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Extreme learning machine (ELM) has been developed for single hidden layer feedforward neural networks (SLFNs). In ELM
algorithm, the connections between the input layer and the hidden neurons are randomly assigned and remain unchanged during
the learning process. �e output connections are then tuned via minimizing the cost function through a linear system. �e
computational burden of ELM has been signi�cantly reduced as the only cost is solving a linear system. �e low computational
complexity attracted a great deal of attention from the research community, especially for high dimensional and large data
applications.�is paper provides an up-to-date survey on the recent developments of ELM and its applications in high dimensional
and large data. Comprehensive reviews on image processing, video processing, medical signal processing, and other popular large
data applications with ELM are presented in the paper.

1. Introduction

It is well known that the back-propagation (BP) based algo-
rithms [1–3] played dominant roles in training feedfor-
ward neural networks (FNNs) in the past several decades.
Although many e
orts have been paid to enhance the BP
algorithm, challenging issues such as local minima, time-
costing in learning, andmanual parameter setups still remain
in the training phase and are not well addressed in the
literature. �ese drawbacks may limit its applications in high
dimensional and large data. Other than BP based neural
network, support vector machine has been comprehensively
investigated and implemented for model regression and clas-
si�cation applications [4–8]. Comparing to arti�cial neural
networks, the relatively high generalization performance of
SVM attracted increasing attention from researchers and
engineers in the past two decades. However, both the BP
based neural networks and the SVM are likely to face a
relatively long learning time issue for complex data and
suboptimal generalization performance. In the current big
data and complex system era especially [9], data are explosive

with the rapid development of the internet, computer, and
electronic equipments.

�e timely proposed extreme learning machine (ELM)
has shown its eciency in training feedforward neural
networks and overcoming the limitations faced by the BP
algorithm and its variants [10–15]. �e essences of ELM lie
in two aspects, that is, random neurons and the tuning-
free strategy. �e learning phase of ELM generally includes
two steps, namely, (1) constructing the hidden layer output
matrix with random hidden neurons and (2) �nding the
output connections. �anks to using random hidden neuron
parameters which remain unchanged during the learning
phase, ELM enjoys a very low computational complexity.
�e computational burden has been greatly reduced as the
only cost is solving a linear system. At the same time,
numerous applications have shown that ELM can provide a
comparable or better generalization performance than the
popular support vector machine (SVM) [4, 6] and the BP
method in most cases [11, 16–18].

�eoretical support and analyses of ELM have been
comprehensively studied in the literature. Such contributions
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include the universal approximation capability [12], the clas-
si�cation capability [19], the uni�ed learning platform and
its comparisons to SVM [16], the feasibility assessments on
its generalization performance, and pros and cons [20, 21].
Fruitful results covering the algorithm developments [14, 17,
18, 22–39] and applications [39–103] based on ELM have
been achieved in the past several years. For the detailed
summary on ELM variants and the insight into ELM on
randomness and learning, we recommend the readers to refer
to the interesting work [104, 105]. As the main concerns
in [104, 105] are on the survey of theory and algorithm
developments for ELM and its possible connections with
humanbrain biological learningmechanisms, this paper aims
to provide a detailed review on high dimensional and large
data applications with ELM and its variants.

Bene�ting from the low computation complex and the
reasonable performance, ELMhas shown powerful capability
in handling large data, such as image processing and com-
puter vision. In this paper, we aim to provide an up-to-date
survey on applications in high dimensional and large data
using the ELMmethod. A review on basic ELM and its recent
development is �rst given. �en, applications using ELM
and its variants on large data are reviewed, including image
processing, video processing, and medical signal processing.
Conclusions and future perspectives are also provided in the
paper.

2. ELM Algorithms

2.1. Basic ELM Algorithm. Given a training data A =
{(x�, t�)}N�=1, the output function of the single hidden layer
feedforward neural network (SLFN) with � hidden neurons
can be expressed as

� (x�) =
�∑
�=1
��ℎ� (a�, 	�, x�) = h (x�)�, � = 1, . . . ,N, (1)

where � = [�
1
, . . . ,��]� is the output weight matrix,

h(x�) = [ℎ1(a1, 	1, x�), . . . , ℎ�(a�, 	�, x�)] is the network output
corresponding to the training sample x�, ℎ�(⋅) is a nonlinear
piecewise continuous function, and a� ∈ R

� and 	� ∈
R (� = 1, 2, . . . , �) are parameters of the �th hidden node,
respectively. �e network training is to �nd suitable network
parameters to minimize the error function ‖H�−T‖2, where
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are the hidden layer output matrix and the target output,
respectively.�e illustration of a SLFNwith�hidden neurons
is depicted in Figure 1.

Other than updating the network parameters iteratively
as done in conventional gradient decedent algorithms, ELM
employs random hidden node parameters and the tuning-
free training strategy for feedforward neural networks. �e
learning is then transferred to solving a linear system which

· · ·

· · ·· · ·

· · ·

f(x)

1 m

�1
�j �L

1 j L

1 d

x

h(a1, b1, x) h(aj, bj, x) h(aL, bL, x)

Figure 1: Single hidden layer feedforward neural network (SLFN).

has been well suited via the minimal norm least square
approach [10, 11]. As shown in the universal approximation
capability theorems [12], ELM is �exible with hidden activa-
tion functions. Almost any nonlinear piecewise continuous
functions and their linear combinations work well in ELM
algorithms [11, 104]. �anks to these advantages, ELM has
shown superiority of the fast learning speed and reasonable
generalization performance over SVM and its variants [10, 11,
16].

