PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 5, May 1997, Pages 1391–1397 S 0002-9939(97)03866-5

EXTREME POINTS OF UNIT BALLS IN LIPSCHITZ FUNCTION SPACES

RYSZARD SMARZEWSKI

(Communicated by Dale Alspach)

ABSTRACT. We give a new characterization of the set ext $(B_{X^{\#}})$ of all extreme points of the unit ball $B_{X^{\#}}$ in the Banach space $X^{\#}$ of all Lipschitz functions on a metric space X. This result is applied to get a total variation characterization of ext $(B_{X^{\#}})$ in the particular case when X is a convex subset of a Banach space.

Let $0 \in X$ be an arbitrarily chosen point of a metric space X = (X, d) which consists of at least two distinct points. Following Lindenstrauss [3] denote by $X^{\#}$ the Banach space of all functions $f: X \to \mathcal{R}$ such that f(0) = 0 and

$$||f|| = \sup\left\{\frac{|f(x) - f(y)|}{d(x, y)} : x, y \in X, x \neq y\right\} < \infty.$$

In other words, the Banach space $X^{\#}$ consists of all real-valued Lipschitz functions defined on X, which are equal zero at the distinguished point 0. In the following, we always assume that the distinguished point 0 is equal to the origin of the Banach space E, whenever X is a subset of E containing the origin of E.

In the study of geometric Banach space theory and its various applications it is important to have a good characterization of the extreme points of unit balls. The investigation of the set of all extreme points $\operatorname{ext}(B_{X^{\#}})$ of the unit ball $B_{X^{\#}}$ of $X^{\#}$ has been originated by Rolewicz [4] who has proved the following theorem.

Theorem A. Let f be a function in $[0,1]^{\#}$ with ||f|| = 1. Then $f \in ext(B_{[0,1]^{\#}})$ if and only if |f'(x)| = 1 a.e. on [0,1].

Moreover, he has shown in [5] that a similar result cannot hold for the space $X = [0, 1] \times [0, 1]$ with Euclidean metric. Next, Cobzas [1] has characterized the extreme points in $X^{\#}$ for a rather restricted class of metric spaces X. Recently, Farmer [2] has presented a new characterization of the set $\exp(B_{X^{\#}})$ without any additional restrictions on X. More precisely, he proved the following theorem.

Theorem B. Let X be a metric space, and let f be a function in $X^{\#}$ with the norm ||f|| = 1. Then $f \in ext(B_{X^{\#}})$ if and only if (i) $\epsilon_{x,y}^f = 0$ for all $x, y \in X$,

©1997 American Mathematical Society

Received by the editors November 13, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20.

Key words and phrases. Lipschitz functions, extreme points, total variation characterization.

where

1392

$$\epsilon_{x,y}^{f} = \inf \left\{ \epsilon > 0 : d(x_{i-1}, x_{i}) - \epsilon_{i} \le |f(x_{i-1}) - f(x_{i})| \ (i = 1, ..., n), \\ x_{0} = x, \ x_{n} = y, \ \sum_{i=1}^{n} \epsilon_{i} \le \epsilon \right\}$$

with the infimum taken over all finite sequences $\epsilon_1, ..., \epsilon_n > 0$ and $x_1, ..., x_{n-1} \in X$ satisfying the above inequalities.

Moreover, he noted that condition (i) is equivalent to the condition

(ii) $\epsilon_{x,0}^f = 0$ for every $x \in X$,

which is an immediate consequence of the triangle inequality

(1)
$$\epsilon_{x,y}^f \le \epsilon_{x,z}^f + \epsilon_{z,y}^f; \ x, y, z \in X.$$

In this paper, we first apply Theorem B to derive a new characterization of $ext(B_{X^{\#}})$. Next, we use this result to obtain the following

Theorem 1. Let X be a convex subset of a normed linear space $E = (E, \|\cdot\|)$, and let f be a function in $X^{\#}$ such that $\|f\| = 1$. Then $f \in ext(B_{X^{\#}})$ if and only if

