
884 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

Extreme-Scale Dynamic Exploration of a

Distributed Agent-Based Model

With the EMEWS Framework
Jonathan Ozik , Nicholson T. Collier, Justin M. Wozniak, Charles M. Macal, and Gary An

Abstract— Agent-based models (ABMs) integrate the multiple
scales of behavior and data to produce higher order dynamic phe-
nomena and are increasingly used in the study of important social
complex systems in biomedicine, socioeconomics, and ecology/
resource management. However, the development, validation, and
use of ABMs are hampered by the need to execute very large
numbers of simulations in order to identify their behavioral
properties, a challenge accentuated by the computational cost
of running realistic, large-scale, potentially distributed ABM
simulations. In this paper, we describe the Extreme-scale Model
Exploration with Swift (EMEWS) framework that is capable
of efficiently composing and executing large ensembles of sim-
ulations and other “black box” scientific applications while
integrating model exploration (ME) algorithms developed with
the use of widely available third-party libraries written in popular
languages, such as R and Python. EMEWS combines novel
stateful tasks with traditional run-to-completion many-task com-
puting and solves many problems relevant to high-performance
workflows, including scaling to very large numbers (millions)
of tasks, maintaining state and locality information, and enabling
effective multiple-language problem solving. We present the
high-level programming model of the EMEWS framework and
demonstrate how it is used to integrate an active learning
ME algorithm to dynamically and efficiently characterize the
parameter space of a large and complex, distributed message
passing interface agent-based infectious disease model.

Index Terms— Agent-based modeling, high-performance com-
puting (HPC), machine learning, metamodeling, parallel
processing.

I. INTRODUCTION

R
ECENT improvements in high-performance agent-based

models (ABMs) have enabled the simulation of a variety

of complex systems, including the spread of infectious dis-

eases and community-based healthcare interventions [1], [2],

critical materials supply chains [3], and land-use and resource

Manuscript received January 5, 2018; revised June 20, 2018; accepted
July 16, 2018. Date of publication August 30, 2018; date of current version
September 11, 2018. This work was supported in part by the U.S. Department
of Energy, Office of Science, under Contract DE-AC02-06CH11357, and in
part by National Institutes of Health under Award R01GM115839 and Award
R01GM121600. (Corresponding author: Jonathan Ozik.)

J. Ozik, N. T. Collier, and C. M. Macal are with the Decision and
Infrastructure Sciences Division, Argonne National Laboratory, Argonne,
IL 60439 USA, and also with the Consortium for Advanced Science and
Engineering, The University of Chicago, Chicago, IL 60637 USA (e-mail:
jozik@anl.gov).

J. M. Wozniak is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL 60439 USA, and also with
the Consortium for Advanced Science and Engineering, The University of
Chicago, Chicago, IL 60637 USA.

G. An is with the Department of Surgery, The University of Chicago,
Chicago, IL 60637 USA.

Digital Object Identifier 10.1109/TCSS.2018.2859189

management [4], [5]. As ABMs have become more complex,

capturing more salient features of the systems under study,

parameters that dictate the structural (e.g., social networks),

behavioral, and other dynamical elements of the models

have increased in number. Other complex systems modeling

approaches (e.g., mathematical modeling and system dynam-

ics) can rely on assumptions about model and parameter space

structures to make use of relatively efficient methods for

model calibration and optimization. However, the highly non-

linear relationship between ABM input parameters and model

outputs, as well as feedback loops and emergent behaviors,

require less-efficient ensemble modeling approaches. These

approaches execute large numbers of simulations, often in

complex iterative workflows driven by sophisticated model

exploration (ME) algorithms, such as active learning (AL),

which adaptively refine model parameters through the analy-

sis of recently generated simulation results and launch new

simulations.

In order to facilitate these dynamic ME-based approaches,

we have created the Extreme-scale ME with Swift (EMEWS)

framework [6], [7]. EMEWS, which is built on Swift/T [8],

offers the capability to run very large, highly concurrent

ensembles of simulations of varying types while supporting

a wide class of ME algorithms, including those increasingly

available to the community via Python and R libraries. Fur-

thermore, it offers a software sustainability solution, in that,

ME studies based around EMEWS can easily be compared

and distributed. A central EMEWS design goal is to ease soft-

ware integration while providing scalability to the large-scale

(petascale plus) supercomputers, running millions of ABMs,

thousands at a time. Initial scaling studies of EMEWS have

shown robust scalability [9]. The tools are also easy to install

and run on an ordinary laptop, requiring only a message pass-

ing interface (MPI) implementation that can be easily obtained

from common OS package repositories. By combining novel

stateful tasks with traditional run-to-completion many-task

computing (MTC), our framework solves many problems

relevant to high-performance workflows, including scaling to

very large numbers (millions) of tasks, maintaining state and

locality information, and the multiple language problem.

EMEWS enables the user to plug in both ME algorithms

and models (e.g., ABMs). Thus, researchers in various fields

who may not be parallel programming experts can simply

incorporate existing ME algorithms and run computational

experiments on their scientific application without explicit

parallel programming. A key feature of this approach is

that the model is unmodified and the ME algorithm is

2329-924X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3495-6735


OZIK et al.: EXTREME-SCALE DYNAMIC EXPLORATION OF A DISTRIBUTED ABM WITH THE EMEWS FRAMEWORK 885

only minimally aware of its existence within the EMEWS

framework. EMEWS uses a novel form of Inversion of

Control (IoC), where Swift/T instantiates the ME algorithm,

which then provides model parameters back to Swift/T [over

interprocess communication (IPC), without returning]. These

parameters are distributed to worker processes for model

execution. Swift/T provides a variety of methods for inte-

grating models, including via built-in interpreters, command

line invocation, and as compiled libraries. Upon completion,

the model outputs are registered back to the ME algorithm,

which provides more parameters until a convergence criterion

is satisfied or a computing budget is exhausted.

