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ABSTRACT

We analyze the extreme high-magnification microlensing event OGLE-2008-BLG-279, which peaked at a maximum
magnification of A ∼ 1600 on 2008 May 30. The peak of this event exhibits both finite-source effects and terrestrial
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parallax, from which we determine the mass of the lens, Ml = 0.64 ± 0.10 M⊙, and its distance, Dl = 4.0 ± 0.6 kpc.
We rule out Jupiter-mass planetary companions to the lens star for projected separations in the range 0.5–20 AU.
More generally, we find that this event was sensitive to planets with masses as small as 0.2 M⊕ ≃ 2 MMars with
projected separations near the Einstein ring (∼3 AU).

Key words: gravitational lensing – planetary systems – planetary systems: formation

1. INTRODUCTION

A complete census of planets beyond the snow line will be
crucial for testing the currently favored core-accretion theory
of planet formation since that is the region where this model
predicts that giant planets form. For example, Ida & Lin (2004)
find that gas giant planets around solar-type stars preferentially
form in the region between the snow line at 2.7 AU and ∼10 AU.
While radial velocity and transit searches account for most of
the more than 300 planets known to date, microlensing has the
ability to probe a different region of parameter space that reaches
far beyond the snow line and down to Earth-mass planets.
Microlensing is most sensitive to planets near the Einstein ring
radius, which Gould & Loeb (1992) showed lies just outside the
snow line:

rE ≃ 4

(

Ml

M⊙

)1/2

AU, (1)

for reasonable assumptions. This sensitivity to planets beyond
the snow line is demonstrated by the nine announced planets
found by microlensing, which range in mass from super-Earths
to Jupiters and more massive objects (Bond et al. 2004; Udalski
et al. 2005; Beaulieu et al. 2006; Gould et al. 2006; Bennett
et al. 2008; Dong et al. 2009; Gaudi et al. 2008; Janczak et al.
2009).

In high-magnification microlensing events (A � 100), the
images finely probe the full angular extent of the Einstein ring,
making these events particularly sensitive to planets over a wide
range of separations (Griest & Safizadeh 1998). Additionally,
because the time of maximum sensitivity to planets (the peak of
the event) can be determined in advance, intensive observations
can be planned resulting in improved coverage of the event,
particularly given limited resources. Even when a planet is not
detected, the extreme sensitivity of such an event can be used to
put broad constraints on planetary companions.

High magnification events are also useful because it is more
likely that secondary effects such as the finite-source effect and
terrestrial parallax can be measured (Gould 1997). These effects
can be used to break several microlensing degeneracies and
allow a measurement of the mass of the lens and its distance.
This allows us to determine a true mass of a planet rather than
the planet/star mass ratio and a true projected separation rather
than a relative one. Thus, in addition to being more sensitive
to planets, high-magnification events allow us to make more
specific inferences about the nature of the system.

Previous work has empirically demonstrated the sensitivity
of high-magnification events to giant planets by analyzing ob-
served events without detected planets and explicitly computing
the detection sensitivity of these events to planetary compan-
ions. The first high-magnification event to be analyzed in such a
way was MACHO 1998-BLG-35 (Rhie et al. 2000). Rhie et al.

36 Microlensing Follow Up Network (μFUN).
37 Optical Gravitational Lens Experiment (OGLE).
38 Microlensing Observations in Astrophysics (MOA).
39 Probing Lensing Anomalies NETwork (PLANET).

(2000) found that planets with a Jupiter-mass ratio (q = 10−3)
were excluded for projected separations in units of the Einstein
ring radius of d =0.37–2.70. Since then, many other authors
have analyzed the planet detection sensitivity of individual high-
magnification events (Bond et al. 2002; Gaudi et al. 2002; Yoo
et al. 2004; Abe et al. 2004; Dong et al. 2006; Batista et al. 2009).
In particular, prior to the work presented here, the most sensi-
tive event with the broadest constraints on planetary companions
was MOA 2003-BLG-32, which reached a magnification of 520
(Abe et al. 2004). Dong et al. (2006) found that this event had
sensitivity to giant planets out to d � 4.40

This paper presents the analysis of OGLE-2008-BLG-279,
which reached a magnification of A ∼ 1600 and was well
covered over the peak, making it extremely sensitive to planetary
companions. In fact, as we will show, this event has the greatest
sensitivity to planetary companions of any event yet analyzed,
and we can exclude planets over a wide range of separations and
masses. Furthermore, this event exhibited finite-source effects
and terrestrial parallax, allowing a measurement of the mass
and distance to the lens. This allows us to place constraints
on planets in terms of their mass and projected separation in
physical units. We begin by describing the data collection and
alert process in Section 2. In Section 3 we describe our fits to the
light curve and the source parameters. We then go on to discuss
the blended light and the shear contributed by a nearby star in
Section 4. Finally, we place limits on planetary companions in
Section 5. We conclude in Section 6.