2.2. Uni�ed ELM. A uni�ed learning platform of ELMwhich
minimizes the training errors and the norm of the output
weight matrix has been presented in [16]. A regulation coe-
cient is introduced to provide a trade-o
 betweenminimizing
the training errors and the norm of output weights. �e
equality optimization constraints based ELM is expressed as

min
1

2

���������22 + �2
N∑
�=1

����������2 ,
s.t. h (x�)� = t�� − ��� , � = 1, . . . ,N,

(3)

where t� and �� are the target output and the estimation error
corresponding to the training sample x�, respectively, and �
is the regulation coecient. According to the Karush-Kuhn-
Tucker (KKT) theorem [106], the network output weights are
derived by solving the following dual optimization problem:

LDELM := 12
���������22 + �2

N∑
�=1

����������2

− N∑
�=1
(h (x�)� − t�� + ��� )��,

(4)



Mathematical Problems in Engineering 3

where �� = [��,1, . . . , ��,�]�. �e optimal network output
weight matrix � can be derived by �nding the derivatives of
LDELM with respect to �, ��, and �� and setting them to 0.�e
nonkernel case and the kernel case solutions of � have been
presented in [16], respectively, that is,

(1) nonkernel case:

� = ( I� +H�H)
−1
H
�
T; (5)

(2) kernel case:

� = H� ( I� +HH
�)−1 T

= H� ( I� + KELM)
−1
T.

(6)

�e detailed calculation of (5) and (6) can be referred to in
[16]. Here, I denotes the identity matrix andKELM is the ELM
kernel de�ned in [16] withKELM = {K(x�, x�)} = {h(x�)⋅h(x�)},�, � = 1, . . . ,N. h(⋅) is named the random feature mapping
where all the parameters are randomly generated.

2.3. ELM Variants. Besides the basic ELM and the regu-
larized ELM algorithms, a great number of variants based
on ELM have been developed in the past several years.
�ese developments can be broadly categorized into the fully
complex ELM, the incremental ELM, the online sequential
ELM, the ensemble ELM, and the pruning ELM.

In addition to discussions on real-valued neural net-
works, Huang et al. [15] extended the basic ELM to complex-
valued neural networks, which can be employed to eciently
address equalization problems in digital communications. It
was shown in [15] that ELM works well with fully complex
activation functions in the hidden neurons. �e universal
approximation capability of ELM with complex continuous
discriminatory or complex bounded nonlinear piecewise
continuous function has been provided in [15].

�e developments of incremental ELM (I-ELM) enriched
the ELM family in the incremental learning �eld [12–14].
Huang et al. [12, 13] utilized the random hidden neuron to
incrementally construct the FNNs. It was also shown [12]
that I-ELM is �exible in hidden neurons activations. �us, I-
ELM and its variants enhanced I-ELM (EI-ELM) and error
minimized ELM (EM-ELM) has shown superiorities over
conventional incremental learning techniques as the usage of
them is usually limited to certain types of activations func-
tions. For example, the popular resource allocation networks
only work for radial basis functions (RBF) [107, 108]. Other
than constructing the network incrementally, Zhang et al.
[14] have recently developed the dynamic ELM (D-ELM),
which can iteratively add or delete hidden neurons according
to their contributions to network performance. It has been
demonstrated that D-ELM achieves a good generalization
performance with a reduced network size.

Based on ELM and the recursive least square algorithm
(RLS), Liang et al. [25] presented a novel online sequential

ELM algorithm (OS-ELM) for SLFNs. OS-ELM has well
addressed the problem encountered by the conventional
batch-mode learning algorithms which generally require
that all training samples are available at hand for model
constructions. OS-ELM involves two steps for sequential data
learning, namely, (1) themodel initializationwith the existing
training data and (2) the sequential learning phase with new
collected samples. In the initialization phase, OS-ELMadopts
the basic ELM to train the SLFN. In the sequential learning
phase, the network output weight matrix is updated via the
RLS algorithm by only exploiting the new received data.With
this new learning strategy, OS-ELM enjoys the merits of low
computational complexity and �exibilities in processing the
number of sequential data; that is, OS-ELM is able to handle
new captured data in both one-by-one and chunk-by-chunk
with �xed or varying chunk sizes cases. Improvements based
onOS-ELM include the online sequential fuzzy ELM[26], the
ensemble basedOS-ELM, the voting basedOS-ELMclassi�er
[28], and the ensemble of subset OS-ELM for class imbalance
applications [39].

An alternative to the basic ELM with a single SLFN is the
ensemble based ELM [17, 18]. To enhance the generalization
performance of ELM and overcome the suboptimal solution
issue which may be induced by random parameters, the
ensemble based ELM employs multiple SLFNs to construct
the decision model using a plurality consensus scheme.
Various strategies have been utilized for the implementation
of ELM ensembles in the past several years [17, 18, 28–30]. Liu
and Wang [17] partitioned training data into various subsets
with equal number of samples and implemented independent
ELMs on each subset by using a training and cross validation
approach to improve the generalization performance and
avoid over�tting. Lan et al. took the averaging among multi-
ple ELMs for online sequential training to reduce the network
deviation. A majority voting based ELM ensemble (V-ELM)
approach has been presented in [18] to enhance the classi�ca-
tion rate.�emethod has been then extended to the majority
voting online sequential ELM ensemble (VOS-ELM) in [28].
To further ameliorate the classi�cation performance, Lu et
al. [29] recently introduced two dissimilarity measures to
calculate the similarities among ELMs. �is approach can
eciently remove similar and redundant ELM ensembles
existing in V-ELM and improve the recognition accuracy.
To emphasize the contribution di
erence of each ELM
ensemble to the �nal classi�cation performance, Liu et al. [30]
presented an improved approach named the evolutionary V-
ELM (EV-ELM) for signal classi�cation. �e contribution
di
erence of each ensemble is realized by a weighting scheme
where the di
erential evolutionary algorithm is involved to
automatically update the weights.

