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Severa l important and ffici nt meth ds of so lution of specific typ s 

of 1 inear programming problems , such as the "floodi r.g" o; "fl ow" method s of 

Bo ldyreff and For - Fulker n for network fl ows and t .1e " si tion'' 

principle or "mixing routines " of Dantzig - Wo lf or Charne:.-Cooper, have the 

distressing feature for managerial applicatio ns o f sometimes providin 

optimal solutions which are Q2i extreme point (o r basic) solutions . Thereby , 

any i mmediate and automatic avail ability of t he optimal dual evaluators of the 

or iginal problem i s not forthcoming . Indeed , several such experiences have 

resulted in abandonment of these techniques for managerial studies in certain 

industrial firms . 

Aside from sensitivity analysis , it is also often desirable to start fr om 

an operable ( "feasible") solution, not necessarily optimal, whic h is either 

suggested by company personnel or fr o~ various pert1nent qualitative co nsid

erat ions, and t o be able to proc ed automatically to an extreme point 

( = basic) solution which is at l ea s as good as t he sugg sted one . !I 

(fhereafter any one of the various methods could be empl oyed to ac hi ev 

opti ali ty . ) 

The pu rpose of this pape r is o exhibit how part of he technique of proo f 

of t he opposite s ign th or em ~~ ~ an be employed in a simple algorithmic 

manner o achieve this end . \'le presen an ALG L code for executing th's 

algo r ' in a manner compatible (as a procedure) with standard prog rams . 

Consider for the moment he linear programm ing problem written in the 

form: 

1/ 

2; 

The r e have been construe ive methods wh1ch r educe any feasible solution 
to a basi c solu ion , but hi ch hav no t conside r ed this i m orta nt 

a ur , or other f eatures such as ability to employ a known but not 
necessarily f eas ible basis . 

See r e ference 3] on se i - infinite programming for a proof of it in 
gen ral f or m. 
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where  P.,  r    arc al 1 m-vcctor ..     Let      A =  I X :    Z    I' A . = P    , \    > 0 ]   . 
j   j o j   -       > J       o 

ed. 

solution sot  is non-empty  and bounded, so the Opposite Sign Theorem applies; 

V/e may  assume  tnat  the problem is regularized.   -     This means  that  the 

a 

n 

•\   is generated by   its  extreme points   : <=>   :    Z    a.P. =  0   ,  not  ail 
j=l     :, J 

. =  0 =>    some a     , a      are of opposite sign. 
j r        s KK ^ 

Now suppose some collection    B= lv,, v0,...,/     ,    q <    m]     is a basis 
I      ^ q - 

for the  sutspace of R    spanned by the P..     (borne or all  of the v.   and P.  may 

be   identical;     it  is not  required  that B be composed oniv of certain P.'s./ 

For notational  convenience,  rename any v.  which  is not present  in the 

collection    [p., jrl,...,n|     as  P     .,  and let   1=  [itP.   t   ß]. 
J Of 1 1 p / 

Let  B*    denote a  left   inverse of  the m x  q  basis matrix B;   -    then 

a    = B''p k   i
s  the expression of  P    relative  to B,  or 

so  that      Z   a.P.   ■»■ a, P.   -   0,      where a,   =  -1. 
..ii k  k k 
it I 

Now P    can replace any  P.   in the basis with a.  / 0,  and by  tue opposite 
i\ l i 

sigri theoiem some a     and a     are  of opposite  sign. 
r S rr ^ 

1 et \  be an^ solution  to  ]\~i     , >.>ii.     Assume  that  some vector P^ B 

occurs  with  positive   \-component   in the expression of   P   •     if   no   such 

vector  exists  then w-e  already  nave an extreme point  solution. 

.4P  now must consider  th.e  two  possibilities which arise relative  to   thn 

values  of   the corresponding ^.   and \,   components: 

1/      Ijee  Charnos-Cooper ,   refcrpnee L 2] ,  p.   424. 

2/      -^ee i A]-   note  that  the matrix  B need not be  square. 
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Case 1. There exists some a
1 

1 0 with corresponding ~i = 0 . 

Choose one of these, say a 1 t o designate a "remove " vector. No cha nge 
r 

• I S will be effected in the functional to be considered until w have on ly 
J 

until this occurs we need not be co cerned with the opposite in the basis; 

sign property but are only choosing a basis frow. among the P . vectors . 
J 

Case 2. For every ai 1 0 1 ~i > 0 • 

~ . ~. 

