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Extreme Learning Machine with Affine

Transformation Inputs in an Activation Function
Jiuwen Cao, Member, IEEE, Kai Zhang, Hongwei Yong, Xiaoping Lai, Member, IEEE

Badong Chen, Senior Member, IEEE and Zhiping Lin, Senior Member, IEEE

Abstract—The extreme learning machine (ELM) has attracted
much attention over the past decade due to its fast learning speed
and convincing generalization performance. However, there still
remains a practical issue to be approached when applying the
ELM: the randomly generated hidden node parameters without
tuning can lead to the hidden node outputs being nonuniformly
distributed, thus giving rise to poor generalization performance.
To address this deficiency, a novel activation function with
an affine transformation on its input is introduced into the
ELM, which leads to an improved ELM algorithm that is
referred to as an affine transformation ELM (AT-ELM) in this
paper. The scaling and translation parameters of the affine
transformation activation function are computed based on the
maximum entropy principle in such a way that the hidden layer
outputs approximately obey a uniform distribution. Application
of the AT-ELM algorithm in nonlinear function regression shows
its robustness to the range scaling of the network inputs.
Experiments on nonlinear function regression, real-world dataset
classification and benchmark image recognition demonstrate
better performance for the AT-ELM compared with the original
ELM, the regularized ELM and the kernel ELM. Recognition
results on benchmark image datasets also reveal that the AT-
ELM outperforms several other state-of-the-art algorithms in
general.

Index Terms—Extreme learning machine, Affine transforma-
tion activation function, Maximum entropy, Regression, Classifi-
cation

I. INTRODUCTION

A
RTIFICIAL neural networks with random parameters

were studied many years ago [1]. Recently, the extreme

learning machine (ELM) has been developed for feedforward

neural networks (FNN) and has become popular due to its fast

learning speed, ease of implementation and good generaliza-

tion performance [2–4]. The ELM was originally proposed to
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learn a single hidden layer FNN

L
∑

i=1

βig(wi · xj + bi) = oj , j = 1, 2, · · · , N, (1)

using a training dataset {(xj , tj)}
N
j=1, with xj ∈ Rm and

tj ∈ Rd being the j-th input sample and the target output

associated with xj , respectively. In (1), g(·) denotes the

activation function, wi ∈ R1×m and bi ∈ R are the input

weight and bias of the i-th hidden node, βi ∈ Rd is the

weight vector that connects the i-th hidden node to the output

nodes, and oj ∈ Rd is the network output for the j-th

input sample. For the convenience of presentation, we call

{(wi, bi)}
L
i=1 the hidden node parameters in this paper. ELM

theory states that the hidden node parameters can be randomly

assigned, independent of the applications, and tuning-free [2].

The network training becomes solving a system of linear

equations.

The ELM has been extensively studied in terms of its theory

[5–8], algorithms [9–15] and applications [16–27]. Although

significant achievements have been made, little attention has

been paid to the distribution of hidden layer outputs of the

ELM, which is essential for network learning. Unlike the

ELM, neural networks trained with gradient descent-based

algorithms have benefited from studies on data distributions

of the network layers, especially in deep network learning

[28–31]. The training becomes slow and complicated if the

data distribution of each layer changes during learning [31].

Mending the distributions of data across all layers over time

not only accelerates the training by saving the cost of parame-

ter adaption to new distributions but also improves the perfor-

mance [31]. A similar observation states that whitening each

layer’s inputs guarantees a fast convergence speed [28]. To

address the data distribution issue, a number of methods have

been developed for deep neural networks (DNNs), including

whitening activations [30], batch normalization [31], weight

normalization [32], and normalization propagation [33].

Recent studies show that the ELM can be plagued by input

data scaling [34]. The good generalization performance is

only achievable within an order of magnitude on the input

range scale [34], which limits the practical applications of the

ELM. The reason is that the input data scaling changes the

distribution of the hidden layer net inputs v = w · x + b

and the resultant hidden node outputs might not be uniformly

distributed. Random hidden node parameters without tuning

in the ELM could move many of the hidden layer net inputs

v into the saturated regime or the linear regime (close to a
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Fig. 1. Histograms of hidden node net inputs and outputs for the AR dataset
by an ELM.

linear function) of the activation function. This circumstance

can lead to poor generalization performance of the network.

For illustration, the histograms of the hidden node net inputs v

of the AR face database1 and the associated outputs obtained

by the ELM are depicted in Fig. 1 (a) and (b), respectively. The

Sigmoid g(v) = 1
1+e−v is used as the activation function. As

depicted, the hidden node net inputs v are mostly distributed

in the region |v| ≥ 10, and hence, the resultant outputs g(v)
overly concentrate around 0 and 1, i.e., the saturated regimes

of the Sigmoid.

Existing DNNs usually employ an activation function with

nonsaturating nonlinearity to alleviate the aforementioned d-

eficiency of the saturated regime in conventional activation

functions, such as the Rectifier Linear Unit (ReLU) [35] and

its improvements, including the leaky ReLU [36], parametric

ReLU (PReLU) [37] and randomized ReLU (RReLU) [38].

They are effective in speeding up the training and enhancing

the performance. The idea of using an activation function with

a learnable parameter that is adaptively updated during the

training is introduced in PReLU [37], where different rather

than fixed activation functions are suggested for different chan-

nels in a DNN. However, existing DNNs have the following

drawbacks: 1) the optimization of the hidden node parameters

relies on the backward propagation (BP) algorithm, which

usually suffers from having very slow convergence; 2) the data

distribution characteristics of the hidden layers are not well

studied for parameter optimization of the activation functions.

To address the aforementioned deficiencies in the existing

ELMs, a novel activation function with an affine transforma-

tion input is introduced in this paper. The resulting improved

ELM algorithm is referred to as an affine transformation ELM

(AT-ELM). The scaling and translation parameters of the affine

transformation in the activation function, or in short, the affine

parameters, can be computed based on the maximum entropy

principle such that the distribution of the hidden layer outputs

approximates a uniform distribution after mapping. In general,

however, there is no closed form solution for the optimal

affine parameters. In this paper, a gradient descent-based

iterative algorithm is used to optimize the affine parameters.

In the special case with zero mean Gaussian hidden layer

net inputs, an empirical closed form for estimating the two

affine parameters is obtained using the maximum entropy

principle. The main contributions of this paper are summarized

as follows:

1Detailed descriptions on the database are given in Section IV-C

1) An affine transformation is introduced into the activation

function. With the affine transformation, the proposed

AT-ELM algorithm can adapt its activation function to

the distribution of the hidden layer net inputs, and thus,

to avoid the issue of having a saturated or linear regime,

lead to a robust generalization performance.

2) Estimation schemes for optimal parameters of the affine

transformation are developed. With these schemes, the

hidden layer outputs in the AT-ELM approximately

comply with a uniform distribution, and thus, they have

the maximum entropy and contain more information

than the nonuniformly distributed hidden layer outputs

in the other ELMs.

3) Experiments and comparisons are conducted on many

benchmark problems and datasets. The results show

that the AT-ELM-based methods have promising perfor-

mance better than the original ELM, regularized ELM

(RELM) [39], RELMLOO (LOO stands for the leave-

one-out cross-validation strategy [39]), KELM [3], and

several other state-of-the-art algorithms. In addition,

employing orthogonal hidden node parameters in AT-

ELMs usually improves the generalization performance

further.

II. BRIEF REVIEW OF THE ELM

A brief review on the ELM is first presented in this section.

Then, the deficiencies that arise from having a fixed activation

function are discussed.

A. ELM

The ELM was developed to train single hidden layer feed-

forward neural networks (SLFN) [2]. The network model (1)

can be rewritten using matrix multiplication as follows:

Hβ = O, (2)

where β = [β1,β2, ...,βL]
T and O = [o1,o2, ...,oN ]T are

the output layer weight matrix and network output matrix, H

is the hidden layer output matrix defined by [2]

H(w1, · · · ,wL, b1, · · · , bL) = G (V) . (3)

Here, G (V) is an N ×L matrix, in which the element in the

j-th row and i-th column is g(wi · xj + bi). V is the matrix

of hidden layer net inputs for all of the training samples

V =







vT
1
...

vT
N






=







w1 · x1 + b1 · · · wL · x1 + bL
... · · ·

...

w1 · xN + b1 · · · wL · xN + bL







N×L

.

(4)

The ELM aims to minimize the training error, i.e.,

min
β
∥Hβ − T∥2F , (5)

where T = [t1, t2, ..., tN ]T is the target output matrix and

∥·∥F is the the Frobenius norm of the error matrix Hβ − T.