Pruning ELM and its variants are another group of learn-
ing approaches which have recently received comprehensive
attention from the research community [22, 23]. To design a
systematic classi�er using ELM, �rstly generated a network
with a large size and then eliminated hidden neurons with
low relevance to the class labels by means of the Chi-squared
and information gain measures. Miche et al. [22] presented
a robust and generic algorithm named the optimally pruned
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ELM (OP-ELM) for regression and classi�cation. �e leave-
one-out strategy is adopted in OP-ELM to select a proper
number of hidden neurons where the multiresponse sparse
regression algorithm is used to rank the signi�cance of
hidden neurons. It is stated in [22] that OP-ELM is more
ecient than ELM in handling irrelevant or correlated data.
Based on OP-ELM and fuzzy theory, Pouzols and Lendasse
[23] developed an enhanced method named the evolving
fuzzy OP-ELM (eF-OP-ELM) for the Takagi-Sugeno systems
identi�cation. Recently, Moza
ari and Azad presented an
improved pruning algorithm based on ELM for the engine
cold-start hydrocarbon emission identi�cation. �e novel
method is referred to the ensemble of regularized OP-ELM
using the negative correlation learning selection criterion
(OP-ELM-ER-NCL).

Besides the above-mentioned variants on ELM, promi-
nent contributions on algorithms in the past three years
mainly include the Bayesian ELM [33] and the sparse
Bayesian ELM [35], the bidirectional ELM [32], the parallel
ELM (PELM), the hierarchical structure of ELM (HELM),
the ELM tree [38], the timeless OS-ELM (TOSELM), the
dissimilarity based ensemble of ELM (DE-ELM) [29], and
the random projection based ELM (RP-ELM) [34]. �ese
fruitful results have widely enriched the ELM family, not
only in the development of methodologies, but also in their
contributions to real-world applications.

3. ELM in High Dimensional and
Large Data Applications

�e property of low computational complexity in ELM
attracts extensive attention from the research community.
�e reduced computational burden makes ELM and its
variants more feasible in dealing with high dimensional and
large data applications than conventional iterative algorithms
and SVM. Simulation results presented in [11] showed that,
for very large complex applications, ELM not only learns
thousands times faster than conventional popular learning
algorithm for FNNs but also produces good generalization
performance. A recent progress on ELM for deep learning is
given in [36]. �e representational learning using multilayer
ELM for deep networks is developed for big data processing.
In this section, we aim to provide an up-to-date review on
the high dimensional and large data processing with the
ELM based approach. For the convenience of presentation,
we conclude the applications in four parts in the following,
that is, ELM in image processing, ELM in video applications,
ELM in medical applications, and other applications.

3.1. ELM in Image Processing. �anks to the reliable per-
formance and fast learning speed, image recognition and
objective detection using ELM have attracted increasing
attention in recent years [40–55]. Among these applications,
face recognition based on ELM and its developments is one
of the hot topics which has been widely discussed by many
researchers [40–44]. Zong and Huang studied the multilabel
face recognition performance using the ELM classi�er. Two

approaches, namely, ELMbased on the one-against-all (ELM-
OAA) and one-against-one (ELM-OAO) strategies, are used
for face recognition. Discussions and comparisons on four
benchmark face databases have shown that the ELM based
classi�er is able to achieve a comparable recognition rate
to SVM but wins the convenience in parameter selection.
Marques and Graña [40] proposed a novel feature extraction
method named the lattice independent component analysis
(LICA) for face image representation. �e basic ELM and
the regularized ELM are then adopted for face classi�cation.
�e conventional feature extractions including principal
component analysis (PCA), independent component analysis
(ICA), linear discriminant analysis (LDA), and two state-of-
the-art algorithms SVMand random forest are introduced for
comparison. It is illustrated via experimental results in [40]
that combining LICA with ELM obtains the best recognition
performance. Choi et al. [41] proposed an incremental face
recognition algorithm to address the real-time retraining
problem for simultaneous recognitions in social network
services such as Twitter and Facebook. �e reduced Gabor
features learned through the binarization of a Gabor �lter
by considering orientations in di
erent grid positions are
employed for face image representation. �e OS-ELM is
used to perform the sequential learning on each subregion
a�er dividing the face image into equally sized local patches
in [41]. Wang et al. [42] presented a discriminant tensor
subspace analysis based face representation approach. �e
SLFN is then trained as classi�er using the extracted features
with the basic ELM algorithm. He et al. introduced a novel
and fast face recognition by combining the sparse coding
and ELM. �e OP-ELM is utilized to learn the common
feature hypothesis directly from the randomly collected
universal images. To speed up the recognition process, ELM
is embedded in �nding the sparse representation coecients.
To enhance the recognition accuracy, Zhao et al. developed
the ensemble of polyharmonic ELM (EP-ELM) for human
face classi�cation. �e facial features are �rst obtained with
the fast discrete curvelet transform (FDCT) and then the 2-
dimensional principal component analysis (2DPCA) is used
for feature dimensionality reduction. �e EP-ELM classi�er
which exploits the performance of multiple P-ELM networks
is implemented for face recognition in. In addition, Uçar [43]
investigated the performance of color face image recognition
with local features extracted by the steerable pyramid trans-
form (SPT) and the basic ELM. Uçar et al. [44] analyzed
the facial expression recognition via OS-ELM with the RBF
networks. In [44], the curvelet transform coecients on local
cells of the image are �rst calculated and then the spherical
clustering (SC) method is performed on the feature set to
determine the optimal RBF network parameters in OS-ELM,
where the feature set is derived by �nding the entropy, the
standard deviation, and the mean of curvelet coecients of
each region.

