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EXTREME POINTS IN TRIANGULAR UHF ALGEBRAS

TIMOTHY D. HUDSON, ELIAS G. KATSOULIS, AND DAVID R. LARSON

Abstract. We examine the strongly extreme point structure of the unit balls
of triangular UHF algebras. The semisimple triangular UHF algebras are
characterized as those for which this structure is minimal in the sense that
every strongly extreme point belongs to the diagonal. In contrast to this, for
the class of full nest algebras we prove a Krein-Milman type theorem which
asserts that every operator in the open unit ball of the algebra is a convex
combination of strongly extreme points.

Results concerning the geometry of the unit ball have a long history both in
Banach space theory and in the theory of operator algebras. This geometry can
be affiliated with structural and algebraic properties. Moreover, differences in geo-
metric properties can prove useful in classification problems. Two fundamental
results are the Russo-Dye Theorem and Kadison’s Theorem on isometries. More
recently, there has been interest in the unit balls of nonselfadjoint operator algebras,
especially nest algebras [1, 2, 3, 4, 15, 16].

This paper concerns the unit balls of triangular UHF algebras. These and the
larger class of triangular AF algebras are nonselfadjoint analogues of the UHF and
AF C*-algebras studied by Glimm and Bratteli. Their theory has grown rapidly,
cf. [8, 9, 18, 19, 20]. We focus on the extreme point structure, and our results have
a different flavor than those for nest algebras. Specifically, we study the strongly
extreme points, those boundary points whose “stable character” with respect to
approximations makes them behave well under direct limits. Triangular UHF al-
gebras are direct limits of full upper triangular matrix algebras. Unit balls embed
into unit balls in the direct limit scheme, and some types of embeddings respect the
extreme point structure while others do not. This leads to structural differences in
the limit algebras.

The geometric structures of the unit balls of different triangular UHF algebras
can be very dissimilar. The convex hull of the strongly extreme points, even without
closure, always contains the unit ball of the diagonal. Theorem 7 shows that the
two coincide if and only if the algebra is semisimple. This is a characterization
of a purely geometric property in terms of a purely algebraic one. In contrast to
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this, Theorem 10 shows that the convex hull of the strongly extreme points of a
triangular UHF algebra which is a full nest algebra always contains the open unit
ball of the algebra.

A C∗-algebra C is approximately finite (AF) if it is the norm-closed union of a
nested sequence of finite-dimensional C∗-subalgebras of C. If C is unital and each
of these finite-dimensional subalgebras contains the unit of C and is isomorphic to
some full matrix algebra Mk, then C is called uniformly hyperfinite (UHF). A norm-
closed subalgebra A of C is called triangular AF (TAF) if its diagonal D = A ∩A∗

is a regular canonical masa in C (see below).
The normalizer of D in A is

ND(A) =
{
w ∈ A

∣∣w is a partial isometry, wDw∗ ⊆ D, and w∗Dw ⊆ D
}
.

Regular canonical masas are maximal abelian self-adjoint subalgebras of C for which
there exists a sequence of finite-dimensional C∗-subalgebras of C, say {Cn}n, with

C =
⋃

n Cn, so that if Dn is Cn ∩D, then D =
⋃

nDn and for all n, Dn is a masa in
Cn and NDn(Cn) ⊆ NDn+1(Cn+1), where we define NDk

(Ck) analogously to ND(A).

If An is Cn ∩A and ϕn is the inclusion from An to An+1, then A =
⋃

nAn and (i)
each An is triangular in Cn, (ii) each ϕn extends to a ∗-homomorphism from Cn to
Cn+1, and (iii) for each n, the extension of ϕn maps NDn(Cn) into NDn+1(Cn+1).
Then A is isometrically isomorphic to the inductive limit of the system

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ A4 · · · .(1)

Conversely, if we have algebras {An}n and {Cn}n with An ⊆ Cn and injective
maps ϕn : An → An+1 that satisfy the three properties listed above, then the
inductive limit of (1) is a triangular AF algebra. We will denote this inductive
limit by lim−→(An, ϕn) and call (1) a presentation for the inductive limit. For k ≤ n,

let ϕn,k : Ak → An be the composition ϕn−1◦· · ·◦ϕk. By a triangular UHF algebra,
we will mean a TAF algebra that is the direct limit of a system as in (1), where An

is isometrically isomorphic to some full upper triangular matrix algebra Tpn and
ϕ : An → An+1 is an embedding satisfying properties (ii) and (iii) above. We shall
make the usual identification of C∗(An) with Mpn .