For the case with single output, the error matrix reduces to a

vector and the Frobenius norm reduces to the 2-norm of the

error vector.
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It is stated in [2] that for any infinitely differentiable activa-

tion function and randomly generated hidden node parameters

with any continuous probability distribution, the SLFN with

L = N hidden nodes can approximate N distinctive samples

without error with a probability of one. The output weight

is thus determined by finding the least-squares solution of

the linear equations. The well recognized universal approx-

imation capability of ELM shows that with any bounded

nonconstant piecewise continuous hidden activation function

and any randomly generated hidden weights and biases,

the SLFN output can approximate any continuous function

f(x) with appropriate output weights β in the sense that

limL→∞

∥

∥

∥

∑L
i=1 βig(wi · x+ bi)− f(x)

∥

∥

∥
= 0. A number of

nonlinear activation functions, including Sigmoid, Sine and

Radial Basis Function (RBF), are shown to be effective for

the ELM.

Following Bartlett’s statement that for FNNs, the smaller

the output weight’s norm is, the better the generalization

performance will be [40], RELM minimizes the training error

and the norm of the output weight matrix as follows [39]:

min
β
∥Hβ − T∥2F + λ ∥β∥2F , (6)

where λ is the regularization parameter that controls the

tradeoff between the two terms in the cost. According to

whether the number of training samples is greater than the

number of hidden nodes, the closed-form solution of (6) is

given as [3]

β̂ = (HTH+ λI)−1HT T, (7)

where I is the identity matrix. When L > N , a more

computational efficient solution is

β̂ = HT (HHT + λI)−1T. (8)

B. Deficiencies from having fixed activation functions in the

ELM

The activation function is one of the crucial factors in neural

networks; it brings nonlinearity into the networks. While

using random hidden node parameters in the ELM brings

a fast training speed and easy implementation advantages,

using a fixed activation function also leads to a deficiency

in the ELM. It has been long known that the choice of the

activation function is determined by the distributions of the

input samples and targets [41]. In the ELM, the hidden node

parameters are independent of the input data, and the activation

function is fixed during learning. Relying merely on solving

the output weights through linear equations could lead to poor

generalization performance for irregular distributions, such as

the large data scaling mentioned in Section I or the data

shift investigated in [34]. It was shown that the ELM is quite

sensitive to the range of input variables.

For illustration, we take the most frequently used activation

function in the ELMs, the Sigmoid, as an example here. The

Sigmoid function is popular for its good interpretation as the

firing rate of a node, but it recently has fallen out of favor

in deep learning (DL) due to its saturated ends and its linear

regime [31, 37]. Hence, the ReLU function and its variants

have been developed in DL. Let vij (i = 1, 2, · · · , L and

j = 1, 2, . . . , N ) be the i-th element of the hidden layer

net input vector vj = Wxj + b for the j-th input xj ,

where W = [wT
1 ,w

T
2 , ...,w

T
L ]

T is the hidden node weight

matrix, and b = [b1, b2, ..., bL]
T denotes the bias vector. The

Sigmoid function maps vj into its output range. If |vij | is

too large, then the output will fall into the saturated regime

of the function at either tail, 0 or 1. The gradient g′(vij)
then becomes zero, and the vij-associated input weights and

biases cannot be updated using the gradient-based method. In

addition, if most of the hidden layer net inputs are located

in the region that corresponds to an output range [0.2, 0.8]
of the Sigmoid function, then the hidden nodes would be

approximately be linear, and thus, the network would lose its

universal approximation capability [31]. Moreover, H could

also suffer the problem of having a large condition number

if the hidden layer net inputs overly concentrate in any small

region or at any fixed value.

III. THE PROPOSED AT-ELM ALGORITHM

In this paper, we propose a novel ELM algorithm that has

affine transformation inputs in the activation function, which is

abbreviated as AT-ELM. Rather than tuning the input weights

and hidden biases, a novel affine transformation activation is

applied into the ELM to adapt to the distribution of hidden

layer net inputs through adjusting its affine parameters based

on the principle of maximum entropy [42]. This approach,

therefore, not only preserves the fast learning speed of the

ELM by avoiding the iterative updating of hidden weights and

biases, but also attains the largest entropy of the hidden layer

output data by enforcing the data to be approximately uni-

formly distributed in the desired output range of the activation

function.

A. Information entropy of the hidden layer output data

In information theory, entropy is a measure of the unpre-

dictability of the information content. It is defined as the

expected value of the information contained in an event. The

principle of maximum entropy states that subject to precisely

stated prior data, the probability distribution that best repre-

sents the current state of knowledge is the one with the largest

entropy [42]. Suppose that the probability of the state xi for

a discrete random variable X is p(X = xi) = p(xi); then the

entropy of X is

H[p] =
∑

i

p(xi) log2
1

p(xi)
, (9)

where the logarithm function is a measure of the information

content. Maximizing the entropy H[p] subject to the probabili-

ty constraint can be solved by a Lagrangian multiplier method,

with the Lagrangian function defined by

L =
∑

i

p(xi) log2
1

p(xi)
+ µ

(

∑

i

p(xi)− 1

)

. (10)

Maximizing (10) leads to p(xi) = 1
M

, where M is the

total number of states [41]. This circumstance implies that
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a uniformly distributed random variable has the maximum

entropy [41].

In the ELM, however, because all hidden node param-

eters are randomly generated, independent of the training

data and tuning-free during the training process, the hidden

layer outputs are unlikely to obey a uniform distribution. For

illustration, we investigate the variance of the hidden layer

net inputs in the ELM. Assuming that the elements in x share

the same distribution and are independently and identically

distributed (i.i.d.), and the elements in W and b are usually

generated according to a uniform distribution U [−1, 1] or

standard normal distribution N (0, 1) and are all mutually

independent, the variance var(·) of the hidden layer net inputs

can be expressed as

var (vi) = L · var (wi)E
(

x2
i

)

+ var (bi) , (11)

where vi, wi, xi and bi denote the random variables of the

elements in V, W, x and b (the derivation of (11) is given in

Appendix A). Here, the expectation of input xi is assumed to

be nonzero, which is reasonable for most practical applications

(one can verify that the result also holds for zero mean input

xi). If wi and bi obey a uniform distribution U [−1, 1], (11)

reduces to var (vi) =
L
3 ·
(

E
(

x2
i

)

+ 1
)

. If wi and bi satisfy

the standard normal distribution, var (vi) = L ·
(

E
(

x2
i

)

+ 1
)

.

Therefore, the variance of the hidden layer net inputs depends

on the number of hidden nodes L and the second-order

moment E
(

x2
i

)

of the network inputs. One can check that

the hidden layer output data are unlikely to obey a uniform

distribution within the output range of the activation function

in ELM because the variance is related to the variance of

the inputs and the number of hidden nodes. Thus, the hidden

layer output data do not have the maximum entropy in general.

To address this issue, we design an activation function with

an affine transformation on its input such that after mapping

by the new activation function, the hidden layer outputs are

approximately uniformly distributed in the output range of

the activation function. Hence, the issue of having a saturated

regime in ELM can be avoided.

B. Activation function with affine transformation inputs

As mentioned above, in AT-ELM, we maximize the entropy

of the hidden layer output data by adjusting the scaling and

translation parameters s and t of the affine transformation

activation function. Given an activation function g (·) with a

desired output range D ,: [oℓ, ou] and letting the probability

density function (PDF) of the hidden layer net inputs be

pv(v), the objective is to find a proper (s, t) pair such that

the net inputs of the hidden layer are mapped into uniformly

distributed outputs in D by g (s · v + t). Specifically, the

postactivation value y = g (s · v + t) is required to satisfy

the following constraints:

E(y) =
oℓ + ou

2
, (12)

var(y) =
(ou − oℓ)

2

12
, (13)

where y denotes the random variable of the activation function

output, which is also called the hidden layer output [3]. In

other words, it requires
∫ ∞

−∞

ypy(y)dy =
oℓ + ou

2
, (14)

∫ ∞

−∞

y2py(y)dy =
(ou − oℓ)

2

12
+

(oℓ + ou)
2

4
, (15)

where py(y) represents the PDF of y. The PDF py(y) can

be obtained from the well-known truth that for a continuous

random variable x with PDF fx(x), the PDF of element y in

the random variable y = g(x) satisfies the following [43]:

fy(y) =

{

fx
(

g−1(y)
)

∣

∣

∣

dg−1(y)
dy

∣

∣

∣
, y ∈ (yl, yu),

0, elsewhere,
(16)

where g(·) is monotonic and derivable in the domain of

definition, the support set of fx(x) is assumed to be

[xmin, xmax], and yl = min {g(xmin), g(xmax)} and yu =
max {g(xmin), g(xmax)} correspond to the minimum and

maximum in the output range. Given an affine transformation

activation function y = g (s · v + t), let g−1(·) be the inverse

of g(·). The inverse of y = g (s · v + t) can be expressed as

v = 1
s
g−1(y)− t

s
. Hence, with (14), (15) and (16), it can be

obtained that (s, t) satisfies

∫ ∞

−∞

ypv

(

1

s
g−1(y)−

t

s

)

∣

∣

∣

∣

∣

d
(

1
s
g−1(y)− t

s

)

dy

∣

∣

∣

∣

∣

dy =
oℓ + ou

2
,

∫ ∞

−∞

y2pv

(

1

s
g−1(y)−

t

s

)

∣

∣

∣

∣

∣

d
(

1
s
g−1(y)− t

s

)

dy

∣

∣

∣

∣

∣

dy =
o
2
ℓ + o

2
u + oℓou

3
.

