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ABSTRACT

Compared to precipitation extremes calculated from a high-resolution daily observational dataset in China

during 1960–2005, simulations in 31 climate models from phase 5 of the Coupled Model Intercomparison

Project (CMIP5) have been quantitatively assessed using skill-score metrics. Four extreme precipitation in-

dices, including the total precipitation (PRCPTOT), maximum consecutive dry days (CDD), precipitation

intensity (SDII), and fraction of total rainfall from heavy events (R95T) are analyzed. Results show that

CMIP5 models still have wet biases in western and northern China. Especially in western China, the models’

median relative error is about 120% for PRCPTOT; the 25th and 75th percentile errors are of 70% and 220%,

respectively. However, there are dry biases in southeastern China, where the underestimation of PRCPTOT

reach 200mm. The performance of CMIP5 models is quite different between western and eastern China. The

simulations aremore reliable in the east than in thewest in terms of spatial pattern and interannual variability.

In the east, precipitation indices are more consistent with observations, and the spread among models is

smaller. The multimodel ensemble constructed from a selection of the most skillful models shows improved

behavior compared to the all-model ensemble. The wet bias in western and northern China and dry bias over

southeastern China are all decreased. The median of errors for PRCPTOT has a decrease of 69% and 17% in

the west and east, respectively. The good reproduction of the southwesterlies along the east coast of the

Arabian Peninsula is revealed to be the main factor explaining the improvement of precipitation patterns and

extreme events.

1. Introduction

It is well known that a global-scale warming domi-

nates climate change over the past century. According

to the Fifth Assessment Report (AR5) of the In-

tergovernmental Panel on Climate Change (IPCC;

IPCC 2013), a changing climate significantly impacts the

frequency, intensity, spatial extent, duration, and timing

of weather and climate extremes. Awarming climate has

been shown to exacerbate and trigger certain climate

extremes, including increases in severe and extreme

precipitation events (Easterling et al. 2000; Zhai et al.

2005; Qian et al. 2007; Feng et al. 2011). China is espe-

cially vulnerable to extreme precipitation events, which

can cause huge losses for society, the economy, and

natural ecosystems. Public awareness of extreme events

has risen sharply in recent years because of the in-

creasing catastrophic influence of natural hazards. Me-

teorological disasters are estimated to cause a loss of
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2.37% for the Chinese gross domestic product each year

since 1990, and the frequency of extreme events is pre-

dicted to increase, accompanying climate warming

(Wang and Zheng 2012). Thus, assessment and in-

vestigation of such events are of importance for de-

veloping adaptation strategies to reduce risks of

precipitation extremes (Zhai et al. 2008; Ren et al. 2011;

Wang et al. 2012).

Global climate models are the main tools used by the

scientific community to reproduce the current climate

and project future changes of extreme precipitation

events. Given the cascade of uncertainties in models’

projections of future change, it is essential to evaluate

the models’ performance in simulating extremes with

respect to observations before assessing projection in

the future. During recent years, considerable efforts

have been made to assess the ability of models in sim-

ulating extreme changes in terms of spatial and temporal

changes over Chinese regions based on models from

the World Climate Research Programme’s (WCRP)

phase 3 of the Coupled Model Intercomparison Project

(CMIP3). Jiang et al. (2009, 2012) showed that models

have certain abilities to simulate both the spatial distri-

bution and trend of extreme precipitation indices, but

because of the limitation of coarse spatial resolution and

other uncertainties, the simulation results still show

many discrepancies. Xu et al. (2011) showed that models

had limited skills in reproducing the interannual varia-

tion of extreme precipitation events. According to the

study by Li et al. (2010), all the CMIP3 models un-

derestimate extreme precipitation, especially during

summer in eastern China, where the extreme pre-

cipitation is underestimated by around 50%. The mul-

timodel ensemble (MME) method, defined as the

average of simulations from multiple models, has been

widely applied in the evaluation of models and pro-

jection of future climate because it can reduce the un-

certainty from individual models and shows superior

behaviors compared to any single model (Palmer et al.

2005; Thomson et al. 2006; IPCC 2007; Jiang et al. 2009).

For future projections, an MME performing well in the

present-day climate predicts more converged future

changes. However, not all models have the ability to

simulate specific variables over the target regions; the

best ensemblemean cannot be achieved without looking

into each member model’s performance (Sun and Ding

2008). A suite of models performing substantially better

than others should be selected and combined together to

improve the credibility of projection. (Schmittner et al.

2005; Pierce et al. 2009; Knutti 2010; Chen et al. 2011;

Seo and Ok 2013).

The improvement of climate models is always a

challenge for the modeling community. Recently,

models with more sophisticated physics and higher

resolution from phase 5 of CMIP (CMIP5) are avail-

able. Compared to the previous phase (CMIP3), some

components, such as terrestrial and marine carbon cy-

cles, dynamic vegetation, and indirect effects of aero-

sols, are included in most of themodels for the first time

(Taylor et al. 2012), therefore hopefully resulting in

better skill in representing current climate conditions.

