-0
THE

- TECHNOLOGICAL
INSTITUTE

EXTREME POINT SOLUTIONS

IN MATHEMATICAL PROGRAMMING:

AN OPPOSITE SIGN ALGORITHM

by

A. Charnes, K. Kortanek* and W. Raike
*University of Chicago ar.A Northwestern University

June 1965

This paper is an extension and revision of research memorandum CN. \#84 and SRM \#104 for presentation at the TIMS meeting, Dallas, Texas, February 1566.

Part of the research underlying this report was undertaken for the Office of Naval Research, Contract Nonr-1228(10), Project NR 047-021, and for the U. S. Army Research Office - Durham, Contract No. DA-31-124-ARO-D-j22 at Northwestern University. Zeproduction of this paper in whole or in part $1 s$ permitted for any purpose of the United States Government.

SYCTEMS RESEARCH GROUP
A. Charnes, Director

Several important and efficient methods of solution of specific types of linear programming problems, such as the "floodirig" o: "flow" methods of Boldyreff and Ford-Fulkerson for network flows and the "decomposition" principle or "mixing routines" of Dantzig-汭lfe or Charnes-Cooper, have the distressing feature for managerial applications of sometimes providing optimal solutions which are not extreme point (or basic) solutions. Thereby, any immediate and automatic availability of the optimal dual evaluators of the original problem is not forthcoming. Indeed, several such experiences have resulted in abandonment of these techniques for managerial studies in certain industrial firms.

Aside from sensitivity analysis, it is also often desirable to start from an operable ("feasible") solution, not necessarily optimal, which is either suggested by company personnel or from various pertinent qualitative considerations, and to be able to proceed automatically to an extreme point (= basic) solution which is at least as good as the suggested one. 1/ (Thereafter any one of the various methods could be employed to achieve optimality.)

The purpose of this paper is to exhibit how part of the technique of proof of the opposite sign theorem $\frac{2 /}{}$ can be employed in a simple algorithmic manner to achieve this end. We present an ALGOL code for executing this algorithm in a manner compatible (as a procedure) with standard programs.

Consider for the moment the linear programming problem written in the form:

[^0]\[

$$
\begin{aligned}
\max f(\lambda) & =\sum_{j=1}^{n} c_{j} \lambda_{j} \\
\text { subject to } \sum_{j=1}^{n} P_{j} \lambda_{j} & =P_{0}
\end{aligned}
$$
\]

$$
\lambda \geq 0
$$

where Γ_{j}, r_{0} are all m-vector. Let $\Lambda=\left\{\lambda: \sum_{j=1}^{n} V_{j} \lambda_{j}=p_{o}, \lambda, \geq 0\right\}$. ide may assume that the problem is regularized. 1/ This means that the solution set is non-empty and bounded, so the Cpposite Sign Theorem applies:

A is yenerated by its extreme points : $\Longleftrightarrow \sum_{j=1} a_{j} F_{j}=0$, not all $a_{j}=0 \quad \Rightarrow$ some a_{r}, a_{s} are of opposite sign.
iow suppose some collection $B=\left\{v_{1}, v_{2}, \ldots, v_{q}, q \leq m\right\}$ is a basis for the sutspace of F^{m} spanned by the P_{j}. (Some or all of the v_{i} and H_{j} may be identical; it is not required that B be composed only of certain $P_{j}{ }^{\prime}$ s.j For notational convenience, rename any v_{i} which is not present in the collection $\left\{j_{j}, j=1, \ldots, n\right\}$ as P_{n+i}, and let $L\left\{i_{i s} \mathcal{F}_{i} \varepsilon B\right\}$.