Unfortunately, from the above equations, it is in general not

possible to derive closed-form solutions for the affine param-

eters s and t. Therefore, estimation algorithms for the affine

parameters will be developed in the next subsection. Before

presenting the algorithms, we assume that the training and

testing data have the same distribution, which is a fundamental

assumption in supervised learning.

C. Parameter estimation of the affine transformation activa-

tion function

Given a training dataset {(xj , tj)}
N
j=1, let V be the hidden

layer net input matrix for all of the training samples, as

denoted in (4), and let g(·) represent the activation function.

We concatenate all of the elements of V into an (N · L)-
dimensional vector νasc in ascending order as νasc =
[ν1, . . . , νk, . . . , νN ·L]

T
, where ν1 ≤ . . . ≤ νk ≤ . . . ≤ νN ·L.

To ensure that the elements in g(s · νasc + t · 1) are approx-

imately uniformly distributed in D ,: [oℓ, ou], s and t are

estimated by

min
s,t
∥g(s · νasc + t · 1)− ô∥22, (17)

where ô is an (N · L)-dimensional vector whose elements

are uniformly sampled in the output range D, and 1 =
[1, . . . , 1]

T ∈ RN ·L is a vector. In other words, the output

range D ,: [oℓ, ou] is first partitioned into N · L− 1 equidis-

tant subintervals with endpoints ô1, . . . , ôk, . . . ôN ·L, where

ô1 = oℓ, ôN ·L = ou, and ô1 < . . . < ôk < . . . < ôN ·L. Then,
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the vector ô is constructed using all of the aforementioned

endpoints, as follows:

ô = [ô1, . . ., ôk, . . ., ôN ·L]
T
. (18)

In this paper, we assume that the same affine parameters

are used for all hidden nodes. In such a case, there are

only 2 parameters to be optimized in (17), for which the

gradient descent algorithm can be adopted, which we address

as follows:

Denote E = 1
2∥g(s · νasc + t · 1)− ô∥22. The derivatives of

E w.r.t. s and t are

∂E

∂s
=
∑N ·L

k=1
[g (s · νk + t)− ôk]

∂g

∂s
, (19)

∂E

∂t
=
∑N ·L

k=1
[g (s · νk + t)− ôk]

∂g

∂t
. (20)

The parameters can be iteratively solved as

s(κ+ 1)←− s(κ)− η
∂E

∂s(κ)
, (21)

t(κ+ 1)←− t(κ)− η
∂E

∂t(κ)
, (22)

where κ denotes the iteration step, and η is

the step size. More specifically, for the Sigmoid

function, (19) and (20) can be computed as ∂E
∂s

=

−
∑N ·L

k=1 νk [g (s · νk + t)− ôk] [g (s · νk + t)− g2 (s · νk + t)]

and ∂E
∂t

= −
∑N ·L

k=1 [g (s · νk + t)− ôk] [g (s · νk + t)−
g2 (s · νk + t)], respectively. One can find that there exist

repetitive terms in calculating the derivatives w.r.t. s and t,

which can be utilized to reduce the computational complexity.

For almost all real-world applications, N · L ≫ 2. Thus,

there is no need to employ all hidden node net inputs to

perform the parameter estimation in (17). To reduce the com-

putational complexity, a uniform downsampling is performed

on νasc. Suppose that Nd (Nd < N · L) samples in νasc are

used to estimate the affine parameters; the downsampling rate

is then equal to
⌊

N ·L
Nd

⌋

, where ⌊·⌋ is the rounding up function.

Then, the newly formed data vector and its corresponding out-

put vector after downsampling can be respectively described

by

ν̃d = [ν̃1, . . . , ν̃i, . . . , ν̃Nd
]
T
, (23)

õd = [õ1, . . ., õi, . . ., õNd
]
T
, (24)

where i = 1, . . . , Nd. The new derivatives for the estimation

of s and t can be derived as follows:

∂E

∂s
=
∑Nd

i=1
[g (s · ν̃i + t)− õi]

∂g

∂s
, (25)

∂E

∂t
=
∑Nd

i=1
[g (s · ν̃i + t)− õi]

∂g

∂t
. (26)

The proposed affine parameter estimation approach for the

activation function is summarized in Algorithm 1.

The above iterative algorithm assumes that there are no

constraints on the distribution of the hidden layer net inputs,

i.e., it applies to any distributions of the training data and

any randomly generated hidden weights and biases. In the

special case that the hidden layer net inputs obey the zero

mean Gaussian distribution, a closed-form formula for fast

Algorithm 1: Estimation algorithm for the affine parame-

ters
Input : Hidden layer net input matrix V, hidden node

activation function g(·) with desired output range

D ,: [oℓ, ou], step size η, a small tolerance ε > 0, the
maximum iterations K, the downsampling number Nd

(Nd < N · L).
Output : The affine parameters s and t.

1 Concatenate V into a vector νasc in the ascending order;
2 Partition D into (N · L)− 1 equidistant sub-intervals and

construct the output vector ô using all sub-interval endpoints;
3 Obtain the downsampled vectors ν̃d and õd from νasc and ô

with the downsampling rate
⌊

N·L
Nd

⌋

;

4 Randomly initialize s, t and compute E ;
5 while (κ < K) or (E ≥ ε) do
6 Compute the gradients with (25) and (26);

7 s(κ+ 1)←− s(κ)− η ∂E
∂s(κ)

;

8 t(κ+ 1)←− t(κ)− η ∂E
∂t(κ)

;

9 E ←− 1
2
∥g(s(κ+ 1) · ν̃d + t(κ+ 1) · 1)− õd∥

2
F ;

10 κ←− κ+ 1;
11 end

estimation of the affine parameters s and t based on Algorithm

1 can be developed as follows.

For activation functions of the Sigmoid, Tanh, and Hy-

perbolic Tangent types, it is suggested in [33] that s and

t can be computed empirically by simulations. For hidden

node net inputs that obey the zero-mean Gaussian distribution

N
(

0, σ2
)

, the scaling parameter s can be estimated as

s =
1
σ
se

, (27)

and the translation parameter is directly taken as t = 0. Here,

se is an empirical value of s for hidden node inputs that obey

the standard normal distribution N (0, 1). Given an activation

function with the output range D, se can be estimated via

maximizing the output entropy while the hidden node net

inputs are generated from N (0, 1). It is noted that (27) can

only be used for hidden node net inputs that obey the zero-

mean Gaussian distribution. One can check through simulation

that se is approximately 1.67 for the Sigmoid. Therefore, we

only need to estimate the variance σ for the hidden node net

inputs. The fast estimation algorithm presented for the standard

derivation σ in [44, 45], i.e.,

σ =
Median (abs (V))

0.6745
, (28)

is adopted in this paper, where abs (V) is the elementwise

absolute value function of V.

It is worthwhile to point out that the proposed Algorithm

1 is different from the general rescaling for the network

input data. The input data rescaling methods normally adjust

their inputs in different scales to a common scale, e.g., by

normalization. They usually do not change the data density

distribution and thus cannot achieve entropy maximization for

the hidden layer outputs.



6

D. The proposed AT-ELM algorithm

Without loss of generality, the RELM algorithm is employed

as the basis for the proposed AT-ELM in this paper. To

optimize the regularization parameter λ, the leave-one-out

(LOO) cross-validation strategy with the predicted residual

sum of squares (PRESS) statistic [46] is used in (7) or (8), as in

[47, 48]. To speed up the calculation of the PRESS-based mean

square error (MSE) in LOO (MSEPRESS), the computationally

efficient algorithm developed in [49] is adopted. A brief review

of this algorithm is given below, while for the details, please

refer to [49].

The LOO cross-validation approach optimizes λ through

partitioning N training samples into N different combinations,

with each combination having N − 1 training instances and

one left-out testing sample. The MSEPRESS used for the

performance evaluation is

MSEPRESS =
1

N

N
∑

j=1

(

tj − oj

1− HATj

)2

, (29)

where HATj denotes the j-th diagonal element of the HAT

matrix described by [49]

HAT = H
(

HTH+ λI
)−1

HT , (30)

or when L > N , by the computationally more efficient

formula as

HAT = HHT
(

HHT + λI
)−1

. (31)

To reduce the repetitive computation in calculating

MSEPRESS during the optimization of λ, novel matrix decom-

position strategies other than the singular value decomposition

(SVD) on H are introduced in [49] and adopted in this paper.

