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EXTREME POINTS OF UNIT BALLS

IN LIPSCHITZ FUNCTION SPACES

RYSZARD SMARZEWSKI

(Communicated by Dale Alspach)

Abstract. We give a new characterization of the set ext (BX# ) of all extreme

points of the unit ball BX# in the Banach space X# of all Lipschitz functions

on a metric space X. This result is applied to get a total variation character-
ization of ext (BX# ) in the particular case when X is a convex subset of a
Banach space.

Let 0 ∈ X be an arbitrarily chosen point of a metric space X = (X, d) which
consists of at least two distinct points. Following Lindenstrauss [3] denote by X#

the Banach space of all functions f : X →R such that f(0) = 0 and

‖f‖ = sup

{ |f(x)− f(y)|
d(x, y)

: x, y ∈ X, x 6= y

}
<∞.

In other words, the Banach space X# consists of all real-valued Lipschitz functions
defined on X , which are equal zero at the distinguished point 0. In the following,
we always assume that the distinguished point 0 is equal to the origin of the Banach
space E, whenever X is a subset of E containing the origin of E.

In the study of geometric Banach space theory and its various applications it is
important to have a good characterization of the extreme points of unit balls. The
investigation of the set of all extreme points ext(BX#) of the unit ball BX# of X#

has been originated by Rolewicz [4] who has proved the following theorem.

Theorem A. Let f be a function in [0, 1]
#

with ‖f‖ = 1. Then f ∈ ext(B[0,1]#) if

and only if |f ′(x)| = 1 a.e. on [0, 1] .

Moreover, he has shown in [5] that a similar result cannot hold for the space
X = [0, 1] × [0, 1] with Euclidean metric. Next, Cobzas [1] has characterized the
extreme points in X# for a rather restricted class of metric spaces X. Recently,
Farmer [2] has presented a new characterization of the set ext(BX#) without any
additional restrictions on X. More precisely, he proved the following theorem.

Theorem B. Let X be a metric space, and let f be a function in X# with the
norm ‖f‖ = 1. Then f ∈ ext(BX#) if and only if (i) εfx,y = 0 for all x, y ∈ X,
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where

εfx,y = inf
{
ε > 0 : d (xi−1,xi)− εi ≤ |f(xi−1)− f(xi)| (i = 1, ..., n),

x0 = x, xn = y,

n∑
i=1

εi ≤ ε
}

with the infimum taken over all finite sequences ε1, ..., εn > 0 and x1, ..., xn−1 ∈ X
satisfying the above inequalities.

Moreover, he noted that condition (i) is equivalent to the condition

(ii) εfx,0 = 0 for every x ∈ X,
which is an immediate consequence of the triangle inequality

εfx,y ≤ εfx,z + εfz,y; x, y, z ∈ X.(1)

In this paper, we first apply Theorem B to derive a new characterization of
ext(BX#). Next, we use this result to obtain the following

Theorem 1. Let X be a convex subset of a normed linear space E = (E, ‖·‖) , and
let f be a function in X# such that ‖f‖ = 1. Then f ∈ ext(BX#) if and only if

(i) inf


n∑
i=1

‖xi − xi−1‖ −
1∫

0

∣∣∣f ′xi,xi−1
(t)
∣∣∣ dt
 : x0 = x, xn = y

 = 0

for all x, y ∈ X, where the infimum is taken over all finite sequences x1, ..., xn−1 ∈
X, and

fxi,xi−1 (t) = f ((1− t)xi−1 + txi) , 0 ≤ t ≤ 1.

