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Several important and efficient methods of solution of specific types
of linear programming problems, such as the "floodirg" o. "flow" methods of
Boldyreff and Ford=-Fulkerson for network flows and tne "decomposition"
principle or "mixing routines" of Dantzig-Wolfe or Charnes-Cooper, have the
distressing feature for managerial applications of sometimes providing
optimal sclutions which are not extreme point (or basic) solutions. Thereby,
any immediate and automatic availability of the optimal dual evaluators of the
original problem is not forthcoming. Indeed, several such experiences have
resulted in abandonment of these techniques for managerial studies in certain
industrial firms.

Aside from sensitivity analysis, it is also often desirable to start from
an operable ("feasible") solution, not necessarily optimal, which is either
suggested by company personnel or from various pertinent gqualitative consid-
erations, and to be able to proceed automatically to an extreme point
(= basic) solution which is at least as good as the suggested one. Y
(fhereafter any one of the various methods could be employed to achieve
optimality.)

The purpose of this paper is to exhibit how part of the technique of proof
of the opposite sign theorem g‘/r;an be employed in a simple algorithmic
manner to achieve this end. ‘e present an ALGOL code for executing this

algorithm in a manner compatible (as a procedure) with standard procrams.
Consider for the moment the linear programming problem written in the

form:

1/ There have been constructive methods which reduce any feasible solution
= to 2 basic solution, but which have not considered this important
feature, or other features such as ability to employ a known but not

necessarily feasible basis.
2/ See reference [3] on semi-infinite programming for a proof of it in
general form.



j:IJJ
n
subject to E % Xj: Po
j=1 .
A >0
) n
where P , P are all m-vector.. let A= (X: £ FAX. =P , X >0 } .
e =1 3 e aT
l/

de may assume tnat the problem is reqularized. =° This means that the

solution set is non-empty and bounded, so the (pposite Sign Theorem applies;
n

A is generated by its extreme points ;: &&=> ; I aij =0, not all
=1

a. = 0 ==> some a, »a, are of opposite sign.

Now suppese some collection B = lvl. v2,...,vq v a¢ m} is a basis
for the sukspace of KT spanned by the Pj' (some or all of the vy and Pj may
be identical; it is not required that B be composed oniv of certain Pj's.;
For notational convenience, rename any vy which is not present in the
collection i}j, j=lyeeesnl  as Pn+i’ and let L= {i:Pi 3 B}.

Let B denote a left inverse of the m » q basis matrix B; z then

T ) . :
@ = B”pk i1s the expression of P relative to B, cr

k
N J - b
'l ai}i = Fk .
ie [
so that 'Z a. D, + quk = 0, where a, = -1.
i€ ]
Now F  can replace any "y in the basis with a, £ 0, and by tne ofnosite

sign theorem some a. and a_ are of oppusite sign.
let X be any solution to P\:io y )0, Assume that some vector Pk¢8
occurs with positive A-component in the expression of Po; if no such

vector exists then we already nhave an extrcme point solution.

4@ now must consider the two possibilities which arise relative to the

values of the corressponding ; and \j components:

l/ vee Charnes-Cogper, reference L2]. p. 424,

o Lee 14]; note 4hat the matrix B need not be square.



Case 1. There exists some a, # 0 with corresponding Ny = 0.

Choose one of these, say a. to designate a "remove" vector. No change
will be effected in the functional to be considered until we have only Pj's
in the basis; wuntil this occurs we need not be concerned with the opposite

sign property but are only choosing a basis from among the Pj vectors.

Case 2. For every a, £0, A >0,
A, A
Form the quantities Py = min _i_ and Py = min _2_ ’
A0 a, kj>0 ’ujl
a§>o J <0

whose existence is guaranteed by the cpposite sign theorem. Then
1 2
k:l-plu,k = A\t Po
at least one more zero component than A as long as the number of xj>0 is
greater than q. Note also that because \ is a solution it is true that

A + pa is also a solution for any real p , since ~ aj Pj = 0 , so that in

J

a will have every component > O and each will have

particular kl and x2 are both feasible solutions.

Now let f(\) be convex , i.e., for any kl & kz

F((y 0+ 2 ¢ ()f0) + v£02%) , 0 <y < 1 holds.

P p
since A= _ 2 A+ 1 22 5t follows that

—

LI P1*ey

p p
f0) < 2 e+ 1 £0?) , so that not both

I P1* P

1} < f(») and f(kz; < f(A) 3 1i.e., one of kl = kz yields at least as

£(N
great a functional value as A\. Thus, the j which yields the minimum in the
definition of p  , when F\') 3 £) (or of p, when £(A%) > £(A1))
serves to designate a vector Pr which is to be replaced by Pk in the basis.
At this point we begin again with the new basis and new feasible \ as before.
Thus at each stage we remove one or more vectors from the original set,
while maintaining at least as great a value as in the preéious stage, until
the original set is reduced to a set of linearly independent vectors, i.e.,
the corresponding A is an extreme point with at least as great a functional

value as the original given solution. (A corresponding result holds when a



-l=

concave functional is be be minimized.) We can summarize the above discussion

in the following algorithm:
n

Step 1. Start with a feasible solution \ , Z ijj g A D0y

and a basis B= {P, , iel} .

