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Abstract Viral infection can dramatically alter a cell’s transcriptome. However, these changes8

have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA9

sequencing to examine the transcriptional consequences of in�uenza virus infection. We �nd10

extremely wide cell-to-cell variation in the productivity of viral transcription – viral transcripts11

comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half12

their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene13

absence only partially explains variation in viral transcriptional load. Despite variation in viral load,14

the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of15

innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of16

viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.17

18

Introduction19

Viruses can cause massive and rapid changes in a cell’s transcriptome as they churn out viral mRNAs20

and hijack cellular machinery. For instance, cells infected with in�uenza virus at high multiplicity21

of infection (MOI) express an average of 50,000 to 100,000 viral mRNAs per cell, corresponding22

to 5 to 25% of all cellular mRNA (Hatada et al., 1989). Infection can also trigger innate-immune23

sensors that induce the expression of cellular anti-viral genes (Killip et al., 2015; Iwasaki and Pillai,24

2014; Crotta et al., 2013). This anti-viral response is another prominent transcriptional signature of25

high-MOI in�uenza virus infection in bulk cells (Geiss et al., 2002).26

However, initiation of an actual in�uenza infection typically involves just a few virions infecting27

a few cells (Varble et al., 2014; Poon et al., 2016; Leonard et al., 2017; McCrone et al., 2017). The28

dynamics of viral infection in these individual cells may not mirror bulk measurements made29

on many cells infected at high MOI. Over 70 years ago, Max Delbruck showed that there was a30

Ì100-fold range in the number of progeny virions produced per cell by clonal bacteria infected31

with clonal bacteriophage (Delbruck, 1945). Subsequent work has shown similar heterogeneity32

during infection with other viruses (Zhu et al., 2009; Schulte and Andino, 2014; Combe et al., 2015;33

Akpinar et al., 2016), including in�uenza virus (Heldt et al., 2015).34

In the case of in�uenza virus infection, targeted measurements of speci�c proteins or RNAs35

have shed light on some factors that contribute to cell-to-cell heterogeneity. The in�uenza virus36

genome consists of eight negative-sense RNA segments, and many infected cells fail to express37

one more of these RNAs (Heldt et al., 2015; Dou et al., 2017) or their encoded proteins (Brooke38

et al., 2013). In addition, activation of innate-immune responses is inherently stochastic (Shalek39

et al., 2013, 2014; Bhushal et al., 2017; Hagai et al., 2017), and only some in�uenza-infected cells40

express anti-viral interferon genes (Perez-Cidoncha et al., 2014; Killip et al., 2017). However, the41

extent of cell-to-cell variation in these and other host and viral factors remains unclear, as does the42
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Figure 1. Experimental design. (A)We engineered a virus that carried two synonymous mutations near the 3’

end of each mRNA. At top are the mutations for PB2. At bottom are locations of the synonymous mutations

relative to the typical distribution of read depth for our 3’-end sequencing. (B) The wild-type and synonymously

barcoded viruses transcribe their genes with similar kinetics. The abundance of the viral hemagglutinin (HA)

transcript relative to the cellular housekeeping gene L32 was assessed by qPCR in A549 cells infected at an MOI

of 0.5 (as determined on MDCK-SIAT1 cells). Error bars ± S.D., n=3. (C) For the single-cell mRNA sequencing,

A549 cells were infected with an equal mixture of wild-type and synonymously barcoded virus. Immediately

prior to collection, cells were physically separated into droplets and cDNA libraries were generated containing

the indicated barcodes. The libraries were deep sequenced, and the data processed to create a matrix that

gives the number of molecules of each transcript observed in each cell. Infected cells were further annotated by

whether their viral mRNAs derived from wild-type virus, synonymously barcoded virus, or both.

Figure 1–source data 1. Sequences of wild-type and barcoded viruses are in viralsequences.fasta.

association among them in individual infected cells.43

Here we use single-cell mRNA sequencing to quantify the levels of all cellular and viral mRNAs44

in cells infected with in�uenza virus at low MOI. We �nd extremely large variation in the amount45

of viral mRNA expressed in individual cells. Both co-infection and activation of innate-immune46

pathways are rare in our low-MOI infections, and do not appear to be the major drivers of cell-47

to-cell heterogeneity in viral transcriptional load. Individual infected cells often fail to express48

speci�c viral genes, and such gene absence explains some but certainly not all of the cell-to-cell49

heterogeneity. A variety of cellular genes, including ones involved in the oxidative-stress response,50

co-vary with viral transcriptional load. Overall, our work demonstrates remarkable heterogeneity in51

the transcriptional outcome of in�uenza virus infection among nominally identical cells infected52

with a relatively pure population of virions.53

Results54

Strategy to measure mRNA in single virus-infected cells.55

We performed single-cell mRNA sequencing using a droplet-based system that physically isolates56

individual cells prior to reverse transcription (Zheng et al., 2017;Macosko et al., 2015; Klein et al.,57

2015). Each droplet contains primers with a unique cell barcode that tags all mRNAs from that58

droplet during reverse-transcription. Each primer also contains a unique molecular identi�er (UMI)59

that is appended to eachmRNAmolecule during reverse transcription. The 3’ ends of themRNAs are60

sequenced and mapped to the human and in�uenza virus transcriptomes to determine transcript61

identities. This information is combined with that provided by the UMIs and cell barcodes to62
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Figure 2. The viral stocks in our experiments are relatively pure of defective particles. (A) Our viral stocks have

a higher ratio of infectious particles to HA virion RNA compared to a high-defective stock propagated at high

MOI. HA viral RNA was quanti�ed by qPCR on virions. Error bars ± S.D., n=6 (qPCR replicates). (B) Our viral

stocks have a higher ratio of infectious particles to particles capable of expressing HA protein. A549 cells were

infected at an MOI of 0.1, and the percentage of cells expressing HA protein at 9 hours post-infection was

quanti�ed by antibody staining and �ow cytometry. (C) Our viral stocks are less immunostimulatory than virus

propagated at high MOI when used at the same number of infectious units as calculated by TCID50. Note that

this fact does not necessarily imply that they are more immunostimulatory per virion, as the high-MOI stocks

also have more virions per infectious unit as shown in the �rst two panels. Measurements of IFNB1 transcript by

qPCR normalized to the housekeeping gene L32 in A549 cells at 10 hours post infection at an MOI of 0.5. Error

bars ± S.D., n=3. Note that MOIs were calculated by TCID50 on MDCK-SIAT1 cells, whereas the experiments in

this �gure involved infection of A549 cells.

Figure 2–Figure supplement 1. Full �ow cytometry data for panel B .

quantify the number of molecules of each mRNA species that have been captured for each cell.63

Infected cells will express viral as well as cellular mRNAs – however the cell barcodes and64

UMIs cannot distinguish whether a cell was initially infected by one or multiple viral particles. We65

therefore engineered an in�uenza virus (strain A/WSN/1933) that additionally carried viral barcodes66

consisting of synonymous mutations near the 3’ end of each transcript (Figure 1A). Critically, these67

synonymous mutations did not greatly impact viral growth kinetics (Figure 1B). We infected A54968

human lung carcinoma cells with an equal mix of the wild-type and synonymously barcoded69

viruses. Cells infected by a single virion will exclusively express mRNAs from either wild-type or70

synonymously barcoded virus, whereas cells that are co-infected with multiple virions will often71

express mRNAs from both the wild-type and synonymously barcoded viruses (Figure 1C).72

We took care to generate stocks of virus that were relatively “pure” of defective particles. Stocks73

of viruses typically contain an array of biologically active viral particles, some of which are defective74

for replication owing to mutations or deletions in essential viral genes (von Magnus, 1954; Huang75

et al., 1970; Brooke, 2014; Fonville et al., 2015; Lauring and Andino, 2010; Dimmock et al., 2014;76

Saira et al., 2013). These defective particles become prevalent when a virus is grown at high MOI,77

where complementation permits the growth of otherwise deleterious genotypes. To minimize the78

levels of defective particles, we propagated our viral stocks at low MOI for a relatively brief period of79

time (Xue et al., 2016). We validated that our stocks exhibited greater purity of infectious particles80

than a stock propagated at high MOI by verifying that they had a higher ratio of infectious particles81

to virion RNA (Figure 2A) and to particles capable of inducing expression of a single viral protein82

(Figure 2B). In addition, viral stocks with many defective particles are more immunostimulatory83

per infectious unit (e.g., TCID50) than low-defective stocks (Tapia et al., 2013; Lopez, 2014), in part84

simply because there are more physical virions per infectious unit (Figure 2A,B). We con�rmed that85

our viral stocks induced less interferon per infectious unit than a stock propagated at higher MOI86

(Figure 2C).87
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Figure 3. There is a very wide distribution in the amount of viral mRNA per cell. (A) Number of cells sequenced

for each sample. (B) The number of cellular and viral mRNAs detected for each cell is plotted as a point. The

blue lines show the overall distribution of the number of cellular mRNAs per cell. The orange rug plot at the left

of each panel shows the distribution of the number of viral mRNAs per cell. Cells outside the dotted green lines

were considered outliers with suspiciously low or high amounts of cellular mRNA (possibly derived from two

cells per droplet), and were excluded from all subsequent analyses. Figure 3–Figure Supplement 1 shows the

exact distributions of the fraction of viral mRNA per cell.

