
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 44, Number 1, May 1974

EXTREME  MEASURABLE  SELECTIONS

JERRY  A.   JOHNSON1

Abstract.. The extreme points of the set of measurable

selections for a set-valued mapping are characterized. As a corol-

lary, the extreme points of the unit ball of the space of "vector-

valued L" functions" are characterized, thus generalizing results of

Sundaresan.

1. Introduction. Let F be a separable Banach space and (S, sé, p)

a measure space. A function/: 5->F is called measurable if f~1(B) e sé

for each Borel subset B of E. For 1 Sp< oo, L„ = LP(S, sé, p; E) denotes

the Banach space of measurable functions/: 5->F such that

-ÍÍWf(sWdp(s)
11 v

< co.

We will always identify functions that are equal almost everywhere.

In [11] Sundaresan shows that (with a suitable change in our definition,

even for nonseparable E) if ||/||9=1 and f(s)/\\fos)\\ e ext U for almost

all s e S, then/is an extreme point of the unit ball of L„ where l</»<oo,

S is a locally compact Hausdorff space, p is a regular Borel measure, and

ext U is the set of extreme points of the unit ball U of E. In the case where

F is a separable conjugate space, Theorem 2 in [11] establishes the con-

verse and gives a characterization of the extreme points of the set of

measurable functions f.S->U. These results generalize those of [5].

Other earlier work for 5"=[0, 1] and E finite dimensional was done by

Karlin [8] and Aumann [1]. (When the author originally submitted this

note, he was unaware of references [10] and [11]. He thanks the referee

for calling them to his attention.)

In Proposition 1 of this note we give a characterization of the extreme

points of the set of measurable selections for a set-valued function F.

(It was suggested by Aumann in [1, p. 11] that this could be done if E

were finite dimensional and F had compact convex values.) From this,

we obtain four corollaries. Corollaries 2 and 4 strengthen [11, Theorem 2]
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and [1, Proposition 6.1]. Considerations of this sort arise not only in the

applications mentioned in [1] but also in control theory (see [9]). Corollary

5 provides a generalization of [11, Theorem 2] to the case where (S, sé, p)

is a complete measure space and F is a separable Banach space.

2. The characterizations. Let M and N be separable metric spaces

and p a Borel measure on M. By a /¿-measurable subset of M, we mean in

the usual Carathéodory sense (see [2], e.g.). A function/: M-+N is called

/¿-measurable [resp. Borel measurable] if/_1(7i) is /¿-measurable [resp.

a Borel set] for each Borel set B^N.

A subset of a metric space is called analytic (or Souslln) if it is the

continuous image of a Borel set in some complete separable metric space.

(See [3] and [4] concerning analytic sets.)

The following theorem was proved by von Neumann [6, Lemma 5,

p. 448] with N taken as the reals. A careful examination of the proof

reveals that it is valid in the more general setting stated below.

Theorem 1 (von Neumann). Let M and N be complete separable

metric spaces, A an analytic subset of M, and g:A^-N continuous. Let p

be a Borel measure on N. Then g (A) is p-measurab/e and there exists a

p-measurable mapping (f>:g(A)^-M such that g(<f>(x)) = xfor each x e g (A).

Following [1] we let 2s denote the subsets of 5. The graph of a mapping

F: F-+2S is denoted by <&F and is defined to be {(/, s)\s e Fit)}. Fis called

Borel measurable or analytic according as its graph is. We note, as

pointed out in [1, p. 2], that a point-valued function is Borel measurable

if and only if its graph is. In [1, Proposition 2.1] Aumann observed

(for 5=[0, 1] and p a Lebesgue measure) the following consequence of

Theorem 1 above.

Corollary 1. Let Sx and S2 be complete separable metric spaces,

F:Sx-^-2 2 analytic, F(s)^ 0 for each s, and p a Borel measure on Sx.

Then there is a p-measurable function f: Sx-^-S2 with fos) e Fis) for each

seS.

Proof. In Theorem 1 above take M=SxxS2, N=SX, A = ^F and

g(sx, s2)=sx. The required selection/is the second component of </>.

Throughout the remainder of this paper, unless otherwise explicitly

stated, E will be a separable Banach space, S a separable complete metric

space, and p a (positive) Borel measure on S.

We denote the complement of a set A by Ä, and B~A means BC\Ä.

B—A and B+A are used, for subsets of E, to mean {x— y\x e B,y e A}

and {x+j|x e B,y e A} respectively.
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Lemma 1. Let F and G be Borel measurable from S into 2E. The

mappings H{, ISiSS, defined below are Borel measurable.

(1) Hx:s^F(s)DG(s).

(2) If A<= S is a Borel set, H2is)=Fis) for se A and H2(s) = G(s) for

s e Ä.

(3) Iff:S—*-E is Borel measurable and X is a scalar, 773: s—>f(s) + XF(s).

(4) //5c e is a Borel set, H^.s^Bfor all s e S.

(5) Hh(s)=F(s)xG(s).

Proof.    (1) c8 FrM8G = ^ni.

(2) %H=l&Fn(AxE)]v[<ZGn(ÀxE)].

(3) Let 4>:SxE^SxE be defined by <f>(s, x) = (s, X'^x-fos))) if
X^O. Then <f> is Borel measurable and <p~le8F = 18'u . (The case X = 0 is

trivial.)

(4) &H=SxB.

(5) 9H=4r^Fy.9a) where <f>is, x,y) = Hs, x), is,y)).

This completes the proof of Lemma 1.

Proposition 1. Let F:S^>-2E be Borel measurable with Fis) convex

and nonempty for each s e S. Let Fx(s) = F(s)>—ext F(s) and suppose that

{s\Fx(s)^ 0} is a Borel set. ¿f F denotes the set of p-measurable functions

f: S—>-E such that fos) e F(s) for almost all s e S. Then fe ext £fF if and

only if fos) e ext F(s)for almost all s e S.