2. DATA COLLECTION

On 2008 May 13 (HJD′ ≡ HJD-2,450,000 = 4600.3604),
the OGLE collaboration announced the discovery of a new
microlensing event candidate OGLE-2008-BLG-279 at R.A. =
17h58m36.s17 decl. = −30◦22′08.′′4 (J2000.0). This event was
independently announced by the MOA collaboration on 2008
May 26 as MOA-2008-BLG-225. Based on the available OGLE
and MOA data, μFUN began observations of this event on 2008
May 27 from the CTIO SMARTS 1.3 m in Chile, acquiring
observations in both the V and I bands, and the next day identified
it as likely to reach very high magnification 2 days hence.
This event was monitored intensively over the peak by MOA,
the PLANET collaboration, and many μFUN observatories.
Specifically, the μFUN observatories Bronberg, Hunters Hill,
Farm Cove, and Wise obtained data over the peak of this event
(see Figure 1). OGLE-2008-BLG-279 peaked on 2008 May 30
at HJD′ = 4617.3481 with a magnification A ∼ 1600.

Because there were so many data sets, this analysis focuses on
the μFUN data from observatories that covered the peak of the
event (μFUN Bronberg (South Africa), Hunters Hill (Australia),
Farm Cove (New Zealand), and Wise (Israel)) and PLANET
Canopus (Australia) combined with the data from OGLE and

40 Dong et al. (2006) also analyzed the event OGLE-2004-BLG-343, which
reached a peak magnification of A ∼ 3000. Although this is the highest
magnification event analyzed for planets, sparse observational coverage over
the peak greatly reduced its sensitivity.
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Figure 1. Light curve of OGLE-2008-BLG-279 near its peak. The left panel shows the entire event, while the right panel shows a close-up of the peak with residuals
from the point-lens model including finite-source effects. The black solid line shows this best-fit model. For clarity, the data have been binned and rescaled to the
OGLE flux.

MOA which cover both peak and baseline. We used the data
from CTIO to measure the colors of the event but not in other
analyses. Early fits of the data indicated that the Bronberg data
from HJD′4617.0-4617.32 suffer from systematic residuals that
are more severe than those seen in any of the other data, so these
data were excluded from subsequent analysis.

The data were all reduced using difference imaging analysis
(DIA; Wozniak 2000) with the exception of the CTIO data which
were reduced using the DoPHOT package (Schechter et al.
1993). The uncertainties in all the data sets were normalized so
that the χ2/degree of freedom ∼ 1, and we removed >3σ outliers
whose deviations were not confirmed by near simultaneous
data from other observatories. The normalization factors for
each observatory are as follows: OGLE(1.8), MOA(1.0), μFUN
Bronberg(1.4), μFUN Hunters Hill I(2.7) and U(1.5), μFUN
Farm Cove(2.1), μFUN Wise(3.8), PLANET Canopus(4.6), and
μFUN CTIO I(1.4) and V(2.0).

3. POINT-LENS ANALYSIS

The data for OGLE-2008-BLG-279 appear to be consistent
with a very high magnification, A = 1570 ± 120, single-lens
microlensing event. We therefore begin by fitting the data with
a point-lens model and then go on to place limits on planetary
companions in Section 5. In this section, we describe our fits to
the data and address the second-order, finite-source and parallax
effects on the light curve.

3.1. Angular Einstein Ring Radius

From the V- and I-band images taken with CTIO both during
the peak and after the event, we construct a color–magnitude
diagram (CMD) of the event (Figure 2). We calibrate this
CMD using stars that are also in the calibrated OGLE-III
field. For the source, we measure [I, (V − I )] = [21.39 ±
0.09, 2.53 ± 0.01]. If we assume that the source is in the
bulge and thus behind the same amount of dust as the clump,
we can compute the dereddened color and magnitude. We
measure the color and magnitude of the clump: [I, (V − I )]cl =
[16.48, 2.71]. The absolute color and magnitude of the clump

Figure 2. Calibrated CMD constructed from the CTIO and OGLE data. The
square indicates the centroid of the red clump, the open circle shows the blended
light, and the solid circle indicates the source. The small black points are field
stars. The error bars are shown but are smaller than the size of the points.

are [MI , (V − I )0]cl = [−0.20, 1.05], which at a distance of
8.0 kpc would appear to be [I, (V − I )]0,cl = [14.32, 1.05].
We find AI = Icl − I0,cl = 16.48 − 14.32 = 2.16 and
E(V − I ) = (V − I )cl − (V − I )0,cl = 1.66. We then
calculate the dereddened color and magnitude of the source
to be [I, (V − I )]0 = [19.23, 0.87].