Step 2. Find any xk>o with Pk,dB to designate a vector to enter the
basis; if none is available, A\ is an extreme point and the
process terminates.

Step 3. Obtain the ay in Z a
iel

by computing nT = B# Pk .
Step 4. (i) If there exist ag # 0 with corresponding ki = 0 4 choose

iPi + °kpk =0 , where ay = -1,

one, say a. » to designate a remove vector Pr . Replace Pr
by Pk in B, compute the new B# , and go to step 2.

A A

(ii) Otherwise set p, = min _i and p, = min _i_ .
a;20 ay a,<0 'ui
A0 ADO

Step 5. Let ktl) = k-pln and k(z) = l*paa . Let T 22

of indices for which Py » Py achieve their respective minima.

be a pair

Choose P, or P, to be remcved (= Pr ) according as
l -

f(k(l)' or £(5, () 1is the larger.
Step 6. Substitute P for P in the basis, compute the new BH s and

(i)

return to step 1 with A as a new \ .

Cbserve that the algorithm terminates when a A\ is reached such that each
Pk with kk>0 is in the current basis.

Notice again that it is possible to choose an initial basis consisting
entirely of artificial or slack vectors (even though they may not be part of
the original set of vectors), and that thc procedure will automatically find
a3 basic solution in terms of the original vectors.

It should be expressly noted that the process of choosing a vector to
enter the basis (any vector with Lj>0 , and not already in the basis, may be

chosen), computing a column of q, ("substitution ratios"), selecting a

j



vector to be removed from the basis (the one at which either the pl or the p2
minimum ratio was achieved), and transforming the matrix of the basis inverse
to reflect this change of basis corresponds clesely in structure with that of
the modified simplex method of A. Charnes and C. E. Lemke, l/ although the
actual criteria governing these operations are different. In particular, just
as in the modified simplex method, the possibility of an unbounded solution
is indicated by the absence of a positive ay (pivot element), although,

since there are normally two candidates for removal from the basis, this
condition is critical only if the other candidate would cause a worsening of
the solution; e.g., if we are maximizing, the availability of an infinite
minimum will not cause an error stop; we would simply remove the vector
associated with the minimum Py ratio from the basis if no decrease in the
functional is caused thereby.

It is conceivable that the initial "solution" presented to the
procedure could be really not a solution at all. If A is the "solution"
presented and P\ = P # P, » the resulting "basic solution" will be a basic
solution to PA = P , since the algorithm never refers to the actual
stipulations vector PO « For production use, therefore, it would be
worth while to check before using the procedu.e that the solution proposed
really is feasible.

The ALGOL procedure presented below assumes that f(\) is linear,

i.e., f(A\) = ch s which is both concave and convex. The roles of the
formal parameters used in the procedure declaration are described in the

following tables

1/ See [5] .



Formal tarameter

Uescription

The number of constraints. (The number of
rows in P.)

The number of columns in P, exclusive of io 3

size

The number of vectors in the basis, which is
the dimension of the space spanned by the
Pj . In most cases this will be equal to m,

basis

The list of indices of the P, in the
starting basis; 1if no sta%ting basis is
supplied then the elements of this array
are irrelevant when the procedure is called,

matrix

The m x n conctraint matrix.

inverse

A size x m (left) inverse of the initial
basis; again, the elements are irrelevant
if no basis is specified. Cne additional
row should be adjoined wnich will contdin
the dual evaluators.

lambda

The initial feasible solution, whose
components must be in the same order as
the columns of the coefficient matrix,

The components of the objective, in the
same order as tho:ie of lambda.

cbjective

An integer which should be zero or one if
minimization or miximization, respectively,
is desired.

option

————— e = a —

unbounded

An indicator which should be set to one if
no starting basis is specified in which
cas: the m x m identity matrix will be used,
so that size must be eoual to my; if a
basis and inverse are provided, this
indicator should be set *» 2.

The name of a sentinel which will normally
be set to zero but which assumes a non-
zero value in case an infinite optimum is
attairable.