Since for each n Dn is a masa in Cn, we can choose a system of matrix units for
each Cn so that those for Cn are sums of those for Cn+1, and the self-adjoint ones
are in Dn [20]. Throughout the paper, we fix such a system for A = lim−→(An, ϕn).

Since a matrix unit in An is in NDn(An) and ϕm(NDm(Am)) ⊆ NDm+1(Am+1) for
every m, all such matrix units are in ND(A). If e is a matrix unit in An and p is a
projection in D with pe 6= 0, then we call pe a restriction or subordinate of e. Let
P(A) denote the collection of all diagonal projections of A. The diagonal order [18]
on P(A), denoted by “�”, is a partial order given by

e � f ⇐⇒ there exists w ∈ ND(A) with ww∗ = e, w∗w = f .

If e � f and e 6= f , then we write e ≺ f . For a partial isometry p in A, let d(p)
denote the domain projection p∗p and r(p) the range projection pp∗.

We will use the following result of Moore and Trent [15].

Lemma 1. Let A be a contraction in B(H), where H is a Hilbert space, and define

GA =
(
I − (A∗A)

1
2

) 1
2

and GA∗ =
(
I − (AA∗)

1
2

) 1
2

.

If X ∈ B(H) and ‖X‖ ≤ 1, then ‖A±GA∗XGA‖ ≤ 1.
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EXTREME POINTS IN TRIANGULAR UHF ALGEBRAS 3393

Let X1 denote the closed unit ball of the Banach space X. For x ∈ X1 and ε > 0,
we define

δ(x; ε) = sup
{‖z‖ ∣∣ z ∈ X1, ‖x± z‖ ≤ 1 + ε

}
,

and
δ(x) = lim

ε↓0
δ(x; ε) .

Definition 2. If x is an element of X1, we say x is strongly extreme if δ(x) =
0. (This is an equivalent formulation of the definition used in [7, p. 105].)

Strongly extreme points have been studied in the literature. Cima and Thomson
proved that the strongly extreme points in H∞ are the inner functions [5]. Davidson,
Feeman, and Shields studied extreme points in quotients of operator algebras and
considered strongly extreme points [6]. Other authors have studied strongly extreme
points in Banach spaces [7, 12, 14].

We will write ext(K) for the set of extreme point of the convex set K and s-
ext(K) for the strongly extreme points of K. We write co(·) for the closed convex
hull.

We thank Dan Timotin for the following example.

Example 3. Let X =
⊕∞

p=1 `
p(2), and set x = (1, 0) ⊕ (1, 0) ⊕ . . . . For each

n = 1, 2, . . . , define

xn = (0, 0)⊕ · · · ⊕ (0, 0)⊕ (0, 1)︸ ︷︷ ︸
n entries

⊕ (0, 0)⊕ . . . .

Then x is an extreme point of X1 since (1, 0) is an extreme point in
(
`p(2)

)
1
.

However, limn ‖x±xn‖ = 1. Thus, δ(x; ε) ≥ 1 for all ε > 0, and so x is not strongly
extreme.

Lemma 4. If A is a TAF algebra, then the convex hull (no closure) of the strongly
extreme points in A1 contains D1.

Proof. By [6, Lemma 2] it follows that every unitary in A is a strongly extreme
point. The conclusion now follows from the strong version of the Russo-Dye Theo-
rem in [22].