For this purpose, let

〈x, y〉 = {z ∈ X : d (x, y) = d (x, z) + d (z, y)}
be the metric interval with endpoints x, y ∈ X. Additionally, let (xi)

n
0 be a metric

subdivision of 〈x, y〉 with x 6= y, i.e., let x0 = x, xn = y, xi ∈ 〈x, y〉 , xi 6= xj for
i 6= j, and

d (x, y) =

n∑
i=1

d (xi−1, xi) .(2)

Then we define

ρf (x, y) = inf

{
‖f‖ d (x, y)−

n∑
i=1

|f (xi)− f (xi−1)|
}
,(3)

where the infimum is taken over all finite metric subdivisions (xi)
n
0 of the interval

〈x, y〉 . Additionally, we put ρf (x, x) = 0. Since points x0 = x and x1 = y form a
subdivision of 〈x, y〉 , it follows from (3) that

ρf (x, y) ≤ ‖f‖ d (x, y)− |f (x)− f (y)|(4)

for all x, y ∈ X. Further, we have

ρf (x, y) ≤ ‖f‖d (x, y)−
n+m∑
i=1

|f (xi)− f (xi−1)|
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for all metric subdivisions (xi)
n
0 of 〈x, z〉 and (xi)

n+m
n+1 of 〈z, y〉, where z ∈ 〈x, y〉 .

Hence one can take the first infimum over x1, ..., xn−1 and the second over xn+2, ...,
xn+m−1 to get

ρf (x, y) ≤ ρf (x, z) + ρf (z, y) , z ∈ 〈x, y〉 .(5)

In general, ρf does not satisfy the triangle inequality. For example, let ‖x‖p (1 < p

<∞) denote lp- norm of x = (x1, x2) ∈ X = R2. Then we have

ρf (x, y) = ‖x− y‖p − |x1 − y1|
for the function f (x) = x1. Hence we get

1 = ρf (x, y) > ρf (x, z) + ρf (z, y) = 2
1
p − 1,

whenever x = (0, 0) , y = (0, 1) and z = (1, 0) .
In view of this example, we define

(6) σf (x, y) = inf {ρf (x, z1) + ρf (z1, z2) + ... + ρf (zn, y) :

z1, ..., zn ∈ X, n ∈ N}
for all x, y ∈ X and f ∈ X#. Clearly, σf is a symmetric function such that
σf (x, x) = 0 and

0 ≤ σf ≤ ρf .(7)

In particular, this together with (4) gives

|f (x)− f (y)| ≤ ‖f‖ d (x, y)− σf (x, y) ; x, y ∈ X.(8)

Further, taking the infimum over (zi)
n
1 and (yi)

m
1 of the right-hand side of the

inequality

σf (x, y) ≤ [ρf (x, z1) + ρf (z1, z2) + · · ·+ ρf (zn, z)]

+ [ρf (z, y1) + ρf (y1, y2) + ... + ρf (ym, y)] ,

we derive

σf (x, y) ≤ σf (x, z) + σf (z, y) ,

and therefore

|σf (x, y)− σf (x, z)| ≤ σf (y, z)(9)

for all x, y, z ∈ X . Note also that

σf ≤ µ ≤ ρf =⇒ σf = µ,(10)

whenever the function µ : X×X →R satisfies the triangle inequality on X . Indeed,
note that

ρf (x, z1) + ρf (z1, z2) + ... + ρf (zn, y) ≥ µ (x, z1) + µ (z1, z2)
+... + µ (zn, y) ≥ µ (x, y) ≥ σf (x, y) ,

and take the infimum over (zi)
n
1 to get σf = µ.

Theorem 2. Let X be a metric space, and let f be a function in X# with the
norm ‖f‖ = 1. Then f ∈ ext (BX#) if and only if

(i) σf (x, y) = 0 for all x, y ∈ X.
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Proof. Suppose first that σf (x, y) = 0 for all x, y ∈ X. Moreover, take an arbitrary
ε > ρf (x, y) . Then it follows from (2) − (3) that there exists a metric subdivision
(xi)

n
0 of 〈x, y〉 for which

d (x, y)− ε =

(
n∑
i=1

di

)
− ε <

n∑
i=1

ci,(11)

where

di = d (xi−1, xi) > 0 and ci = |f (xi)− f (xi−1)| .
Since ‖f‖ = 1, we have ci ≤ di. Moreover, by (11) one can find n numbers
ei (i = 1, ..., n) such that 0 ≤ ei < ci (if ci > 0), ei = 0 (if ci = 0), and(

n∑
i=1

di

)
− ε =

n∑
i=1

ei.

