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Extreme Point Results for Robust Stabilization
of Interval Plants with First
Order Compensators

B. Ross Barmish, Member, IEEE, Christopher V. Hollot, Member, IEEE, Frank J. Kraus, and
Roberto Tempo, Member, IEEE

Abstract—1t has recently been shown that a first-order com-
pensator robustly stabilizes an interval plant family if and only
if it stabilizes all of the extreme plants. That is, if the plant is
described by an mth order numerator and a monic nth order
denominator with coefficients lying in prescribed intervals, it is
necessary and sufficient to stabilize the set of 27"+ extreme
plants. These extreme plants are obtained by considering all
possible combinations for the extreme values of the numerator
and denominator coefficients. In this paper, we prove a stronger
result. Namely, it is necessary and sufficient to stabilize only
sixteen of the extreme plants. These sixteen plants are generated
using the Kharitonov polynomials associated with the numerator
and denominator. Furthermore, when additional a priori infor-
mation about the compensator is specified (sign of the gain and
signs and relative magnitudes of the pole and zero), then in
some cases, it is necessary and sufficient to stabilize eight critical
plants while in other cases, it is necessary and sufficient to
stabilize twelve critical plants.

1. INTRODUCTION

HE seminal theorem of Kharitonov [1] has sparked a

whole new line of research (see [2] and [3] for reviews)
dealing with questions of the following sort: Given a family
of polynomials, under what conditions does stability of a
“‘small’” finite subset of ‘‘extreme’’ members of this family
imply stability of the entire family? Such extreme point
results make it possible to develop a number of computation-
ally tractable methods to solve a variety of robust stability
analysis problems for feedback control systems.

In this paper, the so-called interval plant paradigm is
considered, i.e., the uncertainty in the plant is manifested via
a priori interval bounds for each numerator and denominator
coefficient. It should be noted that in applications, the
assumption of interval bounds is inherently conservative
because each uncertain parameter typically enters into more
than one plant coefficient. Nevertheless, it is argued that
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development of results at the level of interval plant models is
an essential step in establishing a more comprehensive the-
ory. Further motivation for the interval plant paradigm is
provided by the fact that in many applications, the depen-
dence of plant coefficients on uncertain parameters is not
identified accurately enough to merit working at a finer level
of detail—for all practical purposes, one might as well
assume interval bounds.

Given the power of existing extreme point results in an
analysis context, it is natural to ask whether the theory can be
extended to a synthesis context. In this regard, few extreme
point results are available in the literature. Some notable
exceptions include the work of Ghosh [4] where it is shown
that a pure gain compensator C(s) = K stabilizes the entire
interval plant family if and only if it stabilizes a distinguished
set of eight of the extreme plants.

Motivated by the desire to deal with more practical con-
trollers, Hollot and Yang [7] consider the same setup as
Ghosh but allow the controller to be first order. Subse-
quently, they prove that to robustly stabilize the entire fam-
ily, it is necessary and sufficient to stabilize the set of
extreme plants. These extreme plants are obtained by tak-
ing all possible combinations of extreme values of the
plant numerator coefficients with extreme values of the plant
denominator coefficients. Hence, the number of extreme
plants can be quite large, i.e., if the plant numerator has
degree m and the plant denominator is monic with degree n,
the number of extreme plants N,,, can be as high as

ext

N._ = 2m+n+].

ext

Given the fact that all extreme plants must be considered, one
often uses the jargon weak Kharitonov-like result to describe
this work.

In contrast, the focal point of this paper is the issue of
strong Kharitonov-like results. Namely, we prove that for
an interval plant with a first-order compensator, it is neces-
sary and sufficient to stabilize only sixteen extreme plants in
order to stabilize the entire family. These sixteen extreme
plants are obtained exactly as in [5] (see also the subsequent
paper [6]) where a robust version of the small gain theorem is
given. Namely, we take each of the four Kharitonov polyno-
mials for the numerator in combination with each of the four
Kharitonov polynomials for the denominator. We use the
words ‘‘strong Kharitonov-like results’> because the number
of extreme plants exploited (sixteen in our case) is indepen-
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dent of the numerator and denominator degrees m and n,
respectively.

This sixteen plants result can be strengthened as follows:
When the sign of the gain and signs and relative magnitudes
of the pole and zero of the compensator are specified, then,
in some cases, it is necessary and sufficient to stabilize
a critical subset of eight plants while in other cases,
twelve critical plants are required.