The angular Einstein ring radius can be determined by
combining information from the light curve and the CMD. Finite
source effects in the light curve enable us to determine the ratio
of the source size, θ⋆, to the Einstein radius, θE:

ρ⋆ = θ⋆/θE. (2)

We can then estimate θ⋆ from the color and magnitude of the
source measured from the CMD, and solve for θE.
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Figure 3. χ2 contours as a function of impact parameter, u0, and z0 ≡ u0/ρ⋆

where ρ⋆ = θ⋆/θE is the normalized source size. The best fit is marked with a
plus sign.

3.1.1. Finite-source Effects

If the source passes very close to the lens star, finite-source
effects will smooth out the peak of the light curve and allow
a measurement of the source size ρ⋆. Although finite-source
effects are not obvious from a visual inspection of the light
curve, including them yields a dramatic improvement in χ2.
In order to fit for finite-source effects, we first estimate the
limb darkening of the source from its color and magnitude.
We combine the color and magnitude of the source with the
Yale–Yonsei isochrones (Demarque et al. 2004), assuming a
distance of Ds = 8 kpc and solar metallicity, to estimate
Teff = 5250 K and log g = 4.5. We use these values to calculate
the limb-darkening coefficients, u, from Claret (2000), assuming
a microturblent velocity of 2 km s−1. We calculate the linear
limb-darkening parameters ΓV and ΓI using Γ = 2u/(3 − u)
to find ΓV = 0.65 and ΓI = 0.47. We use these values in
our finite-source fits to the data. We find that a point-lens fit
including finite-source effects is preferred by ∆χ2 of 2647.85
over a fit assuming a point source. We search a grid of u0 and
ρ⋆ near the minimum to confirm that this is a well-constrained
result. We use z0 = u0/ρ⋆ as a proxy for ρ⋆ following Yoo et al.
(2004). The resultant χ2 map in the u0–z0 plane is shown in
Figure 3. Our best-fit value for ρ⋆ is (6.6 ± 0.6) × 10−4. For this
value of ρ⋆, z0 is almost unity, indicating that the source just
barely grazed the lens star. The other parameters for our best-fit
including finite-source effects are given in Table 1.

3.1.2. Source Size

We convert the dereddened color and magnitude of the source
to (V − K) using Bessell & Brett (1988), and combine them
with the surface brightness relations in Kervella et al. (2004) to
derive a source size of θ⋆ = 0.54 ± 0.4 μas. The uncertainty
in θ⋆ comes from two sources: the uncertainty in the flux and
the uncertainty in the conversion from the observed (V − I )
color to surface brightness. The uncertainty in the flux (i.e.,
the model fit parameter fs,I ) is 8.5%, and we adopt 7% as
the uncertainty due to the surface brightness conversion. From
Equation (2), we find that θE = θ⋆/ρ⋆ = 0.81 ± 0.07 mas.
We also calculate the (geocentric) proper motion of the source:
μgeo = θE/tE = 2.7 ± 0.2 mas yr−1. Because the peak flux
(∝ fs,I/ρ⋆) and source crossing time (ρ⋆tE) are both essentially
direct observables, and so are well constrained by the light curve,

the fractional uncertainties in θE and μgeo are comparable to the
fractional uncertainty in θ⋆. This result is generally applicable to
point-lens/finite-source events and is discussed in detail in the
Appendix.

3.2. Parallax

Given that we have a measurement for θE, if we can also mea-
sure microlens parallax, πE, we can combine these quantities to
derive the mass of the lens and its distance. The mass of the lens
is given by

Ml =
θE

κπE

, κ ≡
4G

c2 AU
≃ 8.14

mas

M⊙
. (3)

Its distance Dl is

1 AU

Dl

= πl = πs + πrel, (4)

where πl is the parallax of the lens, πs = 0.125 mas is the
parallax of the source (assuming a distance of Ds = 8 kpc), and
πrel = θEπE.