Form the quantities p
1 = min J and p

2 
= min J 

~ :>o a . ~ .>o laj I 
a~>o J aJ<o 
J j 

whose existence is guaranteed by the opposite sign th orem. Then 
1 2 

~ = ~ - p
1

a , ~ = ~+ p
2

a will have every component~ 0 and each will hav 

at least one more zero component than ~ as long a s he number of .>0 is 
J 

grea ter than q . Note also that because ~ is a solu t ion it i s t rue that 

+ p is also a solution for any r eal p , si nce 

part·cular ~l and ~ 2 are both f easible solutions . J 
1 

Now l et f (~) be convex , i . e . , for any ~ , 
2 

P = 0 , so that in 
j j 

f (( l-y )~ l + y~ 2 ) ~ (l -y)f ( ~ 1 ) + yf(~ 2 ) , 0 ~y ~ 1 holds . 

Since ~ = ~ 1 + 
pl 

~ 2 , it follows that 

Pt P2 

(>-..1) + 
pl 

f (~ 2) , so t hat not both 

l+p 2 

f ( 
1 

) < f ( . ) a nd f ( 
2 

j < f ( ) i.e ., one of ~ 1 
, ~ 2 

yi e l ds at least a s 

great a functional value as Thus , the j which yi eld s the m1n1mum in the 

de fi ni tion o f p
1 

, when f ( 
1

) ~ f ( 
2

) (o r o f p
2 

when f (~ 2 ) ~ f( 
1

) ) 

serves to designate a v ctor Pr which is to be r placed by k in the basi s . 

A h" s point we begin again wi h t he new bas is and new f asibl e ~ as before . 

Thus at each stage we r emove one or mo re vectors fro m the original set, 

while ma intaining at least as grea t a value as in the previous stage , u~til 

he original set is r educed to a s t o f linearly independent v ctors, i . e., 

he correspond ing ~ is a n ext r em point with a t least as great a functional 

value as the original given solution. A correspond i ng r esult holds when a 
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concave functional is be be minimized.) We can summarize the above discussion 

in the following algorithm: 

Step 1. Start with a feasible solution X. 

and a basis B = Pi , iEIJ • 

n 
l: 

j=l 
p .X. . = p t X. > 0 ' 

J J 0 

Step 2. Find any X.k>O with Pk
1
(B to designate a vector to enter the 

basis; if none is available, is an extreme point and the 

process termina es. 

Step 3. 

Step 4. 

tep 5. 

ep 6. 

Obtain the ai in l: a. P. + akPk = 0 , where ak = -1 , 
i£ I 1 1 

by computing aT = s# P 
k 

( i) If there exis ai 1 0 with corresponding X.i = 0 • choose 

one. say ar , to designate a remove vect~r Pr Replace Pr 

by k in B, compute the new s# , and go to step 2. 

( ii) Otherwise set p
1

-

Let X. ( 1) = X. -p a 
1 

and X. (2) = 

and 

X.+ P2a • 

p = 2 

Let rl ' r2 be a pair 

of indices for which pl , p
2 

achieve their respective minima. 

01oose Pr or Pr,.. to be remcved ( = 'i ) according as 
1 

f(X. ( l)) or f ( ('" ~ is the larger. 

Substitute k for P in the basis, compute the new sR , and 
r (" 

return to step 1 with X. 
1 

as a new X. • 

Cbserv that the algorithm terminates when a X. is reached such that each 

k with X.k>O is i n the current basis. 

No tice again that it is possible to choose an initial basis consisting 

enti r ely of artificial or slack vectors (even though they may not be part of 

he original set of vectors), and that th ~ procedure will automatically find 

a basic solution in terms of the original vectors. 