(i)
$$\inf\left\{\sum_{i=1}^{n} \left(\|x_i - x_{i-1}\| - \int_{0}^{1} \left| f'_{x_i, x_{i-1}}(t) \right| dt \right) : x_0 = x, \ x_n = y \right\} = 0$$

for all $x, y \in X$, where the infimum is taken over all finite sequences $x_1, ..., x_{n-1} \in X$, and

$$f_{x_i,x_{i-1}}(t) = f((1-t)x_{i-1}+tx_i), \ 0 \le t \le 1.$$

For this purpose, let

$$\langle x,y\rangle = \left\{z \in X : d\left(x,y\right) = d\left(x,z\right) + d\left(z,y\right)\right\}$$

be the *metric interval* with endpoints $x, y \in X$. Additionally, let $(x_i)_0^n$ be a *metric subdivision* of $\langle x, y \rangle$ with $x \neq y$, i.e., let $x_0 = x$, $x_n = y$, $x_i \in \langle x, y \rangle$, $x_i \neq x_j$ for $i \neq j$, and

(2)
$$d(x,y) = \sum_{i=1}^{n} d(x_{i-1}, x_i).$$

Then we define

(3)
$$\rho_f(x,y) = \inf \left\{ \|f\| d(x,y) - \sum_{i=1}^n |f(x_i) - f(x_{i-1})| \right\},$$

where the infimum is taken over all finite metric subdivisions $(x_i)_0^n$ of the interval $\langle x, y \rangle$. Additionally, we put $\rho_f(x, x) = 0$. Since points $x_0 = x$ and $x_1 = y$ form a subdivision of $\langle x, y \rangle$, it follows from (3) that

(4)
$$\rho_f(x,y) \le \|f\| d(x,y) - |f(x) - f(y)|$$

for all $x, y \in X$. Further, we have

$$\rho_f(x,y) \le \|f\| d(x,y) - \sum_{i=1}^{n+m} |f(x_i) - f(x_{i-1})|$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

EXTREME POINTS

for all metric subdivisions $(x_i)_0^n$ of $\langle x, z \rangle$ and $(x_i)_{n+1}^{n+m}$ of $\langle z, y \rangle$, where $z \in \langle x, y \rangle$. Hence one can take the first infimum over $x_1, ..., x_{n-1}$ and the second over $x_{n+2}, ..., x_{n+m-1}$ to get

(5)
$$\rho_f(x,y) \le \rho_f(x,z) + \rho_f(z,y), \ z \in \langle x,y \rangle$$

In general, ρ_f does not satisfy the triangle inequality. For example, let $||x||_p$ $(1 denote <math>l^p$ - norm of $x = (x_1, x_2) \in X = \mathcal{R}^2$. Then we have

$$\rho_f(x, y) = \|x - y\|_p - |x_1 - y_1|$$

for the function $f(x) = x_1$. Hence we get

$$1 = \rho_f(x, y) > \rho_f(x, z) + \rho_f(z, y) = 2^{\frac{1}{p}} - 1,$$

whenever x = (0,0), y = (0,1) and z = (1,0).

In view of this example, we define

(6)
$$\sigma_f(x,y) = \inf \{ \rho_f(x,z_1) + \rho_f(z_1,z_2) + ... + \rho_f(z_n,y) : z_1,...,z_n \in X, n \in \mathcal{N} \}$$

for all $x, y \in X$ and $f \in X^{\#}$. Clearly, σ_f is a symmetric function such that $\sigma_f(x, x) = 0$ and

(7)
$$0 \le \sigma_f \le \rho_f.$$

In particular, this together with (4) gives

(8)
$$|f(x) - f(y)| \le ||f|| d(x, y) - \sigma_f(x, y); \ x, y \in X$$

Further, taking the infimum over $(z_i)_1^n$ and $(y_i)_1^m$ of the right-hand side of the inequality

$$\sigma_f(x, y) \le [\rho_f(x, z_1) + \rho_f(z_1, z_2) + \dots + \rho_f(z_n, z)] + [\rho_f(z, y_1) + \rho_f(y_1, y_2) + \dots + \rho_f(y_m, y)],$$

we derive

$$\sigma_f(x, y) \le \sigma_f(x, z) + \sigma_f(z, y),$$

and therefore

(9)
$$|\sigma_f(x,y) - \sigma_f(x,z)| \le \sigma_f(y,z)$$

for all $x, y, z \in X$. Note also that

(10)
$$\sigma_f \le \mu \le \rho_f \Longrightarrow \sigma_f = \mu,$$

whenever the function $\mu: X \times X \to \mathcal{R}$ satisfies the triangle inequality on X. Indeed, note that

$$\rho_{f}(x, z_{1}) + \rho_{f}(z_{1}, z_{2}) + \dots + \rho_{f}(z_{n}, y) \ge \mu(x, z_{1}) + \mu(z_{1}, z_{2}) + \dots + \mu(z_{n}, y) \ge \mu(x, y) \ge \sigma_{f}(x, y),$$

and take the infimum over $(z_i)_1^n$ to get $\sigma_f = \mu$.