Microlens parallax is the combination of two observable
parallax effects in a microlensing event. Terrestrial parallax
occurs because observatories located on different parts of the
Earth have slightly different lines of sight toward the event and
so observe slight differences in the peak magnification and in
the timing of the peak, described by the parameters u0 and t0,
respectively (Hardy & Walker 1995; Holz & Wald 1996). Orbital
parallax occurs because the Earth moves in its orbit during the
event, again, changing the apparent line of sight. Gould (1997)
argued that one might expect to measure both finite-source
effects and terrestrial parallax in extreme high-magnification
events. We fit the light curve for both of the sources of parallax,
including finite-source effects. Fitting for both kinds of parallax
simultaneously yields a ∆χ2 improvement of 165 (see Table 1).
We find πE = (πE,E, πE,N) = (−0.15 ± 0.02, 0.02 ± 0.02),
where πE,E and πE,N are the projections of πE in the east and
north directions, respectively.

Smith et al. (2003) showed that for orbital parallax and a
constant acceleration, u0 has a sign degeneracy. This degeneracy
may be broken if terrestrial parallax is observed (see also Gould
2004). In the fits described above, we assumed u0 > 0. We
repeat the parallax fit fixing u0 < 0. We find that the +u0 solution
is preferred over the −u0 case by ∆χ2 = 37 (see Table 1).

We perform a series of fits in order to isolate the source of the
parallax signal, i.e., whether it is primarily due to orbital parallax
or terrestrial parallax. We first fit the light curve for orbital
parallax alone and then fit for terrestrial parallax alone. The
results are given in Table 1. For +u0, the orbital parallax fit gives
(πE,E, πE,N) = (1.5 ± 0.4,−0.3 ± 0.2) and a ∆χ2 improvement
of ∼ 16 over the finite-source fit without parallax. In contrast,
the +u0 fit for terrestrial parallax alone yields ∆χ2 = 166 and
(πE,E, πE,N) = (−0.16 ± 0.02, 0.03 ± 0.02). While the orbital
and terrestrial parallaxes are nominally inconsistent at more
than 3σ , from previous experience (Poindexter et al. 2005) we
know that low-level orbital parallax can be caused by small
systematic errors or xallarap (the orbital motion of the source
due to a companion), so we ignore this discrepancy. From the
∆χ2 values, it is clear that terrestrial parallax dominates the
microlens parallax signal in this event, so any spurious orbital
parallax signal does not affect our final results.

We also confirm that the terrestrial parallax signal is seen
in multiple observatories, and thus cannot be attributed to
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Table 1
Light Curve Fits

Effects Fit Parameters

Finite- Orbital Terrestrial t0 − 4617.34 u0 t E ρ⋆ πE,E πE,N

Source Parallax Parallax −u0 −∆χ2 (days) (θE) (days) (θE)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

� 0.00 0.00783(7) 6.4(5) × 10−4 111.(9) 6.6(6) × 104 · · · · · ·
� � � 164.50 0.00787(8) 6.6(5) × 10−4 106.(9) 6.8(6) × 104 −0.15(2) 0.02(2)

� � � � 127.97 0.0081(1) −6.4(6) × 10−4 109.(9) 6.7(6) × 104 0.11(2) 0.09(2)

� � 15.52 0.00784(8) 8.(1) × 10−4 84.(12) 9.(1) × 104 1.5(4) −0.3(2)

� � � 15.51 0.00786(8) −8.(1) × 10−4 84.(12) 9.(1) × 104 1.5(4) −0.3(2)

� � 166.40 0.00787(8) 6.9(6) × 10−4 101.(8) 7.2(6) × 104 −0.16(2) 0.03(2)

� � � 129.59 0.0081(1) −6.9(5) × 10−4 102.(8) 7.1(6) × 104 0.11(2) 0.11(3)

Notes. The first 4 columns indicate which effects were included in the point-lens fit. The ∆χ2 improvement for each fit (Column 5) is given relative to the best

fit including finite-source effects but without parallax. There are 5731 data points in the fit light curve. The numbers in parentheses indicate the uncertainty in

the final digit or digits of the fit parameters.

systematics in a single data set. To test this, we repeat the fits
for parallax excluding the data from an individual observatory.
If a data set is removed and the parallax becomes consistent
with zero, then that observatory contributed significantly to the
detection of the signal. Using this process of elimination, we find
that the signal comes primarily from the MOA and Bronberg
data sets.

Given the results of these various fits, we conclude that the
best fit to the data is for the +u0 solution, and we include
both forms of parallax for internal consistency. Combining this
parallax measurement with our measurement of θE from Sec-
tion 3.1, we find Ml = 0.64 ± 0.1 M⊙ and Dl = 4.0 ± 0.6 kpc
(πrel = 0.13 ± 0.02 mas) using Equations (3) and (4).