EMEWS also relies on the new “many resident task comput-

ing” capabilities that extend the notion of MTC. This allows

running tasks to effectively suspend, waiting for queries.

We demonstrate that mixing resident tasks with traditional

run-to-completion tasks is a powerful programming model

that supports the development of calibrated and validated

scientific applications, including realistic ABMs that can be

used as electronic laboratories to answer important research

and policy questions.

This paper offers the following contributions.

1) It describes a software integration model for high-

performance workflowlike applications, where advanced

algorithms, such as AL, implemented in languages, such

as R, can be integrated.

2) It describes a compelling, real-world application infec-

tious disease dynamics and presents results from running

a large-scale AL workflow to characterize the parameter

space of a distributed ABM.

3) It proposes and investigates novel, flexible concurrence

schemes for these workflows.

4) It evaluates the performance and scalability of the appli-

cation up to 10k cores on a Cray supercomputer.

The remainder of this paper is organized as follows.

In Section II, we describe ABMs, ABM ensemble ME meth-

ods, and our susceptible-exposed-infected-recovered (SEIR)

ABM. In Section III, we describe the EMEWS programming

model and its implementation. In Section IV, we describe

how the various components in our SEIR model and AL

EMEWS workflow are connected. In Section V, we present the

results from running a large-scale AL workflow to characterize

the SEIR model parameter space. In Section VI, we report

the performance numbers for the workflow. In Section VII,

we restate our contributions and offer conclusions.

II. ABM, ENSEMBLE MODEL EXPLORATION

METHODS, AND THE SEIR MODEL

Agent-based modeling and simulation (ABMS) is a method

of computing the potential system-level consequences of the

behaviors of sets of individuals [10]. ABMS allows modelers

to specify the individual behavioral rules for each agent,

describe the circumstances in which the individuals reside,

and, then, execute the rules, via simulation, in order to

determine possible system-level results. Agents themselves

are individually identifiable components that usually represent

decision makers at some level. Agents often are capable of

some level of learning or adaptation ranging from simple para-

meter adjustment to the use of neural networks, evolutionary

algorithms, and market models.

As larger and more complicated models of complex systems

are developed, high-performance computing (HPC) resources

are increasingly required to run the computational experiments

needed for developing validated (i.e., trusted) models that can

support decision making. On the one hand, ABMS studies

require the execution of many model runs to account for

stochastic variation in model outputs and for the various

ensemble ME methods that are required to calibrate and

analyze them. These methods can be used to carry out the

followings:
1) adaptive parametric studies;

2) large-scale sensitivity analyses and scaling studies;

3) optimization and metaheuristics;

4) inverse modeling;

5) uncertainty quantification;

6) data assimilation.
On the other hand, ABMs can also be distributed across

processes to accommodate very large numbers of agents

(e.g., >109 [11]) or very complex agents.1 These facts com-

bine to make ABMs well suited for HPC resources, and

through the EMEWS framework, they can easily and effi-

ciently be run as part of large-scale scientific workflows.

A. Ensemble Model Exploration Methods
Depending on the aims of a computational experiment, dif-

ferent dynamic ensemble ME methods are appropriate.2 In the

realm of stochastic optimization, there are simulated anneal-

ing [15], adaptive mesh [16], genetic algorithms [17], approx-

imate Bayesian computation [18], [19], and other techniques.

Ensemble Kalman filtering [20] and particle filters [21], [22]

are useful for combining ensembles of model outputs and

empirical observations. AL [23] can be used to efficiently

characterize large parameter spaces. These types of techniques

are increasingly being used with ABMs [24]. Many of the

methods are being actively developed and are implemented as

free and open source libraries in popular data analysis pro-

gramming languages (e.g., R) and general purpose languages

(e.g., Python).

While sophisticated ME techniques have been a gener-

ally fruitful approach for combining ensemble mathematical

(e.g., compartmental) models and empirical observations, for

example, in infectious disease modeling [25]–[27], we also see

that such events like the 2013 West African Ebola outbreak

have exposed some limits to the predictive power of these

approaches [28]. The possible reasons for this are many, but

some of the simplifying assumptions inherent in the compart-

mental models that are used for the infectious disease studies

might be at issue. Compartmental models use differential equa-

tions relating aggregate variables (e.g., the fractions of the pop-

ulation that are susceptible, infected, or recovered/removed)

1So-called “thick” agents may include sophisticated and computationally
expensive cognitive abilities.

2We note that there exist static parameter search techniques (e.g., full
factorial design [12], Latin hypercube sampling [13], and Morris method [14])
that a priori determine the sampling from a parameter space. While these can
be useful for some purposes, they are not adaptive and do not require complex
workflow logic and, hence, are not the focus of this paper.



886 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

to derive the dynamics of disease progression in a population.

But such models are not able to capture “complex social net-

works and the direct contacts between individuals who adapt

their behaviors [29].” By developing more realistic models

in the form of ABMs, the complexity, for example, of the

interagent and biological–social interactions inherent in many

infectious diseases, can be encapsulated in the specification of

processes, such as agent activities and decision making, agent

interactions over social networks, demographic and geographic

heterogeneity, and agent adaptation and learning.

