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Abstract. We study the A-property for the space <£( T, X) of continuous and

bounded functions from a topological space T into a strictly convex Banach

space X . We prove that the A-property for <t(T, X) is equivalent to an

extension property for continuous functions of the pair (T, X). We show

also that, when X has even dimension, the A-property is equivalent to the fact

that the unit ball of <£( T, X) is the convex hull of its extreme points and that

this last property is true if X is infinite dimensional. As a result we get that

the identity mapping on the unit ball of an infinite-dimensional strictly convex

Banach space can be expressed as the average of four retractions of the unit ball

onto the unit sphere.

Given a Banach space X, B(X) denotes its closed unit ball, S(X) the unit

sphere of X, and ext.ß(A') the set of extreme points of B(X). Along this

paper we will consider only real Banach spaces.

If X is a Banach space whose unit ball has some extreme point, we define

the X-function of X by

X(x) = Sup{a £ [0, 1] : 3e £ extB(X) and y £ B(X) with x = ae + (l- a)y}

for every x in B(X).
X is said to have the X-property if X(x) > 0 for all x in B(X). X is

said to have the uniform X-property if X has the A-property and, in addition,

satisfies

lnf{X(x):x£B(X)}>0.

These concepts were introduced and studied for the first time by Aron and

Lohman in [1]. It was proved later that X has the A-property if, and only if,

X has the convex series representation property (C.S.R.P.), that is, every point

in its unit ball can be expressed as an infinite convex combination of extreme

points of the unit ball [2].
For T a topological space and X a Banach space, <L(T, X) will stand for

the space of continuous and bounded mappings from T into X, endowed with

its usual supremum-norm. It is easy to see that, if e is an extreme point of

the unit ball of <L(T, X), then \\e(t)\\ = 1 for all t in T, but the converse is
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not true in general. However, if we suppose that X is a strictly convex Banach

space, then e is an extreme point of the unit ball of €(T, X) if, and only if,

||<?(0ll = 1, for all t in T.
Our first goal in this paper is to study the A-property in €(T, X) when X is

a strictly convex Banach space. We need the following lemma which can easily

be proved.

1. Lemma. Let X be a Banach space whose unit ball has some extreme point.

Then for every x in B(X)

X(x) = Sup{a > 0 : 3e £ ExtB(X) with a + \\x- ae\\ < 1}.

2. Theorem. Let T be a topological space and X a strictly convex Banach

space. The following conditions are equivalent:

(i) Y = €(T, X) has the uniform X-property.
(ii) Y has the X-property.
(iii) Every continuous mapping y: A^> S(X) defined on a closed set A of T

such that there exists a continuous mapping yo: T -y B(X) satisfying yo(t) =
y(t) for t in A has a continuous extension e from T into S(X).

Moreover, if Y has the X-property, then X(y) = (1 + m(y))/2 for every y in
B(Y), where m(y) = Inf{||y(/)|| : t £ T} .

Proof, (i) =>■ (ii) This is obvious.
(ii) => (iii) Let A be a closed set in T and y : A —> S(X) a continuous

mapping such that there exists yo'. T —y B(X) continuous with y0(t) — y(t),

for t in A . Then y0 = B(Y) and by (ii) there exist e £ ExtB(Y), z £ B(Y),
and 0 < a < 1 satisfying y0 = ae + (I — a)z, so, for every t in A, we

have y(t) = y0(t) = ae(t) + (1 - a)z(t). Since y(t) £ S(X) and X is strictly

convex, we get e(t) = y(t) for every t in A and e: T -* S(X) is a continuous

extension of y.
(iii) => (i) We are going to calculate the A-function for Y. Let y be in B(Y),

e £ Ext-ß(T), and a > 0 suchthat a+||y-o;e|| < 1. Then for every t in T we

have a + \\y(t)-ae(t)\\ < 1 ; hence, 2a-||y(i)|| < 1, that is, a< (l + m(y))/2.

Now Lemma 1 gives us X(y) < (I + m(y))/2. If m(y) > 0, we can define

e(t) = yW/llvWII f°r eachi in T, and e is an extreme point in B(Y). Now

for any t in T we have

1 + m(y)

2

. ,     1 + m(y)  , .