4. THE BLENDED LIGHT

The centroid of the light at baseline when the source is faint
is different from the centroid at peak magnification, indicating
that light from a third star is blended into the point-spread
function (PSF). The measured color and magnitude of blended
light are [I, (V − I )]b = [17.21 ± 0.01, 2.32 ± 0.02]. Stars
of this magnitude are relatively rare, and so the most plausible
initial guess is that the third star is either a companion to the
source or a companion to the lens. If the former, we can use the
values of AI and E(V −I ) we found above to derive the intrinsic
color of the blend: [I, (V −I )]0,b = [15.05, 0.66]. This assumes
that the blend is in the bulge at a distance of 8 kpc, giving an
absolute magnitude of MI,b = 0.53 and MV,b = 1.19. Figure 4
shows this point (open square) compared to solar (Z=0.02) and
sub-solar metallicity (Z=0.001) Yale–Yonsei isochrones at 1, 5,
and 10 Gyr (Demarque et al. 2004). These isochrones show that
the values of [MV , (V −I )0]b may be consistent with a sub-giant
that is a couple Gyr old, but a more precise determination of age
is not possible since the age is degenerate with the unknown
metallicity of the blend.

If the blend is a companion to the lens, however, it lies in front
of some fraction of the dust. In order to derive a dereddened
color and absolute magnitude to this star, we need a model
for the dust. We explore this scenario using a simple model
for the extinction that is constant in the plane of the disk and
decreases exponentially out of the plane with a scale height of
H0 = 100 pc:

AI (d) = K1

[

1 − exp

(

−D sin b

H0

)]

, (5)

Figure 4. Possible absolute magnitudes and colors for the blend plotted with
Yale–Yonsei isochrones (Demarque et al. 2004). The isochrones plotted are the
Y2 isochrones for solar (thick) and sub-solar metallicities (thin) for populations 1
(dotted), 5 (dot-dashed), and 10 Gyr old (solid). The dashed line shows the color
and magnitude of the blend for a continuous distribution of distances assuming
a dust model that decreases exponentially with scale height. The square shows
the absolute magnitude and color of the blend assuming it has the same distance
(8 kpc) and reddening as the clump. The plus sign, diamond, and triangle show
the absolute magnitude and color using our simple dust model and distances of
2, 4, and 6 kpc, respectively. If the blend is a companion to the lens, it would be
at a distance of 4 kpc (diamond).

where D is the distance to a given point along the line of sight,
b is the Galactic latitude, and K1 is a constant. We can solve for
K1 by substituting in the value of AI that we find for the source
at 8 kpc. We then model the selective extinction in a similar
manner:

E(V − I ) = K2

[

1 − exp

(

−D sin b

H0

)]

, (6)

and solve for K2 using the value of E(V − I ) calculated for
the source at 8 kpc. From Equations 5 and 6, we can recover
the intrinsic color and magnitude of the blend assuming it is at
various distances. In Figure 4, we plot a point assuming that
the blend is at a distance of the lens, 4.0 kpc. By interpolating
the isochrones and assuming a solar metallicity, we find that the
blend is consistent with being a 1.4 M⊙ sub-giant companion to
the lens with an age of 3.8 Gyr. For comparison, we also plot a
line showing how the inferred color and magnitude of the blend
vary with the assumed distance.
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4.1. Astrometric Offset

From the measured blend flux, one can determine the astro-
metric offset of the source and blend by comparing the centroid
of light during and after the event. At a given epoch, the centroid
is determined by the ratio of the flux of the blend to the sum
of the fluxes of the source and lens. That ratio depends on the
magnification of the source. Thus, if we know the magnification
of the source at two different epochs and the intrinsic magnitude
of the source and the blend, we can solve for the separation of
the lens and the blend. We find ∆θ = 153 ± 18 mas. Given
this offset, we will show below that based on the lack of shear
observed in the light curve, the blended light cannot lie far in
the foreground and thus cannot be the sub-giant companion to
the lens hypothesized above.

4.2. Search for Shear

Because all stars have gravity, if the blend described above
lies between the observer and the source, it will induce a shear
γ in the light curve. We can estimate the size of the shear using
the observed astrometric offset and assuming that the blend is a
1.4 M⊙ companion to the lens:

γ =
θ2

E,b

∆θ2
=

κπrel,bMb

∆θ2
,

= 6.2 × 10−5
( πrel

0.13 mas

)

(

Mb

1.4 M⊙

) (

∆θ

153 mas

)−2

. (7)

Using the 1 σ upper limit on the separation (171 mas), we find a
minimum shear of γ = 4.9 × 10−5 if the blend is a companion
to the lens. To determine if this value is consistent with the light
curve, we perform a series of fits to the data using binary-lens
models that cover a wide range of potential shears. The effect of
the shear is to introduce two small bumps into the light curve as
the small binary caustic crosses the limb of the source, and this
is indeed what we see in the binary-lens models we calculate.