Figure 3–Figure supplement 1. Cumulative fraction plot of proportion of total mRNA from virus.

Single cells show an extremely wide range of expression of viral mRNA.88

We infected A549 cells at low MOI with a mixture of the wild-type and synonymously barcoded89

viruses, and collected cells for sequencing at 6, 8, and 10 hours post-infection, performing two90

slightly different variants of the experiment for the 8-hour timepoint. For most of the samples, we91

replaced the infection inoculum with fresh media at one-hour post-infection, thereby ensuring that92

most infection was initiated during a narrow time window. However, for the second 8-hour sample93

(which we denote as “8hr-2” in the �gures), we did not perform this media change and instead left94

the cells in the original infection inoculum. The rationale for including a sample without a media95

change was to determine the importance of synchronicity of the timing of infection as discussed96

later in this subsection.97

We recovered between 3,000 and 4,000 cells for each sample (Figure 3A). As expected for a low-98

MOI infection, most cells expressed little or no viral mRNA (Figure 3B, Figure 3–Figure Supplement 1).99

Also as expected, the amount of viral mRNA per cell among infected cells increased over time100

(Figure 3B, Figure 3–Figure Supplement 1). But what was most notable was how widely the number101

of viral mRNA molecules varied among infected cells. While the fraction of mRNA derived from102

virus was <0.1% for most cells, viral mRNA constituted half the transcriptome in a few cells at 8 and103

10 hours (Figure 3B, Figure 3–Figure Supplement 1).104

A complicating factor is that uninfected cells could have small amounts of viral mRNA due105

to leakage of transcripts from lysed cells. It is therefore important to establish a threshold for106

identifying truly infected cells. We can do this by taking advantage of the fact that roughly half the107

infecting virions bear synonymous barcodes. Reads derived from lysed cells will be drawn from108

both wild-type and synonymously barcoded viral transcripts. However, most cells are infected by at109

most one virion, and so the reads from truly infected cells will usually derive almost entirely from110

one of the two viral variants. Figure 4A shows the fraction of viral reads in individual cells from each111

viral variant, and Figure 4B indicates the fraction of viral reads from the most abundant variant in112

that cell. Most cells with large amounts of viral mRNA have viral transcripts exclusively derived from113

one viral variant – indicating non-random partitioning as expected from viral infection. However,114

cells with a small amount of viral mRNA often have viral transcripts from both variants, as expected115

from the random partitioning associated with simple mRNA leakage. Finally, a few cells with large116

amounts of viral mRNA have viral transcripts from both variants, likely re�ecting co-infection.117

We determined the threshold amount of viral mRNA per cell for each sample at which the118

barcode partitioning clearly resulted from infection rather than leakage (Figure 4C, Figure 4–Figure119

Supplement 2), and used these thresholds to annotate cells that we were con�dent were truly120

infected. We also annotated as co-infected cells above this threshold that had mRNA from both121
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Figure 4. Synonymous barcodes on the viral mRNAs distinguish true infections from cells that contain viral

mRNAs derived from leakage of lysed cells. (A) Cells with at least two viral mRNAs for which the barcode could

be called, arranged in order of increasing in�uenza transcript counts. Bar heights denote the number viral

mRNAs on a log10 scale, bar coloring is linearly proportional to the fractions of viral mRNAs derived from

wild-type and synonymously barcoded virus. (B) Same as (A), but each bar is colored according to the relative

fraction of the more common (major) and less common (minor) virus variant. At low levels of viral mRNA there

is often a roughly equal mix, suggesting contamination with viral mRNAs leaked from lysed cells. At higher

levels of viral mRNA, cells generally have only one viral variant, suggesting infection initiated by a single virion. A

few cells are also obviously co-infected with both viral variants. (C)We determined a threshold for calling “true”

infections by �nding the amount of viral mRNA per cell at which the viral barcode purity no longer increases

with more viral mRNA. The purity is the fraction of all viral mRNA in a cell derived from the most abundant viral

barcode in that cell. We �t a curve (orange line) to the mean purity of all cells with more than the indicated

amount of viral mRNA, and drew the cutoff (dotted green line) at the point where this curve stopped increasing

with the fraction of total mRNA derived from virus. This plot illustrates the process for the 10-hour sample, see

Figure 4–Figure Supplement 2 for similar plots for other samples. See the Methods for details. (D) The number

of cells identi�ed as infected and co-infected for each sample, as well as the number of cells with any viral read.

For all subsequent analyses, we subsampled the number of uninfected cells per sample to the greater of 50 or

the number of infected cells. (E) Distribution of the fraction of mRNA per cell derived from virus for both

infected and co-infected cells. Figure 4–Figure Supplement 3 shows these same data in a cumulative fraction

plots and calculates Gini coe�cients to quantify the heterogeneity in viral mRNA load.

Figure 4–Figure supplement 1. Number of viral barcodes called.

Figure 4–Figure supplement 2. Thresholds for calling infected cells.

Figure 4–Figure supplement 3. Cumulative distributions of viral mRNA per cell and Gini coe�cients.

Figure 4–Figure supplement 4. Synchronization of infection does not greatly affect heterogeneity.

Figure 4–Figure supplement 5. Effects of infectious dose or coinfection state.
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viral variants. Figure 4D shows the number of cells annotated as infected and co-infected for each122

sample – these cells are just a small fraction of the number of cells with any viral read. These123

annotation thresholds are conservative, and may miss some true low-level infections. However, it is124

important that the analyses below are restricted to cells that are truly infected with virus, so we125

accepted the possible loss of some low-level infections in order to avoid false positives. In addition,126

the synonymous viral barcodes only identify co-infections by viruses with different barcodes – since127

the barcodes are at roughly equal proportion, we expect to miss about half of the co-infections.128

Since we annotate about Ì10% of the infected cells as co-infected by viruses with different barcodes129

(Figure 4D), we expect another Ì10% of the infected cells to also be co-infected but not annotated130

as so by our approach. Because most cells are not infected, we subsampled the uninfected cells to131

the numbers shown in Figure 4D to balance the proportions of infected and uninfected cells for all132

subsequent analyses.133

Strikingly, the extreme variation in the number of viral transcripts per cell remains even after we134

apply these rigorous criteria for annotating infected cells (Figure 4E). The fraction of viral mRNA per135

infected cell follows a roughly exponential distribution, with many cells having few viral transcripts136

and a few cells having many. At 6 and 8 hours <10% of infected cells are responsible for over half137

the viral transcripts, while at 10 hours <15% of infected cells produce over half the viral transcripts138

(Figure 4–Figure Supplement 3). One way to quantify the heterogeneity of a distribution is to139

calculate the Gini coe�cient (Gini, 1921), which ranges from 0 for a completely uniform distribution,140

to 1 for a maximally skewed distribution. Figure 4–Figure Supplement 3 shows the Gini coe�cients141

for the distribution of viral mRNA across infected cells for each sample. The Gini coe�cients142

are g0.64 for all samples. As a fun point of comparison, these Gini coe�cients indicate that the143

distribution of viral mRNA across infected cells is more uneven than the distribution of income in144

the United States (Alvaredo, 2011).145

One possible source of heterogeneity in the amount of viral mRNA per cell is variability in the146

timing of infection. If some cells are infected earlier in the experiment than others, then they147

might have substantially more viral mRNA. However, several lines of evidence indicate that this148

is not the major cause of heterogeneity across cells. First, the sample for which the infection149

inoculum was never removed (8hr-2) only shows slightly more heterogeneity than samples for150

which the inoculum was washed away after one hour (Figure 4E, Figure 4–Figure Supplement 3),151

despite the fact that the potential time window for infection is much longer in the former sample.152