• When L ≤ N , the decomposition of HTH = VD2VT is

made, since in this case, the output weight (7), MSEPRESS

(29) and HAT matrix (30) after certain transformations

are irrelevant to the matrix U in SVD of H because

H = UDVT . In other words, (7) can be computed as

β̂ = V(D2 + λI)−1VTHTT, and the diagonal elements

of HAT can be derived from the row sum of (HV(D2 +
λI)−1)⊙ (HV), where ⊙ is the elementwise multiplica-

tion. With such decomposition and transformations, many

repetitive calculations in deriving the MSEPRESS (29) can

be avoided, including HV and VTHTT, because they are

independent of λ and can be precalculated.

• When L > N , the decomposition of HHT = UD2UT is

conducted. In this case, (8) and (31) can be expressed as

β̂ = HTU(D2+λI)−1UT T and HAT = HHTU(D2+
λI)−1UT , respectively. The repetitive terms HHTU

and UT T can be precalculated before optimizing the

MSEPRESS.

With the estimated s, t and the LOO cross-validation

approach in [49], the proposed AT-ELM algorithm can be

described as follows. In the first step, the training dataset is

used to estimate s and t via Algorithm 1 or the fast method

(27) (which is only suitable for the hidden node net inputs that

obey the zero-mean Gaussian distribution). In the second step,

the output weight matrix is derived using (7) or (8), where the

optimal λopt is obtained by the efficient algorithm in [49],

which was reviewed above in this subsection. Algorithm 2

summarizes the proposed AT-ELM.

In addition to using random hidden node parameters, or-

thogonalization of hidden node parameters can help to improve

the generalization performance of ELM [50]. In other words,

after randomly generating the hidden node parameters (wi, bi),
i = 1, . . . , L, the following orthogonalization is performed:

W̃ = orth (W) , (32)

b̃ = orth (b) , (33)

where W = [w1, . . . ,wL], b = [b1, . . . , bL], W̃ =

[w̃1, . . . , w̃L], b̃ =
[

b̃1, . . . , b̃L

]

, and orth(·) represents the

orthogonalization operation, which satisfies

W̃TW̃ = I, b̃T b̃ = 1. (34)

The performance of AT-ELM when utilizing orthogonal ran-

dom hidden node parameters is also reported in the next

section on experiments and discussions.

Algorithm 2: AT-ELM

Input : A training dataset {(xj , tj)}
N
j=1, hidden node number

L, a set of regularization parameters λ ∈ [λmin, λmax],
hidden node activation function g(·) with the desired

output range D ,: [oℓ, ou], the downsampling number
Nd (Nd < N · L) for affine parameter estimation.

Output : The affine parameters s and t, the optimal λopt and

the corresponding output weight matrix β̂.

1 Randomly generate the hidden node weight vector and bias
(wi, bi), i = 1, . . . , L;

2 Calculate the hidden layer net input matrix V via (4);
3 Estimate the affine parameters s and t with Algorithm 1 or the

fast method (27) for zero-mean Gaussian distribution;
4 Compute the hidden layer output matrix as

H = g(s ·V + t · 1),

where 1 ∈ RN·L is a matrix with all elements equal to 1;
5 Optimize λ in (6) with the algorithm in [49], ;
6 if L ≤ N then

7 β̂ = V ⊙ repmat(1./(d+ λopt), N, 1)F;

8 with d = (diag(D2))T , F = E
T
T, E = HV and

H
T
H = VD2VT

9 end
10 if L > N then

11 β̂ = H
T (U⊙ repmat(1./(d+ λopt), N, 1))F;

12 with d = (diag(D2))T , F = U
T
T and HH

T = UD
2
U

T

13 end

IV. EXPERIMENTS AND DISCUSSION

Experiments on nonlinear function regression, real-world

dataset classification, and benchmark image recognition are

conducted in this section to test the effectiveness of the pro-

posed AT-ELM. The affine transformation activation function

is taken as the Sigmoid type,

g(x, s, t) =
1

e−(s·x+t) + 1
(35)
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with s and t denoting the two affine parameters. In general, the

affine parameters s and t are assumed to be 1 and 0, respec-

tively, in the original ELM and RELM as well as most of the

other artificial neural network models. It is noted that almost

all conventional activation functions can be adopted in the

proposed AT-ELM algorithms. For illustration, experimental

results when using the Hyperbolic Tangent function are also

presented in the subsequent Section IV-C for comparison.

Depending on whether Algorithm 1 or the fast closed

form formula (27) (only applied for zero-mean Gaussian

distribution) is used, and whether the hidden node weights and

biases are orthogonalized, we have the following combinations

for the AT-ELM:

- AT-ELM1 denotes the AT-ELM algorithm that employs

(27) for s and t estimation;

- AT-ELM2 denotes the AT-ELM algorithm that employs

Algorithm 1 for s and t estimation;

- AT-ELMOrth,1 denotes the AT-ELM1 algorithm with or-

thogonal hidden node parameters;

- AT-ELMOrth,2 denotes the AT-ELM2 algorithm with or-

thogonal hidden node parameters.

To show the superiority of our proposed algorithms, compar-

isons with the original ELM [2], RELM [39], kernel-based

ELM (KELM) [3] with Gaussian kernel function, RELM with

λ optimized using the LOO method in [49] (in short as

RELMLOO), as well as several other state-of-the-art algorithms

are made. All of the experiments were conducted in Matlab

R2014a on a PC with an Intel(R) Core(TM) i3-3240 processor

(3.40 GHz). In Algorithm 1, the number of samples used for

the affine parameter estimation is set to Nd = 20000 given that

N ·L > 20000, but for those experiments with N ·L ≤ 20000,

all of the samples in the hidden layer net input matrix V were

used. A discussion on the sensitivity to Nd will be given in

Section IV-B.

A. Nonlinear function regression

Potocnik and Govekar show in [34] that with a fixed

hidden node activation function, the ELM is quite sensitive

to the range scaling of the input variables. To show the

efficiency of the proposed AT-ELM on handling the data

scaling and shifting, we test the regression performance on

two nonlinear functions, namely, the ‘SinC’ function f1(·) and

a two-dimensional (2D) function f2(·), in this subsection. The

formulations of these two functions are

SinC : f1(x) =

{

sin(x)
x

, x ̸= 0
1, x = 0

, (36)

2D : f2(x1, x2) =
(

x2
1 − x2

2

)

sin(0.5x1). (37)

Conventional experiments presented in [2, 51, 52] show that

the ELM performs well for input data generated in the range

[−10, 10] for both functions. Following [34], the practical

regression performance of the proposed algorithm is studied

through scaling the input data by different factors γ. In other

words, the original inputs are first generated in [−10, 10] and

then scaled by the following factors:

γ =
{

10−2, 10−1, 1, 10, 102, 103, 104
}

. (38)

For each scaling factor γ, multiple trials were conducted,

and the average performance is compared. For the ‘SinC’

function, 5000 training samples and 5000 testing samples

uniformly distributed in [−10, 10] were generated. For the

‘2D’ function, 40 samples for both x1 and x2, which form

a 40 × 40 grid, were generated for training, while another

40 × 40 grid points were generated for testing. Uniformly

distributed noise in [−0.2, 0.2] were added to the training

target outputs to test the algorithms’ robustness. In these

experiments, we assume that the training and testing samples

share the same distribution. For the ‘SinC’ and the ‘2D’

functions, the numbers of hidden nodes that change from 20

to 100 with an interval of 10 and from 100 to 500 with

an interval of 100 are tested for all algorithms. The results

obtained with the hidden node number that corresponds to the

best approximation performance are then reported. The search

ranges of λ for the LOO cross-validation algorithm [49] for

RELMLOO, AT-ELM1, AT-ELM2, AT-ELMOrth,1, and AT-

ELMOrth,2 are
{

e[−50:0.2:10]
}

,
{

e[−50:0.2:10]
}

,
{

e[−50:1:10]
}

,
{

e[−50:0.2:10]
}

, and
{

e[−150:0.2:10]
}

, respectively. The root

mean square errors (RMSE) between the target outputs and

the estimated outputs were computed for comparison.

Tables I and II show the RMSEs for the ‘SinC’ and

‘2D’ functions obtained by the proposed AT-ELM algo-

rithms (namely, AT-ELM1, AT-ELM2, AT-ELMOrth,1, AT-

ELMOrth,2) and the existing ELM, RELM and RELMLOO. The

best and second-best results are highlighted by boldface and

underlined in the table, respectively. From Table I, when using

the fixed Sigmoid, ELM, RELM and RELMLOO only work

well for certain scaling factors, e.g., γ = 1. In the meantime,

the proposed AT-ELM algorithms perform slightly better than

the ELM, RELM and RELMLOO when γ = 1. With other

smaller or larger γ values, the generalization performance of

the ELM, RELM and RELMLOO become poor. Specifical-

ly, when γ becomes larger than 100, the three competitive

algorithms fail in approximating the ‘SinC’ function due to

large RMSEs. In contrast, the proposed AT-ELM algorithms

perform consistently well for all of the tested scaling factors

because the activation function can adaptively adjust its affine

parameters to the distribution of hidden layer net inputs. At

the same time, the AT-ELM also outperforms the other two

relevant algorithms, CFWNN-ELM [51] and CWN-E-ELM

[52]. The RMSEs on the two functions f1(·) and f2(·) by

CFWNN-ELM are 0.0187 and 0.3938, and those by CWN-E-

ELM are 0.0112 and 0.0534, respectively.

