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EXTREME MEASURABLE SELECTIONS

JERRY A. JOHNSON!

ABSTRACT.. The extreme points of the set of measurable
selections for a set-valued mapping are characterized. As a corol-
lary, the extreme points of the unit ball of the space of ‘‘vector-
valued L? functions’” are characterized, thus generalizing results of
Sundaresan.

1. Introduction. Let E be a separable Banach space and (S, ., )
a measure space. A function f: S—FE is called measurable if f~'(B) € o/
for each Borel subset B of E. For 1=Sp<oo, L,=L,(S, &, u; E) denotes
the Banach space of measurable functions f: S—E such that

7= | [isow du(s)]””< .

We will always identify functions that are equal almost everywhere.

In [11] Sundaresan shows that (with a suitable change in our definition,
even for nonseparable E) if | f]l,=1 and f(s)/| f(s)ll € ext U for almost
all s € S, then f'is an extreme point of the unit ball of L, where 1 <p< oo,
S is a locally compact Hausdorff space, u is a regular Borel measure, and
ext U is the set of extreme points of the unit ball U of E. In the case where
E is a separable conjugate space, Theorem 2 in [11] establishes the con-
verse and gives a characterization of the extreme points of the set of
measurable functions f:S—U. These results generalize those of [5].
Other earlier work for S=[0, 1] and E finite dimensional was done by
Karlin [8] and Aumann [1]. (When the author originally submitted this
note, he was unaware of references [10] and [11]. He thanks the referee
for calling them to his attention.)

In Proposition 1 of this note we give a characterization of the extreme
points of the set of measurable selections for a set-valued function F.
(It was suggested by Aumann in [1, p. 11] that this could be done if £
were finite dimensional and F had compact convex values.) From this,
we obtain four corollaries. Corollaries 2 and 4 strengthen [11, Theorem 2]
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and [1, Proposition 6.1]. Considerations of this sort arise not only in the
applications mentioned in [1] but also in control theory (see [9]). Corollary
5 provides a generalization of [11, Theorem 2] to the case where (S, <7, u)
is a complete measure space and E is a separable Banach space.

2. The characterizations. Let M and N be separable metric spaces
and u a Borel measure on M. By a y-measurable subset of M, we mean in
the usual Carathéodory sense (see [2], e.g.). A function f: M—N is called
u-measurable [resp. Borel measurable] if f~1(B) is u-measurable [resp.
a Borel set] for each Borel set B< N.

A subset of a metric space is called analytic (or Souslin) if it is the
continuous image of a Borel set in some complete separable metric space.
(See [3] and [4] concerning analytic sets.)

The following theorem was proved by von Neumann [6, Lemma 5,
p. 448] with N taken as the reals. A careful examination of the proof
reveals that it is valid in the more general setting stated below.

THEOREM 1 (VON NEUMANN). Let M and N be complete separable
metric spaces, A an analytic subset of M, and g:A—N continuous. Let u
be a Borel measure on N. Then g(A) is y-measurable and there exists a
u-measurable mapping ¢:g(A)—M such that g($(x))=x for each x € g(A).

Following [1] we let 25 denote the subsets of S. The graph of a mapping
F:T—2%is denoted by 9, and is defined to be {(¢, s)|s € F(1)}. F is called
Borel measurable or analytic according as its graph is. We note, as
pointed out in [1, p. 2], that a point-valued function is Borel measurable
if and only if its graph is. In [1, Proposition 2.1] Aumann observed
(for S=[0, 1] and px a Lebesgue measure) the following consequence of
Theorem 1 above.

COROLLARY 1. Let S; and S, be complete separable metric spaces,
F:S,—25: analytic, F(s)# & for each s, and u a Borel measure on S,.
Then there is a u-measurable function f:S,—S, with f(s) € F(s) for each
sES.

Proor. In Theorem 1 above take M=S;XS,, N=S;, A=%p and
g(s1, s;)=s,. The required selection f is the second component of ¢.

Throughout the remainder of this paper, unless otherwise explicitly
stated, E will be a separable Banach space, S a separable complete metric
space, and p a (positive) Borel measure on S.

We denote the complement of a set 4 by 4, and B~A means BNA.
B—A and B+4 are used, for subsets of E, to mean {x—y|x € B,y € A}
and {x+y|x € B, y € A} respectively.
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LemMa 1. Let F and G be Borel measurable from S into 2. The
mappings H;, 1 Zi=5, defined below are Borel measurable.

(1) Hy:s—>F(s)NG(s).

(2) If A< S is a Borel set, Hy(s)=F(s) for s € A and H,(s)=G(s) for
s € A.

(3) If f:S—E is Borel measurable and 1 is a scalar, Hy:s—f(s)+AF(s).

(4) If B E is a Borel set, H,:s—B for all s € §.

(5) Hy(s)=F(s)xG(s).

ProoF. (1) ¥,N% =%,

() %y, =[9rN(AXE)V[Z;N(AXE)].

(3) Let ¢:SXE—->SXE be defined by ¢(s, x)=(s, A1 (x—f(s))) if
A#0. Then ¢ is Borel measurable and ¢—'% =% . (The case =0 is
trivial.)

(4) Gy, =SxB.

(5) gH5=¢"l(ng g(") where (l’(sv X, }’)=((S, x)’ (Sa y))'

This completes the proof of Lemma 1.

PROPOSITION 1. Let F:S—2% be Borel measurable with F(s) convex
and nonempty for each s € S. Let F,(s)=F(s)~ext F(s) and suppose that
{s]Fl(s);é @} is a Borel set. &y denotes the set of u-measurable functions
[:S—E such that f(s) € F(s) for almost all s€ S. Then feext & if and
only if f(s) € ext F(s) for almost all s € S.