With EMEWS, the ensemble ME techniques that have been

applied to simpler modeling paradigms can be carried over to

the ME of large, complex, parallel, and distributed ABMs. Fur-

thermore, many of these techniques are being actively devel-

oped and are implemented as free and open source libraries in

popular programming languages. As indicated earlier, rather

than requiring the reimplementation of these algorithms in the

Swift/T language, the goal of the EMEWS framework is to be

able to have these libraries directly control large-scale HPC

workflows, thereby making them more accessible to a wider

range of researchers and, at the same time, enable them to run

at HPC scales.

B. SEIR Model

Our SEIR model is a distributed parallel ABM of the trans-

mission of a flu-like disease using SEIR model dynamics [30].

The model represents each person in a selected geographical

region (e.g., the City of Chicago) as an agent. Each person in

the model is in one of four disease states: susceptible, exposed,

infected, or recovered. Persons transition through states, mov-

ing from susceptible to exposed to infected and ending with

recovered. While susceptible, a person can become exposed in

the presence of infectious persons. Exposed persons are infec-

tious but not yet infected, i.e., they can infect other persons

but are not yet symptomatic. Infected persons are symptomatic

and also infectious for at least part of the period of infection.

Recovered persons are no longer infected or infectious and,

being effectively immune to the disease, will not become sus-

ceptible again. The model begins with some specified number

(parameter CI ) of persons in the exposed state, who subse-

quently transition through the infected and recovered state

while, in turn, exposing other persons to the disease, triggering

the transition of those persons through the disease states.

The transition and duration of each state are determined

by model state and user-specifiable input parameters. A sus-

ceptible person will transition to exposed in the presence of

infectious persons with a base probability (PS→E ) modified by

the number of colocated infectious persons. The duration of a

person’s stay in the exposed state is drawn from a triangular

distribution specified by a mode (Motinc), minimum (Mitinc),

and maximum (Mxtinc), where the minimum (Mitinc) defaults

to one day and the maximum (Mxtinc) to four [31]. After

the exposed duration has elapsed, an exposed person enters

the infected state. Exposed persons are infectious from one

day prior to entering the infected state to seven days after

entering it [31]. The length of the infected state is also drawn

from a triangular distribution (MotI , MitI , and MxtI ) with

a default minimum of seven days and a default maximum

TABLE I

SEIR MODEL INPUT PARAMETERS

of 14 days [32]. While infected, a person will remain at home,

thus avoiding contact with anyone outside the household. With

a user-specifiable probability (PhomeA
), a person will remain

at home as soon as they become infected; otherwise, they will

remain at home beginning one day after becoming infected.

A person will remain at home for either five, six, or seven

days depending on a user-specifiable probability (PhomeB and

PhomeC
), after which they will resume their normal activities.

Once the infected period ends, a person transitions to the

recovered state. The parameters of the triangular distributions,

the “stay-at-home” probabilities, and the initial number of

exposed persons are model parameters (see Table I) and thus

can be altered to affect the number of persons in each state as

the model progresses.

The SEIR model is implemented in C++ using the Repast

for HPC (Repast HPC) [33] and the Chicago Social Interac-

tion Model (chiSIM) [34] toolkits. Repast HPC is an ABM

framework for implementing ABMs in MPI and C++ on

high-performance distributed-memory computing platforms.

chiSIM is a framework for implementing the models that sim-

ulate the hourly mixing of a synthetic population, in this case,

the City of Chicago consisting of approximately 2.9 million

individual agents and 1.2 million distinct places. Synthetic

populations with baseline sociodemographic data, derived

from the combined U.S. Census files, are available from a

growing number of sources. chiSIM uses baseline synthetic

population data, such as those developed through the National

Institutes of Health (NIH) MIDAS network [35], [36]. The

sociodemographic attributes of the synthetic population match

that of the actual population for Chicago in the aggregate for

the Census years of 2000 and 2010. Each agent has a baseline

set of sociodemographic characteristics (e.g., race/ethnicity,

age, gender, educational attainment, and income). All places

are characterized by place type, including households, schools,

hospitals, and workplaces, and have a geographic location.

In the synthetic population, agents are assigned to households,

workplaces, and schools (for those of school age). Places are

categorized as having different types of activities that may

occur there.

In a chiSIM-based model, such as SEIR, each agent, that

is, each person in the simulated population, resides in a place

(for example, a household, dormitory, or retirement home/

long-term care facility) and moves among other places, such

as schools, workplaces, hospitals, jails, and sports facilities.



OZIK et al.: EXTREME-SCALE DYNAMIC EXPLORATION OF A DISTRIBUTED ABM WITH THE EMEWS FRAMEWORK 887

Agents move between places according to their shared activity

profiles. Each agent has a profile that determines at what times

throughout the day they occupy a particular location [33].