For a demonstration, Figs. 2 (a) and 2 (b) draw the sorted

hidden node outputs of the ‘SinC’ function obtained by the

original ELM and the proposed AT-ELM with the scaling

factors γ =: 0.1 and 100, respectively. As shown in Fig. 2 (a),

diminishing the inputs with γ = 0.1 leads to concentrating

the hidden layer output in the flat region of the Sigmoid,

and amplifying the inputs with γ = 100 makes almost all

of the hidden layer outputs move to the saturated regime of

the Sigmoid (specifically, the outputs are close to 1 or 0, as

depicted in Fig. 2 (b) and (c)). In contrast, the hidden node

outputs obtained by the AT-ELM are evenly distributed within

the output range of the Sigmoid. The estimated affine param-
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TABLE I
RMSE COMPARISON OF THE ‘SINC’ FUNCTION.

ELM RELM RELMLOO AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

Scale γ =:

10−2 0.1453 0.2746 0.1121 0.0072 0.0064 0.0062 0.0060

10−1 0.1088 0.2122 0.0476 0.0058 0.0057 0.0058 0.0056

1 0.0064 0.099 0.0065 0.0057 0.0058 0.0060 0.0056

10 0.0288 0.0476 0.0152 0.0060 0.0060 0.0062 0.0061

102 0.1765 0.1652 0.1755 0.0062 0.0061 0.0065 0.0063

103 14.277 0.3203 0.3347 0.0089 0.0072 0.0090 0.0068

104 17.522 0.3341 0.4987 0.0156 0.0083 0.0165 0.0085

TABLE II
RMSE COMPARISON OF THE ‘2D’ FUNCTION.

ELM RELM RELMLOO AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

Scale γ =:

10−2 8.5534 18.473 1.245 0.0465 0.0435 0.0388 0.0372

10−1 6.8845 15.237 1.021 0.0477 0.0421 0.0371 0.0352

1 0.3654 1.134 0.3865 0.0398 0.0402 0.0373 0.0364

10 18.765 19.543 17.965 0.0376 0.0368 0.0362 0.0358

102 22.867 24.432 21.226 0.0341 0.0356 0.0328 0.0340

103 1.84e+03 30.566 20.657 0.0347 0.0363 0.0328 0.0340

104 1.03e+03 24.223 18.665 0.0336 0.0362 0.0308 0.0342

TABLE III
TRAINING TIME (SECONDS) COMPARISON OF THE ‘SINC’ AND ‘2D’ FUNCTION APPROXIMATION.

Scale γ = 1 ELM RELM RELMLOO AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

SinC 0.0142 0.0133 0.9114 0.9203 0.3415 0.9224 2.6556

2D 0.0316 0.0313 1.1902 1.2042 0.4385 1.2042 3.4562

eters for the activation function obtained via Algorithm 1 for

the above two γ values are (s, t) =: (1.1537,−0.0830) and

(0.0024,−0.0015), respectively. Obviously, to compensate the

amplification in the sample inputs, a parameter s, with a value

less than 1, has been obtained in the AT-ELM for γ = 100.

On the other hand, when γ = 0.1, a parameter s, with a value

larger than 1, is derived.

Fig. 2. Hidden node outputs of SinC with γ =: 10
−1 and 10

2, respectively.

In addition to the generalization performance, the training

time is another concern in machine learning algorithms. Al-

though the gradient descent method is adopted in Algorithm

1, the increase of the computational complexity in AT-ELMs

due to the estimation of the affine parameters is very small

since only two parameters are required to be optimized.

For illustration, the computational complexity is compared in

terms of the training time in Table III for γ = 1. Although

the training time spent by the four AT-ELM algorithms is

obviously higher than that by the ELM, the time is mainly

the cost of searching for the optimal λ by the LOO cross-

validation algorithm. Moreover, it is apparent that the larger

the set [λmin, λmax] is, the longer the training time will be

needed. For example, the proposed AT-ELM1 has a compa-

rable training time to RELMLOO because they have the same

search range. The only difference lies in the adjustment of

the affine transformation activation function in AT-ELM1.

As can be seen from Table III, compared to RELMLOO, the

estimation of the affine parameters in AT-ELM1 takes only

0.9203−0.9114 = 0.0089s for the ‘SinC’ function. Similarly,

AT-ELMOrth,2 spends a longer training time than AT-ELM2

due to the larger range [λmin, λmax] that it uses. In addition,

if the searching range of λ is the same in all four proposed

algorithms, the methods that employ Algorithm 1 for the

scaling and translation parameter estimation (AT-ELM2 and

AT-ELMOrth,2) usually spend a longer time than those (AT-

ELM1 and AT-ELMOrth,1) that use (27). The reason is that

Algorithm 1 adopts the gradient descend method for the affine

parameter estimation, while (27) is only required to calculate

the variance of the hidden node net inputs.

As mentioned previously, the parameter t is set to 0 in the

case when the hidden node net inputs obey the zero-mean

Gaussian distribution. However, it is important to adjust t in

other cases. To demonstrate this relationship, an experiment on

the ‘SinC’ function estimation by generating input data with

different means that range from 4 to 16 is conducted. The AT-

ELM algorithm using the Sigmoid function with or without
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Fig. 3. RMSEs obtained by the AT-ELM with/without the parameter t.

the parameter t is employed for function estimation. Fig. 3

shows a comparison of the RMSEs. As depicted, adjusting t

in the AT-ELM provides a smaller RMSE than that without

the parameter.

B. Real-world dataset classification

In this section, 34 benchmark classification datasets that

cover a wide range of real-world applications are tested

for performance comparison. Specifications that include the

number of attributes, the numbers of training and testing

samples, and the number of classes are shown in Table IV.

The first 20 datasets are from the UCI website2, and the

remaining datasets are from the feature selection website3.

The Handwritten digit dataset is tested using both the partial

features, namely, the profile correlation (Pro), Karhunen-Love

coefficient (Kar), pixel average (Pix), Zernike moment (Zer),

and the whole set of features (All). For all of the datasets, the

raw features are used for classifier training and testing. The

training and testing samples are randomly shuffled in each

trial except for the Protein dataset, whose training and testing

datasets are fixed during the experiment. The ELM, RELM,

RELMLOO, and kernel-based ELM (KELM) are included for

performance comparison. For small size datasets, including

Breast Tissue, Diabetic, Heart disease, Bupa liver, Breast

Cancer and Wine, the optimal number of hidden nodes is

searched within the range [100 : 50 : 600]. For those datasets

with a very large number of attributes or samples, including

Online-news, Handwritten(All), Carcinom, gisette, TOX, and

20Newsgroup, the optimal number of hidden nodes is searched

within the range [500 : 100 : 2500]. For the remaining datasets,

the optimal number of hidden nodes is searched within the

range [500 : 100 : 1500]. For the LOO cross-validation, the

same searching range
{

e[−10:0.2:10]
}

for the regularization

parameter is used in all of the LOO-based approaches. The

Gaussian kernel function is adopted in KELM, where the cost

parameter and kernel parameter are both optimized within
{

2−24, 2−23, · · · , 224, 225
}

. For all of the algorithms, the best

results are reported in Table V for comparison.

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3http://featureselection.asu.edu/datasets.php

TABLE IV
SPECIFICATIONS OF THE BENCHMARK CLASSIFICATION DATASETS

Datasets # Attributes # Train #Test #Classes

Breast Tissue 9 75 31 6
Cardiotocography 21 1701 425 3
Diabetic 19 806 345 2
Heart disease 13 100 170 2
Letter 16 10000 10000 26
Leukemia 7129 38 34 2
Bupa liver 6 200 145 2
Magic 10 10000 9020 2
Online-news 59 31715 7929 2
Optical-digits 64 3823 1797 10
Pendigits 16 7494 3498 10
Protein 56 949 534 10
Satimage 36 3217 3218 6
Breast Cancer 30 300 269 2
Wine 13 100 78 3
Handwritten(Pro) 216 1200 800 10
Handwritten(Kar) 64 1200 800 10
Handwritten(Pix) 240 1200 800 10
Handwritten(Zer) 47 1200 800 10
Handwritten(All) 649 1200 800 10
Lung 3312 122 81 5
Carcinom 9182 104 70 11
gisette 5000 4200 2800 2
TOX 5748 103 68 4
Isolet1 617 936 624 26
Isolet2 617 936 624 26
Isolet3 617 936 624 26
Isolet4 617 935 623 26
Isolet5 617 935 624 26
PC/MAC 3289 1166 777 2
BASE/HOCK 4862 1196 797 2
REL/ALTHE 4322 856 571 2
20Newsgroup 26214 11307 7539 20
WarpAR10P 2400 78 52 10

The average testing accuracy (denoted as Rate) and standard

deviations (Std) obtained by the four existing ELM algorithms

and the four proposed AT-ELMs are reported in Table V. As

seen from the table, the AT-ELMs have higher classification

rates than the four competitive algorithms on all 34 classifica-

tion datasets. Among all of the 34 classification datasets, the

AT-ELMs achieve an improvement of more than 5% over the

best of the four competitive ELM algorithms on 13 datasets,

as indicated by underlined boldface, and a 0.73% ∼ 5%
improvement over the best of the four competitive ELM

algorithms on 21 datasets, as indicated by boldface. Within the

four AT-ELM algorithms, the AT-ELMOrth,2 method performs

better than or identically to the remaining three methods on 16

datasets, and the AT-ELMOrth,1 method shows its superiority

on 12 datasets. Utilizing the orthogonal hidden node parame-

ters indeed helps enhance the classification performance with

respect to the 34 tested classification datasets.