Sillmann et al. (2013a), who investigated the perfor-

mance of CMIP5models in simulating extremes indices

on a global scale, reported that models tend to simulate

more intense precipitation and fewer consecutive wet

days. For China, Ou et al. (2013) showed that extreme

precipitation is generally overestimated by most

models, especially in western China and in the moun-

tainous regions, while the simulated climatology of

extreme precipitation in eastern China is fairly well

simulated. However, this study only gives the distri-

bution of errors for individual models in simulating

extreme events, and there is no quantitative compari-

son on the spatial pattern and interannual variability

between different CMIP5 models. How well does each

model capture the observed changes of extreme

events? Which models should be selected as the best

performers based on a set of skill metrics? To our

knowledge, such questions were rarely addressed in the

available literature. Furthermore, we believe that a

comparison between different ensembles comprising a

selected set of good models, all models and a set of less-

skillful models is useful to reduce models uncertainties

and to enhance our confidence of projected climate

change. To do so, we need to establish quantitative

metrics measuring the performance in simulating the

spatial pattern and temporal variability of extreme

precipitations.

In addition, because of the difference of topography

and atmospheric circulation affecting the extreme pre-

cipitation between eastern and western China, an eval-

uation of the models’ abilities in simulating extreme

precipitation should be done separately for eastern and

western China, which can provide a more useful refer-

ence for the models’ selection and allow us to make

analyses concerning future climate change with greater

confidence.

Therefore, the goal of this work is to quantitatively

evaluate the capability of CMIP5models in representing

the present-day extreme precipitation over eastern and

western China in terms of spatial and temporal variation

using different skill-scoremetrics.We will also select the

most skillful and less-skillful models in the two regions,

based on the models’ overall rankings. Furthermore, the

possible cause of the models’ biases will be discussed in

different ensembles.
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Our study is organized as follows. Section 2 introduces

the data and methods. The model simulation of pre-

cipitation extremes over China is presented in section 3.

The performance of selected models is described in

section 4. Finally, section 5 gives a summary and

discussion.

2. Data and diagnostic methodology

a. Observations and model datasets

Because of limitations of spatial inhomogeneity in

station observations, gridded datasets with an appro-

priate homogenization and interpolation methodol-

ogy are generally preferred for evaluating model

simulations (Kiktev et al. 2003; Alexander et al. 2006).

Ou et al. (2013) studied the sensitivity of extreme

indices to horizontal resolution and concluded

that calculating extreme indices from gridded pre-

cipitation is more appropriate than from station-based

data. Therefore, the observational data used in this

study are from a high-quality daily gridded pre-

cipitation dataset with 0.58 3 0.58 resolution deduced

from 592 station observations in China (Fig. 1) during

1960–2005. The datasets are produced by Chen (2010).

The location of stations is shown in Fig. 1. (This

gridded dataset can be freely obtained by contacting

Dr. Deliang Chen through http://rcg.gvc.gu.se/data/

ChinaPrecip/prepdata/.)

The simulated daily precipitation accumulation (pr)

data from 31 CMIP5 models from 18 different modeling

institutes were retrieved through data portals of the

Earth System Grid Federation. The historical experi-

ment represents present-day climate, and only one

realization is analyzed from each model. To be consis-

tent with observations, the historical run used in this

study is selected for the same period from 1961 to 2005.

The institutions, model names, and resolution informa-

tion of each model are listed in Table 1.

The horizontal resolution differs from model to

model. We first calculate the extreme precipitation in-

dices from different models at their native grids. Indices

from observations are also calculated on the original

grid of 0.58 3 0.58. To facilitate model intercomparison

and validation against observations, we interpolate all

indices to a common 18 latitude by 18 longitude grid

using a bilinear interpolation scheme.

Because the density of station distribution is different

in western and eastern China (Fig. 1), and the atmo-

spheric general circulation is also significantly different

in those two regions (Zhang et al. 1984), we divide the

gridded indices for models and observations into two

parts: eastern China (east of 1008E) and western China

(west of 1008E). Since there are few instrumental sta-

tions located in the western part of the Tibetan Plateau

(south of 378N and west of 928E), this subregion is also

excluded from our analysis. Finally, there are 525 grid

cells of 18 3 18 within eastern China and 325 within

western China.

The monthly geopotential height at 500 hPa and zonal

(U) and meridional (V) components of the wind at

850 hPa are taken from the 31 CMIP5 models to be used

in our study to search for possible relation with the

models’ biases. The reanalysis datasets are from the

40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40) and the

ECMWF interim reanalysis (ERA-Interim) for the

FIG. 1. Locations of the 592 stations with daily precipitation over mainland China. The

vertical solid line indicates the demarcation between eastern and western China. The box over

western China contains few observations and was excluded.
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period 1960–2012. All models and reanalyses are in-

terpolated to 2.58 3 2.58 resolution to facilitate the

comparison.

b. Extreme precipitation indices

As already used in previous studies (Frich et al. 2002;

Klein Tank andKonnen 2003; Zhang et al. 2011; Li et al.

2013), three indices representing the extreme events are

used in this research (Table 2). The maximum consec-

utive dry days (CDD) represents the dry part of the

precipitation spectrum, and the simple daily intensity

index (SDII) indicates the wet part. The percentage of

the total rainfall from events exceeding the long-term

95th percentile (R95T) represents strong precipitation

events. In addition, the total precipitation (PRCPTOT)

is also used to measure the climatology (Moberg et al.

2006), which may help to explain the variation of

extreme precipitation. These indices are generally

considered effective in extracting climate change in-

formation, are highly sensitive to global warming, and

have been widely used to identify and monitor ex-

treme precipitation for the IPCC AR5 (Xu et al. 2011;

TABLE 1.Model institution identification (ID),modeling center and country, model name, and atmospheric resolution of 31 CMIP5 global

climate models. (Expansions of acronyms are available at http://www.ametsoc.org/PubsAcronymList.)