7



In terms of the ALGCL identifiers used as formal parameters of the
procedure, upon completion of the process the integer array, basis 5
contains the numbers of tihe vectors in the basic solution; the array,
lambda y contains the actual values of the xj y and unbounded is
equal to J; if not zero, it was set to the number of the vector attempting
to enter the basis when unboundedness was noticed and the process terminated.
The basis (left, inverse is contained in inverse y which also includes a
size + 15! row containing the dual evaluators for the current basic

solution,

ALGOL P'rocedure

p-ocedure purify (m, n, size, basis, matrix, inverse, lambda, ¢, objective,
option, unbounded) ;

yalue m, n, size, objective, option ;
jnteger m, n, size, objective, option, unbourded ;
real arrey matrix, inverse, lambda, ¢ ;

integer array basis ;

array alpha [1 : size + 1]

-e

real rhol, rho2, t, dl, d2

unbounded ¢ = O

we

comment if necessary, generate augmented identity matrix for the
left inverse and dual evaluators ;

if option =1 then for j : =1 step 1 until n do

beqin for i + =1 step 1 until m+ 1 do

inverse [i,j] : = if i = j then 1 else O ;

basis |[j] : = n+j

end

look for some lambda greater than zero to determine a vector
to enter the basis j

-- ST ST




cyain g

Skip it;

come ing

for j: =1 step 1 until n do

if lambda [j) <1077 then lambda [j] := o0

else pegin for i : =] step 1 until size do

if basis [i] =j then goto skip it ;

comment if we get to here, vectur j was
not already in the basis ;

k: =] ;
goto come in ;
end

if we get to here, no vector k can be found with lambda Lk] > 0 and
which is not already in the basis, hence we are done. ;

goto finished ;

for i:=1 step 1 until size + 1 do

beqin alpha [i] : = 0 ;

for j: =1 step 1 until m do

alpha il : = alpha [i] + inverse [i,j]* matrix [j,k]

end 3

alpha [size + 1] : = alpha [size + 1] - c[k] ;

rhol : = rho2 := 10 20 3

comment now find two candidates for removal ;

for i : =1 step 1 until size do

if alpha [i] > -7 then

10
begin if basis [i] > n then

begin r : = 1 ; goto transform end

(2]

lse if lanmbda |basis [i] ] < 1o -7 then

beqin r : = i , goto transform end




else begin t ; = lambda [basis [i] | / alpha (i1

if t < rhol

begin rhol

32}
2
oy

end

else if alpha [i] < 1o =7 then

begin if pasis [i] > n then

then

t

ri

beqin r ; = 1 ; goto transform end

else if lambda [basis (i] ] <

10

-7

then

begin r : = i ; goto transtorm end

else beqin t : = - lambda [basis (i] ] / alpha [i]

if t < rho2
begin rho2

end ;

if lamcda (k] < rho2 then

begin rto2 := lambda (k] ; r2 :

dl : = clk] * rhol
d2 : = -clk] * rho2 ;

for i : =1 step 1 until size do

begin t :=c¢ [basis [i] ] * alpha [i] ;

dl

dl - rhol * t

d2 + tho2 * t

Q
ro
.
il

end ;

comment now choose the bcst vector to be removed, ecitiier rl or r2

then

t

‘



-10=-

if objective = 0 = dl € d2

then goto takeout 1 else goto takeout 2 ;
takeout 1: if rhol = 10 20 then begin unbounded : = k ; goto finished end ;
for i : = 1 step 1 until size do
lambda |basis [i] ] : = lambda [basis [i] ] - rhol * alpha [i];
lambda [k] : = lambda |k] + rhal
Ter=rlgy
goto transform ;
takeout 2: for i : = 1 step 1 until size do

lambda (basis [i] ] : = lambda (basis [i] ] + rho2 * alpha [i];
lambda (k] : = lambda |k] - rho2 ;
if r2 = -1 then goto again else r : = r2 ;

transform: for j : =1 step 1 until m do

begin inverse |r,j] : = inverse |r,j] / alpha Lr] ;

inverse |i,j] : = inverse [i,j] - inverse [r,j] * alpha |]
end ;

basis [r] : = k ;

goto again ;

finished: end ;

Example
Jde present a simple example with a summary of the iterations taken to
reach a basic solution, starting from an initial basis not consisting of

vectors taken from the original coefficient matrix.



max
subject to
Come=-in
Stage Vector
Initial -
1 "y
2 92
3 P3
a P,
S Pg

2xl + xz + 4x3 + 3x4 + Xg
5x1 + x2 - 6x3 + 3x5 = 26
TIx, + X, + 2X, = x, = 2x_. = 5

1 2 3 4 5
and all x5 20

Remove Current
Vector Basis A f(\) Case
ﬂ o (231315653
e 0 1 algly ,.,0,0) 30 -
5 )\
P, (7 | {2:141,6,3,0,0) 30 Case
Py f\?, i} (2,1,1,6,3,0,0) 30 Case
: 16
rl " (0,17,0,6,3,0,0) 38 Case
0
Pa G.-) (0,17,0,6,3,0,0) 38 Case
P (10, (0,26,0,21,0 s
5 \l']" ’ sy ’ ;0'0) 89 Case

The gptimum value for this problem is 104 - 3/5 .

1

L]



[2.]

[3.]

(4.]

(5.]
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