Furthermore, compared to the original ELM, AT-ELM

achieves an improvement of more than 16% on Wine, Iso-

let1, Isolet2, Isolet3, Isolet4, and Isolet5, 10% ∼ 20% on

Breast Tissue, Heart disease, Diabetic, Leukemia, Bupa liver,

Handwritten(Kar), Handwritten(Pix), Handwritten(All), TOX,

PC/MAC, BASE/HOCK, REL/ALTHE, and WarpAR10P, and

0% to 10% on the remaining 15 datasets. The poor per-

formance of the original ELM is mainly due to the hidden

node outputs being mostly located in the saturated regions

or the flat region of the Sigmoid for these databases. Fig.
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TABLE V
PERFORMANCE COMPARISON (RATE, STD%) ON BENCHMARK DATASETS USING THE SIGMOID FUNCTION.

Datasets ELM RELM RELMLOO KELM AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std

Breast Tissue 57.45 8.22 59.03 7.88 62.15 6.88 49.56 9.23 74.88 5.51 73.55 5.98 74.44 6.67 75.12 6.44

Cardiotocography 85.95 1.63 86.74 1.39 88.86 1.44 89.02 1.28 90.77 1.28 90.46 1.23 91.23 1.22 91.36 1.28

Diabetic 65.88 2.65 66.83 2.43 69.95 2.45 68.87 2.66 77.22 1.98 79.42 1.79 78.55 1.58 79.13 1.35

Heart disease 64.88 3.76 64.86 3.52 69.85 3.12 64.88 3.54 82.03 2.32 82.22 2.65 82.94 2.42 81.88 2.44

Letter 88.96 0.31 88.97 0.35 88.82 0.36 89.21 0.28 92.62 0.26 92.62 0.24 92.72 0.22 92.78 0.21

Leukemia 88.45 4.53 88.86 4.99 91.02 4.34 90.88 4.65 97.12 3.55 97.08 3.44 100 2.61 97.11 2.66

Bupa liver 58.22 4.11 61.05 3.98 67.21 3.22 66.87 3.46 74.76 2.34 74.21 2.88 74.87 2.52 73.87 3.20

Magic 77.25 0.42 77.34 0.35 78.53 0.36 78.32 0.43 84.54 0.29 84.85 0.32 84.87 0.28 85.23 0.28

Online-news 58.22 0.51 58.12 0.44 59.32 0.70 58.87 0.68 62.41 0.62 62.77 0.98 62.54 0.54 62.78 0.58

Optical-digits 96.33 0.41 96.85 0.38 97.21 0.35 96.55 0.32 98.33 0.22 98.12 0.24 98.53 0.22 98.15 0.20

Pendigits 96.97 0.32 97.05 0.22 97.22 0.21 97.45 0.20 98.21 0.12 98.14 0.11 98.14 0.12 98.25 0.10

Protein 87.21 1.12 87.32 0.22 90.13 0.54 89.43 0.66 91.21 0.76 90.58 0.70 91.43 0.65 90.82 0.86

Satimage 78.88 0.86 79.65 0.75 80.22 0.68 81.22 0.65 87.48 0.59 87.76 0.49 87.43 0.56 87.55 0.56

Breast Cancer 88.21 2.33 88.96 1.56 88.87 1.82 89.32 2.03 96.76 0.89 96.65 0.92 96.67 0.90 96.45 0.98

Wine 66.56 6.87 67.80 6.35 68.23 6.78 70.23 5.87 96.10 2.33 96.10 2.24 96.22 2.34 96.25 2.10

Handwritten(Pro) 91.32 1.21 91.88 1.24 92.46 0.98 92.55 0.86 98.46 0.49 98.45 0.65 98.41 0.47 98.52 0.48

Handwritten(Kar) 86.78 1.29 86.55 1.26 96.66 0.61 96.25 0.53 97.34 0.41 97.39 0.54 97.36 0.43 97.39 0.42

Handwritten(Pix) 86.32 1.32 89.22 1.54 96.67 0.58 95.43 0.58 97.43 0.32 97.75 0.35 97.38 0.42 97.70 0.24

Handwritten(Zer) 78.21 1.56 78.66 1.43 79.87 1.32 78.88 1.55 84.86 0.68 84.78 0.80 84.92 0.67 85.01 0.65

Handwritten(All) 89.21 0.65 90.43 0.87 95.76 0.96 96.21 0.56 98.88 0.37 99.02 0.34 99 0.37 99 0.38

Lung 89.77 3.45 89.89 4.21 92.56 2.44 93.11 2.54 96.12 1.54 96.87 1.24 95.99 1.79 96.42 1.65

Carcinom 86.87 3.22 87.67 3.34 88.22 3.46 89.02 3.12 95.94 2.08 96.22 1.43 96.65 2.32 96.30 1.91

gisette 90.88 0.65 90.83 0.51 95.02 0.44 95.31 0.22 96.45 0.34 96.44 0.33 96.50 0.39 96.54 0.32

TOX 78.02 5.12 78.56 4.53 78.97 4.24 79.02 3.48 92.54 4.28 92.77 4.02 92.87 4.12 93.34 3.22

Isolet1 45.33 2.40 51.43 2.55 93.66 0.87 93.55 0.76 94.46 0.68 94.40 1.01 94.37 0.81 94.55 0.97

Isolet2 46.32 2.55 50.56 2.42 92.31 0.97 93.04 0.77 94.18 0.78 94.21 0.74 94.44 0.89 94.30 0.94

Isolet3 44.65 3.87 45.76 1.98 90.21 0.97 90.77 0.87 91.66 0.76 91.75 0.89 91.76 0.77 91.59 0.73

Isolet4 42.11 2.43 45.76 2.87 89.42 1.23 89.97 1.55 90.66 1.23 90.88 1.21 90.87 1.10 91.00 0.96

Isolet5 44.88 2.76 48.77 3.76 91.23 0.87 91.33 0.98 91.80 0.86 91.87 1.21 91.95 0.83 91.67 0.76

PC/MAC 81.67 1.52 82.43 1.44 89.77 1.32 89.87 1.26 89.42 1.11 89.45 1.21 90.02 1.00 90.12 1.09

BASE/HOCK 80.23 1.22 82.31 2.34 94.43 0.67 94.21 0.77 95.31 0.47 95.47 0.65 95.77 0.87 95.61 0.81

REL/ALTHE 70.32 2.11 71.87 2.23 84.67 1.78 84.55 1.89 86.32 1.44 86.56 1.23 86.71 1.21 86.44 1.29

20Newsgroup 79.55 0.43 79.86 0.34 80.21 0.44 80.31 0.25 82.33 0.45 82.56 0.32 82.71 0.24 82.66 0.45

WarpAR10P 87.21 5.46 87.43 5.31 89.66 4.55 91.45 2.87 97.60 2.72 97.72 2.55 97.54 2.43 96.87 2.66

4 compares the hidden node outputs in the ELM and AT-

ELM on Breast Tissue and Diabetic, respectively. As expected,

using the fixed Sigmoid, the hidden node outputs in ELM

on Breast Tissue are highly concentrated in the tail regions.

While for the Diabetic dataset, the hidden node outputs are

mainly distributed in either the tail or the center flat regions.

In contrast, the curves of the hidden node outputs obtained

by the proposed AT-ELM remain similar to the shape of

the Sigmoid because they are evenly distributed within the

range [0, 1]. Although the LOO cross-validation approach

helps enhance the classification performance of the ELM for

some datasets, the classification rate is only slightly enhanced

for most datasets or even becomes worse in a few cases.

Mere optimization over λ is usually unable to overcome the

difficulty that arises from using the fixed activation functions

mentioned in Section II-B. In this section, a comparison of the

computational complexity is omitted due to page limitations.

The sensitivity to the number of hidden nodes for all of the

algorithms and the downsampling number Nd for the affine pa-

rameter estimation is also tested in this section. Fig. 5 depicts

the performance of the ELM, RELM, RELMLOO, KELM, and

the proposed AT-ELM1, in terms of the number of hidden n-

odes on the Heart disease, Diabetic, and Breast Tissue datasets.