Second, in an independent experiment, we performed completely synchronized infections by153

pre-binding virus to cells on ice and then washing away unbound virus before bringing the cells154

to 37˝C (Dapat et al., 2014). As shown in Figure 4–Figure Supplement 4, �ow cytometry staining155

found that the heterogeneity in the levels of individual viral proteins was not markedly different156

for these synchronized infections than in the absence of pre-binding and washing. Finally, viral157

mRNA expression from the secondary spread of virus from infected cells does not appreciably occur158

during the timeframes of our experiments, since Figure 4B does not show the pervasive presence159

of mixed barcodes that would occur in this case. Therefore, variability in the timing of infection is160

not the dominant cause of the cell-to-cell heterogeneity in our experiments.161

Notably, Figure 4E shows that there are co-infected cells with both low and high amounts of162

viral mRNA, suggesting that the initial infectious dose does not drive a simple continuous increase163

in viral transcript production. In support of this view, we used �ow cytometry to quantify the levels164

of individual viral proteins in cells infected at various MOIs or for which we could delineate co-165

infection status (Figure 4–Figure Supplement 5). This analysis shows that sub-populations of cells166

that express similarly low and high levels of viral proteins persist across a wide range of infectious167

doses, although co-infection can in�uence the relative proportion of infected cells that fall into168

these sub-populations (Figure 4–Figure Supplement 5).169
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Absence of viral genes partially explains cell-to-cell variability in viral load.170

The in�uenza genome is segmented, and cells can fail to express a viral mRNA if the encoding171

gene segment is not packaged in the infecting virion or fails to initiate transcription after infection.172

Indeed, several groups have reported that the majority of infected cells fail to express at least173

one viral gene (Brooke et al., 2013; Heldt et al., 2015; Dou et al., 2017). We wondered if the174

absence of speci�c viral genes might be associated with reduced amounts of viral mRNA within175

single infected cells. In particular, transcription of in�uenza virus mRNAs is performed by the viral176

ribonucleoprotein (RNP) complex, which consists of the three proteins that encode the tripartite177

polymerase (PB2, PB1, and PA) as well as nucleoprotein (NP) (Huang et al., 1990). Each viral gene178

segment is associated with one RNP in incoming infecting virions, but secondary transcription by179

newly synthesized RNPs requires the presence of the viral genes encoding each of the four RNP180

proteins (Vreede et al., 2004; Eisfeld et al., 2015). This secondary transcription is a major source181

of viral mRNAs, as evidenced by the fact that blocking synthesis of the RNP proteins reduces the182

amount of viral mRNA by several orders of magnitude in bulk cells (Figure 5–Figure Supplement 1).183

We examined the total amount of viral mRNA versus the expression of the genes from each184

viral segment (Figure 5A, Figure 5–Figure Supplement 2, Figure 5–Figure Supplement 3). Note185

that in�uenza virus expresses ten major gene transcripts from its eight gene segments, as the186

M and NS segments are alternatively spliced to produce the M1 / M2 and NS1 / NEP transcript,187

respectively (Dubois et al., 2014). However, an inherent limitation of current established single-cell188

mRNA sequencing techniques is that they only sequence the 3’ end of the transcript (Zheng et al.,189

2017;Macosko et al., 2015; Klein et al., 2015; Cao et al., 2017). Since the alternative spliceoforms190

M1 / M2 and NS1 / NEP share the same 3’ ends, we cannot distinguish them and therefore will refer191

simply to the combined counts of transcripts from each of these alternatively spliced segments as192

the M and NS genes.193

Cells that lack an RNP gene never derive more than a few percent of their mRNAs from virus, con-194

�rming the expected result that all four RNP genes are essential for high levels of viral transcription195

(Figure 5A, Figure 5–Figure Supplement 2, Figure 5–Figure Supplement 3). However, we observe196

cells that lack each of the other non-RNP genes but still derive ˘40% of their mRNAs from virus,197

suggesting that none of the other genes are important for high levels of viral transcription. These198

results are statistically supported by Figure 5B, which shows that absence of any RNP gene but not199

any other viral gene is associated with reduced amounts of viral mRNA. However, gene absence200

clearly does not explain all of the variability in viral gene expression, since even cells expressing all201

viral genes exhibit a very wide distribution in the amount of viral mRNA that they express. Speci�-202

cally, at both 8 and 10 hours, the amount of viral mRNA in individual cells expressing all eight viral203

genes still ranges from <1% to >50% (Figure 5A, Figure 5–Figure Supplement 2, Figure 5–Figure204

Supplement 3). Furthermore, the actual distribution of viral mRNA per infected cell (Figure 4E) does205

not match the mostly bi-modal shape expected under a simple model where RNP gene absence206

and Poisson co-infection are the only factors (Figure 5–source data 2), indicating that there are207

additional sources of variability beyond whether cells have full complement of RNP genes.208

We also quanti�ed the fraction of infected cells that completely failed to express a given gene. We209

limited this analysis to examining the presence / absence of the non-RNP genes in cells expressing210

all four RNP genes, since we might fail to detect viral transcripts that are actually present at low211

levels in RNP-de�cient cells due to the lower viral burden in these cells. At the 8- and 10-hour time212

points, between 5% and 17% of cells fail to express any one of the four non-RNP genes (Figure 5C,213

Figure 5-source data 1). The absence of a given gene appears to be an independent event, as the214

probability of observing all four non-RNP genes in a cell is well predicted by simply multiplying215

the probabilities of observing each gene individually (Figure 5C and Figure 5-source data 1). If we216

extrapolate the frequencies at which cells lack non-RNP genes to the RNP genes, then we would217

predict that 35-50% of infected cells express mRNAs from all eight genes. This estimate of the218

frequency at which infected cells express mRNAs from all eight gene segments is slightly higher than219
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Figure 5. The absence of viral genes explains some of the variability in the amount of viral mRNA per cell. (A)

The normalized expression of each viral gene as a function of the total fraction of mRNA in each infected cell

derived from virus, taken over all time points. Cells with high viral burden always express all RNP genes, but

some cells with high viral burden lack each of the other genes. Plots for individual samples are in

Figure 5–Figure Supplement 2, and a plot that excludes known coinfected cells is in Figure 5–Figure

Supplement 3. (B) Box and whisker plots showing the per-cell viral burden among cells with >0.5% of their

mRNA from virus, binned by whether or not the cells express each gene. A Wilcoxon signed-rank test was used

to test the null hypothesis that absence of each gene does not affect viral burden: **** = P < 10−4, *** =

P < 10−3, * = P < 0.05, ns = not signi�cant. The trends are similar if we look only at the 10-hour sample

(Figure 5–Figure Supplement 4) or exclude known co-infected cells (Figure 5–Figure Supplement 5). (C) The

fraction of cells that express each of the four other genes among cells that express all RNP genes, as well as the

fraction that express all four of the other genes. The fraction that express all four genes is well predicted by

simply multiplying the frequencies of cells that express each gene individually, indicating that gene absence is

approximately independent across these genes.

Figure 5–Figure supplement 1. Secondary transcription is a major source of viral mRNA during bulk infections.

Figure 5–Figure supplement 2. Like panel (A), but shows samples individually.

Figure 5–Figure supplement 3. Like panel (A), but excludes coinfected cells with mixed viral barcodes.

Figure 5–Figure supplement 4. Like panel (B) but for the 10-hr sample only.

Figure 5–Figure supplement 5. Like panel (B) but excludes coinfected cells with mixed viral barcodes.

Figure 5–source data 1. The numerical data for panel (C) are in p_missing_genes.csv.

Figure 5–source data 2. Simulation with a simple model for the expected heterogeneity due to Poisson

co-infection and presence / absence of the full RNP is in simple_Poisson_model.html.
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Figure 6. Relative expression of in�uenza virus genes in highly infected cells (>5% of total mRNA from virus).

(A) The fraction of viral mRNA from each viral gene for each cell. (B) Box plots showing the distribution of the

fraction of viral mRNA per cell from each viral gene. The black lines at the notches are the medians, and the

tops and bottoms of boxes indicate the �rst and third quartiles. Whiskers extend to the highest or lowest data

point observed within 1.5x the interquartile range, outliers shown as circles. Notches extend 1.58x the

interquartile range divided by the square root of the number of observations. (C), (D) The same plots, but only

including cells for which we observed at least one molecule of each viral gene.

Figure 6–source data 1. The raw data for all cells are in p_flu_expr_all.csv.