Institution ID Modeling center and country Model name

Atmospheric

resolution (lat 3 lon)

CSIRO–BoM Commonwealth Scientific and Industrial Research

Organization and Bureau of

Meteorology, Australia

ACCESS1.0 1.258 3 1.8758

ACCESS1.3 1.258 3 1.8758

BCC Beijing Climate Center, China Meteorological

Administration, China

BCC_CSM1.1 2.81258 3 2.81258

BCC_CSM1.1(m) 1.1258 3 1.128

GCESS College of Global Change and Earth System

Science, Beijing Normal University, China

BNU-ESM 2.88 3 2.88

CCCma Canadian Centre for Climate Modelling and

Analysis, Canada

CanESM2 2.88 3 2.88

NCAR National Center for Atmospheric Research,

United States

CCSM4 1.258 3 0.948

National Science

Foundation (NSF)–

DOE–NCAR

Community Earth System Model contributors,

United States

CESM1(CAM5) 1.258 3 0.948

CMCC Centro Euro-Mediterraneo per I Cambiamenti

Climatici, Italy

CMCC-CM 0.758 3 0.758

CMCC-CMS 1.8758 3 1.8758

CNRM–CERFACS Centre National de Recherches Météorologiques–

Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique, France

CNRM-CM5 1.48 3 1.48

EC-EARTH EC-EARTH consortium EC-EARTH 1.1258 3 1.1258

LASG–CESS LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences and Center for

Earth System Science, Tsinghua University,

China

FGOALS-g2 2.88 3 38

LASG-IAP LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences, China

FGOALS-s2 2.88 3 1.48

NOAA/GFDL NOAA/Geophysical Fluid Dynamics Laboratory,

United States

GFDL CM3 2.58 3 2.08

GFDL-ESM2G 2.58 3 2.08

GFDL-ESM2M 2.58 3 2.08

MOHC Met Office Hadley Centre, United Kingdom HadCM3 2.58 3 3.758

HadGEM2-CC 1.8758 3 1.258

HadGEM2-ES 1.8758 3 1.258

IPSL L’Institut Pierre-Simon Laplace, France IPSL-CM5A-LR 3.758 3 1.8958

IPSL-CM5A-MR 2.58 3 1.278

MIROC National Institute for Environmental Studies,

The University of Tokyo, Japan

MIROC4h 0.568 3 0.568

MIROC5 1.406258 3 1.406258

MIROC-ESM 2.81258 3 2.81258

MIROC-ESM-CHEM 2.81258 3 2.81258

MPI-M Max Planck Institute for Meteorology, Germany MPI-ESM-LR 1.8758 3 1.8758

MPI-ESM-MR 1.8758 3 1.8758

MPI-ESM-P 1.8758 3 1.8758

MRI Meteorological Research Institute, Japan MRI-CGCM3 1.1258 3 1.1258

NCC Norwegian Climate Centre, Norway NorESM1-M 1.87258 3 2.58
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Sillmann et al. 2013a,b; Zhang et al. 2013; Zhou et al.

2014). All extreme indices are calculated with the Sta-

tistical and Regional Dynamical Downscaling of Ex-

tremes for European Regions (STARDEX) diagnostic

extremes indices software (Haylock et al. 2006).

c. Model performance metrics

1) TAYLOR DIAGRAM

To evaluate the overall skill in reproducing the spatial

pattern of the present-day extreme precipitation, the

Taylor diagram (Taylor 2001) is used, which can

provide a statistical summary of comparisons between

simulations and observations in terms of their spatial

correlation coefficient, their centered pattern root-

mean-square (RMS) difference, and the ratio of spatial

standard deviations of the model and observations. The

spatial correlation coefficient is the quantity thatmeasures

the degree of phase agreement of two fields. The centered

pattern RMS difference is the quantity that measures the

degree of agreement in amplitude. The centered pattern

RMS difference and the standard deviations of indices are

normalized by the corresponding observations. A perfect

simulation would be that the centered pattern RMS error

is equal to 0 and both the spatial correlation and ratio of

spatial standard deviations are close to 1.

2) INTERANNUAL VARIABILITY SKILL SCORE

(IVS)

In terms of temporal variation, we know that it is not

possible for models to reproduce the interannual vari-

ation of observations. But we can expect that models can

reproduce the temporal standard deviation, which is

evaluated by a measure of skill score IVS described by

Chen et al. (2011) as follows:

IVS5

�

STD
m

STD
o

2
STD

o

STD
m

�2

, (1)

where STDm and STDo denote the interannual standard

deviation of model simulations and observations,

respectively. Smaller IVS values indicate a better

agreement between the simulations and observations.

3) COMPREHENSIVE RATING METRICS (MR)

Each extreme precipitation index should allow us to

rank models on the basis of their Taylor diagram and

IVS. An overall ranking considering all extreme indices

can be obtained with a comprehensive rating index MR,

which is defined as

MR5 12
1

nm
�
n

i51

rank
i
, (2)

wherem is the number of models, and n is the number of

indices. The rank of the best-performing model is 1; the

worst model has 31 for its rank. Therefore, the closer to 1

the value of MR is the higher the skill of the simulation.