The Jacobson radical of a Banach algebra is the maximal topologically nil ideal
in the algebra. A Banach algebra is called semisimple if its Jacobson radical is
zero. Donsig characterized semisimplicity for TAF algebras in terms of mixing
embeddings [8, Corollary 6]. If ϕ : An → An+1 is an embedding and p and q are
projections in Dpn such that p � q, then ϕ mixes p and q if there are restrictions r
of ϕ(p) and s of ϕ(q) such that s � r. If ϕ mixes p and q for every such p and q in
Dpn , then the embedding ϕ is called mixing. Donsig proved that a triangular UHF
algebra is semisimple if and only if it has a presentation for which all embeddings
are mixing. The standard and alternation limit algebras are semisimple. See [8] for
other examples.

The following proposition is a key result.

Proposition 5. Let A be a semisimple triangular UHF algebra.
If A ∈ A1, then δ(A) ≥ ‖GA‖ ‖GA∗‖.

Proof. Since A is semisimple, by [8, Corollary 6], we can choose a presentation
lim−→(An;ϕn) for A, where each ϕn : An → An+1 is mixing and An is isometrically
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isomorphic to Tpn for some n. Choose a system of matrix units for A so that for

each n, {e(n)
i,j : 1 ≤ i ≤ j ≤ pn} is a system of matrix units for An. Since the

embeddings ϕn are ∗-extendible, they may also be viewed as mappings on Mpn .
Let ε > 0 be given and let A ∈ A1. There exists N ≥ 1 such that dist(A,An) < ε

for all n ≥ N . For each n ≥ N , choose An ∈ An with ‖A − An‖ < ε. We first
construct operators Xn ∈ An+1 whose norm is approximately ‖GA‖‖GA∗‖ such
that ‖Xn ±An‖ ≤ 1. Fix n ≥ N .

We begin by defining operators YZ in Mpn+1 for specific choises of Z in Mpn .

First notice that since ϕn is mixing there exist restrictions e
(n+1)
ipn ,ipn

of ϕn(e
(n)
pn,pn)

and e
(n+1)
j1,j1

of ϕn(e
(n)
1,1 ) so that e

(n+1)
ipn ,ipn

≺ e
(n+1)
j1,j1

, i.e., ipn < j1. Using the fact that

ϕn maps matrix units to sums of matrix units, we conclude that there are diagonal

matrix units e
(n+1)
ik,ik

, k = 1, . . . , pn − 1, and e
(n+1)
jl,jl

, l = 2, . . . , pn, which are defined
recursively as follows:

e
(n+1)
ik,ik

=
(
ϕn(e

(n)
k,k+1)e

(n+1)
ik+1,ik+1

)(
ϕn(e

(n)
k,k+1)e

(n+1)
ik+1,ik+1

)∗
,

e
(n+1)
jl,jl

=
(
e
(n+1)
jl−1,jl−1

ϕn(e
(n)
l−1,l)

)∗(
e
(n+1)
jl−1,jl−1

ϕn(e
(n)
l−1,l)

)
.

Assume that Z is some contraction in Mpn and write Z =
[
zij
]
1≤i,j≤pn . Define YZ

to be the element of Mpn+1 so that

e(n+1)
r,r YZe

(n+1)
s,s =

{
zk,l if r = ik and s = jl,

0 otherwise,

for 1 ≤ r, s ≤ pn+1.

Two remarks are in order. First, all of the partial isometries ϕn(e
(n)
k,k+1), k =

1, . . . , pn − 1, and ϕn(e
(n)
l−1,l), l = 2, . . . , pn, are in An+1, and so the collections

(ik)
pn
k=1 and (jl)

pn
l=1 are increasing. Second, from the definition of e

(n+1)
ik,ik

it follows

that e
(n+1)
ik,ik

ϕn(e
(n)
s,t )e

(n+1)
ik′ ,ik′

is nonzero only in the case where s = k and t = k′, and in

this case e
(n+1)
ik,ik

ϕn(e
(n)
s,t )e

(n+1)
ik′ ,ik′

is a matrix unit restriction of e
(n)
s,t in Mpn+1. Thus,

given an arbitrary a =
∑pn

s,t=1 as,te
(n)
s,t in Mpn , we have(

pn∑
k=1

e
(n+1)
ik,ik

)
ϕn(a)

(
pn∑
k′=1

e
(n+1)
ik′ ,ik′

)
=

pn∑
s,t=1

as,t
(
e
(n+1)
is,is

ϕn(e
(n)
s,t )e

(n+1)
it,it

)
.