Figure 6–source data 2. The raw data for fully infected cells are in p_flu_expr_fullyinfected.csv.

previous estimates of 13% (Brooke et al., 2013) and 20% (Dou et al., 2017). At least one difference220

is that Brooke et al. (2013) stained for proteins whereas we examined the expression of mRNAs – it221

is likely that some cells contain mutated viral genes that fail to produce stable protein even when222

mRNA is expressed.223

The relative amounts of different viral mRNAs are more consistent across cells.224

The results above show that the amount of viral mRNA in infected cells varies over several orders225

of magnitude. Does the relative expression of viral genes exhibit similar cell-to-cell variability?226

To address this question, we focused on cells that derived >5% of their mRNA from virus, since227

estimates of relative viral gene expression will be less noisy in cells with more viral mRNAs.228

In contrast to the extreme variability in the total viral mRNA per cell, the fraction of this viral229

mRNA derived from each gene is much more consistent across cells (Figure 6A). Total viral mRNA230

varies by orders of magnitude, but the fraction from any given viral gene is fairly tightly clustered231

around the median value for all cells (Figure 6B). The relative levels of each viral mRNA in our cells232

are similar to prior bulk measurements made by Northern blots (Hatada et al., 1989), which also233

found an expression hierarchy of M > NS ∏ NP > NA > HA ∏ PB2 Ì PB1 Ì PA. The cell-to-cell234

consistency in the relative expression of different viral genes is even tighter if we limit the analysis235

only to cells that express all eight viral genes (Figure 6C,D). Therefore, with the exception of complete236

gene absence, the factors that drive the dramatic cell-to-cell variability in the amount of viral mRNA237

have roughly similar effects on all viral genes in a given cell. This �nding is consistent with prior238

work showing positive correlations among the abundance of several viral genome segments in239
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Figure 7. The abundance of each viral transcript in cells that are co-infected with the two viral variants and

have >5% of their mRNA derived from virus. The bars show the logarithms of the numbers of each viral mRNA

detected, and are colored in linear proportion to the fraction of that mRNAs derived from wild-type or

synonymously barcoded virus.

Figure 7–Figure supplement 1. Co-infected cells express roughly equal amounts of a gene from each infecting

viral variant.

Figure 7–source data 1. The raw data plotted in this �gure are in p_co-infection.csv.

Figure 7–source data 2. The sequence of the HA viral RNA carrying the GFP gene is in HAflank-eGFP.fasta.

individual cells (Heldt et al., 2015).240

Co-infection can provide infected cells with the full complement of viral genes.241

Our sequencing enables us to identify the rare cells that were co-infected with both wild-type and242

synonymously barcoded viral variants. Overall, we captured 10 such co-infected cells that had >5%243

of their mRNA derived from virus (Figure 7). Seven of these 10 cells expressed all eight viral genes.244

The majority (4 of 7) of these cells would not have expressed all the viral genes in the absence245

of co-infection, since they have at least one gene exclusively derived from each viral variant. For246

instance, the cell with 11.2% of its mRNA from virus in the upper right of Figure 7 expresses M only247

from the wildtype viral variant, and NP and HA only from the synonymously barcoded variant. Our248

data therefore provide the �rst direct single-cell observation of the fact that co-infection can rescue249

missing viral genes (Brooke et al., 2013, 2014; Fonville et al., 2015; Aguilera et al., 2017).250

Another observation from Figure 7 is that co-infected cells usually express roughly equal251

amounts of transcripts from each of the two viral variants. This observation is consistent with the252

�nding by Dou et al. (2017) and Huang et al. (2008) that the temporal window for co-infection is253

short – if both viral variants infect a cell at about the same time, then neither will have a headstart254

and so each will have a roughly equal opportunity to transcribe its genes.255

To support this idea with a larger dataset albeit at lower resolution, we generated a virus in256

which the HA coding sequence was replaced by GFP. We then co-infected cells with a mix of wildtype257

and �HA-GFP virus and used �ow cytometry to score cells for the presence of HA only (infection by258

wildtype virus), GFP only (infection by �HA-GFP virus), or both (co-infection) as shown in Figure 7–259

Figure Supplement 1. As in our single-cell sequencing data, we found that expression of HA and GFP260

were highly correlated, indicating that co-infected cells typically expressed roughly equal amounts261

of transcript from each viral variant.262

Activation of the interferon response is rare in single infected cells.263

Because our sequencing captured all polyadenylated transcripts, we can examine whether there264

are prominent changes in the host-cell transcriptome in sub-populations of infected cells. In�uenza265
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Figure 8. A t-SNE plot created by semi-supervised clustering using genes that co-vary with viral infection status.

Each point is a single cell, and each panel shows an identical layout but colors the cells according to a different

property. (A), (B) Cells colored by the fraction of their mRNA derived from virus. (C) Cells colored by the

experimental sample. (D) Cells colored by the number of detected transcripts from type I and III interferons

(IFN). Only one cell has detectable interferon expression (in orange, indicated with arrow). (E) Cells colored by

the expression of the interferon-stimulated gene IFIT1. (F) Cells colored by whether they express the viral NS

gene. The one interferon-positive cell is lacking NS, but so are many interferon-negative cells.

virus infection can trigger innate-immune sensors that lead to the transcriptional induction of266

type I and III interferons, and subsequently of anti-viral interferon-stimulated genes (Killip et al.,267

2015; Iwasaki and Pillai, 2014; Crotta et al., 2013). However, activation of the interferon response268

is stochastic and bi-modal at the level of single cells (Chen et al., 2010; Shalek et al., 2013, 2014;269

Perez-Cidoncha et al., 2014; Bhushal et al., 2017; Hagai et al., 2017). We therefore hypothesized270

that we might see two sub-populations of infected cells: one in which the interferon response271

inhibited viral transcription, and another in which the virus was able to express high levels of its272

mRNA by evading or blocking this response.273

To examine whether there were distinct sub-populations of virus-infected cells, we used a274

semi-supervised t-SNE approach (Van der Maaten and Hinton, 2008) to cluster cells by genes that275

co-varied with viral infection status. As shown in Figure 8A,B, this approach effectively grouped cells276

by the amount of viral mRNA that they expressed. Sample-to-sample variation was regressed away277

during the clustering, as cells did not obviously group by time-point, with expected exception that278

the uninfected and 6-hour samples had few cells in the region of the plot corresponding to large279

amounts of viral mRNA (Figure 8C).280

But to our surprise, we did not see a prominent clustering of infected cells into sub-populations281

as expected if the interferon response was strongly activated in some cells. To investigate fur-282

ther, we annotated each cell by the total number of type I and III interferon transcripts detected.283

Remarkably, only a single cell expressed detectable interferon (Figure 8D). We also examined284
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interferon-stimulated genes, which are induced by autocrine and paracrine interferon signaling.285

Figure 8E shows expression of one such gene, IFIT1 (Fensterl and Sen, 2011). As with interferon286

itself, expression of IFIT1 was rare and most prominent in the single interferon-positive cell, pre-287

sumably due to the higher e�ciency of autocrine versus paracrine signaling. Notably, interferon288

and interferon-stimulated genes were also relatively ineffective at blocking viral transcription in the289

single cell in which they were potently induced, since >10% of the mRNA in this cell was derived290

from virus (Figure 8A,B,D,E).291

We posited that the paucity of interferon induction might be due to the activity of in�uenza292

virus’s major interferon antagonist, the NS1 protein (García-Sastre et al., 1998; Hale et al., 2008).293

We therefore identi�ed cells that expressed substantial amounts of viral mRNA but lacked the294

NS gene (Figure 8F). Consistent with the idea that NS1 is important for suppressing interferon,295

the one interferon-positive cell lacked detectable expression of the NS gene. But other cells that296

lacked NS expression still failed to induce a detectable interferon response, despite often having a297

substantial amount of their mRNA derived from virus (Figure 8). This result is in line with other work298

showing that NS1-de�cient in�uenza virus does not deterministically induce interferon (Killip et al.,299

2017; Kallfass et al., 2013). Therefore, many individual infected cells fail to activate innate-immune300

responses even when the virus lacks its major interferon antagonist.301

Some host genes co-vary with viral gene expression.302

We examined whether any host genes were differentially expressed in cells with more viral mRNA.303

We restricted this analysis to infected cells with all eight viral genes in order to focus on cellular304

genes that were associated with viral mRNA burden independent of effects due to the presence305

or absence of particular viral transcripts. We identi�ed 43 cellular genes that co-varied with viral306

mRNA expression at a false discovery rate of 0.1 (Figure 9, Figure 9-source data 1).307

A gene-set analysis shows that many cellular genes that are associated with the amount of viral308

mRNA are involved in the response to reactive oxygen species or hypoxia (Figure 9-source data 2).309

Genes known or suspected to be regulated by the Nrf2 master regulator in response to oxidative310

stress are often expressed at higher levels in cells with more viral mRNA (Figure 9). These genes311

produce proteins that are involved in detoxi�cation of reactive oxygen species or resultant products,312

the management of misfolded proteins, the electron transport chain, or a general stress response313