3. Model evaluation

In this section, we quantitatively assess the perfor-

mance of individual climate models in reproducing the

climatological spatial pattern and interannual variability

of indices over eastern and western China, respectively.

a. Regional averages of indices over the two regions

To have a general appreciation of models’ capabilities

in simulating precipitation extremes, annual mean

values of the four indices in western and eastern China

during the period 1961–2005 are first calculated. Rela-

tive errors of each model, with respect to the observa-

tion, are then evaluated and shown in Fig. 2. Figure 2 is a

color-coded ‘‘portrait diagram’’ showing relative errors

of each model for all indices, the color shading and the

number within each box represents the corresponding

values. Some striking features can be observed. First,

compared to CMIP3 models (Jiang et al. 2012; Chen

et al. 2011), large wet biases are still observed in CMIP5

models, with negative biases in CDD and positive biases

in PRCPTOT for all models, especially over western

China. Second, the relative errors of PRCPTOT and

TABLE 2. Indicator, acronym, and definition of four indices used in the study.

Indicator Acronym Definition

Total precipitation PRCPTOT Let Rwj be the daily precipitation amount for day w of period j. Then the total

climatological precipitation in period j is PRCPTOTj 5�
W

w51Rwj.

Fraction of total rainfall from

events exceeding the long-

term 95th percentile

R95T Let Rj be the sum of daily precipitation amount for period j, Rwj be the daily

precipitation amount for wet day(R . 1mm) of period j, and Rwn95 the 95th

percentile of precipitation for wet days in the specified period. Then R95Tj is

determined as R95Tj 5�
W

w51Rwj/Rj, Rwj .Rwn95.

Precipitation intensity SDII Let Rwj be the daily precipitation amount for wet day w (R . 1mm) of period j.

Then the mean precipitation amount for wet days is SDIIj 5�
W

w51Rwj/W.

Maximum consecutive dry days CDD Let Rij be the daily precipitation amount for day i of period j. Then count the

largest number of consecutive days where Rij , 1mm.
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CDD in western China are far larger than those in

eastern China (Fig. 2a versus Fig. 2b). For example,

biases of PRCPTOT vary from211.9% to150% in the

east, while the counterparts are ranged from 148% to

180% in the west. These results are consistent with the

finding in Su et al. (2013), who pointed out that CMIP5

models overestimate the precipitation in the Tibetan

Plateau by 62%–183% in different model ensembles

that they used. Third, the indices SDII and R95T are

relatively well simulated compared to PRCPTOT and

CDD in both eastern and western China, as the ampli-

tudes of biases for SDII andR95T are smaller than those

for PRCPTOT and CDD.

Furthermore, in eastern China (Fig. 2b), all models

present positive biases for PRCPTOT except for BCC_

CSM1.1(m) and MRI-CGCM3, but all models have

negative biases for CDD. The underestimation of CDD

indicates that the number of wet days in models is

overestimated. Therefore, although PRCPTOT is

overestimated, most models tend to underestimate

SDII, and the multimodel mean R95T is also slightly

underestimated. Unlike in eastern China, the other

three indices except CDD are overestimated by all

models in western China (Fig. 2a). The positive bias in

SDII is caused by the fact that the overestimation of

PRCPTOT has larger influence on SDII than does the

overestimation of wet days. The multimodel mean

overestimation of PRCPTOT andR95T can reach 120%

and 15%, respectively. In addition, models from the

same group exhibit a coherent performance for most

indices, such as the models from the Max Planck In-

stitute for Meteorology (MPI-M), L’Institute Pierre-

Simon Laplace (IPSL), and the NOAA/Geophysical

Fluid Dynamics Laboratory (NOAA/GFDL), but there

exists a significant discrepancy between the models

with different resolutions. For example, the three pairs

of models—BCC_CSM1.1 and BCC_CSM1.1(m);

CMCC-CM and CMCC-CMS; and MIROC4h and

MIROC5—reveal that models with higher resolution

have a better simulation skill of precipitation amount

and wet days than models with lower resolution (Feng

et al. 2011; Sillmann et al. 2013a). But models with

higher resolution obtain a large amount of R95T in

eastern China, which would come from a more active

rainband of the East Asian summer monsoon in the

higher-resolution models (Kusunoki et al. 2006, 2011).

In summary, most models reproduce mean indices

more accurately in eastern China than in western China.

To have an overall appreciation, we calculate the mean

absolute value of the relative errors (MAE; last color-

coded column in Figs. 2a,b) that consists of calculating

the mean of the four relative errors without considering

FIG. 2. Relative errors of simulated extreme precipitation indices averaged over China and the MAE during 1961–2000 for each model

[(modeled 2 observed)/observed 3 100]: (a) western and (b) eastern China. Numbers within the shaded boxes indicate the

corresponding values.
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the sign of their values. Based on MAE, MRI-CGCM3,

IPSL-CM5A-MR, and GFDL-ESM2G seem to produce

better results than other models in eastern China.

However, indices in western China are poorly repre-

sented by most models except EC-EARTH.

b. Evaluation for spatial variation

We use Taylor diagrams to assess the performance

of models in simulating the spatial pattern of indices.