Proof.    That the condition is sufficient for/to be in ext SfF is clear.

Let A={s\f(s) e Fx(s)} and suppose A is not of /¿-measure zero.

DefineF2(.ç)=(F(s)xF(s))n(Fx£~A),whereAisthe diagonal of ExE.

18Fi is a Borel set by Lemma 1, and the mapping (s, x, y)->-is, l/2(x+j))

sends 'SF continuously onto 18F¡. Hence 18Fi is analytic. From [2,

Propositions 13, 14, p. 97] it follows that there is a Borel measurable

function g :S--E such thatg=/a.e. Let B={s\g(s) e Fx(s)}. Now, 18g(M8Fi

is analytic since each graph is (see [3, p. 454 and p. 482]). If ttx is the canon-

ical projection of SxE on S, then ■nx('8lir\'SF^ = B, and therefore B

is analytic. 5 complete and separable implies that B is /¿-measurable

(see [4, Theorem 5.5, p. 50 and Theorem 7.4, p. 52]). Since g=/a.e., the

symmetric difference of A and B is of measure zero. It follows that /¿7?>0

since otherwise pA=0, a contradiction. Now, p is regular (see [2, Corol-

lary 2, p. 347]) so there is a compact set K^B with pK>0. Let

Gis) = ligis) - Fis)) n i-gis) + Fis))] ~ {0},   if se K,

= {0}, ifsfK.

By Lemma 1, C7 is Borel measurable and, since Gis)y¿0  for each s,
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we may apply Corollary 1 to obtain a /¿-measurable function h : S—>-£ such

that h e S?G. This says that h does not vanish on K and that g+h and

g—h belong to if F. Since g=f a.e., it follows that/is not an extreme

point of if F. This completes the proof of the proposition.

The following corollary extends the Lœ case of Theorem 2 in [11].

Corollary 2. If K is a nonempty, convex, Borel subset of E and

if K is the set of p-measurable functions f.S^-K, then f e ext ifK if and

only if fos) e ext K for almost all s e S.

The next corollary has two consequences, the second of which contains

a converse of Theorem 2 in [5].

Corollary 3. Let K be a closed, convex, nonempty subset of E and

p a Borel measure on K. If /¿(A~ext A)>0, there is a Borel measurable

function g: A—>-F such that g^O on a set of positive measure and such that

x±g(x) e Kfor almost all x e K.

Proof. First note that A"<~ext K is analytic (see the proof of Propo-

sition 1) and hence is /¿-measurable. Now, letting S=Kin Corollary 2, we

see that the identity map on K is not an extreme point of ifK .Thus, there

is a /¿-measurable function g0:K—>-E such that x±g0(x) e K for almost

all x e K and such that g^O on a set of positive measure. Let g be a

Borel measurable function equal /¿-a.e. to g0.

Corollary 4.    Let K be a nonempty, closed, convex subset of E and

(S, sé, v) a measure space complete in the measure theoretic sense. Let

if be the set of functions f:S^*K that are .^/-measurable; i.e.,f~l(B) e sé

for each Borel set Be. K. (We continue to identify functions equal v-a.e.)

Then fe ext if if and only iff(s) e ext Kfor v-almost all s e S.

Proof. Define pB=vf~1(B) for each Borel set Be K, and suppose

that A = {s\f(s) $ ext K} is not of v-measure zero. A"~ext K is analytic

and therefore /¿-measurable. If /¿(A~ext A)=0, then by the regularity of

p, there is a Borel set 5=A~ext K with pB=0. Thus, f~l(B)^A and

vf~1(B) = 0. By the completeness of (S, sé', v), we have A e sé and

vA=0, a contradiction. Hence, /¿(A~ext A)>0 and we choose g to be

the Borel measurable function guaranteed by Corollary 3. Thengo/^0

on a set of positive v-measure and fos)±g( fos)) e K for r-almost all s e S.

Hence/^ ext if. The converse is clear.

Corollary 5. Let (S, sé, v) be as in Corollary 4. Then fis an extreme

point of the unit ball of Llt=Ln(S, sé, v; E), l<p<oo, if and only if

11/11 „= 1, and for a/most all s in the support Sf off,fos)¡\\fos)\\ is an extreme

point of the unit ball U of E.
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Proof. Let/be an extreme point of the unit ball of Lp. We apply

Corollary 4 to the measure space (St, sé, v), the convex set U, and the

function h(s)=f(s)l\\f(s)\\ on Sf. If h is not an extreme point of if, then

there exist hx, h2 e if such that hx^h2 on a set of positive measure and

h=l\2(hxA-h2). Let fj(s)= \fis)\htis) for s e S, andf¡(s) = 0 for s e S~Sf.

It then follows that/= l/2(/, +f2), each/ is in the unit ball of Lp, and

fo^fo on a set of positive measure. This is a contradiction. Thus, h is an

extreme point of if, so by Corollary 4, we have h(s) e ext U for almost all

seS.

The proof of the converse may be taken verbatim from [5].

3. Closing remarks. The hypothesis of separability and completeness

of F and S is necessary to determine that an analytic set is /¿-measurable,

and that a Borel set in SxFis in the product sigma-algebra.

If A' is a compact convex subset of F then ext K is a 18 6 set (see [7,

Proposition 1.3]). The author does not know whether ext U is a Borel set

for arbitrary separable £. As noted earlier, £/~ext U is analytic. By

[3, Corollary 1, p. 486], therefore, to prove ext U is a Borel set it is enough

to prove that it is analytic.
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