Our Chicago agent activity profiles are empirically based on

24-h time diaries collected as part of the U.S. Bureau of

Labor Statistics annual American Time Use Survey (ATUS)

for individuals aged 15 years and older and from the Panel

Study of Income Dynamics (PSID) for children younger

than 15 years. Both are nationally representative samples

and collect diary data on randomly assigned days. In the

SEIR model, two profiles (one weekday and one weekend)

from ATUS/PSID respondents living in metropolitan areas

are assigned to each agent in the model. This is done by

stochastically matching each agent with an ATUS or PSID

respondent who is either identical or similar with respect to

the sociodemographic characteristics. Agents move between

places according to their activity profiles. Once in a place,

an agent mixes with other agents in some model or domain-

specific way. In the case of the SEIR model, infectious agents

infect colocated susceptible agents, who are having, become,

infected can then in turn infect other agents as they move.

chiSIM itself is a generalization of a model of community-

associated methicillin-resistant Staphylococcus aureus

(CA-MRSA) [2]. The CA-MRSA model was a nondistributed

model, in which all the model components (all the agent,

places, and so on) run on a single process. chiSIM retains and

generalizes the social interaction dynamics of the CA-MRSA

model and allows models implemented using chiSIM to be

distributed across multiple processes. Places are created on a

process and remain there. Persons move among the processes

according to their activity profiles. When a person, agent,

selects a next place to move to, the person may stay on its

current process or it may have to move to another process if

its next place is not on the person’s current process. A load

balancing algorithm has been applied to the synthetic Chicago

population to create an efficient distribution of agents and

places, minimizing this cross-process movement of persons

and balancing the number of persons on each process [34].

In addition, chiSIM provides the ability to cache any constant

agent state, given sufficient memory, lessening the amount of

data transferred between processes.

Sections III–V describe how the EMEWS framework is used

to perform an adaptive parametric study of the SEIR model

by integrating it with an ME algorithm, in this case AL [23].

III. EMEWS PROGRAMMING MODEL

The EMEWS framework is designed to implement a

high-level programming model that allows us to coordinate

calls to scientific applications, such as large ABMs, as well as

various control and analysis scripts over a scalable, MPI-based

computing infrastructure. Specifically, EMEWS was imple-

mented to meet the following requirements:
1) the ability to construct a workflow of many (potentially

millions of) calls to a scientific application (such as an

ABM simulation) with different parameters;

2) the ability to allow simulation results to feedforward into

future application parameters;

3) the ability to integrate a complex ME algorithm, such

as AL, into the parameter construction;

4) the ability to call into the native-code models and

scientific applications (e.g., written in C++) and the

third-party implementation of an ME algorithm (written

in R in the current application);

5) the ability to maintain the state of the ME algorithm

from call to call and programmatically access this state

in the system.

We provide an overview of how EMEWS and Swift/T

addresses these requirements in the following.

1) The ability to manage an extreme quantity of tasks

is a main design feature of the Swift/T implemen-

tation [8], [37], which essentially translates the Swift

script into an MPI program for execution on the

large-scale supercomputers. The Swift–Turbine Com-

piler [38] optimizes the script using multiple techniques,

both conventional and oriented toward novel concur-

rence. In synthetic tests, Swift/T has been used to run

trillions of tasks at over one billion tasks per second.

It can also send very small tasks to GPUs at high

rates [39], enabling powerful mixed programming

models.

2) Swift is a dataflow language. In this model, the user

defines the data items (numbers, strings, binary data,

and various collections of these) and connects them

with functional execution. Swift also offers conventional

constructs, such as if, for, foreach, and so on,

with their definition only slightly modified for automatic

parallelism. Following dataflow (not control flow) func-

tions execute when their inputs are available, possibly

concurrently. Thus, typical Swift loops are automatically

parallel loops. Dataflow analysis allows common expres-

sions such as g(f(1),f(2)); to expose the available

concurrence (two simultaneous executions of f()).

3) Swift/T has rich support for integrating complex logic

into workflows, including using scripting languages,

such as Python and R. It enables this on HPC machines

(where fork() may be undesirable or unavailable) by

optionally bundling the script interpreters for Python, R,

Julia, Tcl, JVM languages, and so on into the Swift/T

runtime [40]. These interpreters are called through their

native-code interfaces (thus reusing the Swift/T ability to

call into native-code libraries), but high-level interfaces

are provided for Swift. For example, the following Swift

code:

string result

= python(“a=2+2”,“str(a)”);

would store “4” in result. The python() function

takes two string arguments, code and an expression. The

code is executed, and the string expression is returned

as a Swift string. Users may set PYTHONPATH and

load their own modules or third-party modules, such as

Numpy and so on. They may also call through these

scripting layers into native code. The Repast HPC code

is called an MPI library, as described in Section III-A.



888 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

4) Various states may be maintained in the Swift/T imple-

mentation while remaining outside the main dataflow

model. This is typically done in the tasks, avoiding con-

fusion with the dataflow. For example, a configuration

file could be loaded from disk by a Python-based task

and cached in a global Python variable. This data would

be available on the next invocation of a Python task on

that process.

Developers can target different parts of the system by using

the locality features in Swift/T. These were initially added to

allow users to send tasks to data in a compute-node resident

file system [41]. However, they can also be used to send tasks

to state in a script interpreter. Tasks can be targeted at a

rank or a node and be strict or nonstrict. We use strict rank

targeting in this paper, while nonstrict, node-based targeting

is used in (for example) the cache storage systems.

The rest of this section goes into further details on the

EMEWS and Swift/T features that address the programming

model requirements.

A. Hierarchical Concurrence

MPI enables the concurrent execution of multiple coop-

erating multiprocessing codes, each of which can have a

separate communication context shared with only the MPI

processes executing that code. MPI represents these contexts

with communicators that typically form a tree hierarchy, start-

ing from an initial world communicator that encompasses all

processes. Given a communicator, new child communicators

can be created and passed to libraries for their exclusive use,

allowing an application to be constructed through composition

of existing parallel libraries and codes.