Figure 3 shows the Taylor diagram of the model sim-

ulations against observations, with red for the east and

black for the west. The majority of models have spatial

correlation (dotted radial lines) with the reference

data between 0.7 and 0.95 (thick blue lines) in the two

parts for PRCPTOT and SDII. This indicates that

the coupled models have a reasonable performance

in simulating the spatial distribution of PRCPTOT

and SDII. However, similar to the distribution of

PRCPTOT (Fig. 3, top left), the pattern of SDII

(Fig. 3, bottom left) is clearly separated by the ratio of

variance (dotted circular lines): most models have a

ratio of variance between 0.5 and 1.0 in eastern China,

but the majority of models have a ratio of variance

larger than 1.5 in western China, indicating the simu-

lated spatial variation is larger than observation in

western China and smaller than observation in the

east. All models have the centered normalized RMS

difference expressed by the blue solid line below 1.0 in

eastern China, but almost all models for PRCPTOT

and half of models for SDII are larger than 1.0 in

FIG. 3. Taylor diagrams of four indices between observation and 31 models over western (black) and eastern China (red). On the Taylor

diagrams, angular axes show spatial correlations between modeled and observed fields; radial axes show spatial standard deviation (root-

mean-square deviation), normalized against that of the observations. Each dot represents a model, identified by its number on the right.

For the models located between the two blue lines, correlations are between 0.7 and 0.95.
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western China, indicating the amplitude of biases for

PRCPTOT and SDII are higher in the west than in the

east.

In contrast, for heavy rainfall events (R95T), the

spatial correlation significantly decreases (Fig. 3, top

right). Only 8 of the 31 models have correlation co-

efficients between 0.7 and 0.95 in eastern China, while all

models’ coefficients are smaller than 0.7 in western

China. The correlation coefficients of three models

(HadGEM2-ES, HadGEM2-CC, and ACCESS1.0) in

the west and three other models (MIROC-ESM,

MIROC-ESM-CHEM, and CanESM2) in the east are

even out of the range for the figure. This indicates that

coupled climate models have less skill to simulate the

extremes in the two regions compared to PRCPTOT

and SDII. As for the ratio of variance, the simulated

spatial variance of almost all models is smaller than for

observations in the east, and those of half of the models

are larger than for observations in the west. However,

the centered normalized RMS difference has similar

values between western and eastern China.

For CDD (Fig. 3, bottom right), the correlation co-

efficients in half of the models exceed 0.7 in the east,

while all models’ correlations are smaller than 0.7 in the

west. In some models, such as MIROC-ESM and

MIROC-ESM-CHEM, the correlations are of negative

signs. The models are generally more skillful at simu-

lating CDD in eastern China than in western China.

Similar to R95T, the simulated spatial variance of all

models is smaller than for observations in the east, and

half of the models have larger spatial variance than for

observations in the west with small correlation co-

efficients. Half of the models have a centered normal-

ized RMS difference larger than 1 in western China.

Additionally, the centralized distribution in the east

for all indices implies a small intermodel spread. In

contrast, the much larger intermodel spread in the west

is observed because of the loosely scattered distribu-

tion in the Taylor diagram. This indicates that the

models differ widely in their simulation ability to re-

produce the spatial variations of extreme indices in the

west, and the difference between models is not too

large in the east. In other words, there is a large un-

certainty among models when simulating the spatial

pattern in western China.

In summary, all models have a better performance

simulating the spatial pattern of all indices in eastern

China (compared to that in western China), as there is a

small model spread and the ratio of variance is closer to

1.0 in the east. Generally speaking, models have less

skill for simulating R95T and CDD in the east, which

indicates that CMIP5 models have certain difficulties

with simulating heavy precipitation and consecutive

dry days. In contrast, all indices are poorly simulated in

western China. To quantify the capability of individual

models to reproduce observations, three aspects (pat-

tern correlation, spatial standardized deviation ratio,

and root-mean-square difference) of the Taylor dia-

gram are first examined, and then the MR are calcu-

lated for the purpose of obtaining a comprehensive

ranking for each model. Figure 4 displays the models’

rankings in terms of pattern correlation (left), spatial

standardized deviation ratio (center), and root-mean-

square difference (right) for each index. The model’s

rank is assigned based on the MR defined before. The

models’ capabilities are ordered from top to bottom by

model rank, with smaller numbers (red) indicating the

model is more reliable. It is interesting to note that the

three statistical metrics and four precipitation indices

indicate a similar rankofmodels in the east. Thefive leading

models are HadGEM2-CC, MIROC4h, HadGEM2-

ES, MRI-CGCM3, and CMCC-CM. In contrast, in the

west, the rank of individual models is sensitive to the

three components of the Taylor diagram and the in-

dices. Based on the MR, the best five models are EC-

EARTH, IPSL-CM5A-LR, MRI-CGCM3, HadCM3,

and MIROC4h. The performance of models in simu-

lating spatial variation is quite different in the two

regions.

c. Evaluation for interannual variability

The performance in simulating temporal variation is

also a very important factor to measure the capability of

models. Here, the IVS skill score defined in section 2c is

used to quantify the similarity of interannual variability

between modeled and observed variables. IVS of the

extreme indices averaged over the two parts of China

are calculated for 1960–2005. Results for eachmodel are

shown in Fig. 5.

Similar to the result of the Taylor diagram mentioned

above, the interannual variability of all indices is better

simulated in the east than in the west, as the IVS values

in the east are closer to 0 than those in the west, and the

values frommodels have a larger spread in the west than

in the east. Take CDD as an example: IVS are ranged

from 0 to 3.0 in the east but between 0 and 8.0 in

the west.

The interannual variability of indices in the west is

poorly expressed, with a large spread of IVS values

amongmodels (Fig. 5a). The indices are not equally well

modeled in the west: PRCPTOT and CDD are the two

indices with the highest IVS values, and R95T and

SDII are relatively well reproduced. We then average

the rank across all indices to get an overall measure of

the interannual variability skill. Models with a higher

rank perform better than those with a lower rank.
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MRI-CGCM3, EC-EARTH, HadCM3, CMCC-CM, and

IPSL-CM5A-MR are the five best models in simulating

the interannual variability of the precipitation extreme

events in the west.