A similar statement is also valid for the matrix units e
(n+1)
jl,jl

, l = 1, . . . , pn.

It follows from the first remark above that YZ belongs to An+1 and ‖YZ‖ = ‖Z‖.
The second one implies that there exist a unitary U in C∗(An+1) (corresponding to
an interchange of rows and columns), a projection e belonging to LatAn+1 ∩ {U}′
(actually, e =

∑ipn
s=1 e

(n+1)
s,s ), and projections p, q ∈ An+1 satisfying p ≤ e ≤ q ≤ 1

so that, for any S ∈ Mpn ,

U∗ϕn(S)U =


S 0 0 0
0 ∗ 0 ∗
0 0 S 0
0 0 0 ∗
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and also

U∗YZU =


0 0 Z 0
0 0 0 0
0 0 0 0
0 0 0 0


with respect to the decomposition p⊕ (e− p)⊕ (q − e)⊕ (1− q) = 1.

Let Zn be a suitable rank one operator in Mpn so that

‖GAnZnGA∗
n
‖ = ‖GAn‖ ‖GA∗

n
‖,

and let

Xn =
(
I − (ϕn(A∗nAn))

1
2

) 1
2

YZn

(
I − (ϕn(AnA

∗
n))

1
2

) 1
2

.

By Lemma 1 we have that ‖Xn ± ϕn(An)‖ ≤ 1, and so ‖Xn ±A‖ ≤ 1 + ε.
It remains to show that Xn belongs to An+1. Notice that

U∗XnU = U∗ϕn(GAn)YZnϕn(GA∗
n
)U

= (U∗ϕn(GAn)U) (U∗YZnU)
(
U∗ϕn(GA∗

n
)U
)

=


0 0 GAnZnGA∗

n
0

0 0 0 0
0 0 0 0
0 0 0 0

 .
Since e commutes with U , we conclude that Xn = eXne

⊥, and so Xn belongs to
An+1. Hence,

δ(A; ε) ≥ ‖Xn‖ = ‖GAn
ZnGA∗

n
‖ = ‖GAn

‖ ‖GA∗
n
‖ .

Taking limits, we obtain δ(A) ≥ ‖GA‖ ‖GA∗‖, as desired.

Lemma 6. Let ϕ : Tn → Tm be an embedding which is not mixing, x =
n−1∑
i=1

e
(n)
i,i+1,

and let 0 < ε < 1. Then, in Tm, δ(ϕ(x); ε) ≤ √
6ε.

Proof. Suppose that ϕ is not mixing. Then, in fact, ϕ fails to mix the pair e
(n)
1,1

and e
(n)
n,n. It follows that there exists 1 ≤ j ≤ m so that ϕ(e

(n)
1,1 ) ≤

j∑
i=1

e
(m)
i,i and

ϕ(e
(n)
n,n) ≤ I −

j∑
i=1

e
(m)
i,i . Let e =

∑j
i=1 e

(m)
i,i . Let z be an element of Tm so that

‖ϕ(x)± z‖ ≤ 1 + ε. Then

‖(ϕ(x) ± z)∗(ϕ(x) ± z)‖ ≤ (1 + ε)2 ≤ 1 + 3ε ,

and so ϕ(x)∗ϕ(x) + z∗z + ϕ(x)∗z + z∗ϕ(x) ≤ (1 + 3ε)I and ϕ(x)∗ϕ(x) + z∗z −
ϕ(x)∗z − z∗ϕ(x) ≤ (1 + 3ε)I. Thus,

z∗z ≤ I − ϕ(x)∗ϕ(x) + 3εI = ϕ(e
(n)
1,1 ) + 3εI .