Let B^{j} denote a left inverse of the $m \times q$ basis matrix $B_{;} \quad \underline{2 /}$ then $a^{T}=B^{\prime \prime} P_{k}$ is the expression of P_{k} relative to $B, o r$

$$
\sum_{i \varepsilon i} a_{i}^{p_{i}}=F_{k},
$$

so that $\sum_{i \varepsilon I} a_{i} \Gamma_{i}+n_{k} P_{k}=0$, where $a_{k}=-1$.
Now F_{i} can replace any i_{i} in the tasis with $a_{i} \neq 0$, and by the orposita sign theorem some a_{r} and a_{s} are of oppusite sign.
let λ be any solution to $i^{\prime} \lambda=i_{0}$, \quad, Ans occurs with positive λ-component in the expression of F_{o}; if no such vector exists then wer already have an extreme point solution.
de now must consader the two possibilities which arise relative to th. values of the corresponding n_{j} and λ_{j} components:

[^1]Case 1. There exists some $a_{i} \neq 0$ with corresponding $\lambda_{i}=0$.
Choose one of these, say a_{r}, to designate a "remove" vector. No change will be effected in the functional to be considered until we have only P_{j} 's in the basis; until this occurs we need not be concerned with the opposite sign property but are only choosing a basis from among the P_{j} vectors. Case 2. For every $a_{i} \neq 0, \lambda_{i}>0$.

Form the quantities $\rho_{1}=\min _{\substack{\lambda_{j}>0 \\ a_{j}>0}}^{\lambda_{j}} \frac{\lambda_{j}}{a_{j}}$ and $\rho_{2}=\min _{\substack{\lambda_{j}>0 \\ a_{j}<0}} \frac{\lambda_{j}}{\left|a_{j}\right|}$,
whose existence is guaranteed by the opposite sign theorem. Then $\lambda^{1}=\lambda-\rho_{1}^{a}, \lambda^{2}=\lambda^{+} \rho_{2}^{a}$ will have every component ≥ 0 and each will have at least one more zero component than λ as long as the number of $\lambda_{j}>0$ is greater than q. Note also that because λ is a solution it is true that $\lambda+\rho a$ is also a solution for any real p, since $\sum_{j} a_{j} p_{j}=0$, so that in particular λ^{1} and λ^{2} are both feasible solutions. ${ }^{j}$

Now let $f(\lambda)$ be convex, i.e., for any λ^{1}, λ^{2}

$$
f\left((1-\gamma) \lambda^{1}+\gamma \lambda^{2}\right) \leq(1-\gamma) f\left(\lambda^{1}\right)+\gamma f\left(\lambda^{2}\right), 0 \leq \gamma \leq 1 \text { holds. }
$$

Since $\lambda=\frac{\rho_{2}}{\rho_{1}^{+} \rho_{2}} \lambda^{1}+\frac{\rho_{1}}{\rho_{1}^{+} \rho_{2}} \lambda^{2}$, it follows that

$$
f(\lambda) \leq \frac{\rho_{2}}{\rho_{1}^{+} \rho_{2}} f\left(\lambda^{1}\right)+\frac{\rho_{1}}{\rho_{1}^{+} \rho_{2}} f\left(\lambda^{2}\right) \text {, so that not both }
$$

$f\left(\lambda^{1}\right)<f(\lambda)$ and $f\left(\lambda^{2}\right)<f(\lambda)$; i.e., one of λ^{1}, λ^{2} yields at least as great a functional value as λ. Thus, the j which yields the minimum in the definition of ρ_{1}, when $f\left(\lambda^{1}\right) \geq f\left(\lambda^{2}\right)$ (or of ρ_{2} when $f\left(\lambda^{2}\right) \geq f\left(\lambda^{1}\right)$) serves to designate a vector P_{r} which is to be replaced by P_{k} in the basis. At this point we begin again with the new basis and new feasible λ as before.

Thus at each stage we remove one or more vectors from the original set, while maintaining at least as great a value as in the previous stage, until the original set is reduced to a set of linearly independent vectors, i.e., the corresponding λ is an extreme point with at least as great a functional value as the original given solution. (A corresponding result holds when a
concave functional is be be minimized.) We can summarize the above discussion in the following algorithm:

Step 1. Start with a feasible solution $\lambda, \sum_{j=1}^{n} p_{j} \lambda_{j}=P_{0}, \lambda \geq 0$, and a basis $B=\left\{P_{i}, i \varepsilon I\right\}$.
Step 2. Find any $\lambda_{k}>0$ with P_{k}, \mathcal{B} to designate a vector to enter the basis; if none is available, λ is an extreme point and the process terminates.