(Figure 9–Figure Supplement 1). We additionally see reduced expression of the nitric oxide synthase314

interacting protein (NOSIP). Transient oxidative stress is known to occur during viral infection, and315

may act in a proviral fashion via MAPK activation driving vRNP export (Amatore et al., 2014). The316

antioxidant response is thought to be largely antiviral, potentially through inhibition of MAPK activity317

(Lin et al., 2016; Sgarbanti et al., 2014). To directly test the effect of transient oxidative stress, we318

compared the fraction of cells that expressed detectable viral protein when infected either with or319

without pre-treatment to suppress oxidative stress. Figure 9–Figure Supplement 2 shows that the320

cells pre-treated with an antioxidant exhibited less frequent detectable expression of viral protein.321

These results, in conjunction with the differential expression test in Figure 9 and the prior work322

mentioned above, suggest that oxidative stress acts in a proviral fashion.323

The gene-set analysis also found that the amount of viral mRNA was associated with the324

expression of genes involved in the G2-M cell-cycle checkpoint (Figure 9-source data 2). The cell-325

cycle associated genes CCND3, MKI67, UBE2S, and CENPF are all expressed at signi�cantly lower326

levels in cells with more viral mRNA (Figure 9). However, our data are not su�cient to determine327

whether the lower expression of these genes is a cause or effect of the reduction in viral mRNA.328

Interestingly, none of the cellular genes that are signi�cantly associated with the amount of viral329

mRNA in our study are among the 128 genes that Watanabe et al. (2010) report as having been330

identi�ed multiple times in genome-wide screens for factors affecting in�uenza virus replication.331

One possible explanation is that most of the cell-to-cell heterogeneity in our experiments might332

arise from viral segment absence or mutations, pure stochasticity, or more subtle alterations in333

host-cell state – not due to changes in expression of the type of single large-effect genes that are334
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Figure 9. Cellular genes that co-vary in expression with the amount of viral mRNA in cells expressing all eight

viral genes. The columns are cells, ordered from left to right by the fraction of mRNA derived from virus. Each

row is a gene that is differentially expressed as a function of the fraction of mRNA derived from virus at a false

discovery rate of 0.1. Genes for which the color goes from blue at left to red at right are expressed at higher

levels in cells with more viral mRNA. The scale bar indicates the number of standard deviations above or below

the mean expression, truncated at 3-fold on both sides.

Figure 9–source data 1. The full results of the differential expression test are in p_sig_cellular_genes.csv.

Figure 9–source data 2. A gene-set analysis for pathways associated with the amount of viral mRNA is in

p_pathway_enrichment.csv.

Figure 9–Figure supplement 1. Many genes that co-vary with viral load are involved in the oxidative stress

response.

Figure 9–Figure supplement 2. Pre-treating to reduce oxidative stress decreases the fraction of infected cells

expressing detectable viral protein.

usually identi�ed in genome-wide knockdown / knockout studies.335

Discussion336

We have quanti�ed the total transcriptome composition of single cells infected with in�uenza virus.337

While we observe a general increase in the amount of viral mRNA over time as expected from338

bulk measurements (Hatada et al., 1989; Shapiro et al., 1987), there is wide variation in viral gene339

expression among individual infected cells.340

The most obvious form of heterogeneity is the complete failure of some infected cells to express341

one ormore viral genes, which we estimate occurs in about half the infected cells in our experiments.342

The absence of some viral genes in some infected cells has been noted previously (Brooke et al.,343

2013; Heldt et al., 2015; Dou et al., 2017), and our work provides a holistic view by quantifying the344

total viral transcriptional load as a function of the level of each mRNA. We �nd that cells lacking345
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expression of any of the four genes that encode the viral RNP express much less total viral mRNA,346

consistent with prior bulk studies (Vreede et al., 2004; Eisfeld et al., 2015). Interestingly, the reason347

some cells fail to express some viral genes remains unclear. The prototypical in�uenza virion348

packages one copy of each of the eight gene segments (Noda et al., 2006; Hutchinson et al., 2010),349

but some virions surely package fewer (Brooke et al., 2014). However, it is also possible that much350

of the viral gene absence is due to stochastic loss of viral RNPs after infection but prior to the351

initiation of viral transcription in the nucleus.352

The absence of viral genes only partially explains the cell-to-cell variation in amount of viral353

mRNA, which still varies from <1% to >50% among cells expressing all the viral genes. It is likely354

that other viral genetic factors explain some of this remaining heterogeneity. The 3’-end sequencing355

strategy used in our experiments detects the presence of a viral gene, but does not identify356

whether that gene contains a mutation that might hinder viral replication. However, viral mutations357

are also unlikely to explain all the observed heterogeneity, since current consensus estimates of358

in�uenza virus’s mutation rate suggest that the typical virion in a stock such as the one used in our359

experiment should contain less than one mutation per genome (Parvin et al., 1986; Suárez et al.,360

1992; Suárez-López and Ortín, 1994; Nobusawa and Sato, 2006; Bloom, 2014; Pauly et al., 2017).361

The rest of the heterogeneity must be due to some combination of cellular factors and inherent362

stochasticity. Some features of the cellular transcriptome co-vary with the amount of in�uenza363

mRNA. In particular, the viral load in individual cells is associated with the expression of genes364

involved in response to cellular stresses, including oxidative stress. It will be interesting to determine365

if these cellular transcriptional signatures are simply a consequence of the stress imposed by viral366

replication, or if their stronger activation in some cells is a causative factor that promotes viral367

transcription. However, it also would not be surprising if a substantial amount of the cell-to-cell368

heterogeneity cannot be ascribed to pre-existing features of either the viral genome or cellular state.369

Apparently stochastic heterogeneity is a common feature of many processes at a single-cell level (Cai370

et al., 2006; Raj et al., 2006; Buganim et al., 2012; Shalek et al., 2013; Avraham et al., 2015) –371

especially when those processes are initiated by very small numbers of initial molecules (Elowitz372

et al., 2002), as is the case for low-MOI viral infection.373

Our data do suggest that the factors driving the heterogeneity in viral transcriptional load exert374

relatively concordant effects on all viral genes in a given cell. Speci�cally, despite the extreme375

heterogeneity in total viral mRNA per cell, the relative levels of the viral mRNAs are reasonably376

consistent across cells, and generally re�ective of classical bulk measurements (Hatada et al., 1989).377

Therefore, despite the stochasticity inherent in initiating transcription and replication of each gene378

from a single copy carried by the incoming virion, as long as a gene is not completely lost then the379

virus possesses mechanisms to control its relative expression (Shapiro et al., 1987; Hatada et al.,380

1989; Perez et al., 2010; Heldt et al., 2012; Chua et al., 2013).381

One factor that surprisingly does not appreciably contribute to the heterogeneity in our ex-382

periments is activation of innate-immune interferon pathways. Only one of the hundreds of383

virus-infected cells expresses any detectable interferon, despite the fact that a number of cells fail384

to express the in�uenza-virus interferon antagonist NS1. It is known that interferon activation is385

stochastic at the level of single cells in response to both synthetic ligands (Shalek et al., 2013, 2014;386

Bhushal et al., 2017; Hagai et al., 2017) and actual infection (Rand et al., 2012; Perez-Cidoncha387

et al., 2014; Avraham et al., 2015; Killip et al., 2017). But interferon expression is a prominent388

transcriptional signature of high-MOI in�uenza virus infection of bulk cells, including in the epithelial389

cell line and at the time-points used in our experiments (Geiss et al., 2002; Sutejo et al., 2012). So390

it is notable how rarely single cells express interferon. Interferon expression would surely be more391

common at later times or with a viral stock passaged at higher MOI, since paracrine interferon392

signaling (Crotta et al., 2013) and accumulation of defective viral particles enhance innate-immune393

detection (Tapia et al., 2013; Lopez, 2014). However, the early events of physiological in�uenza394

infection involve just a few virions (Varble et al., 2014;McCrone et al., 2017), and so it is interesting395

to speculate whether rare events such as interferon activation during the �rst few cycles of viral396
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replication could contribute to heterogeneity in the eventual outcome of infection.397

Overall, our work shows the power and importance of characterizing cellular infection at the398

level of single cells (Avraham et al., 2015). Viral infection can involve heterogeneity in the genetic399

composition of the incoming virion, the host-cell state, the bi-modality of innate-immune activation,400

and the inherent stochasticity of molecular processes initiated by a single copy of each viral gene.401