Our execution model has multiple levels of concurrence

and a great deal of flexibility in how the workflow uses the

available processing power of a supercomputer. Since the SEIR

model itself uses MPI, it must be treated as an MPI library.

Swift/T uses the MPI 3.0 MPI_Comm_create_group()

feature to allocate a new communicator for each task [42].

These are handed to the application for each new task and

deallocated (MPI_Comm_free()) at the end of the task. The

user can specify the number of processes (e.g., p) for each task

programmatically with

@par=p f(...);

When launching a simulation task, Swift/T constructs the

communicator and passes it to the SEIR model that is a shared

library loaded by Swift/T. The use of MPI in the SEIR model

is completely independent of the use of MPI by Swift/T. There

is no mixture of control flow from Swift to the SEIR model;

once the SEIR task starts, it proceeds with normal MPI/C++

semantics until returning control back to Swift/T.

B. Location-Aware Many-Task Scheduling

MTC workloads, on the one hand, generally allow the

scheduler a great deal of leeway in determining where tasks

will execute. Bag-of-tasks workloads, for example, are the

most lenient, allowing tasks to execute anywhere in any order.

Programming models, such as MPI, on the other hand, give

the programmer total control over execution locality.

Swift/T strikes a balance between these two extremes with

its location annotation. By default, tasks can execute on

any worker process, but the programmer has the option of

specifying the annotation with @location=L f(), where

f() is the task and L is a location value. A location value

is constructed from an MPI rank r with optional accuracy

and strictness qualifiers. (Swift/T features allow a hostname

to be translated to one or more MPI ranks.) The accuracy

may be RANK, specifying the process with rank r , or NODE,

specifying any process that shares the same network host

with r . The strictness may be SOFT, allowing the task to run

anywhere in the system if there is nothing else to do at a given

point in time, or HARD, specifying that the scheduler should

wait until the location constraint can be satisfied (even at the

expense of maintaining idle processors).

The location features in Swift/T were originally added for

data-intensive workloads [41]. These provide a novel model

for best effort, data-aware scheduling, when data are stored

on the compute nodes. Compute node-resident storage sys-

tems that advertise data locations can be exploited by these

programming features. In EMEWS, we extend the utility of

this feature by using it to target program state instead of bulk

data. By keeping program state resident, we avoid any cost

associated with approaches that depend on data serialization.

More importantly, we can more easily leverage the third-party

libraries as resident programs without extensively modifying

them to fit a data serialization-based scheme.

C. Resident Tasks for Ensemble Control

Previous uses of workflow languages to control ME typi-

cally take one of two approaches. In the first approach, the ME

algorithm is encoded in the workflow language. While some

workflow languages provide rich support for arithmetic oper-

ations (Swift/T is notable in this regard), many do not. Even

so, this approach requires that such algorithms be coded from

scratch in the workflow language and makes it impossible to

directly reuse code in other languages. In the second approach,

the algorithm is provided as a built-in feature of the workflow

system. This approach has been taken by Nimrod/O [43] and

Dakota [44], among others. It does not allow the end users

much control over the ME algorithm used, unless they can

modify the source code of the workflow system itself.

EMEWS defines and uses resident tasks as a building block

to implement the user-defined ME workflows. The key techno-

logical feature is the ability to launch a task in a background

process or thread. Background indicates that the foreground

process or thread returns the control to Swift/T after execution

(as a normal task would), but the background task is still

running. It retains state and potentially performs ongoing

computation. For the current example, the background task

maintains the state of an AL ME algorithm. The overarching

workflow must simply query this task for instruction on what

tasks to execute next. To do so, a task is issued to the

same location as the resident task that communicates with it

over IPC.

D. EMEWS Queues for R

To query the state of the AL algorithm, we designate one

worker on location L for exclusive use by AL. Interaction with



OZIK et al.: EXTREME-SCALE DYNAMIC EXPLORATION OF A DISTRIBUTED ABM WITH THE EMEWS FRAMEWORK 889

Fig. 1. EQ/R EMEWS workflow with an AL ME resident task.

this worker via the EMEWS Queues for R (EQ/R) extension

is shown in Fig. 1. The EQ/R extension allows Swift/T work-

flows to communicate with a persistent embedded R interpreter

on a worker at some location L via two blocking queues,

IN and OUT. The extension provides C++ functions that

allow string data to be pushed onto and retrieved from these

queues. These functions are wrapped in an interface and are

accessible to Swift/T and shared with the R environment. Upon

initialization, EQ/R adds these functions to the R environment

and spawns a thread, in which the R script is run. Through

these functions, the R script places string data in the OUT

queue, where the Swift/T parent thread can retrieve it with

the EQR_get() function. Similar functionality exists for the

IN queue, and in this way, string data are passed back and

forth from the R script to the Swift/T workflow. The queues

themselves will block if the queue is empty, allowing the

Swift/T workflow to pause and wait for data from the R script,

and vice versa. When the R script waits and control returns

back to Swift/T, the R interpreter is not deallocated. When

subsequent R tasks execute on location L, they have access

to the IN and OUT queues via the same functions. Through

blocking queues and resident tasks, EQ/R implements an IoC

pattern, where the logic embedded within the external ME

algorithm, rather than in the Swift/T script, determines the

progression of the workflow. As a note, a similar IoC pattern

is employed with the EMEWS queues for the Python (EQ/Py)

extension and Python-based ME algorithms.