Step 3. Obtain the a_{i} in $\sum_{i \in I} a_{i} P_{i}+a_{k} P_{k}=0$, where $a_{k}=-1$, by computing $a^{T}=B^{\#} P_{k}$:
Step 4. (i) If there exist $a_{i} \neq 0$ with corresponding $\lambda_{i}=0$, choose one, say a_{r}, to designate a remove vector P_{r}. Replace P_{r} by P_{k} in B , compute the new BH , and go to step 2.
(ii) Otherwise set $\rho_{1}=\min _{\substack{a_{i}>0 \\ \lambda_{i}>0}}^{\lambda_{i}}$ and $\rho_{2}=\min _{\substack{a_{i}<0 \\ \lambda_{i}>0}}^{\lambda_{i}}\left|\overline{a_{i}}\right|$.

Step 5. Let $\lambda^{(1)}=\lambda-\rho_{1} a$ and $\lambda^{(2)}=\lambda+\rho_{2} a$. Let r_{1}, r_{2} be a pair of indices for which ρ_{1}, ρ_{2} achieve their respective minima. Choose $P_{r_{1}}$ or $P_{r_{2}}$ to be removed $\left(=P_{r}\right)$ according as $f\left(\lambda^{(1)}\right)$ or $f\left(\lambda^{(2)}\right.$ is the larger.
Step 6. Substitute P_{k} for P_{r} in the basis, compute the new B^{H}, and return to step 1 with $\lambda^{(i)}$ as a new λ.

Cbserve that the algorithm terminates when a λ is reached such that each P_{k} with $\lambda_{\mathrm{k}}>0$ is in the current basis.

Notice again that it is possible to choose an initial basis consisting entirely of artificial or slack vectors (even though they may not be part of the original set of vectors), and that the procedure will automatically find a basic solution in terms of the original vectors.

It should be expressly noted that the process of choosing a vector to enter the basis (any vector with $\lambda_{j}>0$, and not already in the basis, may be chosen), computing a column of a_{j} ("substitution ratios"), selecting a
vector to be removed from the basis (the one at which either the p_{1} or the p_{2} minimum ratio was achieved), and transforming the matrix of the basis inverse to reflect this change of basis corresponds closely in structure with that of the modified simplex method of A. Charnes and C. E. Lemke, $\underline{1 /}$ although the actual criteria governing these operations are different. In particular, just as in the modified simplex method, the possibility of an unbounded solution is indicated by the absence of a positive a_{i} (pivot element), although, since there are normally two candidates for removal from the basis, this condition is critical only if the other candidate would cause a worsening of the solution; e.g., if we are maximizing, the availability of an infinite minimum will not cause an error stop; we would simply remove the vector associated with the minimum ρ_{2} ratio from the basis if no decrease in the functional is caused thereby.

It is conceivable that the initial "solution" presented to the procedure could be really not a solution at all. If λ is the "solution" presented and $P \lambda=\bar{p} \neq p_{0}$, the resulting "basic solution" will be a basic solution to $P \lambda=\bar{p}$, since the algorithm never refers to the actual stipulations vector P_{0} ! For production use, therefore, it would be worth while to check before using the proceduce that the solution proposed really is feasible.

The ALGOL procedure presented below assumes that $f(\lambda)$ is linear, i.e., $f(\lambda)=c^{\top} \lambda$, which is both concave and convex. The roles of the formal parameters used in the procedure declaration are described in the following tables

[^2]

In terms of the ALGCL identifiers used as formal parameters of the procedure, upon completion of the process the integer array, basis s, contains the numbers of tise vectors in the basic solution; the array, lambda, contains the actual values of the λ_{j}, and unbounded is equal to); if not zero, it was set to the number of the vector attempting to enter the basis when unboundedness was noticed and the process terminated. The basis (left) inverse is contained in inverse, which also includes a size $+1^{\text {st }}$ row containing the dual evaluators for the currint basic solution.