In our experiments with short-timeframe and low-MOI infections with a relatively pure stock of402

in�uenza virus, we �nd only a minor role for innate-immune activation, but a substantial role403

for heterogeneity in the complement of viral genes that are expressed in individual cells and at404

least some contribution of host-cell state. Our current experiments are not able to quantify the405

role of other possibly important factors such as mutations in viral genes, but we suspect that406

they may also contribute. Future extensions of the approaches described here should enable407

further deconstruction of the sources of cell-to-cell heterogeneity during viral infection, thereby408

enabling a deeper understanding of how the bulk features of infection emerge from processes409

within individual virus-infected cells.410

Methods and Materials411

Cell lines and viruses412

The following cell lines were used in this study: the human lung epithelial carcinoma line A549 (ATCC413

CCL-185), the MDCK-SIAT1 variant of the Madin Darby canine kidney cell line overexpressing human414

SIAT1 (Sigma-Aldrich 05071502), and the human embryonic kidney cell line 293T (ATCC CRL-3216).415

The A549 cells were tested as negative for mycoplasma contamination by the Fred Hutch Genomics416

Core, and authenticated using the ATCC STR pro�ling service. All cells were maintained in D10417

media (DMEM supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100418

U of penicillin/ml, and 100 µg of streptomycin/ml) at 37 ˝
C at 5 % CO2.419

Wildtype A/WSN/1933 (H1N1) in�uenza virus was generated by reverse genetics using the420

plasmids pHW181-PB2, pHW182-PB1, pHW183-PA, pHW184-HA, pHW185-NP, pHW186-NA, pHW187-421

M, and pHW188-NS (Hoffmann et al., 2000). The sequences of the viral RNAs encoded in these422

plasmids are in Figure 1-source data 1. Reverse-genetics plasmids encoding the synonymously423

barcoded WSN virus were created by using site-directed mutagenesis to introduce two synonymous424

mutations near the 3’ end of the mRNA for each viral gene. The sequences of the synonymously425

barcoded viral RNAs are in Figure 1-source data 1.426

To generate viruses from these plasmids, we transfected an equimolar mix of all eight plasmids427

into cocultures of 293T and MDCK-SIAT1 cells seeded at a ratio of 8:1. At 24 hours post-transfection,428

we changed media from D10 to in�uenza growth media (Opti-MEM supplemented with 0.01% heat-429

inactivated FBS, 0.3% BSA, 100 U of penicillin/ml, 100 µg of streptomycin/ml, and 100 µg of calcium430

chloride/ml). At 48 hours post-transfection we harvested the virus-containing supernatant, pelletted431

cellular material by centrifugation at 300 x g’s for 4 minutes, and stored aliquots of the clari�ed432

viral supernatant at -80 ˝
C. We then titered thawed aliquots of viral by TCID50 on MDCK-SIAT1 cells,433

computing titers via the formula of Reed and Muench (1938). To generate our “high-purity” stocks434

of viruses for the single-cell sequencing experiments, we then infected MDCK-SIAT1 cells at an MOI435

of 0.01, and let the virus grow for 36 hours prior to harvesting aliquots that were again clari�ed by436

low-speed centrifugation, aliquoted, stored at -80 ˝
C, and titered by TCID50. The high-MOI passage437

(high-defective particle) stock used in Figure 2 was generated by instead passaging in MDCK-SIAT1438

cells twice at an MOI of 1 for 48 hours.439

For the experiments in Figure 7–Figure Supplement 1, we created a virus that carried an HA gene440

segment in which GFP replaced most of the HA coding sequence, following a scheme �rst described441

byMarsh et al. (2007). Brie�y, we created a plasmid encoding a viral RNA with GFP in place of the442

HA coding sequence in the context of the pHH21 (Neumann et al., 1999) reverse-genetics plasmid,443

removing potential start codons upstream of the GFP (see Figure 7-source data 2 for the sequence444

of the viral RNA). We then generated GFP-carrying virus by reverse-genetics in cells constitutively445
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expressing HA (Doud and Bloom, 2016). To obtain su�cient titers, this HA-eGFP virus was expanded446

for 44 rather than 36 hours after initiating infection at an MOI of 0.01.447

qPCR448

For the qPCR in Figure 2 and Figure 5–Figure Supplement 1, A549 cells were seeded at 3×105449

cells per well in a 6-well tissue culture plate in D10 the day prior to infection. On the day of450

infection, a single well was trypsinized and the cells were counted in order to determine the451

appropriate amount of virus to use to achieve the intended MOI. Immediately before infection,452

D10 was replaced with in�uenza growth media. For cells incubated with cyclohexamide, the453

compound was added to a �nal concentration of 50 µg/ml at the time of infection – previously454

con�rmed to be su�cient to halt viral protein production (Killip et al., 2014). RNA was puri�ed455

using the QIAGEN RNeasy plus mini kit following manufacturer’s instructions. cDNA was syn-456

thesized using an oligoDT primer and the SuperScriptTM III �rst-strand synthesis supermix from457

ThermoFisher using the manufacturer’s protocol. Transcript abundance was measured using458

SYBRTM green PCR master mix, using a combined anneal/extension step of 60 ˝
C for one minute459

with the following primers: HA: 5’-GGCCCAACCACACATTCAAC-3’, 5’-GCTCATCACTGCTAGACGGG-460

3’, IFNB1: 5’-AAACTCATGAGCAGTCTGCA-3’, 5’-AGGAGATCTTCAGTTTCGGAGG-3’, L32: 5’-461

AGCTCCCAAAAATAGACGCAC-3’, 5’-TTCATAGCAGTAGGCACAAAGG-3’. Biological triplicates were per-462

formed for all samples.463

For the measurements of viral genomic HA content in Figure 2A, vRNA was harvested from 80464

µl of viral supernatant by the addition of 600 µl of RLT plus before proceeding with the standard465

QIAGEN RNeasy Plus Mini kit protocol. The cDNA was generated using SuperScriptTM III �rst-strand466

synthesis supermix using the manufacturer’s protocol, and using the universal vRNA primers of467

Hoffmann et al. (2001) with the modi�cations described in Xue et al. (2017). The qPCR was then468

performed as for mRNA measurements. A standard curve was generated from three independent469

dilutions of the HA-encoding reverse genetics plasmid. All vRNA values represent three independent470

RNA extractions with two replicate qPCR measurements.471

Flow cytometry titering and analyses472

To determine viral titers in terms of HA-expressing units and for the �ow cytometry, A549 cells473

were seeded in a 6-well plate and infected as described above for the qPCR analyses. Cells were474

harvested by trypsinization, resuspended in phosphate-buffered saline supplemented with 2% heat-475

inactivated FBS, and stained with 10 µg/ml of H17-L19, a mouse monoclonal antibody con�rmed476

to bind to WSN HA in a prior study (Doud et al., 2017). After washing in PBS supplemented with477

2% FBS, the cells were stained with a goat anti-mouse IgG antibody conjugated to APC. Cells were478

then washed, �xed in 1% formaldehyde, and washed further before a �nal resuspension and479

analysis. We then determined the fraction of cells that were HA positive and calculated the HA-480

expressing units. For NS1 staining, cells stained for HA as described above were permeabilized using481

BD Cyto�x/Cytoperm following manufacturer’s instructions, stained with anti-NS1 (GTX125990,482

Genetex) at 4.4 µg/ml, washed, stained with a goat anti-rabbit IgG antibody conjugated to Alexa483

Fluor 405, washed, and analyzed. To analyze the effect of N-acetylcysteine, the compound was484

added to cells in D10 9h prior to media change and infection, and included in infection media.485

Stocks of N-acetylcysteine were reconstituted immediately prior to use, and the pH of growth media486

supplemented with this compound was adjusted using sodium hydroxide. After channels were487

compensated and cells gated to exclude multiplets and debris in FlowJo, data were extracted using488

the R package �owCore (Le Meur et al., 2007) and analyzed using a custom Python script. Guassian489

kernel density estimates were obtained using the scipy stats package method, guassian_kde, using490

automatic bandwidth determination (van der Walt et al., 2017). For gating on NS1 positive cells, the491

percentage of in�uenza-infected cells was determined by HA staining alone, and the top quantile of492

NS1-stained cells matching that percentage were taken as the NS1 positive population.493
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Infections for single-cell mRNA sequencing494

Single-cell sequencing libraries were generated using the 10x Chromium Single Cell 3’ plat-495

form (Zheng et al., 2017) using the V1 reagents.496

All time points except for the second 8-hour sample (8hr-2) were prepared on the same day.497

For the infections, A549 cells were seeded in a 6-well plate, with two wells per time point. A single498

well of cells was trypsinized and counted prior to initiation of the experiment for the purposes of499

calculating MOI. Wild-type and synonymously barcoded virus were mixed to an estimated ratio500

of 1:1 based on prior, exploratory, single-cell analyses (data not shown). At the initiation of our501

experiment, the wells for all time points were changed from D10 to in�uenza growth media. Cells502

were then infected with 0.3 HA-expressing units of virus per cell (a determined by �ow cytometry).503