Theorem 2. Let X be a metric space, and let f be a function in $X^{\#}$ with the norm ||f|| = 1. Then $f \in \text{ext}(B_{X^{\#}})$ if and only if (i) $\sigma_f(x, y) = 0$ for all $x, y \in X$. *Proof.* Suppose first that $\sigma_f(x, y) = 0$ for all $x, y \in X$. Moreover, take an arbitrary $\epsilon > \rho_f(x, y)$. Then it follows from (2) – (3) that there exists a metric subdivision $(x_i)_0^n$ of $\langle x, y \rangle$ for which

(11)
$$d(x,y) - \epsilon = \left(\sum_{i=1}^{n} d_i\right) - \epsilon < \sum_{i=1}^{n} c_i$$

where

$$d_i = d(x_{i-1}, x_i) > 0$$
 and $c_i = |f(x_i) - f(x_{i-1})|$

Since ||f|| = 1, we have $c_i \leq d_i$. Moreover, by (11) one can find *n* numbers e_i (i = 1, ..., n) such that $0 \leq e_i < c_i$ (if $c_i > 0$), $e_i = 0$ (if $c_i = 0$), and

$$\left(\sum_{i=1}^{n} d_i\right) - \epsilon = \sum_{i=1}^{n} e_i.$$

Now denote $\epsilon_i = d_i - e_i$. Then we have $\epsilon_i > 0$, $\sum_{i=1}^n \epsilon_i = \epsilon$, and $c_i \ge e_i = d_i - \epsilon_i$, i.e.,

$$d(x_{i-1}, x_i) - \epsilon_i \le |f(x_i) - f(x_{i-1})| \ (i = 1, ..., n)$$

Hence it follows from the definition of $\epsilon_{x,y}^{f}$ that $\epsilon_{x,y}^{f} \leq \epsilon$. Since $\epsilon > \rho_{f}(x,y)$ was arbitrary, we conclude that

$$0 = \sigma_f(x, y) \le \epsilon_{x, y}^f \le \rho_f(x, y)$$

for all $x, y \in X$. This in conjunction with (1) enables to apply (10) in order to get $\epsilon_{x,y}^f = \sigma_f(x,y) = 0$. Thus Theorem B yields $f \in \text{ext}(B_{X^{\#}})$, which completes the proof of necessity.

For the proof of sufficiency, suppose that there exist $f \in X^{\#}$ and $z \in X$ for which ||f|| = 1 and $Y = \{y : \sigma_f(z, y) > 0\} \neq \emptyset$. Then the triangle inequality and symmetry of σ_f yield

(12)
$$\sigma_f(x,y) = \sigma_f(z,y)$$

for all $x \in X \setminus Y$ and $y \in Y$. This together with (8) and (9) enables to repeat mutatis mutandis Farmer's proof [2] of sufficiency of Theorem B, with $\epsilon_{x,y}^f$ replaced by $\sigma_f(x, y)$, in order to show that $f \notin \operatorname{ext}(B_{X^{\#}})$.

From now on, we will assume that X is a convex subset of a normed linear space $(E, \|\cdot\|)$. In this case, we define

(13)
$$\hat{\rho}_{f}(x,y) = \inf\left\{ \|f\| \|x-y\| - \sum_{i=1}^{n} |f(x_{i}) - f(x_{i-1})| \right\},\$$

where the infimum is taken only over all finite subdivisions $(x_i)_0^n$ of the form

 $x_i = (1 - t_i) x + t_i y \ (0 = t_0 < t_1 < \dots < t_n = 1).$

It is clear that (2) holds for these algebraic subdivisions of the algebraic interval

 $[x, y] = \{(1 - t) x + ty : 0 \le t \le 1\},\$

and that $[x, y] = \langle x, y \rangle$ and $\hat{\rho}_f(x, y) = \rho_f(x, y)$ for all $x, y \in X$, whenever E is a strictly convex space. In general, we have only $\rho_f \leq \hat{\rho}_f$.