ALOCL Frocedure
p-ocedure purify (m, n, size, basis, matrix, inverse, lambda, c, objective, option, unbounded) ;
yalue m, n, size, objective, option;
integer m, n, size, objecłive, option, unbounded ;
real array matrix, inverse, lambda, C;
jnteger array basis;
begin integer $i, j, k, r, r i, r ? ;$
array alpha $[1$: size +1$]$;
real rhol, rho2, $t, d l, d 2$;
unbounded $:=0$;
comment if ncessary, generate augmented identity matrix for the left inverse and dual evaluators ;
if option $=1$ then for $j:=1$ step 1 until m do
begin for $i:=1$ step 1 until $m+1$ do

```
inverse [i,j]:= if i= j then 1 else 0;
    basis [j] : = n+j
```

end
look for some lambia greater than zero to determine a vector to enter the basis ;
again : for $j:=1$ step 1 until n do
if. lambda $[\mathrm{j}]<10^{-7}$ then lambda $[\mathrm{j}]:=0$
else pegin for $i:=1$ step 1 until size do

```
if basis \([\mathrm{i}]=\mathrm{j}\) then goto skip it ;
comment if we get to here, vectur \(j\) was not already in the basis ;
```

k: =j;
goto come in;
skip it:
end
if we get to here, no vector k can be found with lambda $[k]>0$ and which is not already in the basis, hence we are done. ;
quto finished ;
corie ir: for $i=1$ step 1 until size +1 do
begin alpha $[\mathrm{i}]:=0$;
for $j:=1$ step 1 until 1 m do
alpha $\lfloor i\}:=\operatorname{alpha}[i]+\operatorname{inverse}[i, j]^{*} \operatorname{matrix}\lfloor j, k]$
ent;
alpha \lfloor size +1$]:=$ alpha $[$ size +1$]-c[k]$;
rhol $:=$ rho2 $:=1020$;
comment now find two candidates for removal ;
for $i:=1$ step 1 until size do
if alpha $[i]>10^{-7}$ then
begin if basis [i] $>n$ then
begin $r:=i$; goto transform end
else if lanbda Lbasis $[i] j<10^{-7}$ then
begin $r:=i$, goto transform end

$$
\begin{aligned}
\text { else begin } t & :=\text { lambda Luasis }[i] / / \text { alpha lil : } \\
& \text { if } t<r h o l \text { then } \\
& \text { begin rhol }:=t ; r l:=\text { i unt }
\end{aligned}
$$

end

```
else if alpha [i]<-10 -7 tren
    begin if Dasis [i]>n then
        begin r : = 1: goto transform und
        else if lambda [basis [i] ] < lu -1 tlu!
        begin r := i ; qoto transtorm ent
        else begin t : = - lambda {basis [i] ]/ alo!a [ij ;
```

 if \(t<r\) ho2 then
 begin rho2 \(:=t ; r \boldsymbol{r}:=\mathrm{i}\) nd
 end
 end ;
 if lanu da $[k]$ < rhos then
begin rion $:=\operatorname{lambda}\lfloor k\rfloor: r 2:=-1$ en! ;
dl $:=c\lfloor k\rfloor *$ rhol ;
d2 : = $-\mathrm{c}[k]$ * rho2 ;
for $i:=1$ step 1 until size do
begin $t:=c$ [basis [i]] *alpha $[i]$;
$d l:=d l$ - rhol * t;
$d^{2}:=d^{2}+r \operatorname{ho} 2 * t$
end ;
comment now choose the best vector to be removed, יitirr rl or : ? :
if objective $=0 \equiv \mathrm{~d} 1 \leq \mathrm{d} 2$
then goto takeout 1 else goto takeout 2 ;

```
takeout 1: if rhol = 10 20 then beqin unbounded : = k ; goto finished end ;
    for i := 1 step l until size do
                            lambda [basis [i] ] := lambda [basis [i] ] - rhol * alpha [i];
    lambda [k]:= lambda [k] + rhol ;
    r:= rl;
    goto transform ;
takeout 2: for i := 1 step l until size do
        lambda [basis [i] ] := lambda [basis [i] ] + rho2 * alpha [i];
        lambda [k] := lambda [k] - rho2 ;
        if r2 = -1 then goto again else r := r2;
transform: for j := = step l until m do
    begin inverse [r,j] := inverse [r,j]/ alpha [r] ;
        for i : = 1 step 1 until size + 1 do
        if i}\not=r\mathrm{ then
        inverse [i,j] := inverse [i,j] - inverse [r,j] * alpha [i]
```

 end ;
 basis \([r]:=k\);
 goto again ;
 finished: end ;