Hence, (1− e)z∗z(1− e) ≤ 3ε(1− e), and so ‖z(1− e)‖ ≤ √3ε. Similarly, using the
inequality ‖(ϕ(x)±z)(ϕ(x)±z)∗‖ ≤ 1+3ε, one obtains zz∗ ≤ I−ϕ(x)ϕ(x)∗+3εI =

ϕ(e
(n)
n,n + 3εI, and so ‖ez‖ ≤ √3ε. Since e is invariant for Tm, then

‖z‖ = ‖z(1− e) + eze‖ ≤ (‖z(1− e)‖2 + ‖ez‖2) 1
2 ≤

√
6ε ,

and the conclusion follows.
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Recall from [8] that if x ∈ ND(A), then s ∈ ND(A) is a link for x if s 6= 0, r(s)
is a subprojection of d(x), and d(s) is a subprojection of r(x).

Theorem 7. Let A be a triangular UHF algebra. Then A is semisimple if and only
if every strongly extreme point of A1 belongs to the diagonal D. In this case, the
convex hull of the strongly extreme points of A1 coincides with D1.

Proof. (=⇒) First assume that A is semisimple, and let A ∈ s-ext(A1). Proposi-
tion 5 shows that A∗A = I or AA∗ = I. The existence of a faithful trace on C∗(A)
now shows that AA∗ = A∗A = I, and so A is unitary. Since A is a direct limit of
inverse closed algebras, then A is inverse closed. Thus, A ∈ D.
(⇐=) Assume that A is not semisimple, and choose a presentation lim−→(An;ϕn) for

A. We claim there exists some positive integer m such that none of the maps ϕn,m,
for any n ≥ m, are mixing. Indeed, since A is not semisimple, then by [8, Theorem
4] there is an off-diagonal matrix unit g in A with no links. Suppose g belongs to
Am for some m, and let n ≥ m. Let e be the range projection of g and f the domain
projection; hence e ≺ f . If ϕn,m were mixing, then there would be restrictions r of
e and s of f in An so that s ≺ r. Let p be the matrix unit such that pp∗ = s and
p∗p = r. Since gg∗ = e and g∗g = f , it follows that p is a link for g, a contradiction.

Now apply Lemma 6 to each embedding ϕn,m : Am → An, and view these em-
beddings as inclusions. Conclude that there is a non-diagonal element x of Am so

that for any 0 < ε < 1, if z ∈
( ∞⋃
n=m

An

)
1

with ‖x± z‖ ≤ 1 + ε, then ‖z‖ ≤ √
6ε.

It follows that δ(x; ε) ≤ 2
√

6ε. So x is strongly extreme in A1, contradicting the
hypothesis.

The last statement is immediate from Lemma 4.

Question. Let X be the direct limit of a system of the form

X1
ϕ1−→ X2

ϕ2−→ X3
ϕ3−→ X4 · · · ,

where each Xn is isometrically isomorphic to some strictly upper triangular matrix
algebra radTpn and ϕn is mixing. Then an adaptation of the proof of Proposition 5
shows that the unit ball of X fails to have any strongly extreme points. Does the
unit ball of X have any extreme points?

The triangular UHF algebra lim−→(An, ϕn) is called a full nest algebra if each em-

bedding ϕn is a nest embedding, i.e., if for every n, ϕn(LatAn) ⊆ LatAn+1. If
ϕ : Tk → Tnk is a nest embedding, then there is a unitary U in the commutant of
ϕ(LatTnk) so that ϕ(S) = U∗(S ⊗ In)U , where In is the n×n identity matrix (in-
deed, using the notation of Power [20, p. 39], U will be the block diagonal unitary
diag(In, U12, U13, . . . , U1k)). These algebras are nest subalgebras of their envelop-
ing C∗-algebras. The refinement and twist limit algebras are full nest algebras; the
term comes from [10].

Lemma 8. If A is a full nest algebra, then the convex hull of the strongly extreme
points of A1 is dense in A1.