The performances of the remaining three AT-ELMs is not pre-

sented in the figure because they are close to that of AT-ELM1.

As shown in the figure, employing different numbers of hidden

nodes can affect the recognition accuracy, but the best accuracy

by the proposed AT-ELM1 is much higher than those by the

ELM, RELM, RELMLOO, and KELM. Fig. 6 presents the

Fig. 4. Hidden node outputs in the ELM and AT-ELM on Breast Tissue and
Diabetic datasets.

recognition accuracy obtained by the proposed AT-ELM2 and

AT-ELMOrth,2 w.r.t. different Nd values used in Algorithm

1 for the affine parameter estimation. Seven different Nd

values Nd = [500, 1000, 5000, 10000, 15000, 20000, 25000]
are tested on the Handwritten(Kar) and Isolate1 datasets.

As depicted, the variations in the recognition accuracy for

different Nd values are slight, which indicates that AT-ELM2

and AT-ELMOrth,2 are not sensitive to Nd. In fact, only two

parameters must be estimated. Any number of samples that

well cover the output range of the activation function should

be very acceptable.



11

Fig. 5. Performance comparisons of different algorithms for different
numbers of hidden nodes on the Heart disease, Diabetic, and Breast Tissue
datasets.
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Fig. 6. Recognition performance w.r.t. different Nd values.

C. Image recognition

Further experiments on 6 benchmark image databases are

presented in this section. Except that the experiment on USPS

has only one setup, those on the other 5 databases have two

setups, which are described in detail in the following

• AR: The AR face database consists of 2600 image

samples collected from 100 individuals. We tested the

performance on this database under two setups. In the

first setup, all of the 2600 images were adopted, and 540

features extracted from each image were used. The first

8, 10, 12, 14 and 16 images per person were used for

training, and the remaining samples were employed for

testing. In the second setup, only 1400 images (the first

14 samples per person) were adopted, and 300 eigenface

features extracted from each image were used in the

experiment. Half of the 1400 images were used for model

training, and the remaining images were adopted for

performance testing.

• USPS: The USPS database includes a total of 9298

handwritten samples for the ten digits 0∼9, collected

from disjoint writers. The pixels of each 16×16 grayscale

image were directly used as the features for digit repre-

sentation. In the experiment, 7291 images were used for

classifier training, and the remaining images were used

for testing.

• ORL: The ORL face database has two datasets of the

same images taken from 40 different face subjects, one set

with a 16×16 grayscale and the other set with a 32×32
grayscale. For each subject, 10 image samples taken at

different times with varying lighting, facial expressions

and facial details were collected. On this database, the

experiment has two setups. In both setups, pixels of the

grayscale images are adopted as the features. In the first

setup, 2, 3, 4, 5, 6, 7 and 8 samples per category of the

dataset with the 32× 32 grayscale images were selected

for the classifier learning, and the remaining samples

were used for testing. In the second setup, 60% of the

images were randomly selected for the model training,

and the remaining 40% were used for testing for each of

the two datasets.

• Yale: The Yale face database also has two datasets, which

are constituted by the same 165 images that belong to 15

individuals, one dataset with a 32× 32 grayscale and the

other with a 64 × 64 grayscale. For each individual, 11

image samples are captured under different expressions or

configurations, such as happy, sad, sleepy, with/without

glasses, and so on. On this database, the experiment also

has two setups. In the first setup, 3, 4, 5, 6, 7 and 8 images

per category from the dataset with the 32× 32 grayscale

were selected to train the model, and the remaining

images were used for testing. In the second setup, 60% of

the images were randomly chosen for the model training

and the remaining 40% were used for testing for each of

the two datasets.

• Yale B: The extended Yale B face database consists of

2414 samples, collected from 38 different individuals.

There are approximately 64 near-frontal images under

different illuminations for each person in the database.

Each image has been cropped and resized to 32 × 32,

and the pixels are employed as the features. The two

experimental setups on this database are as follows. In

the first setup, 5, 10, 20, 30, 40 and 50 images per

category were used for training, and the remaining images

were adopted for testing. In the second setup, 60% of the

images were randomly chosen from the dataset and were

employed for classifier training, and the remaining images

were used for testing.

• MNIST: The MNIST database contains binary images of

handwritten digits. The original database includes 60,000

training and 10,000 testing samples from hundreds of

disjoint writers. The experiment on this database was also

conducted under two setups, where for each image, the

grayscale pixels were used as the features. In the first

setup, the first 2,000 training samples and the first 2,000

testing samples were used. In the second setup, the first

10,000 training samples and all of the 10,000 testing

samples were adopted.

Similar to Section IV-B, the optimal number of hidden n-

odes for all ELM-based algorithms is searched within a

certain range. The detailed range for MNIST with 10,000
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TABLE VI
PERFORMANCE COMPARISON (RATE, STD%) ON BENCHMARK IMAGE DATASETS.

Datasets ELM RELM RELMLOO AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std

Sigmoid

AR 72.43 1.44 73.66 1.11 86.54 0.87 92.31 0.65 92.66 0.57 92.29 0.50 92.67 0.50

USPS 92.77 0.80 92.66 0.77 92.46 0.73 93.76 0.58 93.44 0.76 93.22 0.65 93.47 0.66

ORL (32 × 32) 72.44 4.23 73.21 3.78 87.25 2.56 95.28 1.44 94.97 1.67 95.21 1.66 95.36 1.44

ORL (64 × 64) 90.24 3.45 91.44 1.43 92.43 2.56 96.72 1.21 96.94 1.04 97.12 0.77 96.88 0.56

Yale (32 × 32) 72.43 4.55 73.67 5.42 74.55 3.88 82.87 4.32 82.87 4.76 83.65 4.46 84.12 4.27

Yale (64 × 64) 82.66 3.43 82.45 4.21 82.33 4.67 89.88 3.11 91.21 2.56 90.34 3.22 91.76 2.88

Yale B 70.76 1.88 71.12 1.87 89.21 1.44 97.11 0.73 97.21 0.66 97.54 0.56 97.51 0.45

MNIST (2000) 82.55 0.68 82.31 0.57 87.88 0.57 88.43 0.57 88.79 0.34 87.95 1.03 88.12 0.77

MNIST (10000) 93.02 0.13 92.88 0.18 93.45 0.10 94.97 0.10 94.90 0.08 94.88 0.12 94.87 0.10

Hyperbolic Tangent

AR 71.25 1.33 71.44 1.11 84.66 0.95 91.90 0.76 92.34 0.72 91.87 0.68 92.88 0.65

USPS 92.44 0.87 92.08 1.21 91.87 0.97 93.87 0.65 93.55 0.89 93.45 0.67 93.67 0.78

ORL (32 × 32) 71.87 4.56 73.25 3.87 88.45 2.34 95.66 1.34 95.98 1.32 95.80 1.42 96.22 1.22

ORL (64 × 64) 91.22 2.12 91.78 2.24 92.76 2.41 96.12 1.55 96.21 1.23 96.02 1.48 96.32 1.21

Yale (32 × 32) 73.27 4.34 74.88 5.82 74.89 4.45 80.55 4.42 82.87 5.34 80.97 4.55 83.66 5.10

Yale (64 × 64) 82.32 5.21 82.98 4.55 81.77 3.68 89.55 2.78 90.33 3.21 89.78 4.28 90.44 3.24

Yale B 70.25 1.66 71.71 1.56 89.77 1.04 97.11 0.58 97.62 0.55 97.68 0.55 97.95 0.54

MNIST (2000) 81.55 0.77 81.28 1.22 87.44 0.87 89.33 0.58 88.54 0.88 89.12 0.76 88.43 0.57

MNIST (10000) 92.87 0.23 92.87 0.22 93.34 0.21 94.88 0.13 94.87 0.09 94.94 0.12 94.88 0.09

TABLE VII
TRAINING TIME COMPARISON (SECONDS) ON BENCHMARK IMAGE DATASETS (SIGMOID).

Datasets ELM RELM RELMLOO AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

AR 1.3822 1.4355 3.574 3.6745 3.8786 3.6754 3.8957

USPS 1.9780 1.9867 11.273 12.121 11.254 11.457 12.477

ORL (32 × 32) 0.0556 0.0621 0.1342 0.1455 0.5632 0.1476 0.4421

ORL (64 × 64) 0.0988 0.0975 0.1822 0.2134 0.7734 0.2254 0.6859

Yale (32 × 32) 0.0187 0.0195 0.0563 0.0457 0.4432 0.0564 0.5433

Yale (64 × 64) 0.0431 0.0455 0.0877 0.0978 0.5524 0.0857 0.4367

Yale B 1.3455 1.3476 4.578 4.869 5.211 4.973 5.479

MNIST (2000) 1.4453 1.4768 5.436 5.556 5.967 5.674 6.241

MNIST (10000) 12.478 12.675 45.324 46.758 46.893 46.566 46.784

TABLE VIII
PERFORMANCE COMPARISON (RATE, STD%) OF STATE-OF-THE-ART ALGORITHMS ON BENCHMARK IMAGE DATASETS.