Now denote εi = di−ei. Then we have εi > 0,
∑n

i=1 εi = ε, and ci ≥ ei = di−εi, i.e.,

d (xi−1, xi)− εi ≤ |f (xi)− f (xi−1)| (i = 1, ..., n) .

Hence it follows from the definition of εfx,y that εfx,y ≤ ε. Since ε > ρf (x, y) was
arbitrary, we conclude that

0 = σf (x, y) ≤ εfx,y ≤ ρf (x, y)

for all x, y ∈ X. This in conjunction with (1) enables to apply (10) in order to get
εfx,y = σf (x, y) = 0. Thus Theorem B yields f ∈ ext (BX#) , which completes the
proof of necessity.

For the proof of sufficiency, suppose that there exist f ∈ X# and z ∈ X for
which ‖f‖ = 1 and Y = {y : σf (z, y) > 0} 6= ∅. Then the triangle inequality and
symmetry of σf yield

σf (x, y) = σf (z, y)(12)

for all x ∈ X \ Y and y ∈ Y. This together with (8) and (9) enables to repeat
mutatis mutandis Farmer’s proof [2] of sufficiency of Theorem B, with εfx,y replaced
by σf (x, y) , in order to show that f /∈ ext (BX#) .

From now on, we will assume that X is a convex subset of a normed linear space
(E, ‖·‖). In this case, we define

ρ̂f (x, y) = inf

{
‖f‖ ‖x− y‖ −

n∑
i=1

|f (xi)− f (xi−1)|
}
,(13)

where the infimum is taken only over all finite subdivisions (xi)
n
0 of the form

xi = (1− ti)x + tiy (0 = t0 < t1 < ... < tn = 1) .

It is clear that (2) holds for these algebraic subdivisions of the algebraic interval

[x, y] = {(1− t) x+ ty : 0 ≤ t ≤ 1} ,
and that [x, y] = 〈x, y〉 and ρ̂f (x, y) = ρf (x, y) for all x, y ∈ X, whenever E is a
strictly convex space. In general, we have only ρf ≤ ρ̂f .

If σ̂f (x, y) is defined by formula (6) with ρf replaced by ρ̂f , then σf ≤ σ̂f . By
the same arguments as above, one can also prove that ρ̂f and σ̂f satisfy inequality
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(4) and the triangle inequality, respectively. In particular, by using (2) and (4) we
obtain

σ̂f (x, y) ≤ ρ̂f (x0, x1) + ... + ρ̂f (xn−1, xn) ≤ ‖f‖ ‖x− y‖ −
n∑
i=1

|f (xi)− f (xi−1)|

for all metric subdivisions (xi)
n
0 of 〈x, y〉. Hence we derive σ̂f ≤ ρf . Therefore, one

can apply (10) with µ = σ̂f in order to get σ̂f = σf .

Lemma 1. Let X be a convex subset of a normed linear space E = (E, ‖·‖), and
let f ∈ X#. Then we have

ρ̂f (x, y) = ‖f‖ ‖x− y‖ − V 1
0 (fx,y) = ‖f‖ ‖x− y‖ −

1∫
0

∣∣f ′x,y (t)
∣∣ dt,

where V 1
0 (fx,y) denotes the total variation of the function fx,y defined by

fx,y (t) = f ((1− t)x + ty) (0 ≤ t ≤ 1) .

Proof. By (13) we obtain

ρ̂f (x, y) = ‖f‖ ‖x− y‖ − sup

{
n∑
i=1

|f (xi)− f (xi−1)|
}

= ‖f‖ ‖x− y‖ − V 1
0 (fx,y) ,

(14)

where the supremum is taken over all finite algebraic subdivisions (xi)
n
0 of [x, y].

Since f ∈ X#, we have

|fx,y (t)− fx,y (s)| ≤ ‖f‖ ‖x− y‖ |t− s| (0 ≤ t, s ≤ 1) .

Hence the derivative f ′x,y (t) exists almost everywhere on [0, 1], and the function
t→ f ′x,y (t) is integrable. Moreover, we have

V 1
0 (fx,y) =

1∫
0

∣∣f ′x,y (t)
∣∣ dt.