Besides applications in face recognition, much concern
has been paid to object detection and image classi�cation
with ELM [45–51]. Lu et al. [45] applied the basic ELM to
the palmprint recognition. Combining with the PCA and
locality preserving projection based dimensionality reduc-
tion approach, ELM achieves a higher recognition rate on
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the palmprint image classi�cation than the BP based FNNs.
In the meantime, the cost time of ELM on data learning
and image recognition is far less than one second in dealing
with hundreds of images. Minhas et al. implemented the
original ELM to image object recognitions. �e global and
local pieces of information extracted via the two-dimensional
PCA and Ferns style approach [109] are �rst employed for
image representation. �en, parallel ELMs are learned as
the classi�er for object recognition. It is shown that ELM
classi�er is able to achieve a high recognition performance
on several standard databases with more than ten thousand
features. Moreover, the ELM classi�er can recognize an
image within a second compared to some related modern
techniques, which generally take around 2-3 seconds per
image. Cao et al. developed an e
ective ELM (EELM) for
image classi�cation. Incorporating the curvelet transform for
image decomposition, the discriminative locality alignment
for dimensionality reduction, extreme �-means method for
feature set generating, and the proposed recognition frame-
work with the EELM achieves a higher classi�cation rate than
the basic ELM. Man et al. [46] investigated the handwritten
digit image recognition performance with an optimal weigh
learning machine based on ELM. �e input weights in ELM
are optimized in [46] by referring to the idea of model
reference control in control engineering. Luo and Zhang [47]
presented a hybrid method for handwritten image and face
classi�cation based on ELM and the sparse representation
classi�er (ELM-SRC). Combining the fast learning speed
merit of ELM and the relative high accuracy advantage
of SRC, the new classi�er ELM-SRC is shown to have a
faster training speed than SRC and a higher recognition
rate than ELM. Zhu et al. [48] applied ELM for vehicle
detection in a driving simulation platform. Comparing with
SVM and BP, ELM has shown a comparable performance
in virtual road segmentation and vehicle recognition with
a fast learning and testing speed, which makes it suitable
in real-time implementation. Rong et al. [49] adopted ELM
to identify the images containing di
erent types of aircra�s.
Multiple SLFNs training with ELM are used as the classi�er.
�e �nal category is decided using a weighted sum strategy
on all the classi�cation outputs obtained by each modular
SLFN. To speed up the image recognition, Zhang et al.
applied ELM into the standard ICA. �e combination has
well addressed the extremely high computational complexity
issue encountered by ICA for real-time image recognition.
Recently, Cao et al. [50] studied the performance of mobile
landmark recognition with ELM. Due to the fast response
requirement by mobile terminal users, an ecient classi�er
is highly desired. In experimental results show that SVM
achieves a slightly higher recognition rate than ELM but
with the price of long training and testing times. In [50],
a robust and ecient online landmark learning approach
has been presented. Incorporating the spatial pyramid kernel
bag-of-words (SPK-BoW) image representation, ELM, and
the RLS algorithm, the proposed online algorithm is ecient
in processing new collected landmarks without performing
retraining using the old data. To speed up the recognition
phase of landmark images, Cao et al. [51] investigated the
discriminative feature extraction approach for dimension

reduction. Measuring the representative capability and the
discriminative capability of visual words based on relative
entropy, the signi�cance value of visual words is calculated
and the PageRank approach is then introduced to �lter out
nondiscriminative visual words and thus reduce the feature
dimension. To enhance the classi�cation performance, the
ensemble based ELM is adopted in [51] for the landmark
recognition system. Samat et al. [54] andBazi et al. [55] imple-
mented ELM for high dimensional hyperspectral remote
sensing image classi�cation. In [54], two improved ensemble
based ELM algorithms, namely, the bagging-based ELM
and the AdaBoost-based ELM, are proposed to enhance the
classi�cation rate. Alternative to the ensemble based ELM,
Bazi et al. [55] implemented an automatic-solution-based
di
erential evolution to optimize the network parameters in
ELM for hyperspectral image recognition.

Other than applications in face recognition and object
detection, ELM based approaches have been also used for the
image quality assessment [52], segmentation, superresolution
[53], and so forth. Suresh et al. [52] developed two improved
classi�ers tomeasure the visual quality of JPEG-coded images
based on ELM. To enhance the image quality assessment, the�-fold selection scheme and the real-coded genetic algorithm
are utilized to optimize the input weights and the bias values
of hidden neurons. Pan et al. utilized ELM classi�er as a
visual neuron system to detect the target object in leukocyte
images. Ecient samples are automatically found by using
the proposed ELM based segmentation approach. An and
Bhanu [53] applied ELM to learn a neural network model for
image superresolution (SR). To construct such a SR model,
features extracted from low resolution images are considered
as input signals for the neural network while high-frequency
components from the corresponding high resolution image
are set to be the target output.