Proof. Since the union of (An)1 is dense in A1 (regarding the embeddings as in-
clusions), then, using the Krein-Milman Theorem, it is enough to show that the
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extreme points of the unit ball of An, n = 1, 2, . . . , are strongly extreme in A1. (It
is not obvious even that they need be extreme.) So let A ∈ ext(An)1. By way of
contradiction, assume that there exist a constant M > 0 and a sequence {Xk}∞k=1,
with Xk ∈ Ank , so that

‖ϕnk,n(A)±Xk‖ ≤ 1 +
1

k

and ‖Xk‖ ≥ M for k ≥ 1. Since each ϕnk,n is a nest embedding, there exists a
unitary Uk in the commutant of ϕnk,n(LatAn) so that ϕnk,n(S) = U∗k (S⊗ I)Uk for
all S. Thus, C∗(Ank) factors as C∗(An)⊗Msk , for some sk ∈ N, and ϕnk,n acts by
inflating S and then composing S⊗ I with the block diagonal unitaries Uk and U∗k .

For each k = 1, 2, . . . , there exist states φk and ψk on C∗(An) and Msk , respec-
tively, so that

|φk ⊗ ψk(UkXkU
∗
k )| ≥ (dim C∗(An)

)−1
M .

This last statement is obtained by using the fact that if K is some positive constant,
A belongs to Mm⊗B(H), and |(ρ⊗ σ)(A)| ≤ K for all positive vector states ρ and
σ of norm one, then ‖A‖ ≤ m2K.

Let Φk be the left slice map from C∗(An) ⊗Msk to C∗(An) determined by ψk.
So ρ (Φk(X)) = ρ⊗ ψk(X) for all ρ ∈ (C∗(An))∗, X ∈ C∗(An)⊗Msk . Then

Φk

(
(S ⊗ I)X(T ⊗ I)

)
= SΦk(X)T(2)

for each X in C∗(An)⊗Msk and all S and T in C∗(An) (cf. [13, Problem 12.4.36]).
Now notice that UkXkU

∗
k leaves invariant every element of (LatAn)⊗ I, and so

(2) implies that Φk(UkXkU
∗
k ) belongs to An. Thus,

‖A± Φk(UkXkU
∗
k )‖ = ‖Φk(A⊗ I ± UkXkU

∗
k )‖

≤ ‖A⊗ I ± UkXkU
∗
k‖

= ‖U∗k (A⊗ I)Uk ±Xk‖ ≤ 1 +
1

k

and ‖Φk(UkXkU
∗
k )‖ ≥ [dim C∗(An)]−1M . This shows that A is not strongly ex-

treme (and thus, not extreme) in An, a contradiction.

Lemma 9. If A is a full nest algebra, then the convex hull of the strongly extreme
points in A1 contains some open ball centered at zero.

Proof. Since A is a full nest algebra, there exists an increasing sequence {Cn}∞n=1

of finite dimensional factors with C∗(A) =
⋃∞

n=1 Cn, and a nest N in C∗(A) so that
if Nn = N ∩ Cn, then An = AlgNn ∩ Cn is a maximal triangular subalgebra of Cn
and A = AlgN =

⋃∞
n=1An.

Hence, without loss of generality we may assume that N1 has m elements,
where m ≥ 4. Let {ei,j}mi,j=1 be a matrix unit system for C1 so that N1 =

{∑k
i=1 ei,i | 1 ≤ k ≤ m}. We will show that the convex hull of the strongly ex-

treme points, co (s-ext(A1)), contains the sphere with center 0 and radius a−1,
where a = 1

2m(m+ 1).

Let A ∈ A with ‖A‖ < a−1 and let ai,j = aei,iAej,j . Then each ai,j has norm
strictly less than 1, at most a = 1

2m(m+ 1) of the aij are nonzero, and, moreover,

A =
1

a

∑
1≤i≤j≤m

ai,j .
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Thus, it suffices to show that each ai,j is a convex combination of strongly extreme
points. We distinguish two cases:

Case I: i = j. If i = j ≤ 2, then let

x
(l)
i,j = ai,j + (−1)l

[(
1− ai,ja

∗
i,j

) 1
2 ej,j+1 + (i− 1)e1,1 +

m−1∑
k=i+1

ek,k+1

]
,

for l = 1, 2. If i = j > 2, then let

x
(l)
i,j = ai,j + (−1)l

[
ej−1,j

(
1− a∗i,jai,j

) 1
2 +

i−2∑
k=1

ek,k+1 +
m∑

k=i+1

ek,k

]
,

for l = 1, 2.