Before proceeding with the formal development, one final
point should be noted. A major benefit associated with the
extreme point results above is that it becomes possible to
carry out a control synthesis via computer graphics. To
illustrate, suppose one wants to construct a robust stabilizing
PI controller C(s) = K, + K, /s. Then, to determine if
appropriate gains K, and K, exist, one feasible approach
would be as follows: First, set up sixteen Routh tables—one
for each extreme plant with compensator C(s). Noting that
the first column entries of these tables will be functions of K,
and K, the positivity requirement for stability leads to a set
of inequalities. Since only two parameters K, and K, are
involved, the satisfaction set for each of these Routh table
inequalities is easily graphed. Then, it follows that a neces-
sary and sufficient condition for the existence of a robust
stabilizing controller is nonemptiness of the intersection of
all the satisfaction sets so obtained. Moreover, any point
(K¥, K¥) in this intersection is associated with a robust
stabilizing PI controller, i.e., the intersection region com-
pletely characterizes the set of robust PI stabilizers.

The paper is organized as follows: In Section II, we
introduce the necessary notation and definitions for robust
stabilization of interval plants. In Section III, we state
the main results of the paper and in Section IV we present a
numerical example illustrating their application. Finally, in
Section V we provide conclusions.

II. NOTATION AND DEFINITIONS

We first introduce the notation needed in the sequel.
Consider a strictly proper interval plant family & consisting
of all plants of the form

N(s, q)

P(s,q,r) = —m (1)

where the numerator and denominator polynomials are of the
form
N(5,G) = qus" + @u_1S" "'+ + @S + o5 (2)

®3)

and where vectors ¢ and r lie in given rectangles Q and R,
respectively, i.e.,

D(s,r)y=s"+r,_ "'+ - +rs+r

geQ={q:q; =q;<q’ for i=0,1,,m}
4)
and

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 6, JUNE 1992

where the bounds g;, g, r;, and r;" are specified a
priori. The resulting interval polynomial families for the
numerator and denominator are denoted by

A= {N(-,q): qe0Q};

9= {D(-,r): reR}. (6)

To stabilize the interval plant family &, we consider a
proper first-order compensator of the form
s —2
s-p’

C(s)=K

(7

We say that this compensator C(s) robustly stabilizes the
interval plant family # if, for all geQ and all reRr,
the resulting closed-loop polynomial

A(s,q,r) = K(s — z)N(s, q) + (s = p) D(s, r) (8)

has all its roots in the strict left half plane; that is A(s, g, r)
is Hurwitz. This being the case, C(s) is said to be a
robust stabilizer and the closed-loop system is said to
be robustly stable.

Next, we introduce the Kharitonov polynomials for the
numerator and denominator of the plant. Namely, for
the numerator, let

Ni(s) = gi+qis+q;s +ays’ +qist+qis®+ -+
Ny(s) =qo+q;s+qFs’+qis®+qrs* +qss®+ -+
Ny(s) = go+qis+ais’+q55° +q;s* +qis>+ -+

N(s) = gi+ars+a55°+qis’ +qfs* +qs8°+ -

and for the denominator, let
D(s) =ri+ris+ryst+rys +rist +rds®+ e
Dy(s)=rg+ris+ris’+ris® +rst+ris®+ -0
Dy(s) =rog+ris+rfs’+rys +ryst+ris®+ -
Dy(s)=ri+ris+rys®+ris+rfst+rss’+ o0
(10)
By taking all combinations of the N,(s) and D,(s), we
obtain the sixteen Kharitonov plants

Py(s) = gl;((sT))

for i, k = 1,2,3,4. For these extreme plants, when we say
“C(s) stabilizes P, (s),”” the understanding is that the
closed-loop polynomial

Au(s) = K(s = 2)Ni(s) + (s = P) Di(5)

is Hurwitz.

(11)

(12)
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III. MAIN RESULTS

In this section, we state the main resuits of the paper. The
proofs of the following theorems are given in Appendices A
and B.

Theorem 1: A first-order compensator C(s) robustly sta-
bilizes the interval plant family & if and only if it stabilizes
all of the sixteen Kharitonov plants P,(s); i k=1,2,3,4.

O

Relations with the Robust Small Gain Theorem: In this
section, we show how one specializes Theorem 1 to obtain a
version of the so-called robust small gain theorem; see [5]
and [6] for embellishments. An example is also provided to
show that a ‘‘reverse implication’> does not hold, i.e., the
robust small gain theorem does not imply Theorem 1.