1 + m(y)

2
+ mm - ̂ ^

= 1 + 7(y) + llUyWll - 1 + llr(0ll - m(y)\

< l+2iy) + jO - Mm + Mm - m(y)) = 1.

So (l + m(y))/2 + \\y-((l + m(y))/2)e\\<l and, again, by Lemma 1, X(y) >
(1 + m(y))/2. This together with the above inequality gives us the result in this

case.

If m(y) = 0, let a be a positive number with a < j .

Let us write A — {t £ T : \\y(t)\\ > 1 - 2a} . Then A is a closed set in T.
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Now let us define yo : T —► B(X) by

(ñ = [y(t)/Mt)\\        if te A,
m>    \y(t)/(i-2a)      ift i A.

Then yo is a continuous mapping satisfying yo(0 =y(t)/\\y(t)\\ for t in A ; by
(iii) there exists a continuous mapping e: T —y S(X) with e(t) = yiO/ILvWII

for every / in A . So e £ Ext5(T) and, if t £ A , we have

y(t)
a + \\y(t) - ae(t)\\ =a +

and if t $ A, then

y(t)-a. = a + |||y(i)||-a|<l;
llvWIII

a + \\y(t) - ae(t)\\ <2a + \\y(t)\\ < 2a + 1 - 2a = 1

Hence a + \\y - ae\\ < 1 and, by Lemma 1, X(y) > a for every a < \, so

A(y) > 5 and the proof is finished.

3. Remark. The above theorem is not true if one drops the condition of X

being strictly convex. If one considers T = N U {co} , the one-point compact-

ification of the natural numbers and X = R" with any norm whose unit ball

has a set of extreme points which is not closed, then €(T, X) fail to have the

A-property and X satisfies assertion (iii) in the theorem.
Taking into account that, when X is an infinite-dimensional Banach space,

the unit sphere of X is a retract of the unit ball of X, we get that condition

(iii) in the above theorem is always true if X is infinite dimensional, so we

have

4. Corollary. Let X be an infinite-dimensional strictly convex space and T a

topological space. Then Y = <L(T, X) has the uniform X-property and X(y) =

(1 + m(y))/2 for every y in B(Y).

When X is finite-dimensional, condition (iii) is not always true (take T =

B(X), A — S(X), and y the identity mapping in S(X)) but, if T is a com-
pletely regular space, it was proved by Smyrnov that the condition (iii) is equiv-
alent to dim(X) < n - 1 [9, Theorem 9,], where n is the algebraic dimension

of X and dim(T) is the covering dimension of T (see [5] for definitions), so

we get

5. Corollary. Let X be an n-dimensional strictly convex space and T a com-

pletely regular space. Then the following conditions are equivalent:

(i) £(T,X) has the X-property.
(ii) €(T, X) has the uniform X-property.

(iii) dim(T) < n - 1.

6. Remark. In the proof of the implication (iii) =► (i) of Theorem 2 we follow

the proof by Aron and Lohman of [1, Theorem 1.6], which is our Corollary 4

in case T is a metric compact space. In fact, by assuming only that T is a

compact Hausdorff space, Peck had proved before that, when X is an infinite-

dimensional strictly convex Banach space, every element in the unit ball of

<t(T, X) can be expressed as the average of four extreme points of the unit

ball [8, Theorem 5]. When X is not necessarily infinite-dimensional, Aron and
Lohman proved [1, Theorem 1.9], which is a consequence of our Corollaries 4

and 5.
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If one considers n — 1 in Corollary 5 together with [2, Theorem 1], one

gets that <L(T, R), for T a compact Hausdorff space, has the convex series
representation property if, and only if, T is zero dimensional, which is the

main result of [7], although this result was proved for the first time by Peck

[8, Theorem 4]. To finish this remark let us say that Cantwell proved in [3,

Theorem 2] that, when T is a normal space and X is a Hubert space of

dimension n > 2, condition (iii) in Corollary 5 is equivalent to the fact that

the unit ball of €(T, X) is the convex hull of its extreme points. In view of

this result and the aforementioned result by Peck in the infinite-dimensional

case, one can suspect that condition (iii) in Theorem 2 is, in fact, equivalent

to a stronger condition than the A-property for <t(T, X), that is, that the unit

ball of <L(T, X) is the convex hull of its extreme points. We almost obtain this

by a convenient adaptation of the proof given by Peck when T is a compact
Hausdorff space and X is an infinite-dimensional strictly convex Banach space.