The infections were performed in order of time point: �rst the 10-hour time point, then the504

8-hour, and then the 6-hour time point. At one hour after infection, the media for each time505

point was changed to fresh in�uenza growth media. Note that the HA-expressing units were506

calculated without this additional washing step, and so likely represent an overestimate of our507

�nal infectious dose (consistent with the fact that fewer than 30% of cells appear infected in the508

single-cell sequencing data). All cells were then harvested for single-cell analysis concurrently –509

ensuring all had spent equivalent time in changed media . For 8hr-2 sample, cells were infected510

as above except that the cells were infected at 0.1 HA-expressing units of virus per cell but no511

wash step was performed, and the sample was prepared on a different day. After harvest, cells512

were counted using disposable hemocytometers and diluted to equivalent concentrations with an513

intended capture of 3000 cells/sample following the manufacturer’s provided by 10x Genomics for514

the Chromium Single Cell platform. All subsequent steps through library preparation followed the515

manufacturer’s protocol. Samples were sequenced on an Illumina HiSeq.516

Computational analysis of single-cell mRNA sequencing data517

Jupyter notebooks that perform all of the computational analyses are available in Supplemen-518

tary �le 1 and at https://github.com/jbloomlab/�u_single_cell (Russell et al., 2018, copy archived at519

https://github.com/elifesciences-publications/�u_single_cell).520

Brie�y, the raw deep sequencing data were processed using the 10X Genomics software pack-521

age CellRanger (version 2.0.0). The reads were aligned to a concatenation of the human and522

in�uenza virus transcriptomes. The human transcriptome was generated by �ltering genome523

assembly GRCh38 for protein coding genes de�ned in the GTF �le GRCh38.87. The in�uenza524

virus transcriptome was generated from the reverse-complement of the wildtype WSN viral525

RNA sequences as encoded in the reverse-genetics plasmids (Figure 1-source data 1). The526

aligned deep sequencing data are available on the GEO repository under accession GSE108041527

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108041).528

CellRanger calls cells based on the number of observed cell barcodes, and creates a cell-gene529

matrix. We used custom Python code to annotate the cells in this matrix by the number of viral530

reads that could be assigned to the wildtype and synonymously barcoded virus. Only about half of531

the viral reads overlapped the barcoded regions of the genes (Figure 1A) and could therefore be532

assigned to a viral barcode (Figure 4–Figure Supplement 1). So for calculations of the number of533

reads in a cell derived from each viral barcode for each viral gene, the total number of detected534

molecules of that gene are multiplied by the fraction of those molecules with assignable barcodes535

that are assigned to that barcode. This annotated cell-gene matrix is in Supplementary �le 2. A536

Jupyter notebook that performs these analyses is in Supplementary �le 1.537

The annotated cell-gene matrix was analyzed in R, primarily using the Monocle package (version538

2.4.0) (Qiu et al., 2017; Trapnell et al., 2014). A Jupyter notebook that performs these analyses is in539

Supplementary �le 1. For each sample, cell barcodes that had >2.5-fold fewer or more UMI counts540

mapping to cellular transcripts than the sample mean were excluded from downstream analyses541

(see red vertical lines in Figure 3B).542

In order to determine an appropriate cutoff for how many reads a cell needed to contain in543
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order to be classi�ed as infected, we calculated the mean viral barcode purity across all cells that544

contained at least a given fraction of viral mRNA and had multiple viral reads that could be assigned545

a barcode (Figure 4B,C and Figure 4–Figure Supplement 2). We then determined the threshold546

fraction of viral mRNA at which the mean purity no longer increased as a function of the amount547

of viral mRNA. This threshold represents the point at which we have effectively eliminated cells548

that have low barcode purity simply due to lysis-acquired reads sampled randomly from both549

viral barcodes. As is apparent from Figure 4B, only the 10-hour sample and the 8hr-2 sample550

have the excess of mixed barcodes among cells with low amounts of viral mRNA. The likely reason551

is that these samples have more total viral mRNA (and so there is more available mRNA to be552

acquired from lysed cells); in addition, there is always some experimental variability in the amount553

of cell lysis during the 10X sequencing process, and these samples may simply have the most.554

So the above threshold procedure is appropriate for those two samples. For the other samples,555

we simply set a minimum threshold of requiring at least a fraction 2×10−4 reads to come from556

viral mRNA as explained in the legend to Figure 4–Figure Supplement 2. The thresholds for each557

sample are shown in Figure 4C and Figure 4–Figure Supplement 2. This procedure is expected to558

be conservative, and may miss some truly infected cells with very low amounts of viral mRNA. For559

subsequent analyses, we retained all infected cells and a subsample of uninfected cells (the greater560

of 50 or the number of infected cells for that sample). The rationale for subsampling the uninfected561

cell is that the vast majority of cells are uninfected, and we did not want these cells to completely562

dominate the downstream analyses. Cells were classi�ed as co-infected if both viral variants had an563

RNA level that exceeded the threshold, and if the minor variant contributed at least 5% of the viral564

mRNA.565

For the semi-supervised t-SNE clustering, we used Monocle’s cell hierarchy function to bin cells566

into those with no viral mRNA, <2% viral mRNA, between 2% and 20% viral mRNA, and >20%.567

Candidate marker genes for t-SNE dimensionality reduction were then determined using the568

Monocle function markerDiffTable, excluding the effects of sample variation and the number of569

genes identi�ed in a given cell, using a q-value cutoff of 0.01. The speci�city of these markers was570

determined using the function calculateMarkerSpeci�city – the top 50 markers were retained, and571

used to place populations in a two-dimensional plane based on tSNE dimensionality reduction.572

For the analyses of cellular genes that differed in expression as a function of the amount of viral573

mRNA, we only considered cells that expressed all 8 viral mRNAs to avoid effects driven simply by574

viral gene absence. We also only considered cellular genes in the differential gene analysis, since575

viral gene expression will tautologically co-vary with the amount of viral mRNA. Additionally, because576

in�uenza virus has the capacity to degrade or prevent the synthesis of host mRNAs (Bercovich-577

Kinori et al., 2016) and contributes signi�cantly to the total number UMIs in some cells, we calculate578

size factors (a scalar value representing e�ciency of UMI capture) based on cellular transcripts alone.579

Finally, we assigned all cells a ceiling fraction of mRNA from virus of 25% so that a few extremely580

high-expressing cells did not dominate. Cellular genes with expression that co-varied with the581

fraction of viral mRNAs in a cell were then determined using the Monocle differentialGeneTest, after582

removing variance explained by sample to sample variation. Figure 9 shows all genes that were583

signi�cantly associated with the fraction of mRNA from virus at a false discovery rate of 0.1. We584

performed the gene set analysis using the P -alues from the Monocle differentialGeneTest with585

piano (Väremo et al., 2013) using the hallmark gene set from GSEA v6 (Subramanian et al., 2005)586

and Fisher’s method.587
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Supplementary �le 1. Computer code for the analyses. This ZIP �le contains a Jupyter notebook that runs

CellRanger to align and annotate the reads, and a Jupyter notebook that uses Monocle to analyze the cell-gene

matrix. The ZIP �le also includes associated custom scripts. To just run the Monocle analysis in

monocle_analysis.ipynb on a pre-generated cell-gene matrix, unpack Supplementary �le 2 into

./results/cellgenecounts/.

Supplementary �le 2. The annotated cell-gene matrix in Matrix Market Format. This is the matrix generated

in ./results/cellgenecounts/ by running the CellRanger analysis in align_and_annotate.ipynb in

Supplementary �le 1. This �le is available on DataDryad at https://doi.org/10.5061/dryad.qp0t3.
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Figure 2–Figure supplement 1. Full �ow cytometry data for Figure 2B. A549 cells were infected

at an MOI of 0.1 as calculated by TCID50 on MDCK-SIAT1 cells. (A) Uninfected gating control.

(B) Cells infected with the wild-type virus stock used in our experiments. (C) Cells infected with

synonymously barcoded virus stock used in our experiments. (D) Cells infected with a stock of

wild-type virus propagated at a high MOI, and therefore enriched in defective particles.