If $\hat{\sigma}_f(x, y)$ is defined by formula (6) with ρ_f replaced by $\hat{\rho}_f$, then $\sigma_f \leq \hat{\sigma}_f$. By the same arguments as above, one can also prove that $\hat{\rho}_f$ and $\hat{\sigma}_f$ satisfy inequality

1394

(4) and the triangle inequality, respectively. In particular, by using (2) and (4) we obtain

$$\hat{\sigma}_{f}(x,y) \leq \hat{\rho}_{f}(x_{0},x_{1}) + \dots + \hat{\rho}_{f}(x_{n-1},x_{n}) \leq ||f|| ||x-y|| - \sum_{i=1}^{n} |f(x_{i}) - f(x_{i-1})|$$

for all metric subdivisions $(x_i)_0^n$ of $\langle x, y \rangle$. Hence we derive $\hat{\sigma}_f \leq \rho_f$. Therefore, one can apply (10) with $\mu = \hat{\sigma}_f$ in order to get $\hat{\sigma}_f = \sigma_f$.

Lemma 1. Let X be a convex subset of a normed linear space $E = (E, \|\cdot\|)$, and let $f \in X^{\#}$. Then we have

$$\hat{\rho}_f(x,y) = \|f\| \|x-y\| - V_0^1(f_{x,y}) = \|f\| \|x-y\| - \int_0^1 |f'_{x,y}(t)| dt,$$

where $V_0^1(f_{x,y})$ denotes the total variation of the function $f_{x,y}$ defined by

$$f_{x,y}(t) = f((1-t)x + ty) \ (0 \le t \le 1).$$

Proof. By (13) we obtain

(14)
$$\hat{\rho}_{f}(x,y) = \|f\| \|x-y\| - \sup\left\{ \sum_{i=1}^{n} |f(x_{i}) - f(x_{i-1})| \right\} \\ = \|f\| \|x-y\| - V_{0}^{1}(f_{x,y}),$$

where the supremum is taken over all finite algebraic subdivisions $(x_i)_0^n$ of [x, y]. Since $f \in X^{\#}$, we have

$$|f_{x,y}(t) - f_{x,y}(s)| \le ||f|| ||x - y|| |t - s| \ (0 \le t, s \le 1).$$

Hence the derivative $f'_{x,y}(t)$ exists almost everywhere on [0, 1], and the function $t \to f'_{x,y}(t)$ is integrable. Moreover, we have

$$V_0^1(f_{x,y}) = \int_0^1 |f'_{x,y}(t)| dt$$

This in conjunction with (14) completes the proof.

In view of the fact that $\hat{\sigma}_f = \sigma_f$, Theorem 1 is an immediate consequence of Lemma 1 and Theorem 2. Moreover, it follows from the triangle inequality for σ_f that Theorems 1 and 2 remain true, whenever we put either x = 0 or y = 0 into them. In particular, if the interval X = [0, 1] is equipped with the metric d(x, y) = |x - y|, then Lemma 1 yields

$$\rho_f(x,y) = \hat{\rho}_f(x,y) = |x-y| \left(1 - \int_0^1 |f'(s)| \, ds \right)$$

for all $x, y \in [0, 1]$. On the other hand, by (5) and (7) one can apply (10) with $\mu = \rho_f$ to get $\sigma_f = \rho_f$. Hence Theorem A follows directly from Theorem 2.

Finally, we present another application of Theorem 2 which shows that the set $(B_{X^{\#}})$ of all extreme points of the unit ball $B_{X^{\#}}$ of $X^{\#}$ is quite rich, whenever

X is a normed linear space. For this purpose, denote by X^\ast the dual space of X, and note that

(15)
$$\sigma_f(x, x + \alpha z) = \sigma_f(0, \alpha z) = |\alpha| \sigma_f(0, z) \ (\alpha \in \mathcal{R}; \ x, z \in X)$$

for every functional $f \in X^*$. To prove these identities, we need only to change variables $z_k \to z_k + x$ $(z_k \to \alpha z_k)$ in the definition of $\hat{\sigma}_f = \sigma_f$ applied to $y = x + \alpha z$ $(y = \alpha z$, respectively), and use the identity

$$\hat{\rho}_f(x,y) = \|f\| \, \|x-y\| - |f(x-y)| \, (x,y \in X) \, ,$$

which is a direct consequence of Lemma 1 and linearity of f. Since σ_f satisfies the triangle inequality, it follows from (15) that

$$\sigma_f(0, z_1 + z_2) \le \sigma_f(0, z_1) + \sigma_f(z_1, z_1 + z_2) = \sigma_f(0, z_1) + \sigma_f(0, z_2).$$

This in conjunction with (15) means that the function $z \to \sigma_f(0, z)$ $(z \in X)$ is a seminorm on X.