3.2. ELM in Video Applications. In pace with the rapid
development of computer vision and machine learning,
intelligent video signal processing is another hot topic in high
dimensional and large data applications with ELM. Most of
the concern has been paid to human action recognition and
tracking [56–65]. Minhas et al. [56, 57] studied human action
recognition performance with ELM. In [56], novel hybrid
features consisting of the spatial-temporal and the local static
information are presented for human action recognition.
�e 3D dual-tree complex wavelet transform and the ane
scale invariant feature transform (SIFT) descriptor are �rst
employed to extract the hybrid features. �e dimension
reduction is then conducted through the bidirectional two-
dimensional PCA approach in both the row- and columnwise
directions, respectively. Visual vocabularies based on these
two kinds of features are built for video action representation
and the SLFN is �nally trained with ELM as the classi�er for
human action recognition. In [57], an incremental learning
framework for human action classi�cation based onELMand
snippets has been developed. �e contour of the object in
video frame is used to initialize the classi�er. �e articulated
target object is �rst tracked in a window in the video subse-
quent frame and then the human body contour approximated
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with small rectangular boxes inside the tracking window
is utilized to represent the target. Pyramids of histogram
of oriented gradient (PHOG) features calculated from the
tracking window and rectangular boxes are concatenated
as a vector for human action representations. Such PHOG
features are fed to a SLFN where the OS-ELM is employed
for constructing an incremental classi�er to avoid retraining.
Iosi�dis and his group contributed fruitful achievements to
action recognitions with ELM [58–61]. In [58], human action
recognition is performed with a multiple layer FNN where
the number of layers and the number of hidden neurons
in each layer are adaptively adjusted in the learning phrase.
�e developed recognition scheme is �exible to the usage of
human action representation approaches. In [58], Iosi�dis et
al. used the dyneme based action representation approach
[110] to represent actions to verify the proposed algorithm.
A dynamic recognition scheme with multiple classi�cation
levels is developed. In each level, the regularized ELM is
performed as the learning algorithm for a SLFN and themost
similar to the test action instance labeled vectors acted as
input signals. In [59], a novel technique named theminimum
class variance ELM (MCVELM) is presented for human
action recognition. �e action description, representation,
and classi�cation are performed with the spatiotemporal
local shape and motion information, the fuzzy vector quan-
tization, and the MCVELM classi�er, respectively. A plenty
of experiments on several benchmark databases covering
the simple human actions, the sports single-view containing
complex human action, themultiview database, and the facial
expression recognition from videos are conducted to show
the e
ectiveness of the proposed recognition framework.
In [60], semisupervised action classi�cations with ELM are
researched. �e discriminative subspace learning and the
ELM are combined for training a SLFN. An iterative opti-
mization scheme is incorporated into the discriminative ELM
for semisupervisedmultiview human action recognition.�e
minimum variance ELM (MVELM) is given in [61] to detect
human action. �e bag-of-words (BoW) approach is used to
represent human actions and the MVELM is developed to
minimize the output weights norm as well as the dispersion
of the training data in the projection space. Budiman and
Fanany [62] studied the 3D humanmotion pose-based classi-
�cation with ELM. �e �-means algorithm is used to cluster
themotion features and the performance on badminton sport
action and traditional dance are utilized as the databases
in the experiments. Deng et al. [63] employed ELM to
the cross-person activity classi�cation for developing mobile
based human-centric pervasive applications. An improved
sequential learning method is designed to accelerate the data
processing speed and enhance the recognition rate, inwhich a
new transfer learning reduced kernel ELM (TransRKELM) is
introduced for classi�er initialization and the updating phase
with new inputs is performed with the online sequential
TransRKELM. Oh et al. [64] presented a novel signature
recognition system based on extracting hand gestures with
ELM. �e system is realized using the Microso� Kinect for
data collecting. Four feature groups, that is, the hand position
in horizontal and vertical directions and the hand movement
in the horizontal and vertical directions, are extracted for

model learning and the total error rate minimization of ELM
(TERELM) is adopted for classi�er training. Yu et al. [65]
proposed an online gesture recognition systemusing an adap-
tive and iterative online sequential ELM.�e experiments are
conducted on recognizing the writing gestures of 10 Arabic
digits 0∼9 and 26 letters a∼z collected by the Microso�
Kinect.

Besides human action recognition, the merits of ELM
have been explored in many other video applications
including hand motion classi�cation [66], visual tracking,
video based semantic concept detection [67], and video
watermarking [68]. Shi et al. [66] investigated the hand
motion recognition using surface electromyography (SEMG)
signals. �e cumulative residual entropy (CREn) which
measures the uncertainty in the SEMG signals is extracted
as features for hand motion representation.�e basic ELM is
involved for classi�cation. A�er comparing the performance
to SVM, it is suggested that the proposed CREn-ELM
based is applicable for real-time control of the SEMG-based
multifunctional prosthesis as well as the SEMG-based hand
motion recognition. Liu et al. applied ELM for visual tracking.
A multitask ELM is proposed where a colearning semisuper-
vised ELM is developed to address the rare labeled samples
problem in tracking. �e ℓ2,1 norm penalty is imposed to
achieve the joint sparse coding for discovering intrinsic
relationship between the two ELMs with di
erent cues and
pruning redundant nodes in ELM. In the visual tracking,
the model updating is realized through online sequential
learning ELM. Lu et al. [67] exploited superiorities of using
ELM for the video based semantic concept detection. �e
ELM based multimodality classi�er combination framework
including three ELM classi�ers tested with color, edge, and
texture features, a robust probability-based fusion method
of predictions from each classi�er, and the incorporation of
contextual correlation among concepts into the classi�er is
presented to enhance the recognition performance. Agarwal
et al. [68] adopted the ELM trained SLFN to realize a fast
and robust video watermarking. �e subband coecients of
video frames with the discrete wavelet transform are used
as training data for ELM and a binary watermark in video
frames is embedded in the output of SLFN. Experimental
results verify that such framework is able to achieve high
visual quality in the resultant videos.