In the east (Fig. 5b), all indices are relatively well

simulated, but CDD is an exception and is poorly cap-

tured by most models, with a large discrepancy. This can

be explained by the fact that models cannot reasonably

reproduce the interannual variability of the monsoon.

The average ranks for those four indices show that

the models MRI-CGCM3, MIROC4h, CMCC-CM,

HadGEM2-CC, and CCSM4 are the top five models.

Note that the five models also fall into the top models

with good performance in spatial pattern mentioned

FIG. 5. Model skill scores of IVS for the four indices in (a) western and (b) eastern China. For IVS values close to 0, the greater themodel’s

skill .

FIG. 4. The portrait diagram for each index of the rank of correlation (left), spatial standardized deviation ratio (center), and root-mean-

square difference (right) over (a) western and (b) eastern China. Themodels names listed on the right in each panel follow their averaged

rank. Colors as marked in the label bar indicate a model’s rank for each item.
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above. This indicates that performance in the simulation

of spatial pattern is consistent with the capability to

represent its interannual variability.

Overall, most models have difficulty simulating the in-

terannual variability of extreme indices, and they present a

better simulation of the interannual variability for all in-

dices in the east compared to that in the west. Most of the

models perform quite well for all extreme indices in

eastern China with the exception of CDD. However, all

indices are generally poorly simulated in western China,

especially for PRCPTOT and CDD.An overall measure

of interannual variability skill in two regions is calculated

according to the averaged ranking across all indices. The

five best models in western China are MRI-CGCM3,

CNRM-CM5, EC-EARTH, IPSL-CM5A-MR, and Can-

ESM2. The five models MRI-CGCM3, MIROC4h,

CMCC-CM, CCSM4, and HadGEM2-ES are more

skillful in eastern China.

d. Overall model ordering

Because the discrepancy of model ranking exists

based on the Taylor diagram and IVS, a comprehensive

assessment of models is undertaken in this study using

MR (Fig. 6). TheMR of the Taylor diagram and theMR

of IVS are correlated significantly in eastern China. The

correlation coefficient between the MR of the Taylor

diagram and the MR of IVS is 0.85, which is statistically

significant at the 95% level in the east, but a value of 0.33

in the west is not statistically significant at the 95% level.

The result implies that the consistency between models

in simulating spatial pattern and interannual variability

in the east is better than that in the west. It is worth

noting that, although the correlation between theMR of

the Taylor diagram and theMRof IVS in the west is low,

the models with the best performance are relatively

centralized, with the MR of the Taylor diagram and the

MR of IVS close to 1. MIROC4h, MRI-CGCM3,

CMCC-CM, HadGEM2-CC, and HadGEM2-ES are

revealed to be reliable models when spatial and tem-

poral variation is comprehensively considered in eastern

China, as those models are centralized with MR larger

than 0.8 for the Taylor diagram and larger than 0.6 for

IVS. The best models from the 31 GCMs in the west are

MRI-CGCM3, EC-EARTH,HadCM3, and IPSL-CM5A-

LR, as the MR of the Taylor diagram is close to 0.7 and

the MR of IVS is close to 0.6. The models with the best

performance have a considerable discrepancy between

the east and west. Meanwhile, the correlation coefficient

of 0.38 formodels’ ranks over western and eastern China

indicates that a significant discrepancy of models’ capa-

bilities exists between the two subregions.

In summary, the models’ skill in simulating extreme

indices is quite different over the two parts of China.

Five models (MIROC4h, MRI-CGCM3, CMCC-CM,

HadGEM2-CC, andHadGEM2-ES) are selected for the

best MME (BMME) composite; and MIROC-ESM,

MIROC-ESM-CHEM, BNU-ESM, BCC-CSM1.1, and

GFDL-ESM2M are included in the worst MME

(WMME) composite in eastern China. In western China

the BMME composite includes MRI-CGCM3, EC-

EARTH,HadCM3, and IPSL-CM5A-LR. Note that the

five best models in the east are obviously different from

those in the west. Only MRI-CGCM3 is included in the

best models both in eastern and western China. The five

best models in the east all have a higher resolution, but

this expectation is not extendable to the west. The

FIG. 6. Scatter diagrams showing models’ MR based on Taylor diagrams (x axis) and IVS (y axis; interannual

variability) in (left) western and (right) eastern China. Each dot represents a model, identified by its number on the

right. The correlation coefficient between the ranking index from the Taylor diagrams and that from IVS is 0.33 and

0.85 in the west and east, respectively. Models in the top-right quadrant are of good performance for both criteria.
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WMME composites are the same for both eastern and

western China.

4. Performance of optimal models

The most reliable models with good performance are

selected over western and eastern China, respectively.

We now examine how well the BMME simulates ex-

treme indices and gives quantitative and visual im-

provements. Figure 7 illustrates the relative errors of the

all-model ensemble mean (AMME), BMME, and

WMME for each index during the period 1960–2005 for

western and eastern China, respectively. The errors are

presented in the form of a box-and-whisker plot showing

the median interquartile range (box) spanned by the

25th and 75th quantiles and 5th and 95th percentiles

(whiskers) across the grid cells over the two parts

of China.