It should be expressly no ted that the process of choosing a vector to 

nte r t he basis (any vector with X.j>O , and not already in the basis, may be 

cho sen) , computing a column of a . ( "substitution ratios"), selecting a 
J 
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vector to be removed from the basis (the one at which either the p
1 

or the p
2 

minimum ratio was achieved), and transfo~ming the matrix of the basis inverse 

to reflect th "s change of basis corresponds closely in structure with that of 

the modified simplex method of A. Charnes and C. E. Lemke, !/ although the 

actual criteria governing these operations are different. In particular, just 

as in the modified simplex method, the possibility of an unbounded solution 

is indicated by the absence of a positive a. (pivot element) , although, 
l 

since there are normally two candidates for removal from the basis, this 

condition is critical only if the other candidate would cause a worsening f 

the solution; e.g., if we are maximizing, the availability of an infinite 

minimum will not cause an error stop; we would simply remove the vector 

associated with the minimum p
2 

ratio from the basis if no decrease in the 

functional is caused thereby. 

It is conceivable that the initi 1 "solution" presented to the 

procedure could be really not a solution at all. If >.. is the "solution" 

presented and P>.. = P 1 P , the resulting "basic solution" will be a basic 
0 

solution to Ph = P , since the algorithm never refers to the actual 

stipulations vector P 
0 

For production use, therefore, it would be 

~rth while o check before using the procedu~e that t he solution proposed 

really is feasible . 

he ALGOL procedure presented below assumes that f(>..) is linear, 

i . e., f (>..) = cT>.. , which is both concave and convex. The roles of the 

formal parameters used in the procedure declaration are described in the 

following table • 

!/ See (5] • 
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Formal  I arameter Description 

m The number of  constraints.     (The number of 
rows  in P. > 

The number of  columns  in F, exclusive of P 

size The number of vectors in the basis, which is 

the dimension of the space spanned by the 

P .  In most cases this will be equal to m 

basis The list of indices of the P. in the 

starting basis; if no starting basis is 

supplied then the elements of this array 

are irrelevant when the procedure is called 

matrix The m x n conctraint matrix. 

inverse A size x m (left) inverse of the initial 

basis;  again, the elements are irrelevant 

if no basis is spjeified.  One additional 

row should be adjoined wnich will contdin 

the dual evaluators. 

lambda The initial feasible solution, whose 

components must be in the same order as 

the columns of the coefficient matrix. 

c The components of the objective, in the 

same order as tho/.e of lambda. 

objective 

option 

An integer which should be zero or one  if 
minimization or maximization,  respectively, 
is desired. 

unbounded 

An indicator which should be set to one if 

no starting basis is specified in which 

car.* the m x IT identity matrix will be used, 

so that size must be eou^l to m^  if a 

basis and inverse are provided, this 

indicator should be set *->  2. 

The name of a sentinel which will normally 

be set to zero but which assumes a non- 

zero value in case an infinite optimum is 

attainable. 

- —/ 



In terms of the ALGOL identifiers used as formal parameters of the 

procedure, upon completion of the process the integer array,  basis  , 

contains the numbers of the vectors in the basic solution« the array, 

lambda  , contains the actual values of the \. , and  unbounded  is 

equal to 3;  if not zero, it was set to the number of the vector attempting 

to enter the basis when unboundedness was noticed and the process terminated. 

The basis (left; inverse is contained in  inverse  , which also includes a 

size + 1st row containing the dual evaluators for the current basic 

solution. 

ALGOL frocedure 

procedure purify (m, n, size, basis, matrix, inverse, lambda, c, objective, 

option, unbounded) ; 

value rr, n, size, objective, option ; 

integer m, n, size, objective, option, unbounded ; 

real array matrix, inverse, lambda, c ; 

integer array basis ; 

begin integer i, j, k, r, rl, r2 ; 

array alpha [1 : size + l] • 

y^al rhol, rho2, t, dl, d2 ; 

unbounded » = 0 ; 

comment if necessary, generate augmented identity matrix  for the 

left inverse and dual evaluators ; 

iX option = 1 then for j .- = 1 step 1 until n do 

begin for i i = 1 step 1 until m -t- 1 do 

inverse Li-iJ] » - Ü i ~ J then l
  
e^se 0 ; 

basis [j] : = rn-j 

end 

look  for some  lambda greater  than zero  to  determine a vector 
to enter the basis   • 



cgain : for j: =1 step 1 until n do 

if_ lambda [j] <i0-'7 then lambda [j] : = o 

else begin for i : =1 step 1 until size do 

if. basis [i] =j then goto skip it ; 

comment if we get  to here, vector j was 
not already in the basis • 

k: =j ; 

goto come in ; 

skip it:      end 

if we get to here, no vector k can be found with lambda [k] > 0 and 
which is not already in the basis, hence we are done. ; 

goto finished • 

come in: for i:=l step 1 until size + 1 do 

begin alpha [i] : = 0 ; 

for j : = 1  step 1  until m do 

alpha  [i]   : = alpha  [i] +  inverse |.i,j]* matrix |j,k] 