To state the robust small gain theorem in the context of
this paper, we let || - ||, denote the H, norm and assume
that the interval plant family £ is robustly stable, i.e., the
denominator D(s, r) is stable for all r € R. Now, this theorem
states that

[ P(s.q,r)|, <1
for all g€ Q and reR if and only if
[ Pi(s)]l.. < 1

for i, k=1,2,3,4.

To see how this result is a special case of Theorem 1, we
exploit a well-known fact (for example, see [8]). If P(s) is
proper rational and stable, then || P(s)|,, < 1 only if every
first-order compensator of the form

s—-a

cls) = = s+a
with @ € [0, o] stabilizes P(s). Using this fact and invoking
Theorem 1 with K = +1, z =a, and p = —a, the robust
small gain theorem follows immediately.

We now argue that Theorem 1 is not a special case of the
robust small gain theorem, i.e., Theorem 1 is more general.
To this end, we consider the robustly stable interval plant
family & described by

1
P(s,q.7) = s+ 0.1s4r
where re[0.5,1]. From Theorem 1, it follows that the
first-order compensator
s+ 3
s+ 10

robustly stabilizes the interval plant family . However, for
r=20.5,

C(s) = 3.33

IC(s)P(s,q.r)|, = 14.5.

Hence, no conclusion can be drawn from the robust small
gain theorem, even though Theorem 1 does show that this
interval plant can be robustly stabilized with a first-order
compensator.

As mentioned in the Introduction, Theorem 1 can be
strengthened when additional @ priori information about the
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compensator is specified. Such a strengthening is illustrated
in the theorem below for the case when the compensator is
stable minimum phase with positive gain—either lead or lag.
We see that it is necessary and sufficient to stabilize only
eight plants.

For other combinations of the pole, zero, and gain, results
similar to Theorem 2 can readily be given. All of the various
possibilities are summarized in Appendix C in Tables I and
II. Notice that when p and z have the same sign, we have an
eight-plant result, whereas twelve plants are required when p
and z have opposite sign.

Theorem 2: Consider the first-order compensator C(s) as
in (7) with K > 0, <0, and p < 0. Then if p < z (lead
compensator), C(s) robustly stabilizes # if and only if it
stabilizes the eight plants Py (5), Py5(s), Py(s), Py(s),
Py,(5), Py3(s), Pyy(s), Py(s). If p > z (lag compensator),
C(s) robustly stabilizes 2 if and only if it stabilizes the eight
plants Py (s), P,(5), Py(5), Py(s), Ps,(s), Pss(s),
P, (s), Pyu(s). O

Further Extensions: It is straightforward to extend
Theorem 1 so as to accommodate a cascade of integrators in
the compensator. That is, considering a compensator of the
form

4
R ]

(13)

a nearly identical line of proof can be used to establish that
C(s) robustly stabilizes 2 if and only if it stabilizes the
sixteen Kharitonov plants.

It is also worth noting that simplifications of the results in
this paper arise when the interval plant family % is of
sufficiently low order. For example, with lead compensator
C(s) as in Theorem 2, if all members of # have denomina-
tor degree less than four, only the two extreme plants P,,(s)
and P,,(s) need to be stabilized.

IV. NUMERICAL EXAMPLE

In this section, we illustrate the application of Theorem 1
via computer graphics. To this end, we consider the model
given in [9] for an experimental oblique wing aircraft. In the
absence of perturbations, the aircraft transfer function is

64s + 128
s* 4+ 3.75% + 65.65% + 325

P(s) =

Now, for robust stabilization purposes, we replace P(s)
by the interval plant family % described by
q,5 + q,

P(s,q,r) = )
) s+ s+ rst s+,

For illustrative purposes, we consider parameter uncertain-
ties g, €[90, 166], q, €[54,74], roe[-0.1,0.1], r e
[30.1,33.9], r, €[50.4, 80.8), and rye€2.8,4.6].

For the family # above, the objective is to determine if a
robust stabilizing PI compensator
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exists. This being the case, we also want to construct an
appropriate compensator.