In the sequel we will say that the pair (T, X) has the extension property

if T is a topological space and X is a strictly convex Banach space satisfying

condition (iii) in Theorem 2.

7. Lemma. Let (T, X) have the extension property. Then if f is a continuous

mapping f: T —► X, and e > 0, there exists a continuous mapping g: T —y X

such that f(t) = g(t) if \\f(t)\\ > e and \\g(t)\\ = e if \\f(t)\\ < e.

Proof. Let us define F: T -> B(X) by

m= Í/W/II/WII   if 11/(011 >«,
U    l¿/(0 if 11/(011 <«•

Then F is continuous and A = {t £ T : \\f(t)\\ — e} is a closed set in T. Since

(T, X) has the extension property, there exists a continuous mapping /0: T —y
S(X) such that fo(t) = \f(t) for every t in A. Let us define g: T —> X by

m = //(O     if 11/(011 >«,
^U     Wo«    if 11/(011 <e.

Then g is continuous and satisfies the conditions for which we are looking.

The above lemma was proved in [8, Corollary to Proposition 2] provided that

T is compact Hausdorff and X is an infinite-dimensional Banach space.

Now we can prove the following corollary by using the above lemma in the

same way it was proved by Peck (see the proof of Theorem 3 in [8]).

8. Corollary. Let (T, X) have the extension property. Then every element in

the unit ball of €(T, X) can be expressed as the average of two elements in the

unit ball of <t(T, X) which omit the origin.

In order to prove that the unit ball of <L(T, X) is the convex hull of its

extreme points we must impose that (T, X) has the extension property due
to Theorem 2 and, in view of the above corollary, all we need to prove is

that every element of the unit ball omitting the origin can be expressed as a

convex combination of extreme points. We prove this with an additional con-

dition on X in the next Proposition, in whose proof we follow the proof of [8,

Theorem 5].
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9. Proposition. Let X be a strictly convex space such that there exists a con-

tinuous mapping v : S(X) —► S(X) with v(x) ¿ x and v(x) # -x for every x

in S(X). Then there exist continuous mappings <px, <j>2'. B(X) - {0} —y S(X)

such that x — j(<px(x) + (p2(x)) for every x in B(X) - {0}.

Proof. Let us denote by r the mapping from B(X) - {0} into S(X) defined

by r(x) = x/\\x\\. We define T: [0, 2] x (B(X) - {0}) -* S(X) by

Y(t   -MÜ-OrW + MK*))) if0<i<l,
1 '   '     \ r((2 - t)v(r(x)) - (t - l)r(x))    if 1 < t < 2.

Then T is continuous, and if we fix x in B(X) - {0} , we have

||2jc - T(0, jc)|| = \\2x - r(x)\\ = \2\\x\\ - 1| < 1,

||2jc - T(2, x)|| = ||2jc + r(x)\\ = 2\\x\\ + 1 > 1,

so there is some t in [0, 2] such that \\2x-Y(t, x)\\ = 1. Now by [8, Lemma
3] there is only one / for which the above equality holds; if we denote it by

t(x), we are going to prove that the mapping x -* t(x) is continuous. If

x £ B(X) - {0} is a point of discontinuity of the above mapping, we can find a

sequence {xn} of elements in B(X)-{0} and í in [0, 2] suchthat {x„} -» x

and {t(xn)} —y t / t(x). Now the continuity of T gives

{||2x„ - Y(t(xn), x„)||} -> \\2x - Y(t, x)\\,

so ||2at—T(i, jc)|| = 1, and this contradicts the unicity of t(x). So we can define

(pi(x) = T(t(x), x) and <¡>2(x) = 2x - <t>x(x) which are continuous mappings

from B(X) - {0} into S(X) satisfying

x = ¿(<pi(x) + h(x))    for every x in B(X) - {0}.