In both cases one can easily see that x
(l)
i,j is a partial isometry, so that (x

(l)
i,j)

∗x(l)
i,j ≥

1− e(i, j) and x
(l)
i,j(x

(l)
i,j)

∗ ≥ e(i, j) for some e(i, j) ∈ LatAn and l = 1, 2. Thus, an

argument similar to the ones in Lemma 6 shows that both x
(1)
i,j and x

(2)
i,j are strongly

extreme points. The conclusion now follows from the fact that ai,j = 1
2 (x

(1)
i,j +x

(2)
i,j ).

Case II: i < j. First notice that ej,iai,j belongs to the C∗-algebra ej,jC
∗(A)ej,j, and

thus the Russo-Dye Theorem shows that ej,iai,j is a convex combination of unitaries
from ej,jC

∗(A)ej,j . Hence, ai,j is a convex combination of partial isometries from
C∗(A) with initial spaces equal to ej,j and final spaces equal to ei,i. Thus, without
loss of generality we may assume that ai,j is such a partial isometry.

If i > m
2 − 1 and j < m

2 + 1, let bi,j be a partial isometry with initial and final
spaces[{

ek,k :
m

2
− 1 < k ≤ m, k 6= i

}]
and

[{
ek,k : 1 ≤ k <

m

2
+ 1, k 6= j

}]
,

respectively. For l = 1, 2, let x
(l)
i,j = ai,j + (−1)lbi,j . In any other case, let

x
(l)
i,j = ai,j + (−1)l

m−j∑
k=1−i
k 6=0

ei+k,j+k .

In both cases, arguments similar to the ones in Lemma 6 show that x
(l)
i,j , l = 1, 2, is

a strongly extreme point. Moreover, ai,j = 1
2 (x

(1)
i,j + x

(2)
i,j ), and so the proof of Case

II is complete.

Theorem 10. Let A be a full nest algebra and let A be an element of the open unit
ball of A. Then A is a convex combination of strongly extreme points from A1.

Proof. Assume that A does not belong to co (s-ext(A1)). A standard separation
result states that there exist a non-zero linear functional ϕ and a real number λ
such that Reϕ(x) ≤ λ ≤ Reϕ(A) for all x in co (s-ext(A1)). Since s-ext(A1) is
closed under multiplication by scalars of modulus 1, it follows that |ϕ(x)| ≤ λ for
all x in co (s-ext(A1)). Lemma 9 says that co (s-ext(A1)) contains an open ball of
radius r > 0; thus ϕ is continuous. By Lemma 8, co (s-ext(A1)) is dense in A1, and
so ‖ϕ‖ ≤ λ. Since ϕ is non-zero, λ > 0. However,

λ ≤ Reϕ(A) ≤ ‖ϕ‖‖A‖ ≤ λ‖A‖,
and so ‖A‖ ≥ 1, a contradiction.
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Remark. Theorem 7 and Theorem 10 imply that if A is a semisimple triangular UHF
algebra and B is a full nest algebra, then A and B are not isometrically isomorphic
as Banach spaces. Paul Muhly has informed us that this fact also follows from [17,
Theorem 1.2].

Recently, Power proved that all refinement algebras are isomorphic as Banach
spaces, and all standard algebras are isomorphic as Banach spaces [21]. Are the
refinement and standard algebras isomorphic as Banach spaces?

Theorem 10 identifies a large family of triangular UHF algebras that satisfy a
Krein-Milman type theorem. Are there other significant families of TUHF algebras
for which such a theorem holds? A test case may be the block-standard algebra
of [11, Example 2.6]. Using the proof of Lemma 6, one can show that the linear
span of the strongly extreme points is dense in the algebra. We conjecture that a
Krein-Milman type theorem is valid for the block-standard algebra.
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