Because the separation between the lens and a companion
is large (B = ∆θ/θE ≫ 1), the shear can be approximated
as γ ≃ Q/B2, where Q = Mb/Ml is the mass ratio of the
companion and the lens. This reduces the number of parameters
that need to be considered from three to two: γ and α, the
angular position of the blend with respect to the motion of the
source. We use a grid search of γ and α to place limits on the
shear. For each combination of γ and α, we generate a binary
light curve in the limit B ≫ 1 that satisfies Q = γB2 and fit it
to the data using a Markov Chain Monte Carlo with 1000 links.
We bin the data over the peak to reduce the computing time.
We compute the difference in χ2 between the binary model and
the best-fit finite-source point-lens model. Figure 5 shows the
results of the grid search overplotted with the upper and lower
limits on the shear assuming the blend is a companion to the
lens. From this figure, we infer that a shear of 6.2 × 10−5 is
inconsistent with our data since it is in a region where the fit is
worse by ∆χ2 > 36.

The two minima in the χ2 map at γ ∼ 10−4, α = π/2, π are
well defined but appear to be due to a single, deviant data point.
Fits to the data with these binary models show improvement in
the fit to this data point, but the residuals from these fits for the
other data points are large and show increased structure. Thus,
we believe these minima to be spurious and conclude that the
maximum shear that is consistent with our data (∆χ2 � 9) is
γmax = 1.6 × 10−5.

Figure 5. Shear as a function of α (angular position with respect to the motion
of the source). Open symbols indicate an improved χ2 compared to the finite-
source point-lens fit. Filled symbols indicate a worse fit. The magnitude of ∆χ2

is indicated by the color legend shown. The solid line indicates our calculated
value for the shear assuming the blend is at the same distance as the lens. The
shaded area shows the 1σ limits on this value from the uncertainty in the centroid
of the PSF (see the text).

Since we have ruled out the scenario where the blend
is a companion to the lens, we need to ask what possible
explanations for the blend are consistent both with γmax and
with the observed color and magnitude. Given γmax, we can
place constraints on the distance to the blend, Db, for a given
mass. The distance is given by

Db =
1

πb

, (8)

where πb = πs + πrel,b = πs +
γ (∆θ )2

κMb

. (9)

If we assume Mb = 1 M⊙, γ = γmax, and use previously stated
values for the other parameters, we find Db > 5.8 kpc. A metal-
poor sub-giant with this mass located at or beyond this distance
would be consistent with the observed color and magnitude of
the blend given the simple extinction model described above.
However, other explanations are also possible. For example, if
the mass of the blend were decreased, πb would increase, and
a slightly closer distance would be permitted. Thus, we cannot
definitively identify the source of the blended light. However,
given that γmax is very small, we can ignore any potential shear
contribution in later analysis.

5. LIMITS ON PLANETS

We use the method described by Rhie et al. (2000) to quantify
the sensitivity of this event to planets. This approach is used for
events such as this one for which the residuals are consistent
with a point lens. Rather than fitting binary models for planetary
companions to our data as advocated by Gaudi & Sackett (2000),
we generate a binary model from the data and fit it with a
point-lens model. When the single-lens parameters are well
constrained (as is the case with OGLE-2008-BLG-279), these
two approaches are essentially equivalent (see the discussion
in Gaudi et al. 2002 and Dong et al. 2006). We create a
magnification map assuming an impact parameter, d, and star/
planet mass ratio, q, using a lens with the characteristics from



2088 YEE ET AL. Vol. 703

Figure 6. Planet sensitivity as a function of distance from the lens in units of Einstein radii. The white/black circle indicates the Einstein ring (d = 1). The mass ratios
and corresponding planet masses are indicated on each plot. The colors indicate the ∆χ2 that would be caused by a planet at that location.

our finite-source fit. The method for creating the magnification
map is described in detail in Dong et al. (2006, 2009). For each
epoch of our data, we generate a magnification due to the binary
lens assuming some position angle, α, of the source’s trajectory
relative to the axis of the binary and assign it the uncertainty of
the datum at that epoch. As in Section 4.2, we use binned data
for this analysis.