E. Worker Types

Swift/T offers worker types, a powerful, high-level way to

map the execution to various parts of the system. The user

may specify any number of task types by simply providing

a token. Then, functions that are defined with this token will

execute only on workers (ranks) configured to accept these

task types.

Similar to the Swift/T locality features (Section III-B), these

offer a tradeoff between automated load balancing and full

user control over execution location. They could be used

to ensure that a small number of workers are allocated for

performance-critical control tasks (e.g., tasks that produce

input parameters for many other tasks) or to throttle the

number of I/O-intensive tasks running at any point in time.

The EQ/R tasks have their own worker type resident_work.

This enables R-based analysis code to be used for tasks, such

as calculating complex objective functions from simulation

outputs, without affecting the R interpreter used by the AL

calculations.

F. Contiguous Ranks

In the previous work with Swift/T parallel tasks, worker

ranks were assembled into per-task subcommunicators essen-

tially, randomly. This was the most flexible technique and

was immune to the fragmentation problems. For EMEWS,

we extended the Swift/T parallel tasks feature to additionally

support “parmod” (parallel-modulus) tasks. Communicators

constructed to run tasks denoted with parmod = n have the

following two additional constraints.

1) They must start on a rank r , such that r ≡ 0 (mod n).

2) The ranks in the new subcommunicator are contiguous

in the parent communicator.

For example, on a computer with 32 cores per node, the user

could set parmod = 32, then a 32-process (@par=32) task

would always consume exactly 1 node; when parmod = 64,

a 64-process task would consume exactly 2 nodes that are

topologically neighbors (assuming the MPI implementation is

configured to lay out ranks in such a manner).

In this paper, we use parmod tasks for two reasons. The

first is simply to gain the benefit of achieving the intranode

performance for parallel SEIR model tasks by ensuring that

all the processes in that node are running the same model

instance. We run each task, that is, each model instance on

256 processes with a per process node count of 8 and thus

fully utilize 32 nodes. Second, it allows us to cache data

more easily since the task layout is always the same. If the

communicator layouts were more random, it would take a great

deal, more development time, to correctly manage data cached

in the SEIR model, in this case, the initial synthetic population,

from one parallel task to the next.

IV. INTEGRATION

Our focus is on the identification of the viable regions

within the parameter space of the SEIR model. These regions

represent input parameters resulting in model outputs that fall

within the range of plausible flu incidence trajectories. The

SEIR model includes stochasticity in two of its key elements.

First, the initially exposed population is randomly distrib-

uted across the synthetic population. Second, the collocation-

based infection dynamics stochastically determine whether an

infection has occurred. Thus, as modelers, we are faced with

the task of determining how to evaluate the “goodness” of

a parameter set. We cannot simply look for time series fits

to historical flu trends since the empirical time series are

individual trajectories of flu infection dynamics that have been

observed. What the empirical data do not show, for example,

are all of the flu trajectories that did not occur (or possibly

were not identified). Also, since the SEIR model distributes

the initially exposed population randomly, it is highly unlikely



890 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

that any actual distribution of initially exposed people would

match this, and since the infections are not spread in aggregate

but through contacts between collocated individuals, the initial

spatial distribution has the potential to greatly affect the timing

and size of the flu incidence peak. As such, as we describe in

the following, we resolved to run 20 stochastic variations for

each parameter combination and characterize the parameter set

as viable or not based on two aggregate statistics.

In this current parameterization of the SEIR model,

the inputs that are allowed to vary are the initial number of

infected individuals (CI ) and the hourly probability of going

from susceptible to exposed per each collocated infectious

agent (PS→E ). CI is ranged from 1 to 100 in increments of 1.

PS→E is ranged from 2e−5 to 4e−5 in increments of 0.02e−5.

For each combination of these two parameters, the SEIR model

outputs a table of newly infected agents for each week of a

35-week period. The objective function we use to characterize

the model output calculates the mean and maximum values for

each 35-week period. We define a threshold condition using

the mean and maximum values within which the model out-

puts are deemed to adequately resemble empirically observed

infection count trends for Chicago, obtained from [45]. The

threshold condition used was less than 10 000 newly infected

in any single week for the maximum and a mean across

all 35 weeks of greater than 100 new infections per week.

The computational challenge then becomes one of trying to

characterize the SEIR model parameter space into viable and

nonviable regions efficiently, that is, without having to run

too many simulations to evaluate the viability of parameter

combinations. While a number of different ensemble methods

could potentially be used for this, the AL approach, described

in the following, maps naturally to the problem.

A. AL Algorithm

AL [23] is a promising approach for characterizing the

large parameter spaces of computational models (see [46])

with less expensive, reduced order models, or metamodels.

AL combines the concepts from adaptive design of experi-

ments (see [47]) and machine learning to iteratively and strate-

gically sample from an unlabeled data set. AL works well in

situations, where “…unlabeled data may be abundant or easily

obtained, but labels are difficult, time-consuming, or expensive

to obtain” [23]. The AL approach can be naturally mapped

to the characterization of the parameter spaces of computer

simulations when one considers the unlabeled data as points

in a parameter space and the labeling activity as evaluating

those points by running (possibly expensive) simulations.