CMIP5 models still have wet biases in China, espe-

cially in western China, where the models’ median rel-

ative error is about 120% for PRCPTOT, and the 25th

and 75th percentile errors are 70% and 220%, re-

spectively. For the east, PRCPTOT and CDD have a

notable improvement in BMME compared to AMME

andWMME, as themedian is close to 0, the whiskers are

shorter, and the interquartile model range is obviously

smaller. But the improvement of SDII and R95T is not

significant. The median of R95T is positive in BMME

but negative in AMME and WMME, mainly because

the best-performance models with higher resolution

overestimate R95T in this region. However, the

variability of R95T across the east region is smaller in

BMME than that in AMME and WMME, as the inter-

quartile range (box) and the 5th and 95th percentiles are

smaller (whiskers are shorter). The improvement of in-

dices for BMME is clearer in the west compared to that

in the east. For example, the median of errors for

PRCPTOT in the east and the west decreased by 17%

and 69%, respectively. It is notable that BMME can

remarkably reduce the biases in western China, but the

variability of errors across this region represented by the

box-and-whisker plot do not show significant improve-

ment. Meanwhile, the standard deviation of PRCPTOT

decreases by 17.8% in eastern China, whereas it de-

creases by 12.7% in the west. This implies that a rela-

tively larger spatial difference still exists across western

China in BMME, mainly because the best skillful

models still cannot reproduce the extreme events re-

lated to the complex topography in western China.

Figure 8 further shows the spatial pattern of the dif-

ferences between values simulated in the three ensem-

bles and observed for all indices. AMME has its own

deficiency, which is confirmed by the fact that there are

wet biases in rare rainfall regions (western and northern

China) and dry biases in frequent rainfall regions

(southeastern China). For example, the overestimation

of PRCPTOT over western and northern China can be

up to 800 and 200mm, respectively. The underesti-

mation of PRCPTOT over southeastern China can

reach 200mm. AMME tends to overestimate R95T and

SDII over western China and underestimate them over

eastern China. The spatial pattern of CDD is the

FIG. 7. Box-and-whisker plot for relative errors of extreme precipitation indices from

WMME, AMME, and BMME over (left) western and (right) eastern China. The upper and

lower limits of the box indicate the 75th and 25th percentile values; the horizontal line in the

box indicates the ensemble median; and the whiskers show the error range of the ensemble

(scale of PRCPTOT is on the left y axis, and scale of R95T, SDII, and CDD is on the right

y axis).
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FIG. 8. Models’ biases in terms of the four indices for (left) WMME, (center) AMME, and (right) BMME. BMME shows general

improvements.
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opposite of that for PRCPTOT, the underestimation of

CDD over western China is up to 80 days. For BMME,

the wet bias in western China and northern China is

significantly reduced, especially over western China.

Themean absolute errors for PRCPTOT and CDDover

western China are decreased by 100mm and 20 days,

respectively.

To show the robustness of our results, we also calcu-

lated an additional index for extreme precipitation: the

number of days with precipitation larger than the 95th

percentile (R95N). It complements R95T as a measure

of extreme precipitation. The mean absolute error for

R95N over western China decreased from 5 days in

AMME to 2 days in BMME.

The deficiency of AMME over southeastern China

indicated by an underestimation of both total pre-

cipitation and precipitation intensity is also improved in

BMME. For example, R95T in AMME is characterized

by a significant underestimation. However, BMME

shows more precipitation and extreme precipitation

than observation in southeastern China. This is mainly

because the higher resolution of models from BMME is

capable of producing extreme precipitation.

To further investigate possible causes for those three

ensembles’ biases of extreme precipitation, the atmo-

spheric circulations in the three different ensembles are

compared with reanalysis data from ERA-40. Consid-

ering the fact that June–August (JJA) is the key season

for extreme precipitation in China, Fig. 9 shows JJA

geopotential height (contours), meridional wind speed

(shaded), and wind vectors at 850 hPa from ERA-40

(Fig. 9a), together with difference fields between the

three model ensembles and ERA-40 (Figs. 9b–d). The

main components of the low-level circulation include

the southwesterlies along the east coast of the Arabian

Peninsula, southwest and west flows extending from the

Arabian Sea to the South China Sea, and the southerlies

over East Asia. They can be well captured by the three

ensemble means. It is notable that the southwesterlies

along the east coast of the Arabian Peninsula are over-

estimated in AMME and WMME, associated with a

higher moisture transport, especially in WMME.

FIG. 9. June–August seasonal-mean geopotential height (contours; gpm),meridional wind speed (shaded;m s21),

and wind vectors (m s21) at 850 hPa from (a) ERA-40 and (b)–(d) difference fields between the three ensembles

and ERA-40. Only vectors more than 3m s21 are shown.
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Previous studies show that the southwesterlies along the

east coast of the Arabian Peninsula exert an important

influence on the East Asian precipitation (Fan 2007;

Zhu 2012). Meanwhile, the geopotential height at

850 hPa is overestimated over the western Pacific in

WMME (the largest difference is approximately up to

30 gpm). The positive pressure errors over the western

Pacific indicate a western Pacific subtropical high

stronger in WMME than in the other two ensembles.

This also suggests that the East Asian summer monsoon

is overestimated. A strong southerly wind over eastern

China is accompanied with strong southwesterlies over

the Arabian Sea, which leads a northward extension of

the EastAsian summermonsoon (Wang andZhou 2005;

Zhang et al. 2008; You et al. 2011). As a result, WMME

exhibits significant wet biases over western and northern

China. However, in the case of BMME, the southwest-

erlies along the east coast of the Arabian Peninsula are

relatively well simulated so that the wet bias is signifi-

cantly decreased over western China and northern

China. The underestimation of the western Pacific sub-

tropical high and the southward shift over eastern China

contribute to a weak East Asian summer monsoon, re-

sulting in a decrease of wet biases over northern China

and an increase of wet biases over southeastern China

(Zhao and Zhou 2009).