Indeed, in view of Theorem 1 (also recall the discussion in
the Introduction), we first set up sixteen Routh tables para-
metrically in K, and K,—one for each of the sixteen
Kharitonov plants with compensator C(s). For example,
using the Kharitonov potynomials for N,(s) and D,(s), we
obtain the array

s° 1 80.8 —y + 74K,

s* 4.6 30.1 + 74K, 166K,

s 1 743 - 16.1K, -y + 37.9K, 0

52 o /o, 166K, 0

s! B, /8, 0 0

s° 166K, 0 0
where

o = 2236 + 5777.2K, + 174.3K, — 1191.4K?;
a, =743 - 16.1K,;

B, = —223.68 + 371,445.56 K, — 202, 102.06 K 2
~197,772.4K] — 831,660.75K, + 413,304 94K K,
~88,182.92K7K, + 14,229 .93K2;

By =y

and

v=0.1-166K,.
Using the sixteen Routh tables, we now enforce positivity for
each of the first columns. This leads to inequalities involving

K, and K,, e.g., for the Routh table for the Kharitonov
plant P,,(s) above, stability forces

K, <4.6;

K,>0;
a /o, > 0;
B,/8,>0.

It is now straightforward to display the satisfaction set for
the ‘‘Routh inequalities’’ above, i.e., any one of a wide
variety of two variable graphics routines can be used. In
Fig. 1, we show the computed set of stabilizing pairs
(K,, K,) over the range

0<K,<16; O0<K,<2.

For implementation purposes, one can use any (K, K,)
combination in this set to generate a stabilizing controller.
For example, a specific robust PI stabilizing controller is

0.2
C(s) =09+ —.
s

V. CONCLUSION

The extreme point results presented in this paper suggest
an important open research problem: Suppose that we remain
within the realm of interval plants but we allow the compen-
sator to be more general, i.e., we no longer restrict C(s) to
be first order. Then, it is of interest to give conditions under

1.6

7/ >

)
0

K,

o

=

12 14 1.6 1.8 2
Ka

Fig. 1. Set of robust PI stabilizers.

which stabilization of some distinguished subset of the
extreme plants implies stabilization of the entire interval
family. In this regard, note that some sort of condition must
be imposed because of the counterexamples given in Hollot
and Yang [7).

If it turns out that more general classes of compensators
lend themselves to extreme point results, then the issue of
“‘computability’” of a robust stabilizing controller becomes
paramount. That is, since the number of parameters entering
C(s) can be significant, the two-dimensional graphics
approach described in this paper will no longer work. Said
another way, although one can still use a finite number of
Routh tables to generate inequality constraints on the com-
pensator parameters, the finding of a feasible point may
amount to solving a difficult nonlinear program.

APPENDIX A
PrROOF OF THEOREM 1

The proof of Theorem 1 is accomplished with the aid of
two lemmas. The first of these lemmas is a known result
relating real and complex Hurwitz polynomials.

Lemma 1 : (See [10, p. 61] for proof) Consider a real
coefficient polynomial p(s) expressed as

p(s) =f(s?) + sg(s%)

where f(+) and g(-) are also polynomials and assume that
p(s) has positive coefficients. Then, the following three
statements are equivalent.

1) The real coefficient polynomial p(s) is Hurwitz.

2) The complex coefficient polynomial

Bi(s) = f(s) + Jjg(Js) (14)
is Hurwitz.
3) The complex coefficient polynomial
Da(s) = f(—js) + sg(—Js)

(15)

is Hurwitz. Ll

The next lemma is a minor extension of Lemma 2.1 in [7].
It deals with the special case when uncertain parameters only
enter into two consecutive coefficients in an affine linear
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manner. This extension is proven using Lemma 1 and value
set geometry arguments which generalize those given in [11].

Lemma 2: Let py(s) be a polynomial of degree n and
suppose p,(s) is a polynomial of degree k < n — 1 contain-
ing only all even or all odd powers of s. Then, given any
a, B € R, the polynomial

p(ssN) = po(s) + Nas + 8) py(s) (16)

is Hurwitz for all A€ [0, 1] if and only if p(s,0) and p(s, 1)
are Hurwitz.

Proof: Since necessity is trivial, we proceed to estab-
lish sufficiency. Indeed, we assume that p(s, 0) and p(s, 1)
are Hurwitz and without loss of generality, we make the
following assumptions:

1) « and 3 are both nonzero; otherwise \ enters into only
all even order terms or all odd order terms and sufficiency
follows immediately from the result of Bialas and Garloff
[12].

2) p\(s) has only even powers of s. In this case, the proof
to follow uses only relation (14) and can be simply modi-
fied to handle the odd power case using relation (15).

3) p(s,0) and p(s, 1) both have all positive coefficients;
there is no loss of generality here because p(s,0) and
p(s, 1) are both Hurwitz and have the same coefficient of s”.