For q = 10−3, 10−4, 10−5, and 10−6 we search a grid of d, α
and compute the ∆χ2. Based on the systematics in our data, we
choose a threshold ∆χ2

min = 160 (Gaudi & Sackett 2000). For

∆χ2 > ∆χ2
min, the fit is excluded by our data, and we are sensitive

to a planet of mass ratio q at that location. We repeat the analysis
using unbinned data for a small subset of points and confirm
that the ∆χ2 for fits with the unbinned data is comparable
to fits with binned data. Figure 6 shows the sensitivity maps
for four values of q. These maps show good sensitivity to
planets with mass ratios q = 10−3, 10−4, and 10−5 and some
sensitivity to planets with q = 10−6. For our measured value of
Ml = 0.64 M⊙, a mass ratio of q = 10−3 corresponds to a planet
mass mp = 0.67 MJup and a mass ratio of q = 10−6 corresponds
to mp ≃ 2 MMars. The results bear a striking resemblance to
the hypothetical planet sensitivity of the Amax ∼ 3000 event
OGLE-2004-BLG-343 if it had been observed over the peak
(Dong et al. 2006). In particular, this event shows nearly uniform
sensitivity to planets at all angles α for large mass ratios. The
hexagonal shape of the sensitivity map is the imprint of the
difference between the magnification maps of planetary-lens
models and their corresponding single-lens models (see upper
panel of Figure 3 in Dong et al. 2009).

Figure 7 shows a map of the planet detection efficiency for
this event. The efficiency is the percentage of trajectories, α, at a
given mass ratio and separation that have ∆χ2 > ∆χ2

min (Gaudi
& Sackett 2000). The efficiency contours are all quite close
together because of the angular symmetry described above for

the planet sensitivity maps. Because we measure the distance
to the lens, we know the projected separation, r⊥, in physical
units:

r⊥ = dθEDl . (10)

Since we know Ml, we also know the planet mass, mp =
qMl . We can rule out Neptune-mass planets with projected
separations of 1.5–7.2 AU (d = 0.5–2.2) and Jupiter-mass
planets with separations of 0.54–19.5 AU (d = 0.2–6.0). We
are also able to detect Earth-mass planets near the Einstein ring,
although the efficiency is low. The region where this event is
sensitive to giant planets probes well beyond the snow line
of this star, which we estimate to be at 1.1 AU assuming
asnow = 2.7 AU(M⋆/M⊙)2 (Ida & Lin 2004). The observed
absence of planets, especially Neptunes, immediately beyond
the snow line of this star is interesting given that core-accretion
theory predicts that Neptune-mass planets should preferentially
form around low-mass stars (Laughlin et al. 2004; Ida & Lin
2005).

It is also interesting to consider how the sensitivity of this
event to planets compares to the sensitivity of other planet-
search techniques. Obviously, because of the long timescales
involved, most transit searches barely probe the region of sensi-
tivity for this event. As a space-based mission, the Kepler satel-
lite has the best opportunity to probe some of the microlensing
parameter space using transits. Using Equation (21) from Gaudi
& Winn (2007), we can estimate Kepler’s sensitivity to transits
around this star:

mp = 0.22

(

S/N

10

)3/2
( a

1 AU

)3/4

100.3(mV −12)MEarth, (11)

where (S/N) is the signal-to-noise ratio, a is the semimajor axis
of the planet, and mV is the apparent magnitude of the star.
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Figure 7. Detection efficiency map in the (d, q) plane, i.e., projected separation
in units of θE and planet-star mass ratio. The contours show detection efficiencies
of 0.99, 0.90, 0.75, 0.50, 0.25, and 0.10 from inside to outside. The inner spike
is due to resonant caustic effects at the Einstein ring. The upper and right axes
translate (d, q) into physical units (r⊥, mp), i.e., physical projected separation
and planet mass. The vertical solid line shows the position of the snow line
for this star. The dotted line shows Kepler’s sensitivity to planets around the
lens star assuming mV = 12. The cutoff in separation (d ≃ 0.6) occurs where
a planet’s orbital period is equal to Kepler’s mission lifetime of 3.5 yr. The
dashed line shows the sensitivity limit for radial velocity observations with 1 m
s−1 precision. The dot-dashed line shows the sensitivity limit for a space-based
astrometry mission with a precision of 3 μas assuming the star is at 10 pc.