In summary, AMME has its own deficiency, which is

confirmed by the fact that there are wet biases in rare

rainfall regions (western and northern China) and dry

biases in frequent rainfall regions (southeastern China).

Wet biases in western and northern China make a

dominant contribution for ranking models. Reductions

of biases in those regions are very important for the

selection of BMME composite models. BMME can

better simulate this southwesterly along the east coast of

the Arabian Peninsula, relatively, thus showing a si-

multaneous improvement over western and northern

China. But at the same time, BMME does present a too-

wet bias in southeastern China. This overestimation of

rainfall is reasonable with the weakening simulation of

summer monsoon in BMME that is associated with the

underestimation of the subtropical high and southward

shift over eastern China. However, this too-wet bias in

southeastern China may not influence the rank of

models. AMME seems to benefit from a cancellation of

errors among all models.

5. Conclusions and discussion

In the present study, we quantitatively evaluated and

ranked the performance of the CMIP5 models for sim-

ulating extreme precipitation indices in eastern and

western China, respectively. The assessment was done in

terms of spatial patterns and temporal variability for the

period 1960–2005. We used skill-score methods, such as

the Taylor diagram representing the spatial pattern and

IVS representing the interannual variability. According

to the overall ranking of models, we selected the most

skillful models over eastern and western China, re-

spectively. We also compared results from different

ensemble constructions: the ensemble from the best

models against that from all models and from the less-

skillful ones. This comparison helped us to understand

models biases in precipitation indices in China and their

relations with the large-scale atmospheric circulation.

Our main findings can be summarized as follows.

1) CMIP5 models have wet biases in the region with an

overestimation of PRCPTOT and an underestima-

tion of CDD, especially in western China, where the

systematic wet biases have amedian value of 120% in

PRCPTOT, and the 25th and 75th percentiles are

70% and 220%, respectively. Generally speaking,

the CMIP5 models can well reproduce the basic

characteristics of extreme precipitation indices, in-

cluding both the spatial variation and interannual

variability in eastern China. However, in western

China, most models can hardly reproduce the basic

characteristics of extreme indices.

2) The spatial patterns of PRCPTOT and SDII are

better simulated than those of R95T and CDD by

most of the studied models in eastern China, whereas

in western China the spatial variations of all indices

are poorly captured. For the interannual variability,

except for CDD, the other three indices are relatively

well simulated in eastern China. In western China,

models can hardly reproduce the interannual variabil-

ity of extreme indices. SDII and R95T are relatively

better simulated than the other two indices.

3) The performance of individual models in the simu-

lation of spatial pattern is more consistent with the

temporal variability over eastern China. MRI-

CGCM3, CMCC-CM, MIROC4h, HadGEM2-ES,

and HadGEM2-CC are revealed to be the best

models to represent both spatial pattern and temporal

variability in eastern China. However, MRI-CGCM3,

EC-EARTH, HadCM3, and IPSL-CM5A-LR are the

leading models in western China.

4) AMME tends to simulate higher PRCPTOT but

smaller CDD over all China, except southeastern

China, where PRCPTOT is underestimated and

CDD is overestimated. AMME tends to overesti-

mate R95T and SDII in western China, especially at

the periphery of the Tibetan Plateau, and underesti-

mate these two indices in eastern China. The wet bias

in BMME is significantly reduced over western and
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northern China, with the median of errors for

PRCPTOT in the west decreased by 69%. BMME

is also shown to be capable of simulating extreme

precipitation events over southern China.

5) The wet biases over western and northern China are

tightly related to the overestimation of southwest-

erlies along the east coast of the Arabian Peninsula

and overestimation of the western Pacific subtropical

high, inducing a stronger East Asian summer mon-

soon. BMME can reproduce the southwesterlies

along the east coast of the Arabian Peninsula rela-

tively well, which thus shows a simultaneous im-

provement over western and northern China. But it

shows an underestimation of the western Pacific

subtropical high and a southward shift over eastern

China, which indicates a weakening summer mon-

soonal flow in eastern China. Therefore, the BMME

presents a too-wet bias in southeastern China.

The present study provides a reference for the per-

formance of different CMIP5 models in simulating ex-

tremes of rainfall in China. It gives some useful

indications for climate impact and improvement of

model performance studies in the Chinese region. For

example, the main aim of our study is to find the possible

reasons for the models’ performances based on model

evaluation, which is more meaningful for the models’

improvement; the biases of models can also be studied as

another possible reason. In addition, each model can be

assigned with a weighting factor according to its rank of

performance in simulating the spatial pattern and in-

terannual variability. Different models with different

weights are useful for amore precise future projection of

extreme precipitation changes (Santer et al. 2009;

Knutti 2010), which will be the focus of our next work.

Furthermore, regional climate downscaling studies using

the best models in extreme precipitation, as we selected

here, can be helpful to reach more accurate results for

regional climate change (Seo and Ok 2013). It is worth

noting that higher resolutions are expected to effectively

improve models’ capabilities for simulating precipitation

in eastern China, but this expectation is not extendable to

the western areas. This implies the important role of the

complete and accurate representations of physical pro-

cesses in the mountainous areas, which is still a challenge

for current global climate models.
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