In this paper, we chose to implement an R-based AL

algorithm in order to highlight the types of useful and sophis-

ticated parameter search approaches that can be developed

when leveraging the existing functionality in widely used

open source data analytics languages. Rather than requiring

the time-intensive and error-prone reimplementation of these

algorithms in Swift/T for the sole purpose of running large

ensembles of simulations, we are able to have these algorithms

directly control large-scale HPC workflows.

AL is a general approach which can afford a fair amount

of customization in its specific implementation. The overall

Fig. 2. Pseudocode for AL algorithm.

goal is to iteratively pick points (individual or sets) to sample,

where the sampled points are chosen through some query

strategy. In our case, we choose an uncertainty sampling

strategy, where we employ a machine learning classifier on the

already collected data and, then, choose subsequent samples

close to the classification boundary, i.e., where the uncertainty

between classes is maximal. In this way, we exploit the

information that the classifier provides based on the existing

data. To take advantage of the concurrence that we have

available on HPC systems, the samples at each round of the

AL procedure are batch collected (and evaluated) in parallel.

In order to decrease the overlap in reducing classification

uncertainty that nearby maximally uncertain sample points

are likely to have, we cluster all the candidate points and

choose an individual point within each cluster. This ensures

a level of diversity in the sampled points and, therefore,

a greater expected reduction of uncertainty [48]. We balance

the exploitation of the classifier model with an exploratory

component, where random points in the parameter space are

sampled in order to investigate the additional regions that

may not have been sampled yet. This can prevent premature

convergence to an incorrect or incomplete metamodel.

The pseudocode for our AL algorithm is shown in Fig. 2.

The workflow proceeds until the cross-validation metric,

a proxy for out-of-sample model performance, is satisfied.

Parallel evaluations of the objective function F()—the SEIR

model simulation—are performed in lines 11 and 19 over some

sample of parameters. At each iteration, the sampled results

feed into the classifier R (lines 13 and 21). At the end of the

workflow, the final metamodel predictions are generated for

the remaining parameter space.



OZIK et al.: EXTREME-SCALE DYNAMIC EXPLORATION OF A DISTRIBUTED ABM WITH THE EMEWS FRAMEWORK 891

Fig. 3. Main Swift/T workflow loop.

B. Inversion of Control Implementation

Our central EMEWS workflow pattern is shown in Fig. 3.

For our AL R algorithm, located at location L, the doAL

function is called. The for loop continues to iterate while

the new sets of parameters are obtained from the AL algo-

rithm via the EQ/R EQR_get call. The parameter sets are

sent to run_model, where they are split up and evaluated

concurrently via a Swift/T foreach loop (not shown). Objec-

tive function results results, indicating a viable parameter

combination or not, are returned by run_model and passed

back to the AL algorithm via the EQ/R EQR_put call. This

loop continues until the EQR_get call obtains the special

token “FINAL.” Note that the EQR_put and EQR_get

calls take the location L as a parameter. The implementa-

tion of EQR_get and EQR_put uses this location in a

location-aware many-task scheduling annotation, as described

in Section III-B.

Also, as described earlier, this qualifies as an IoC pattern

since rather than Swift/T, the R-based AL algorithm controls

the overall workflow logic. The algorithm produces simulation

parameters and consumes results; however, instead of calling

the model code directly, the parameters are intercepted and

sent to Swift/T for distributed execution, with results seam-

lessly returned. This powerful pattern allows many third-party

algorithms to be easily dropped into our framework and

coordinate large-scale ensemble ME workflows.

C. AL EQ/R Communication Interface

As described in Section III-D, the interprocess communica-

tion is performed over queues. The queues are implemented

in C++ but must also be accessible from Swift and R. The

interface to these queues is shown in Fig. 4. Their implemen-

tation uses a straightforward Standard Template Library-based

locking scheme. This library is exposed to Swift/T by using

its SWIG-based library calling technique [49]. It is exposed to

R via RInside [50]. Thus, the C++ data structure is available

to both the Swift/T workflow and the R-based algorithm via

Tcl and R wrapper interfaces, respectively.

Fig. 4. Queue implementation header: Swift to C++ linkage.

D. SEIR Model as Parallel Leaf Function

Since the SEIR model is an MPI application, it must

be compiled as a shared library and wrapped in a Swift/T

Tcl interface [42]. Through this interface, Swift/T passes a

parameter string that contains all the parameters (i.e., the initial

number of exposed persons, the various distribution values,

and so on) for the current model run to the SEIR model.

In addition, the Tcl interface also passes the MPI commu-

nicator for the current run. When the model receives the

first set of parameters, it fills a cache with the required

input data from the files specified in the parameter string,

virtually eliminating I/O overhead in subsequent model runs.

The caches are per process and contain the data for that process

rank. The input data consist of person, place, and activity

definitions. As part of the above-mentioned load balancing

scheme, places are assigned to particular process ranks and

persons move among processes as they move to the next place

in their activity schedules. Each cache then contains the data

for its process rank. Consequently, the caching mechanism

requires consistent contiguous process ranks, such that the

cache originally created on process n, remains on process n

during subsequent runs. We make sure this is the case by

setting the environment variable ADLB_PAR_MOD to the

number of processes required to run the model (i.e., 256),

enabling contiguous process ranks in communicators of that

size.

For a more in-depth and technical description of the ele-

ments within an EMEWS workflow, including a complete AL

workflow utilizing a distributed MPI-based model, the reader

is referred to the EMEWS tutorial, accessible through the

EWEWS site [7].