Writing
pols) =S(s?) + sg(s%);
pi(s) = h(s?)
where f(+), g(-), and A(-) are polynomials, we obtain
P(s, N = f(s?) + sg(s%) + Nas + B)h(s?)
= [£(s*) + N8R(s?)] + s[g(s?) + Nath(s?)].

In view of 3) above, p(s, \) has positive coefficients for all
A€ [0, 1]. Therefore, by Lemma 1, it suffices to prove that
the complex coefficient polynomial

B(s, N = [f(Js) + N8h(js)] + i g(Js) + Aah(js)]
= [f(js) +Jjg(Jjs)] + N8B + aj)h(Js)

is Hurwitz for all Ae [0, 1]. In this regard, we already know
from Lemma 1 that p(s,0) and (s, 1) are Hurwitz.

The proof is now completed by contradiction. If p(s, N) is
not Hurwitz for some A€ [0, 1], then continuous root depen-
dence on X dictates that there exists some w*e R and Ne
(0, 1) such that

P(jw*, X) =o0.

(17)
We first rule out the possibilities that p(jw* 0) = 0 or
P(jw*, 1) = 0 because this would contradict Hurwitzness
of p(s,0) and p(s,1). We also rule out the possibility
that p(s,0) and j(s, 1) are equal because of the fact that
P(ju*, X) = 0 with X* neither zero nor unity.

Hence, it follows that for each w in some neighborhood Q
of w*, the value set

p(jw,[0,1]) = {B(jo, N): Ae[0, 1]}
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is a line segment in the complex plane with end points
P(jw,0) and p(jw, 1) and constant slope m(w) = o /B.

To complete the proof, note that the origin lies on the
relative interior of the line segment p(jw™*, [0, 1]). More-
over, since p(s,0) and p(s, 1) are Hurwitz, the angles
4P(jw,0) and AP(jw, 1) are strictly increasing functions
of w. Using this fact in conjunction with the fact that the
origin lies on p(jw*, [0, 1]), it follows that for w > w* with
| @ — w*| sufficiently small, the value set has slope 7t(w) >
M(w*). This, however, contradicts the constancy of #(w)
for w € Q. The proof of the lemma is now complete. 0

Preliminaries for Proof of Theorem 1: In the argument
to follow, all sets in the complex plane C are convex
polygons. If Z € C is a convex polygon, then &[Z] will
denote the edges of Z; if Z,, Z, = C are convex polygons,
then the direct sum

Z+Z,={z, +2,: 2,€Z; 2, €2}

is a convex polygon. Likewise, multiplication of a complex
number z, by a convex polygon Z will be defined in the
obvious way, i.e.,

20Z = {202: z€ Z}
is a convex polygon.

The proof of Theorem 1 involves some routine manipula-
tions of convex polygons such as set addition and linear
transformation; for further elaboration, see Rockafellar [13]
where algebraic operations on convex sets are discussed in
detail. In this regard, we draw attention to the following fact.
Suppose that Z, and Z, are polygons in R? and T;: R?* — R?
is affine linear for i = 1,2. Then, it follows that 7,Z, +
T,Z, is also a polygon with edge points which come from
the edges of Z, and the edges of Z,. In the proof of
Theorem 1, we exploit a version of this result which is
embodied below.

Basic Fact: Given convex polygons Z, Z, € C and fixed
complex numbers z, and z,, it follows that

(2,2, +2,2,] = 24[2,] + 26[2,].

Proof of Theorem 1: Since necessity is trivial, we pro-
ceed directly with sufficiency. Indeed, we assume that C(s)
stabilizes the sixteen Kharitonov plants and must show that
C(s) robustly stabilizes #. Since A(s, g, r) has degree
n+ 1 forall geQ and reR, this requirement is equivalent
to a ‘‘zero exclusion’” from the value set

A(jo. Q. R) = {A(jw,q.r): ge Qi reR}
at all frequencies w e R, e.g., see [2].
We claim that the simple linear coefficient dependencies on
q and r imply that A(jw, Q, R) is a convex polygon in the
complex plane. To see this, observe that we have a direct
sum decomposition
A(jo. Q. R) = K(jo = z)N(jw, Q)
+ (jw — p)D(jw, R)
where
N(jo,Q) = {N(jw.q): geQ};
D(jw, R) = {D(jw.r): reR}
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An(jw) b

Avljw)

Barlpw) Baeljw)