3.3. ELM in Medical Applications. Nowadays, intelligent
medical signal processing has gradually become an important
auxiliary tool for clinical diagnosis. Accurate predictions and
fast processing speed are two essential assessments in eval-
uating the intelligent medical processing systems. Bene�ting
from the easy implementation for real-time diagnosing and
the relatively convincing performance, adopting ELM for
medical signal processing has attracted increasing attention
from the research community in the past several years. To
the best of our capability, we have collected dozens of articles
discussing ELMon variousmedical applications in this paper,
including cardiac arrhythmia classi�cation [69], gene cancer
identi�cation [70, 71], mammographic microcalci�cations
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detection [72], epileptic diagnosis [73–75], liver parenchyma
and tumor detection [76–78], EEG vigilance [79], magnetic
resonance images (MRI) data processing [80], gene selection
[81], protein sequence applications [82–85], hypoglycemia
prediction [86], and Parkinson classi�cation [87].

Kim et al. [69] analyzed the cardiac arrhythmia clas-
si�cation performance with the ELM trained SLFN. Seven
ECG-type beats consisting of one normal rhythm and six
arrhythmias from theMIT-BIH arrhythmia database are used
for classi�er veri�cation. In [69], three features, the R peak
amplitude, instance RR interval, and R peak morphology
data, are used as input signals and the PCA is adopted
for feature dimension reduction. Zhang et al. [70] utilized
ELM for microarray gene expression cancer diagnosis. �ree
benchmark microarray databases, that is, the GCM dataset,
the lung dataset, and the lymphoma dataset, are involved in
the experiments and the performance is compared to SVM
to show the advantages of using ELM. Saraswathi et al. [71]
developed a novel classi�cation scheme for multiclass cancer
classi�cation. �e integer-coded genetic algorithm is �rst
implemented to select optimal sets of genes for recognition,
and, then, the particle swarm optimization combining with
ELM is introduced for classi�er construction. Comparisons
made onmany state-of-the-art approaches show that the new
method enjoys a high recognition rate in cancer classi�cation.
Malar et al. [72] applied ELM to detect and classify themicro-
calci�cations in digitizedmammograms. In the poor contrast
of the mammogram image, the microcalci�cations existing
in the dense breast tissue are �rst exploited and represented
using the wavelet transform features.�en, ELM is employed
to learn these feature to build a SLFN detector. With an
obvious reduction on the training time, it is shown that ELM
wins a higher recognition rate than Bayes net classi�er, naive
Bayes classi�er, and SVM. Yuan et al. [73] and Song et al.
[74, 75] studied the performance of electroencephalogram
(EEG) epileptic recognition with ELM. In [73], nonlinear
dynamic features containing the approximate entropy, the
Hurst exponent, and the scaling exponent are extracted to
represent the interictal and ictal EEGs. �ese features are fed
to a SLFN learned by ELM to form an intelligent classi�er. In
[74], the automatical epileptic detection is achieved through
using an optimized sample entropy for feature extractions
from EEG signals and the basic ELM as the classi�er for
recognition. An alternative realization of automatic epileptic
recognition using multiresolution features, the basic ELM,
and the genetic algorithm (GA) has been presented in
[75]. First of all, the multiresolution feature extraction is
obtained by decomposing the original EEG signal into several
frequency bands through wavelet transform and exploiting
complexity based features on all frequency bands. �en,
representative subsets of features are selected by the ecient
GA algorithm and learned by the basic ELM algorithm.

Huang et al. [76–78] studied the liver segmentation and
liver tumor detection from 3D computed tomography (CT)
imageswith the basic ELM, the kernel ELM, and the ensemble
ELM, respectively. In [76], the liver segmentation is treated
as a recognition problem where the 3D CT image is detected
either containing the region of liver or a nonliver region.