We have assumed that the density of the planet is the same
as the density of the Earth and the stellar mass–radius relation
R⋆ = kM0.8

⋆ (Cox 2000, p. 389). Kepler is also limited by
its mission lifetime of 3.5 yr. For periods longer than this, it
becomes increasingly unlikely that Kepler will observe a transit
(Yee & Gaudi 2008). This limits the sensitivity to planets within
∼2 AU where the period is less than the mission lifetime. These
boundaries are plotted in Figure 7.

For comparison, we can also estimate the sensitivity of the
radial velocity technique to planets around a star of this mass
assuming circular orbits and an edge-on system. Radial velocity
is sensitive to planets of mass

mp = 8.9
( σRV

1 m s−1

)

(

S/N

10

) (

N

100

)−1/2
( a

1 AU

)1/2

MEarth,

(12)
where σRV is the precision, and N is the number of observations.
The limit of radial velocity sensitivity is plotted in Figure 7
as a function of separation assuming a precision of 1 m s−1.
Additionally, we can consider how this microlensing event
compares to the sensitivity of a space-based astrometry mission
with microarcsecond precision (σa = 3 μas):

mp = 6.4

(

σa

3 μas

) (

S/N

10

)(

N

100

)−1/2

×
( a

1 AU

)−1
(

d

10

)

MEarth. (13)

We assume circular face-on orbits. We show the limiting mass as
a function of the semimajor axis in Figure 7 for 3 μas precision.

While these contours encompass a large region of the parameter
space, they do not take into account the time it takes to make the
observations, which increases with increasing semimajor axis.
Furthermore, we only expect this kind of astrometric precision
from a future space mission, whereas this event shows that
microlensing is currently capable of finding these planets from
the ground. This discussion shows that microlensing is sensitive
to planets in regions not probed by transits and radial velocity
and will be particularly important for finding planets at wide
separations where the periods are long. For example, for the
semimajor axis a = 4 AU (near the maximum sensitivity shown
in Figure 7), the period is P ≃ 10 yr.

6. SUMMARY

The extreme magnification microlensing event OGLE-2008-
BLG-279 allowed us to place broad constraints on planets
around the lens star. Even with a more conservative detection
threshold (∆χ2 > 160), this event is more sensitive than any
previously analyzed event (the prior record holder was MOA-
2003-BLG-32; Abe et al. 2004). Furthermore, because we
observe both parallax and finite-source effects in this event,
we are able to measure the mass and distance of an isolated
star (Ml = 0.64 ± 0.10 M⊙,Dl = 4.0 ± 0.6 kpc). Using
these properties of the lens star, we convert the mass ratio
and projected separation to physical units. We can exclude
giant planets around the lens star in the entire region where
they are expected to form, out beyond the snow line. For
example, Jupiter-mass planets are excluded from 0.54–19.5 AU.
Events like this that can detect or exclude a broad range of
planetary systems out beyond the snow line will be important
for determining the planet frequency at large separations and
constraining models of planet formation and migration.
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Research Initiative Program (2009-008561) of Korea Science
and Engineering Foundation (C.H.), and David Warren for his
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APPENDIX

UNCERTAINTY IN θ⋆, μ, AND θE

In the present case, the fractional errors in θ⋆, μ, and θE are all
very nearly the same, although for somewhat different reasons.
Since the same convergence of errors is likely to occur in many
point-lens/finite-source events, we briefly summarize why this
is the case. We first write (generally),

θ⋆ =
√

fs/Z,

where fs is the source flux as determined from the model, and Z is
the remaining set of factors, which generally include the surface
brightness of the source, uncertainties due to the calibration of
the source flux, and numerical constants. Next, we write

μ =
θE

tE
=

θ⋆

t⋆
=

√
fs

Z

1

t⋆
θE =

θ⋆

ρ
=

1

Z
√

fs

fgrand,

where fgrand ≡ fs/ρ and t⋆ ≡ ρtE. We note that for point-lens
events with strongly detected finite source effects, t⋆ and fgrand

are quasi-observables, and so have extremely small errors. For
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example, if u0 = 0, then 2t⋆ is just the observed source crossing
time while 2fgrand[1 + (3π/8 − 1)Γ] is the observed peak flux.
Even for u0 �= 0, these quantities are very strongly constrained,
with errors σfgrand

= 0.4% and σt⋆ = 0.3% in the present case.
Since the errors in fs and Z are independent, the fractional errors
in θ⋆, μ, and θE are each equal to [(1/4)(σfs

/fs)
2 + (σZ/Z)2]1/2.

In the present case, σfs
/fs is given by the fitting code to be 8.5%,

while we estimate σZ/Z to be 7%, and therefore find a net error
in all three quantities (θ∗, θE, and μ) of 8%.
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