Datasets KELM [3] SBELM [9] ECS-ELM [10] DQLS-SVM [53] AT-ELM1 AT-ELM2 AT-ELMOrth,1 AT-ELMOrth,2

Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std Rate Std

AR 87.22 0.77 90.45 0.68 92.7 0.65 92.82 0.52 92.31 0.65 92.66 0.57 92.29 0.50 92.67 0.50

USPS 92.87 0.78 92.44 0.70 92.56 0.68 93.22 0.58 93.76 0.58 93.44 0.76 93.22 0.65 93.47 0.66

ORL (32 × 32) 87.02 1.74 94.44 1.67 93.45 1.72 94.88 1.65 95.28 1.44 94.97 1.67 95.21 1.66 95.36 1.44

ORL (64 × 64) 94.76 1.21 95.21 1.14 95.86 0.98 96.21 0.85 96.72 1.21 96.94 1.04 97.12 0.77 96.88 0.56

Yale (32 × 32) 75.87 5.22 80.11 4.87 82.34 4.57 83.22 4.43 82.87 4.32 82.87 4.76 83.65 4.46 84.12 4.27

Yale (64 × 64) 84.57 3.86 83.66 3.78 86.24 3.12 90.15 3.16 89.88 3.11 91.21 2.56 90.34 3.22 91.76 2.88

Yale B 91.22 1.02 92.75 0.87 95.62 0.76 97.05 0.64 97.11 0.73 97.21 0.66 97.54 0.56 97.51 0.45

MNIST (2000) 87.43 0.89 85.88 1.04 87.34 0.97 88.22 0.76 88.43 0.57 88.79 0.34 87.95 1.03 88.12 0.77

MNIST (10000) 93.55 0.21 93.76 0.18 94.92 0.14 95.22 0.07 94.97 0.10 94.90 0.08 94.88 0.12 94.87 0.10

training samples is [2000 : 200 : 4000]; for AR, USPS, ORL

(64× 64), and Yale (64× 64) is [1000 : 200 : 3000]; for Yale

(32× 32), Yale B, and MNIST with 2,000 training samples is

[400 : 200 : 2000]; and for ORL (32×32) is [100 : 100 : 1000].
Both the Sigmoid and Hyperbolic tangent functions served as

the activation function.

Fig. 7 shows the performance comparison on the AR

(random feature), ORL (32 × 32), Yale (32 × 32) and Yale

B databases, all under the first setups. It is obvious that the

AT-ELM-based algorithms consistently outperform the three

competitive ELM methods on all four datasets. It is worthwhile

to point out that the ELM and RELM fail to recognize the

AR faces with random features, as shown in Fig. 7 (a). The

main reason for the failure is that both the ELM and RELM

suffer the same hidden node net input distribution issue as

depicted in Figs. 2 and 4. Although the LOO cross-validation

in RELM improves the classification accuracy, the recognition

performance is still worse than those of AT-ELMs for all

cases. At the same time, a similar observation to those in

Sections IV-A and IV-B is shown in Fig. 7, i.e., adopting

orthogonal random hidden node parameters in the AT-ELM

usually achieves the best results among all of the four AT-

ELM-based algorithms.

In addition, the average classification rates obtained in

experiments on all of the 6 benchmark databases under setups

other than those used for comparison in Fig. 7 are given in

Table VI. The best and second-best results are highlighted by

boldface and underlined in the table. It is apparent that for

the Sigmoid function, the proposed AT-ELMs always achieve

the best recognition performance. On 5 of the total 9 datasets,

the AT-ELM-based algorithms offer 5.45% ∼ 8.25% improve-

ments over the best results obtained by the four competitive

ELM methods, while on the remaining 4 datasets, the incre-

ments in the recognition rates by AT-ELMs are approximately



13

Fig. 7. Classification rate on the AR (random feature), ORL (32×32), Yale
(32× 32) and extended Yale B databases with the Sigmoid function.

0.89% ∼ 2.36%. To show the computational complexity of

the proposed AT-ELMs, the training time on all of the image

datasets is recorded in Table VII for comparison. Similar

to the observations in Table III of Section IV-A, compared

to the computational time spent by searching the optimal

regularization parameter λ in LOO, the time for updating the

affine parameters in Algorithm 1 is very short.

In addition to the Sigmoid function, we also tested the affine

transformation hyperbolic tangent function as the activation

function in our AT-ELM algorithms in all of the experiments

in Sections IV-A∼IV-C. The affine transformation hyperbolic

tangent function is expressed as f(x, s, t) = sinh(s·x+t)
cosh(s·x+t) , where

sinh and cosh denote the hyperbolic sine and hyperbolic

cosine functions, respectively. For each experiment, similar

observations to those with the Sigmoid function were obtained.

Due to page limitations, only the results of the benchmark

image recognition datasets are reported in Table VI. As

expected, the proposed algorithms achieve similar performance

and enhancement by using the affine transformation hyperbolic

tangent function.

To further demonstrate the superiority of the proposed

AT-ELMs, we compare the recognition performance on the

benchmark image datasets with several other state-of-the-art

algorithms, including the KELM [3], the sparse Bayesian ELM

(SBELM) [9], the evolutionary cost-sensitive ELM (ECS-

ELM) [10] and the data density-dependent quantized least

squares SVM (DQLS-SVM) [53]. The SBELM improves the

original ELM by first estimating the marginal likelihood of

the network outputs and then pruning the redundant hidden

neurons during learning [9]. The ECS-ELM enhances the

generalization performance by introducing an adaptive evolu-

tionary cost-sensitive matrix to quantify misclassified samples

in ELM [10]. The DQLS-SVM algorithm employs a data

density-dependent vector quantization method for input sample

representation and adopts the LS-SVM for quantized data

classification. To have a fair comparison, the number of hidden

nodes used in the KELM, SBELM, and ECS-ELM are the

same as that in the AT-ELMs used in this subsection. The

Gaussian kernel function is adopted in the KELM and DQLS-

SVM, where the cost parameter and kernel parameter are both

optimized within
{

2−24, 2−23, · · · , 224, 225
}

. For SBELM and

the four proposed AT-ELMs, the Sigmoid function is adopted.

As suggested in [53], in DQLS-SVM, the shrinkage parameter

δ that controls the number of points within the region of the

code center for density representation, is set to the value of

1% for the entire sample number in each dataset. For all of

the datasets, the training and testing sample ratio is set to the

same value given at the beginning of this subsection. Table

VIII shows the comparison of the average recognition rate

(Rate), where the best and second-best results are highlighted

by boldface and underlined, respectively. One can observe that

the proposed AT-ELMs show the best recognition performance

in 7 of the 9 datasets, and the DQLS-SVM has the highest

recognition rate in the remaining two datasets.

V. CONCLUSIONS

Neglecting the hidden layer net inputs distribution and using

a fixed activation function in the extreme learning machine

(ELM) can lead to poor generalization performance. The

reason behind this effect is that using random parameters

without tuning in the ELM can move most hidden layer net

inputs into the saturated or linear regions of the activation

function. To overcome these deficiencies, an effective ELM

algorithm with an affine transformation activation function,

or in short, the affine transformation ELM (AT-ELM), has

been developed in this paper. This algorithm enforces the

hidden layer outputs to be approximately uniformly dis-

tributed within the output range of the activation function

by adjusting the scaling and translation parameters of the

affine transformation based on the maximum entropy theory.

Extensive experiments on nonlinear function regression, real-

world benchmark dataset classification and image recognition

have been conducted. The results show that the AT-ELM-based

algorithms outperform the original ELM, RELM, KELM, and

RELMLOO. Experiments on 6 benchmark image recognition

datasets also show that the proposed AT-ELMs outperform

several other state-of-the-art algorithms. In addition, among

all AT-ELMs, employing orthogonal hidden node parameters

has usually achieved the best generalization performance.

APPENDIX A

DERIVATION OF (11)

Since all of the elements in W, x and b are i.i.d. and

mutually independent, for each element vi in the hidden layer

net input matrix V, the expectation is expressed as

E (vi) = E (wi · xj + bi)

= E (wi · xj) + E (bi)

= L · E (wi)E (xi) + E (bi) .

For wi and bi obeying the uniform distribution U [−1, 1]
or standard normal distribution, we have E (wi) = 0 and
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E (bi) = 0. Thus, E (vi) = 0. The variance of vi is then

computed as var (vi) = E
(

v2i
)

, which is

E
(

v2i
)

= E
[

(wi · xj)
2
]

+ var (bi)

=
L
∑

i=1

E
(

w2
i

)

E
(

x2
i

)

+ var (bi)

= L · var (wi)E
(

x2
i

)

+ var (bi) .
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