Proor. That the condition is sufficient for f to be in ext & is clear.

Let A={s|f(s) € Fi(s)} and suppose A is not of u-measure zero.
Define F,(s)=(F(s) X F(s)) N(E x E~A), where A isthe diagonal of EX E.
9, is a Borel set by Lemma 1, and the mapping (s, x, y)—(s, 1/2(x+)))
sends ¥, continuously onto ¥ . Hence ¥y is analytic. From [2,
Propositions 13, 14, p. 97] it follows that there is a Borel measurable
function g: S—E such that g=fa.e. Let B={s|g(s) € Fy(s)}. Now, ,N%
is analytic since each graph is (see [3, p. 454 and p. 482]). If 7, is the canon-
ical projection of SxE on S, then m(%9,N¥% r,)=B, and therefore B
is analytic. S complete and separable implies that B is u-measurable
(see [4, Theorem 5.5, p. 50 and Theorem 7.4, p. 52]). Since g=fa.c., the
symmetric difference of 4 and B is of measure zero. It follows that uB>0
since otherwise u4 =0, a contradiction. Now, u is regular (see [2, Corol-
lary 2, p. 347]) so there is a compact set K< B with uK>0. Let

G(s) = [(g(s) — F(s)) N (—g(s) + F(s)1~ {0}, ifseK,
= {0}’ if s¢ K.

By Lemma 1, G is Borel measurable and, since G(s)# @ for each s,
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we may apply Corollary 1 to obtain a u-measurable function /1: S—E such
that h € &,. This says that 4 does not vanish on K and that g+/ and
g—h belong to % }.. Since g=f a.e., it follows that f is not an extreme
point of & . This completes the proof of the proposition.

The following corollary extends the L* case of Theorem 2 in [11].

~ CorOLLARY 2. If K is a nonempty, convex, Borel subset of E and
S is the set of u-measurable functions f:S—K, then feext & if and
only if f(s) € ext K for almost all s € S.

The next corollary has two consequences, the second of which contains
a converse of Theorem 2 in [5].

COROLLARY 3. Let K be a closed, convex, nonempty subset of E and
u a Borel measure on K. If u(K~ext K)>0, there is a Borel measurable
Sfunction g: K—E such that g#0 on a set of positive measure and such that
x4g(x) € K for almost all x € K.

Proor. First note that K~ext K is analytic (see the proof of Propo-
sition 1) and hence is u-measurable. Now, letting S=K in Corollary 2, we
see that the identity map on K is not an extreme point of & .. Thus, there
is a u-measurable function g,: K—E such that xd-go(x) € K for almost
all x € K and such that g,#0 on a set of positive measure. Let g be a
Borel measurable function equal u-a.e. to g.

COROLLARY 4. Let K be a nonempty, closed, convex subset of E and
(S, &7, v) a measure space complete in the measure theoretic sense. Let
& be the set of functions [:S—K that are s/-measurable; i.e., f~(B) € s/
for each Borel set B K. (We continue to identify functions equal v-a.e.)
Then feext & if and only if f(s) € ext K for v-almost all s € S.

Proor. Define uB=vf~1(B) for each Borel set B K, and suppose
that A={s| f(s) ¢ ext K} is not of y-measure zero. K~ext K is analytic
and therefore y-measurable. If u(K~ext K)=0, then by the regularity of
u, there is a Borel set B> K~ext K with uB=0. Thus, f~(B)>4 and
»f~1(B)=0. By the completeness of (S,.«/,»), we have 4 €/ and
vA=0, a contradiction. Hence, u(K~ext K)>0 and we choose g to be
the Borel measurable function guaranteed by Corollary 3. Then go f#0
on a set of positive v-measure and f(s)2g(f(s)) € K for »-almost all s € S.
Hence f'¢ ext &%. The converse is clear.

COROLLARY 5. Let (S, &7, v) be as in Corollary 4. Then f is an extrenie
point of the unit ball of L,=L\(S, /,v;E), 1<p<co, if and only if
I fll,=1, and for almost all s in the support S, of f, f(s)/|l f(s)| is an extreme
point of the unit ball U of E.
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PROOF. Let f be an extreme point of the unit ball of L,. We apply
Corollary 4 to the measure space (S,, %7, »), the convex set U, and the
function h(s)=f(s)/|l f(s)|l on S,. If h is not an extreme point of &, then
there exist 4y, hy, € & such that h;7h, on a set of positive measure and
h=1/2(h,+h,). Let f;(s)=| f(s)|lh;(s) for s € S; and f;(s)=0 for s € S~S,.
It then follows that f=1/2(f,+/,), each f; is in the unit ball of L,, and
f1#/f> on a set of positive measure. This is a contradiction. Thus, 4 is an
extreme point of %, so by Corollary 4, we have /i(s) € ext U for almost all
s€S.

The proof of the converse may be taken verbatim from [5].

3. Closing remarks. The hypothesis of separability and completeness
of E and S is necessary to determine that an analytic set is u-measurable,
and that a Borel set in §x E is in the product sigma-algebra.

If K is a compact convex subset of E then ext K is a ¥, set (see [7,
Proposition 1.3]). The author does not know whether ext U is a Borel set
for arbitrary separable E. As noted earlier, U~ext U is analytic. By
[3, Corollary 1, p. 486], therefore, to prove ext U is a Borel set it is enough
to prove that it is analytic.
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