computation of its local maxima. We have
implemented the algorithm and used it to predict docking configurations for protein
structures [21]. Given the surfaces of two such structures, we compute their elevation
maxima and align them to suggest docking configurations to be evaluated. Each align-
ment is a rigid motion, a point in six-dimensional space of translations composed with
rotations, and the algorithm may be interpreted as a way to sample this space. Since
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the elevation function also provides estimates for the direction and size of features, we
observed that the generated sampling is significantly more efficient (smaller) than those
of other geometric docking algorithms. However, the obtained configurations are not
very accurate and need to be refined by a local improvement algorithm. An apparent
advantage of our algorithm over others is that it finds good coarse alignments also for
proteins whose shapes are known only approximately, for example if they undergo small
deformations when they form complexes.

It would be worth exploring extensions of our results to manifolds with boundary
and to manifolds of dimension three or higher. A crucial first step will have to be the
generalization of the concept of extended persistence to these more general topological
spaces. The algorithm presented in Section 7 enumerates all local maxima of the elevation
function, without computing the elevation function itself, other than at a collection of
candidate points. This approach is suggested by the ambiguities that arise in the definition
of the elevation function for piecewise linear data. Unfortunately, it implies the fairly
high running time of O(n5 log n) in the worst case. Can the maxima be enumerated
more efficiently than that? Is there an algorithm that enumerates all maxima above some
elevation threshold without computing the maxima below the threshold?
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