Texture features including the mean, variance, and sum-
and-di
erence histograms are extracted and used as the
input signals to establish the classi�er with the basic ELM
algorithm. �e liver segmentation and tumor classi�cation
with the kernel based ELM are considered in [77]. Real
CT data collected from 7 patients are used to test the
e
ectiveness of the adopted approach. An enhanced liver
tumor detection approach with the ensemble based ELM
is recently presented in [78]. Shi and Lu [79] investigated
the vigilance estimation for human machine interaction
systems using the EEG signal and ELM. �ree ELM based
vigilance estimators, that is, the basic ELM, the modi�ed
ELM with ℓ1 norm, and ℓ2 norm penalties, are presented
for comparisons. Termenon et al. [80] identi�ed the cocaine
dependent patient through the structuralmagnetic resonance
images (sMRI) using ELM. A�er selecting the most relevant
watershed regions in the brain sMRI, representative features
extracted from these regions are calculated for the classi�er
establishment. �e sMRI intensity value of the selected
regions and its corresponding mean and median values are
used as the features in [80]. �e basic ELM is used to
recognize cocaine dependent patients and the classi�cation
performance is compared with SVM, OP-ELM, and the
nearest neighborhood (NN) on real collected brainMRI. Han
et al. [81] introduced a novel method for gene selection from
microarray data based on ELM. �e newly predictive gene
selection strategy includes three steps: (1) the gene-to-class
sensitivity (GCS) is calculated using a SLFN trained with the
basic ELM algorithm; (2) the �-means clustering method is
adopted to group genes according to their GCS values while
representative genes are selected and redundant genes with
low GCS values are �ltered out; (3) for reminders genes, a
binary particle swarm optimization (BPSO) is developed to
conduct further selection. �e fast learning speed and good
generalization performance of ELM are well exploited for
gene selection applications. Protein sequence classi�cation,
interaction, and analysis with ELM are other popular topics
in medical applications [82–85]. Wang and Huang [82]
applied the basic ELM for protein sequence classi�cation.
�e experiments conducted on the Protein Information
Resource (PIR) (http://pir.georgetown.edu/) database have
shown that ELM with both sigmoid and RBF activation
functions learns thousands times faster than SVM and BP.
You et al. [83] and Wang et al. [84] studied the ELM
based method for protein-protein interactions (PPIs). In
general, identifying PPIs is time-consuming and expensive
in experiments and applications. �e emergent development
of ELM well meets the requirements in PPIs applications.
In [83], the autocovariance quantifying interactions between
amino acids are �rst used to transform numerical protein
sequences into uniform matrices for feature representations
in PPIs database. In [84], the protein-protein interface pre-
dictions on both multichain sets and single-chain sets are
investigated via the ELM algorithm. �ree complex datasets
including more than 19 thousand records are implemented to
verify the e
ectiveness of ELM on both the model training
time and the generalization performance. Savojardo et al.
[85] developed a machine learning tool based on ELM for
transmembrane beta barrel proteins detection. Mo et al. [86]
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adopted the basic ELM and the regularized ELM to predict
hypoglycemia in blood glucose for the purpose of diabetes
management. �e prediction accuracy on three prediction
horizons with di
erent time durations is compared between
the basic ELM and the regularized ELM. Sachnev and Kim
[87] studied the Parkinson disease (PD) classi�cation using
ELM. �e benchmark ParkPD database consisting of more
than 22 thousand genes’ expressions collected from normal
and PD patients is tested with the classi�er. Before building
the classi�er, a binary-coded genetic algorithm is presented
to select representative genes which can discriminate PD
patients from normal patients as the input signal for the
SLFN.

3.4. Other Applications. In addition to image, video, and
medical applications, ELM has also been widely researched
and implemented on other high dimensional and large data
applications [39, 88–103]. �ese achievements covered time
series prediction and forecasting [88–93], terrain recon-
struction and navigation [94, 95], power loss analysis [96],
company internationalization search [97], XML document
classi�cation and text categorization [98, 99], cloud comput-
ing [100], activity recognition for miniwearable devices [101],
imbalance data processing [39, 102, 103], and so forth. Such
fruitful results enlarged the application �elds of ELM.

Intelligent time series prediction and forecasting play a
vital role in industrial production, �nancial data analysis,
and human life. In general, intelligent approaches with a
good accuracy and fast processing speed are highly desired.
Tian and Mao [88] implemented ELM for molten steel’s
temperature prediction in ladle furnace (LF) applications.
�e AdaBoost.RT algorithm is combined with the ensemble
ELMs to improve the model approximation and temperature
prediction accuracy. Experiments with real data obtained
from a 300-ton LF in Baoshan Iron and Steel Co., China, are
conducted to show the e
ectiveness of using ELM for predic-
tion. Zhang et al. [89] andChen et al. [90] exploited electricity
applications with SLFN. In [89], the short-term electricity
load forecasting of Australian national electricity market is
realized through the ELM algorithm. Multiple ensembles of
SLFNs trained with ELM are utilized and the median value is
considered as the �nal output for electricity load prediction.
�e electricity price prediction is considered using ELM and
the bootstrapping method in [90] where the usage of ELM
aims to accelerate the forecasting speed and the bootstrapping
method addresses uncertainty estimations to enhance the
electricity price intervals forecast accuracy. Wind power
forecasting is an important part in the wind power generation
system. Utilizing ELM and the bootstrapping algorithm,Wan
et al. [91] developed an intelligent wind power prediction
system. �ree di
erent bootstrapping strategies, namely, the
pairs bootstrap, the standard residuals bootstrap, and the
wild bootstrap, are employed to estimate model uncertainty
intervals. Financial data prediction and analysis with ELM
also attract attention from researchers in the community.
Li et al. [92] implemented ELM for stock price movement
predictions. Analyses have been conducted on the stock tick
prices using the tick prices in H-share market of year 2001.
Yu et al. [93] considered the bankruptcy prediction problem

with ELM.�e bankruptcy prediction problem is transferred
to a binary classi�cation application while the leave-one-out-
incremental ELM (LOO-IELM) is introduced as the learning
algorithm for the classi�er. Ensemble based model is also
used in [93] to enhance the prediction accuracy.