Example

We present a simple example with a summary of the iterations taken to reach a basic solution, starting from an initial basis not consisting of vectors taken from the original coefficient matrix.

	max	$2 x_{1}+x_{2}+4 x_{3}+3 x_{4}+x_{5}$				
subject to		$5 x_{1}+x_{2}+6 x_{3}+3 x_{5}=26$		$+3 x_{5}=26$		
		$7 x_{1}+x^{\prime}$	$+2 x_{3}-$	$x_{4}-2 x_{5}=5$		
		and all	$x_{i} \geq 0$			
Stage	Come-in Vector	Remove Vector	Current Basis	λ	$f(\lambda)$	Case
Initial	--	--	$\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}$	$(2,1,1,6,3,0,0)$	30	--
1	P_{1}	P_{6}	$\left(\begin{array}{ll}5 & 0 \\ 7 & 1\end{array}\right)$	$(2,1,1,6,3,0,0)$	30	Case 1
2	P_{2}	P_{7}	$\left(\begin{array}{ll}5 & 1 \\ 7 & 1\end{array}\right)$	(2,1,1,6,3,0,0)	30	Case 1
3	P_{3}	P_{1}	$\left(\begin{array}{ll}1 & 6 \\ 1 & 2\end{array}\right)$	$(0,17,0,6,3,0,0)$	38	Case 2
4	P_{4}	P_{3}	$\left(\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right)$	$(0,17,0,6,3,0,0)$	38	Case 1
5	P_{5}	P_{5}	$\left(\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right)$	$(0,26,0,21,0,0,0)$	89	Case 2

The optimum value for this problem is $104-3 / 5$.

REFERENCES

[1.] Charnes, A., and W. W. Cooper, "The Strong Minkowski-Farkas-Vleyl Theorem for Vector Spaces over Ordered Fields," Proc. Nat. Acad. Sci. U.S.A., 44, No. 9.
[2.] Charnes, A., and W. W. Cooper, Management Models and Industrial Applications of Linear Programming, Vols. I and II, New York, John Wiley and Sons, 1961.
[3.] Charnes, A., \%. W. Cooper, and K. Kortanek, "Duality in Semi-infinite Programs and Some Vorks of Haar and Caratheodory," Manaqoment Science, Vol. 9, No. 2, Jan. 1963.
[4.] Charnes, A., and M. Kirby, "A Linear Programming Application of a Left Inverse of a Basis Matrix," ONR Research Memo No. 91.
[5.] Charnes, A., and C. E. Lemke, "A Modified Simplex Method for Control of Roundoff Error in Linear Programming," Proc. AOM, Pittsburgh, May 1952.

Security Classification
(Security cteeaification of tifte, body of abstract and indezing annotation muet be antered when the overall report ie cleasified)

ORIGINATING ACTIVITY (Corporate author)

2a. REPORT SECURITY CLASSIFICATION
Northwestern University

Unclassified
2b. GROUP

3. REPORT TITLE

EXTREME POINT SOLUTIONS IN MA THEMATICAL PROGRAMMING: AN OPPOSITE SIGN ALGORITHM

DESCRIPTIVE NOTES (Type of report and incluaive detes)
Re search paper
5. AUTH'JR(S) (Laet name, firet name, initial)

Charnes, Abraham; Kortanek, Kenneth O.; and Raike, William M.

10. AVAILABILITY/LIMITATION NOTICES

Releasable without limitation on dissemination.
11. SUPPL EMENTARY NOTES

Extension and revision of ONR \#84 and SRM \#104

12. spowsonimg militany activity

Logistics and Mathematical Statistics Branch - Office of Naval Research Washington, D. C. 20360
13. AESTRACT

Several important and efficient methods of solution of specific types of linear programming problems have the feature of sometimes providing optimal solutions which are not extreme-point (or basic) solutions, so that important and useful analyses provided by knowledge of the optimal dual evaluators are not available. It is also often desirable to be able to begin with a solution suggested by knowledgeable persons with experience in the field (or other considerations) and to proceed immediately to a basic solution at least as good as the suggested one.