This in conjunction with (14) completes the proof.

In view of the fact that σ̂f = σf , Theorem 1 is an immediate consequence of
Lemma 1 and Theorem 2. Moreover, it follows from the triangle inequality for
σf that Theorems 1 and 2 remain true, whenever we put either x = 0 or y = 0
into them. In particular, if the interval X = [0, 1] is equipped with the metric
d (x, y) = |x− y| , then Lemma 1 yields

ρf (x, y) = ρ̂f (x, y) = |x− y|
1−

1∫
0

|f ′ (s)| ds


for all x, y ∈ [0, 1] . On the other hand, by (5) and (7) one can apply (10) with
µ = ρf to get σf = ρf . Hence Theorem A follows directly from Theorem 2.

Finally, we present another application of Theorem 2 which shows that the set
ext (BX#) of all extreme points of the unit ball BX# of X# is quite rich, whenever
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X is a normed linear space. For this purpose, denote by X∗ the dual space of X,
and note that

σf (x, x + αz) = σf (0, αz) = |α|σf (0, z) (α ∈ R; x, z ∈ X)(15)

for every functional f ∈ X∗. To prove these identities, we need only to change
variables zk → zk + x (zk → αzk) in the definition of σ̂f = σf applied to y =
x + αz (y = αz, respectively), and use the identity

ρ̂f (x, y) = ‖f‖ ‖x− y‖ − |f (x− y)| (x, y ∈ X) ,

which is a direct consequence of Lemma 1 and linearity of f. Since σf satisfies the
triangle inequality, it follows from (15) that

σf (0, z1 + z2) ≤ σf (0, z1) + σf (z1, z1 + z2) = σf (0, z1) + σf (0, z2) .

This in conjunction with (15) means that the function z → σf (0, z) (z ∈ X) is a
seminorm on X.

Theorem 3. Let X be a normed linear space. Then we have

ext (BX#) ∩X∗ = ext (BX∗) .

Proof. In view of definition of extreme points, we directly have

ext (BX#) ∩X∗ ⊂ ext (BX∗) .

Conversely, let a functional f ∈ X∗ be such that ‖f‖ = 1 and f /∈ ext (BX#) . We
need only to prove that f /∈ ext (BX∗) . By Theorem 2 the set

Y = {y : σf (0, y) > 0}
is nonempty. Moreover, it follows from (15) that the set X \ Y is a linear subspace
of X which, in view of (12), has the property

σf (x, y) = σf (0, y) (x ∈ X \ Y, y ∈ Y ) .(16)

Now take a point y0 ∈ Y, and denote by X0 the linear subspace spanned by y0 and
X \ Y. Next, define the linear functional g on X0 by the formula

g (x + αy0) = ασf (0, y0) (x ∈ X \ Y, α ∈ R) .

Then it follows from (15) and (16) that

|g (x + αy0)| = σf (x, x + αy0) = σf (0, x + αy0) (x ∈ X \ Y, α ∈ R) ,(17)

whenever x + αy0 ∈ Y. Otherwise, if x + αy0 /∈ Y then α = 0 and (17) is obvious.
Since the function z → σf (0, z) is a seminorm on X and g satisfies condition (17)
on X0, it follows from the Hahn-Banach theorem that the functional g : X0 → R
has an extension to the whole space X, which satisfies the inequality

|g (z)| ≤ σf (0, z) , z ∈ X.

Consequently, one can apply (4) and (7) to get

|g (z)| ≤ ‖z‖ − |f (z)| , z ∈ X.

Thus g ∈ X∗ and fk ∈ X∗ (k = 1, 2) , where functionals fk are defined by

fk (z) = f (z) + (−1)
k
g (z) .

Therefore, we obtain

|fk (z)| ≤ |f (z)|+ |g (z)| ≤ ‖z‖
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for every z ∈ X. Hence we have ‖fk‖ ≤ 1 (k = 1, 2) and fk (y0) 6= f (y0) , which in
conjunction with the identity f = (f1 + f2) /2 shows that f /∈ ext (BX∗) . Thus the
proof is completed.
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