£0.1 ; 

alpha [size + l] : r aipha Lsize + l] - cLk] ; 

rhol  : = rh02  : = 10 20 ; 

comment now find two candidates for removal ; 

for i : = 1 step 1 until size do 

if alpha [i] > ._ -7 then 

begin if basis [i] > n then 

begin r : = i ; goto transform end 

else if lambda [basis [i] ] ^ lri -7 then 

begin T  : -  i   t  goto transform end 
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■Ise  begin t   : =  lambda  L^35^5  Ul   J / al{'hd   L^1   ; 

H t <  rhol     thc-n 

bog in rhol      : -   t  ;   rl   : -   i  ■; n H 

end 

^nd 

else if alpha [i] < -.. -7 then 

begin if oasis [_ij > n then 

begin r : = i ; goto transform end 

else if lambda [basis ^i] J ^ ,  -7 thjll] 

begin r : = i ; goto transforni end 

else begin t : = - lambda [basis [ij ] / alpha (_ij ; 

if t < rho2 then 

beg i n rho2  : r t j r? j = i ^rr 

end 

end 

iJ lamtda LkJ ^ rho2 then 

begin rho2 t-    lambda [k] ; r2 : - -1 enj ; 

dl : = cLkJ » rhol  ; 

d2 : - -cLk] * rho2  ; 

for i : r 1 step 1 until size do 

begin t J~ c [basis [i] ] * alpha [i] • 

dl : = dl - rhol * t ; 

d2 : = d2 + rho2 * t 

comment now choose the best vector to be removed, either rl or r? ; 
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.li objective = 0 ==. dl ~ d2 

then ooto takeout 1 else goto takeout 2 ; 

akeout 1: if rhol = 
10 

20 then begin unbounded : = k goto finished~ 

for i : = 1 step 1 until size do 

lambda lbasis li] ] : = lambda lbasis li] ] - rhol * alpha l i 

lambda [k ] : = lambda Lk] + rhol 

r. = rl; 

goto transform 

takeout 2 : f2!. i : = 1 step 1 !d!llll size do 

lambda basis i ] ] : = lambda Lbasis li] ] + rho 2 *alpha Li] ; 

lambda Lk ] : = lambda k] - rho2 

if r 2 = -1 then goto agai else r : = r'2 

ra ns for m: for j : = 1 step 1 unti l m do 

~ inv r se Lr, j] : = inverse Lr , j] /alpha Lr] 

for i : .= 1 step 1 until size + 1 do 

if i I 'r then 

~nv erse i,j ] : = inverse Li,j ] - inverse Lr,j) *alpha ~ 

end • -. 
basis [ r] : = k 

goto again 

finished: end • _, 

Exampl e 

, e pr esent a simple example with a SU!mlary of the iterations taken to 

reach a basic so lution, start ing from an initial basis not consisting of 

vee ors taken from the original coefficient matrix. 
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max 2x
1 

+ x2 + 4x
3 

+ 3x
4 

+ x5 

subject to 5x + x2 6x
3 + 3x5 = 26 

1 

7x
1 

+ x2 + 2x -3 X -
4 

2x5 = 5 

and all X . ) 0 
l -

Come - in Remove OJrr ent 

~ Vector Vector Basis f{ Case 

Initial (1 0 
\() 1 (2, 1 , 1 ,6 , 3 ,0 ,0) 30 

1 p6 (; J (2 ,1,1,6 , 3,0,0) 30 Case 1 
1 1 

2 p2 (; 1\ (2 , 1,1 ,6 , 3 ,0 ,0 30 Case 1 7 1/ 

3 p3 1 1 ~ (0 , 17 ,0 ,6 , 3 ,0 ,0) 38 Case 2 

4 
4 3 ' - ~) (0 ,17 ,0 ,6, 3 ,0 ,0) 38 Case 1 

5 
5 5 

~ 1 o, 
1-lj 

(0 ,26 ,0 ,21,0 ,0 ,0) 89 Case 2 

The oe imum value for this problem is 104 - 3/5 • 
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