837

0.00

0.25

0.50

0.75

1.00

10
−4

10
−3

10
−2

10
−1 1

fraction mRNA from influenza

fr
a

c
ti
o

n
 o

f 
c
e

lls Sample
Uninfected

6hr

8hr

8hr−2

10hr

Figure 3–Figure supplement 1. For each sample, this plot shows the fraction of all cells that derive

at least the indication fraction of their mRNA from in�uenza virus.
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Figure 4–Figure supplement 1. The number of viral barcodes called for each sample and gene

segment. Viral transcripts are classi�ed as syn if they mapped to a synonymously barcoded in�uenza

transcript, wt if they mapped to a wild-type in�uenza transcript, invalid if multiple reads for the

same UMI differed on the status of the viral barcode, and as uncalled if none of the reads for that

UMI overlapped the region of the viral transcript containing the viral barcode. For calculations of

the number of reads in a cell derived from each viral barcode for each viral gene, the total number

of detected molecules of that gene are multiplied by the fraction of those molecules with assignable

barcodes that are assigned to that barcode.
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Figure 4–Figure supplement 2. Cell lysis can lead cells to the spurious association of small

amounts of extraneous mRNA with individual cells. We wanted to avoid classifying as infected cells

that had simply acquired such lysis-derived viral mRNA. The amount of lysis-derived viral mRNA will

vary among samples as a function of both the lysis rate during the cell preparation (which always

varies slightly from sample to sample in the 10X procedure) and with the amount of total viral

mRNA for that sample (the more viral mRNA, the more there is to be acquired from lysed cells). As

is shown in Figure 4B, the 8hr-2 and 10hr sample clearly have an enrichment of mixed barcodes in

cells with small numbers of viral mRNA. For each sample, we calculated the mean purity of all cells

with at least the indicated amount of viral mRNA, and determined the threshold amount of viral

mRNA where purity no longer increased by �nding the �rst maxima in a loess curve �t (orange line).

We called the threshold at this point of maximum purity (dotted green line). For the 6hr and 8hr

samples there is no indication of contamination from lysis-derived reads, as Figure 4B shows no

increase in mixed barcodes in low viral mRNA cells. Therefore, for these samples we simply set a

threshold of requiring at least 2ù10*4 of the total mRNA to come from virus, which corresponds to

Ì2 viral mRNAs for the typical cell with 104 total reads (Figure 3B).
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Figure 4–Figure supplement 3. The total fraction of all viral mRNA among infected cells that is

attributable to a given fraction of these cells. For instance, the plot for the 8hrs sample shows that

Ì50% of all viral mRNA is derived from Ì8% of the infected cells. The facet titles above each plot

also give the Gini coe�cient (Gini, 1921) that calculates the heterogeneity in the distribution of viral

mRNA among infected cells. Gini coe�cients of 0 indicate a perfectly even distribution across cells,

and Gini coe�cients of 1 indicate a maximally skewed distribution.
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Figure 4–Figure supplement 4. Flow cytometry analysis of expression of viral proteins in cells

infected at an MOI of 0.1 (unsynchronized) or 0.2 (synchronized) as calculated by TCID50 on MDCK-

SIAT1 cells. The higher MOI for synchronized infections was to attempt to account for loss of virus in

washing steps. Infections were synchronized by pre-adsorbing virus at 4˝C for 1h prior to initiation

of infection by shifting temperature to 37˝C using pre-warmed media. Cells were concurrently

stained for HA and NS1 proteins at 10 hours after initiation of infection, and then analyzed by �ow

cytometry. The level of HA protein was quanti�ed in cells that were identi�ed as infected based on

being positive for NS1 protein (top), and the level of NS1 protein was quanti�ed in cells that were

identi�ed as infected based on being positive for HA protein (bottom) Synchronization resulted in a

small decrease in variability in the levels of each viral protein, particularly in cells with intermediate

levels. But the effects were small compared to the overall variability in the protein levels, indicating

timing of infection makes only a small contribution to the observed heterogeneity. Data are shown

for three independent replicates.
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Figure 4–Figure supplement 5. (A) Flow cytometry analysis of expression of viral proteins in

cells infected at high (MOI 5 as calculated by TCID50 on MDCK-SIAT1 cells) or low (MOI 0.1) initial

infectious dose. Cells were concurrently stained for HA and NS1 proteins at 10 hours after initiation

of infection, and then analyzed by �ow cytometry. The level of HA protein was quanti�ed in cells

that were identi�ed as infected based on being positive for NS1 protein (left), and the level of

NS1 protein was quanti�ed in cells that were identi�ed as infected based on being positive for HA

protein (right) While a higher dose leads to more cells expressing high amounts of viral protein, it

does not greatly increase the amount of viral protein in either the low-expressing or high-expressing

cells. Therefore, higher viral dose does not lead to a large continuous increase in viral protein

production among all cells – rather, it mostly changes the proportions of cells that fall in different

parts of the highly heterogeneous distribution. (B) Cells were co-infected with a mix of wild-type

virus and pseudovirus in which the HA gene was replaced by GFP �anked by the terminal regions of

the HA gene segment at an MOI of 0.1 for each virus. At 10 hours post-infection, cells were stained

for NS1 and HA expression and analyzed by �ow cytometry for these proteins and GFP. Cells could

be annotated as infected by virions of the same type (wild-type infection indicated by presence of

HA, or pseudovirus infection indicated by the presence of GFP) or both types of virions (indicated by

presence of HA and GFP). Coinfected cells, like cells infected at a higher infectious dose, occupy

different positions in the distribution of viral protein production but do not not exhibit a continuous

increase in viral protein production. Data are shown for three independent replicates.
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Figure 5–Figure supplement 1. A549 cells were infected at an MOI of 0.2 as calculated on MDCK-

SIAT1 cells in either the presence or absence of the protein-translation inhibitor cyclohexamide,

and viral mRNA was quanti�ed at 8 hours post-infection by qPCR. The cyclohexamide prevents

translation of new PB2, PB1, PA, and NP protein, and so prevents the formation of the new RNPs

needed for secondary transcription. The bars show the relative amount of HA and PB2 mRNA in

the absence versus the presence of cyclohexamide. Error ± S.D. n=3.
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Figure 5–Figure supplement 2. The normalized expression of each viral gene as a function of the

fraction of total mRNA derived from virus, shown for the 10-hour and 8-hour samples individually

(the other samples had too few infected cells for this analysis to be useful). Points are colored as in

Figure 5A.
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Figure 5–Figure supplement 3. The normalized expression of each viral gene as a function of the

fraction of total mRNA derived from virus, excluding cells that were annotated as coinfected based

on the presence of both viral barcodes.
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Figure 5–Figure supplement 4. The absence of viral RNP genes but not non-RNP genes remains

signi�cantly associated with reduced viral burden when we examine only the 10-hr sample, which

is the single time point with the most data points. The difference for NP is no longer statistically

signi�cant due to low counts of infected cells lacking NP, but the trend remains. We do not show

statistical analyses for other samples, as the number of infected cells is too low.
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Figure 5–Figure supplement 5. All �ndings in Figure 5B remain unchanged if we exclude cells

called as coinfected based on the presence of mixed viral barcodes.
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Figure 7–Figure supplement 1. (A) Cells were co-infected with a mix of wild-type virus and virus in

which the HA gene was replaced by GFP �anked by the terminal regions of the HA gene segment. At

10 hours post-infection, cells were analyzed by �ow cytometry for HA and eGFP expression. (B) The

expression of HA and GFP are correlated in co-infected cells. Shown are the quantile-normalized HA

and eGFP signals for double-positive cells. Cells are colored by density, using a Gaussian kernel

density estimate. (C),(D),(E) Gating controls, single infection with eGFP virus, single infection with

wild-type virus, and uninfected cells, respectively.
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Category Genes

Detoxification
AKR1C3, AKR1B10, ALDH3A1, 

ALDH1A1, NQO1, CBR1, PRDX1

TXN, PPIA

NDUFB4, MT-CO1, MT-CO3

ATF3, GADD45B

UBB, NME1

Protein folding

Electron transport chain

Regulators

ROS-responsive

relevance complex/unknown

Figure 9–Figure supplement 1. Table delineating genes in Figure 9 that are associated with the

response to oxidative stress (Duong et al., 2017; Jung et al., 2017; Lee and Ryu, 2017; Peuchant

et al., 2017; MacLeod et al., 2016; Jiang et al., 2016; Gorrini et al., 2013; Miura et al., 2013; Kim

et al., 2009; Banning et al., 2005;Murray et al., 2003; Doyle et al., 1999).
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Figure 9–Figure supplement 2. Cells were treated as indicated with 15 mM N-acetylcysteine (NAC),

an antioxidant, and infected at an MOI of 0.1 as calculated by TCID50 on MDCK-SIAT1 cells. At 10

hours post-infection, cells were analyzed by �ow cytometry for HA expression. The percentage of

HA-positive cells is indicated on the �ow cytometry plots. Data are shown for three independent

replicates.
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