In this paper it is shown how part of the technique of proof of the opposite sign theorem can be employed in a simple algorithm to achieve this end. This method is equally valid when maximizing a nonlinear but convex objective function. A tested ALGOL code is provided for executing the algorithm in a manner compatible (as a procedure) with other programs.

Security Classification

1. ORIGINATING ACTIVITY: Enter the neme and eddrees of the contractor, subcontractor, erantee, Depertment of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security clasaification of the report. Indicete withether "Restricted Data" is included Marking is to be in accord ance with appropriate security regulations.
2b. GROUP: Automatic downgreding is apecified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. RBPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclaselfied. If a meaningful title cannot be selected without clesaificetion, show title classification in all capitale in parentheale immediately following the tille.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(a) as shown on or in the report. Enter last name, first name, midde Initial. If millitary, show rant and branch of service. The neme of the principal avthor is an absolute minimum requirement.
5. REPORT DATE: Enter the date of the report as dey, month, year; or month, year. If more than one dete eppeare on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The totel pege count should follow normal pagination procedures, i. ©t, enter the number of pages containing information
7b. NULBER OF REFERENCES Enter the total mumber of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropelate, onter the applicable namber of the contract or grant under which the report was written.
8b, 8c, as 8d. PROJECT NUMBER: Enter the epprepriate military department identification, such as proloct mumber, subproject number, system numbers, taek number, otc.
9a. ORIGINATOR'S REPORT NULEER(8): Diter the offcial report number by which the document wilt be identified and controlled by the originating activity. This number must be unique to this reporio
9b. OTHER REPORT NUMBER(S): If the report hee been assigned any other report numbers (either by the orlginator or by the aponaor), also enter this number(s).
6. AVAILABILITY/LIMITATION NOTICEs: Eater aay Ititations on further dissemination of the report, other than thoee|
imposed by eecurity clasaification, uaing etandard atatemente such as:
(1) "Qualified requesters may obtain coples of this report from DDC."
(2) "Foreign announcement and diseevinetion of thit report by DDC is not authorised "
(3) "U. S. Government egenciee may obtain copiee of this report directly from DDC. Other quellifed DDC userb shall request through
(4) "U. S. military agencios may obtain copies of this report directly from DDC. Other qualificd users ehall request through
(5) "Ali distribution of this repert is controlled Queliffed DDC users shall reguest through

If the repert has beep furaighed to the Oftice of Techaica! Services, Depertment of Commerce, for sale to the public, indrcate thle feet and onter the price, if known
11. ©UPPL:tory motes
12. 2PONEORING MitITARY ACITVITY: Enter the name of the ippertineatal project office or Ichortetory epenporing (pay in for) the research and levelopment. Include altrese.
13. AESTAACT: Eater an abetract giviag a belef and factual oummery of the document indicative of the repert, evea though it mey also appear olsewhere ia the bedy of the techaical roport. If edditional spece is required, e coatiauation sheet shall be atteched.

It is highly desirable that the abotract of clasaified reports be unclasailied. Sach paragragh of the abotrect aholl end with an indication of the military security clasalfication of the information in the paragraph, ropresented as (T8). (8), (C), or (U).

There is no Ifaitation on the length of the abatract. However, the sugsested length is from 150 to 225 woole.
14. EYY WORDs: Key wople are techaicelly meaniaghal terme or short phrases that charactorise a roport and ney be ueed as isiez entries for catalogise the roport. Fey worle nust be selected se thet so security clespification is roquired. Tiloatifiers, ouch es equipment model desi mation, thade aame, nilitery project cole mame, peogrephic location, may bo uned as trey worde tut will be followed by an intication of techaical contest. The ascigmment of Iimite, reles, and weighte is optional.

[^0]: 1/ There have been constructive methods which reduce any feasible solution to a basic solution, but which have not considered this important feature, or other features such as ability to employ a known but not necessarily feasible basis.
 2) See reference [3] on semi-infinite programming for a proof of it in general form.

[^1]: !/ wee Charnes-Cooper, reference (2], p. 424. 2/ wee $[4]$; note that the matrix B need not be square.

[^2]: 1/ See [5].