Terrain reconstruction and navigation with ELM based
approaches for aiding unmanned aerial vehicles (UAVs) have
been studied in [94, 95]. Yeu et al. [94] realized the multires-
olution terrain reconstruction through learning the stored
digital elevation information with ELM. Experiments show
that, to achieve the same MSE, ELM requires a lower mem-
ory for terrain reconstruction in computer than the linear
interpolation approach and SVM.Kan et al. [95] applied ELM
as a navigation assistant for UAVs to deal with the problem
of missing the global positioning system (GPS) information.
Besides series prediction and terrain reconstruction, Nizar
et al. [96] studied the electricity nontechnical losses (NTL)
problem with ELM. Accurate identifying of NTLs could help
to provide the preventative and corrective ways to reduce
the losses with suitable inventions and implementations. �e
knowledge from individual electricity customer behavior is
shown to be important in strategies designs and decisions
making for electricity service providers. With this objective,
the basic ELM and the OS-ELM methods are utilized in
[96] to analyze customers’ behavior for detecting the NTLs.
Landa-Torres et al. [97] explored a new application area of
ELM in evaluating the success of internationalization of a
company. To build such an evaluation model, a grouping-
based harmony search method combining with the ELM
ensembles is developed to improve the accuracy. Experiments
on real data from several Spanish exporting manufacturers
are conducted and analyzed to verify the proposed hybrid
learning scheme. Zhao et al. [98] and Zheng et al. [99]
employed ELM for multiclass XML document classi�cation
and text categorization, respectively. In [98], the distribution
based structured vector model is introduced for XML docu-
ments representations and the probability based voting ELM
is conducted for classi�cation. In [99], the text categorization
is performed using a regularization ELM.�e latent semantic
analysis is adopted for dimensionality reduction for text
representations. Lin et al. [100] �rst outsourced ELM in cloud
computing for addressing highly complex structure of data.
�e randomly and independently assigned hidden neurons
make ELM suitable for being outsourced to cloud computing.
A partitioned ELM is realized as a secure and practical out-
sourcing mechanism for large-scale data processing in [100].
One of the most recent literatures on ELM applications is the
activities detection usingminiwearable devices [101]. Tomeet
the low-computational-complexity, lightweight, and high-
accuracy requirements on recognition model, a novel ELM
based algorithm named the bias constrained-optimization-
based ELM (b-COELM) is presented for the miniwearable
devices activities identi�cation. �e performance of the
proposed technique is tested via the real experiments of
human motion tracking where the real data collected by a
portable device of humanmotion tracker named XSens MTx
are analyzed.

Imbalance data processing with ELM algorithms became
popular in the past two years [39, 102, 103]. �e imbalance
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data classi�cation problems for both binary and multiclass
databases are dealt with by a novel weighted ELM in [102].
�e weight information for each class is generated from the
number of class samples belonging to the same category. �e
revised ELM which incorporates the class weights into ELM
is then adopted to improve the recognition performance.
Mirza et al. [103] extended the basic weighted ELM to a
weighted online sequential ELM for class imbalance data
processing (WOS-ELM). An improved tuning total error
rate (TER) approach is �rst introduced to assign weights for
each class. Mirza et al. claim that a high �mean value, which
measures the classi�cation performance of class imbalance
processing [103], can be guaranteed through using the new
technique. �e weighted least square solutions are then
introduced for network output weight calculation in the
initial phase, the weight updating in the sequential learning
phase. Fresh extension to online sequential learning for class
imbalance and concept dri�s with the ensemble approach
is done in [39] recently, where a novel ensemble of subset
online sequential ELM (EOS-ELM) is developed. Combining
the subset learning with OS-ELM and the ensembles, EOS-
ELM shows eciency and superiority in handling class
imbalance problems in both stationary and nonstationary
environments.

4. Conclusions

�is paper presented an up-to-date review on the recent
developments of ELM algorithms and its applications for
high dimensional and large data processing. �e survey
covered applications in a wide �eld including image and
video signal processing and medical data processing. As
presented in the above section, the fast data learning speed
and easy implementation characteristics of ELM boosted
its applications in various �elds. Applications on intelligent
high dimensional and large data processing bene�ted a lot
from ELM and its variants due to the signi�cantly reduced
computational complexity brought by the randomness in
network parameters and the tuning-free learning strategy.
In many applications, ELM has well addressed the out-of-
memory, time-costing, premature performance encountered
by conventional gradient based learning approaches and
SVM. Although a great number of achievements on high
dimensional data applications have been presented in the
past several years, the following three issues are worth
considering.

(1) Tuning-free is one of the most important contribu-
tions to ELM.However, various approaches and appli-
cations have applied the iterative updating processing
into the original ELM to produce good generalization
performance, such as the usage of genetic algorithms,
the boosting approaches, the pruning methods, and
the evolutionary ensembles. Although the model
regression accuracy and data classi�cation perfor-
mance are more or less improved by introducing such
strategies, there is no doubt that the computational
complexity is also increased.�us, how to balance the

performance and the processing time is an open issue,
especially for applications in high dimensional data.

(2) How to choose the optimal number of hidden neu-
rons for a certain application is not well addressed
yet. In most of the existing works, few e
orts have
been paid to discussions on the selection of hidden
neurons and almost all of them are chosen manually
in a tentativeway. Although some researchers claimed
that the performance of ELM and its variants tend
to be stable and acceptable when a large number
of hidden neurons are used, redundancy and high
computation burden would also occur.

(3) Designing real-time processing systems and devices
for applications with ELM is highly desired. Although
plentiful achievements have been reported in the past
10 years or so, most of them are still conducted in
the laboratory via computer simulations. Real-world
devices for di
erent applications are always facing
various challenges, which are more obvious for large
data applications.
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