From Corollary 8 and Proposition 9 we obtain

10. Theorem. Let T be a topological space and X a strictly convex space

satisfying:

(a) (T, X) has the extension property.
(b) There exists a continuous mapping v : S(X) —► S(X) such that v(x) ^ x

and v(x) ± -x for every x in S(X).

Then B(Y) = co(ExtB(Y)), where Y = €(T, X).

In fact, we have proved that, with the conditions in the above theorem, every

element in the unit ball of €(T, X) can be expressed as the average of four

extreme points.

When X is finite dimensional, it is known that X satisfies condition (b) in

the above theorem if, and only if, X has even dimension, so we have

11. Corollary. Let T be a completely regular space and X a strictly convex

space with dimension equal to 2« with n £ N. The following conditions are

equivalent:

(i) Y = £(T, X) has the X-property.
(ii) Y has the uniform X-property.

(iii) B(Y) = co(ExtB(Y)).
(iv) dim(T) <2n-l.
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Cantwell proved the equivalence between (iii) and (iv) in the above result

without restrictions on the dimension of X, but he assumes that AT is a Hubert
space and T is a normal space [3, Theorem II]. In fact, in our corollary and in

the quoted theorem by Cantwell, one can suppose that T is compact by using

[5, Theorem 3.6.1]. This result by Cantwell says that condition (b) in Theorem

10 is no longer necessary to get that the unit ball of €(T, X) is the convex hull

of its extreme points.

If X is infinite dimensional, condition (a) in Theorem 10 is satisfied. Condi-

tion (b) is obviously satisfied in Banach spaces which admit complex structure,

but this is not always the case (see, for example, [10] for information about this

topic). Nevertheless, the next result shows that condition (b) is also true in the

infinite dimensional case.

12. Proposition. Let X be an infinite dimensional Banach space. Then there

exists a continuous mapping v: S(X) -> S(X) such that v(x) ^ x and v(x) ^

-x for every x in S(X).

Proof. First suppose X is separable. Then by [6, Proposition l.f.3] there exist

{xn}nez a sequence in S(X) and {/„}nez a sequence in X* verifying f„(xm) -
ô„m for all n , m in Z and {fn}n€z separates points in X. Let us define

+ oo

A(x)=   ]T  anfn+i(x)x„       (xeX),
n=-oo

where a0 = 1 and a„ = \n\~^(l + \\fn+i\\)~l (n £ Z-{0}). Then A is
a compact operator in I. If A(x) = 0, then f„(x) = 0 for all n in Z

and so x = 0. If A(x) = Xx for some scalar A ̂  0 and x in S(X) then

&nfn+i(x) = Xf„(x) for all n in Z. Hence

f„+x(x) = n"X"fx(x)(l + \\fn+x\\) J] kk(l + \\fk+x\\)
k=l

for all n in N and |/„+i(x)| > 1 + \\fn+i\\ for some n big enough, and this is
a contradiction.

So if we define v: S(X) -* S(X) by v(x) = A(x)/\\A(x)\\ then v(x) ¿ x
and v(x) / -x for every x in S(X) and v is continuous.

If X is not separable, let X0 be an infinite-dimensional separable closed sub-

space of X. Then by [4, Theorem 6.2] there is F: S(X) -» S(X0) continuous

such that F(x) — x for every x in S(X0). By the first part of the proof there

is Vo: S(Xo) -y S(Xo) continuous and vo(x) ^ x, Vo(x) ̂  -x for every x in

S(Xo). Then v — v0F: S(X) -> S(X) is continuous and v(x) ¿ x, v(x) ¿ -x
for every x in S(X).

Taking into account the commentaries we have made before we obtain

13. Corollary. Let T be a topological space and X an infinite-dimensional

strictly convex Banach space. Then B(Y) = co(Ext5(T)), where Y = <L(T, X).

As we have already said the above corollary was proved by Peck [8, Theorem
5] by assuming that T is compact Hausdorff. Our corollary allows us to get the

following striking result which can not be derived from the result by Peck.
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14. Corollary. Let X be an infinite-dimensional strictly convex Banach space.

Then there exist ex, e2, e-¡, e^ retractions of the unit ball of X onto the unit

sphere of X such that

x = \(ex (x) + e2(x) + e3(x) + eA(x))

for every x in B(X).
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