Bl Balie) 1

Agy(jw)
Dagp(jw) i

Fig. 2. Value set of A(jw, Q, R).

are the so-called Kharitonov rectangles with vertices
(clockwise from northeast) N,(jw), N,(Jw), N,(jw), and
Ny(jw) for N(jw,Q) and D,(jw), Dy(jw), D,(jw),
and Ds(jw) for D(jw, Q). It is now apparent that A(jw,
Q. R) is a convex polygon described by its convex hull (see
Fig. 2)

A(jw, Q, R) = conv {K(jo - z)Nil(jw)
+(jo) —p)Dkl(jw); ik, = 1,2,3,4}.
Equivalently
A(jo, Q. R) =conv {A, ,(jw): iy, k; =1,2,3,4}.

The remainder of the proof involves a contradiction argu-
ment. To this end, assume that at some frequency & e R

0eA(j&, Q, R).

Then using the fact that 0 ¢ A(jw, Q, R) for | w| sufficiently

large (domination by s” term), it follows that
0eé[A(jo*, Q, R)] (18)

for some w* € R. Now, invoking the *‘basic fact’” preceding
this proof, we have

OeK(ju* - z)g[N(jw*, 0)]
+(Jjo* ~ p) [ D(ju*, R)).

Using the orientation of the vertices of the rectangles
N(jw, Q) and D(jw, R) above, it follows that

K(jo* = 2)[a*N,(Jo*) + (1 = &*) N, (jo*)]
+(Jjo* = p)[B*Dy (o)
+(1 = 8Dy, (ju*)] =0 (19)
for some (a*, 8*) €[0, 1] x [0, 1] and some

(i, 1) €{(1,3),(1,4), (2,3), (2,4)};
(kis ko) €{(1,3),(1,4),(2,3),(2,4)}.

Without loss of generality, we simplify notation and hence-
forth consider

("1”'2) = (1,3);
- (kl’kz) = (2’4)
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noting that the identical line of proof to follow can be used
for the other (/,, i,) and (k,, k,) combinations.

Note that the quantity on the left-hand side of (19) is a
particular evaluation of

8(s,a, b) = K(s — z)[aN,(s) + (1 — a) N;(s)]
+(s = p)[bD,(s) + (1 - b) Dy(s)]

with s = jw*, a = o*, and b = B*. Hence, it follows from
(19) that

0ed(jw*, [0,1],[0,1]) (20)

where
5(jw, [0,1],[0,1])
= {8(Jw,a, b): a€[0,1]; belo0,1]}
is a convex polygon. Since
5(4@.[0.1].[0,1]) c A(j&, Q. R)
relations (18) and (20) imply that
~ 0eé[8(sa,[0,1],]0,1])] (21)

for some & € R. Again recalling the ‘basic fact,”” the edges
of 6(j&,[0,1],[0, 1]) are obtained from the edges of the
rectangle [0, 1] x [0, 1]. Without loss of generality, suppose
that (21) is attained with @ = Ae [0, 1] and b = 1; note that
the other edge combinations for @ and b are handled using a
line of proof which is virtually identical to the one used for
this case. Under these conditions, it follows that

8(ja, A1) = 0.
Equivalently,

A3 (J@) + XK (jé — 2)[ N,(J&) — N3(ja)] = 0. (22)

The proof is now completed by making the following
identifications with Lemma 2:

Po(s) ~ Ay(s);
pi(s) ~ Ny(s) = Ns(s);
Mas + B) ~ NK(s — z).

Recalling that C(s) stabilizes the sixteen Kharitonov plants,
it is easy to verify that all preconditions of Lemma 2 are
satisfied. In particular, notice that N,(s) — N;(s) has only
even powers of s and p(s,0) = A3, (s) and p(s, 1) = A ()
are Hurwitz. Therefore, Lemma 2 dictates that &(s, A\, 1)
must be Hurwitz for all A€[0, 1]. On the other hand, (22)
implies that 8(s, X, 1) has a root s = j& on the imaginary
axis which contradicts its Hurwitzness. With this contradic-
tion, the proof of the theorem is now complete. O

APPENDIX B
PrROOF OF THEOREM 2

Preliminaries for Proof of Theorem 2: If % is a rectan-
gle in the complex plane with sides parallel to the real and
imaginary axes, then we can unambiguously associate its
vertices with compass directions, i.e., we use v™E to denote
its northeast vertex, vSZ to denote its southeast vertex, vS%