Theorem 3. Let X be a normed linear space. Then we have

$$\operatorname{ext}\left(B_{X^{\#}}\right) \cap X^{*} = \operatorname{ext}\left(B_{X^{*}}\right)$$

Proof. In view of definition of extreme points, we directly have

$$\operatorname{ext}\left(B_{X^{\#}}\right) \cap X^{*} \subset \operatorname{ext}\left(B_{X^{*}}\right)$$

Conversely, let a functional $f \in X^*$ be such that ||f|| = 1 and $f \notin \text{ext}(B_{X^{\#}})$. We need only to prove that $f \notin \text{ext}(B_{X^*})$. By Theorem 2 the set

$$Y = \{ y : \sigma_f(0, y) > 0 \}$$

is nonempty. Moreover, it follows from (15) that the set $X \setminus Y$ is a linear subspace of X which, in view of (12), has the property

(16)
$$\sigma_f(x,y) = \sigma_f(0,y) \ (x \in X \setminus Y, \ y \in Y)$$

Now take a point $y_0 \in Y$, and denote by X_0 the linear subspace spanned by y_0 and $X \setminus Y$. Next, define the linear functional g on X_0 by the formula

$$g(x + \alpha y_0) = \alpha \sigma_f(0, y_0) \ (x \in X \setminus Y, \ \alpha \in \mathcal{R})$$

Then it follows from (15) and (16) that

(17) $|g(x + \alpha y_0)| = \sigma_f(x, x + \alpha y_0) = \sigma_f(0, x + \alpha y_0) \quad (x \in X \setminus Y, \ \alpha \in \mathcal{R}),$

whenever $x + \alpha y_0 \in Y$. Otherwise, if $x + \alpha y_0 \notin Y$ then $\alpha = 0$ and (17) is obvious. Since the function $z \to \sigma_f(0, z)$ is a seminorm on X and g satisfies condition (17) on X_0 , it follows from the Hahn-Banach theorem that the functional $g: X_0 \to \mathcal{R}$ has an extension to the whole space X, which satisfies the inequality

$$|g(z)| \le \sigma_f(0,z), \ z \in X.$$

Consequently, one can apply (4) and (7) to get

$$|g(z)| \le ||z|| - |f(z)|, \ z \in X$$

Thus $g \in X^*$ and $f_k \in X^*$ (k = 1, 2), where functionals f_k are defined by

$$f_k(z) = f(z) + (-1)^{\kappa} g(z).$$

Therefore, we obtain

$$|f_k(z)| \le |f(z)| + |g(z)| \le ||z|$$

1396

EXTREME POINTS

for every $z \in X$. Hence we have $||f_k|| \leq 1$ (k = 1, 2) and $f_k(y_0) \neq f(y_0)$, which in conjunction with the identity $f = (f_1 + f_2)/2$ shows that $f \notin \text{ext}(B_{X^*})$. Thus the proof is completed.

References

- S. Cobzas, Extreme points in Banach spaces of Lipschitz functions, Mathematica **31** (54) (1989), 25–33. MR **91j**:46032
- J.D. Farmer, Extreme points of the unit ball of the space of Lipschitz functions, Proc. Amer. Math. Soc. 121 (1994), 807–813. MR 94i:46038
- J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263–287. MR 29:5088
- S. Rolewicz, On extremal points of the unit ball in the Banach space of Lipschitz continuous functions, J. Austral. Math. Soc. Ser. A 41 (1986), 95–98. MR 87k:46022
- S. Rolewicz, On optimal observability of Lipschitz systems, Selected Topics in Operations Research and Mathematical Economics, Lecture Notes in Econom. and Math. Systems, vol. 226, Springer-Verlag, Berlin, 1984, pp. 151-158. MR 86a:49076

DEPARTMENT OF MATHEMATICS, M. CURIE-SKLODOWSKA UNIVERSITY, 20-031 LUBLIN, POLAND Current address: Institute of Mathematics, Catholic University of Lublin, Al. Raclawickie 14, 20-950 Lublin, Poland

E-mail address: smarz@golem.umcs.lublin.pl