V. AL RESULTS

All experiments presented in Sections VI and VII were

performed on the Cray XE6 Beagle at the University of

Chicago, hosted at the Argonne National Laboratory. Beagle

has 728 nodes, each with two AMD Operton 6300 processors,

each having 16 cores, for a total of 32 cores per node; the

system thus has 23 296 cores in all. Each node has 64 GB

of RAM.

For the AL workflow run presented in this section,

each SEIR model run was distributed over 256 processes

(32 nodes), and we ran up to six models concurrently

(192 nodes), demonstrating the hierarchical concurrence that

EMEWS workflows can generate. Each model took approxi-

mately 7 s to run per simulated week, and we ran them for

35 weeks (≈ 245 s per model run). The initial cache loading

of person, place, and activity definitions occurred exactly once

across each of the six sets of 32 nodes and took a total

of 2 min.



892 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

Fig. 5. Progression of the AL workflow, where the black/red dots indicate the
evaluated (viable/nonviable) points, green points are newly added points since
the previous panel, and orange/blue regions correspond to the out-of-sample
predictions for (viable/nonviable) regions.

Fig. 5 shows the progression of the AL algorithm eval-

uating parameter points, training the random forest model,

and generating predictions for the out-of-sample points in

the 2-D CI versus PS→E parameter space over 40 iterations,

where the parameter space was gridded into 10 100 discrete

points (101 × 100). Each parameter point evaluation consists

of 20 model runs of that parameter combination with the

random seed varied for each of the runs and with the viability

of the parameter set determined, as described in Section IV.

Iteration 0 shows the initial design, where 100 randomly cho-

sen points were evaluated. The black and red dots signify the

parameter sets evaluated to be viable and nonviable, respec-

tively. The orange and blue regions indicate the random forest

metamodel out-of-sample prediction for viable and nonviable

parameter space regions, respectively. The shading between

the orange and blue regions represents the uncertainty in

these predictions, where the darkest regions represent maximal

uncertainty, i.e., equal probability of being viable or nonviable.

As the iterations progress, points that were newly added since

the last iteration panel are indicated by the green dots. For

this particular AL workflow, at each iteration, we added five

points close to the classification boundary (exploit) and five

randomly sampled points (explore), for a total of 10 new points

per iteration. Thus, at the end of iteration 40, about 5% of the

parameter space was sampled. What can be observed is that as

the AL progresses, the initial prediction boundary is gradually

refined as additional points along it are evaluated, while the

rest of the parameter space, where there is less uncertainty

in the model prediction, e.g., the central part of the viable

region, is not as densely explored. Importantly, regions of high

Fig. 6. CV accuracy means and standard deviation based on tenfold CV of
the random forest metamodel at each AL iteration.

uncertainty are seen to be reduced in width, sharpening the

distinction between the two categories of interest. This pattern

of parameter space evaluation is useful from the point of view

of efficiently utilizing a computational budget, as the boundary

points are the main drivers of an accurate metamodel. While

the exploitation/exploration balance that we used appears to

sufficiently cover and characterize our parameter space, other

parameter spaces with, e.g., different dimensionality or gran-

ularity, may benefit from a different ratio.

An iterative ME algorithm needs a termination condition.

This can be based simply on a predetermined computation

budget or some expected performance metric. In this example,

we chose to monitor the cross-validation (CV) accuracy, both

its sample mean and standard deviation. At each AL algorithm

iteration, the random forest model is trained and tenfold

cross validation is applied in order to get an estimate of

the expected out-of-sample model performance. Fig. 6 shows

the progression of the CV accuracy and standard deviation.

What is observed is that while the CV accuracy is near

constant, the standard deviation gradually decreases. This

indicates that as the metamodel is being improved at each

iteration with the addition of more data, we are able to

better trust its out-of-sample performance level. This also

reflects the increased certainty of the metamodel as seen by

the reduction of shaded regions in Fig. 5. Finally, this also

suggests the additional AL experiments, such as varying the

number of initial samples or the number of samples chosen at

each iteration, to observe the effects on the trajectory of CV

accuracy or other CV metrics.

VI. PERFORMANCE RESULTS

A. Task Parallelism

In our application model (see Section III-A), there are

multiple potential concurrence modes. Here, we describe

the task-specific parallelism. As described in Section II-B,

the SEIR model can be load balanced to run on any number of

processes, parameterized by p_count. For these task paral-

lelism experiments, we configured it to run on p_count=4, 8,

16, 32, 64, 128, and 256 processes. We measured the average

time it took for the SEIR model to simulate one week within

the workflow and reported it in Fig. 7.



OZIK et al.: EXTREME-SCALE DYNAMIC EXPLORATION OF A DISTRIBUTED ABM WITH THE EMEWS FRAMEWORK 893

Fig. 7. Average time for the SEIR model to run a week as a function of
p_count. Error bars are the sample standard deviation from 210 simulated
weeks.

The results show that the SEIR model scales well to 128 and

potentially to 256 processes. This scaling is important, as many

of the ensemble methods of interest are iterative in nature,

such that any performance increases that can be achieved for

the simulation runs themselves are generally multiplied by the

number of iterations required for the complete workflow if

the necessary concurrence is available. Thus, the simulation

developer has the option to retain a model’s complexity rather

than simplify it, such that it “…be amenable to comprehensive

and systematic analysis” [24].

B. Total Time to Completion

For our SEIR/AL workflow performance evaluation,

we constructed test AL workflows using a one ZIP code ver-

sion (∼44k agents) of the SEIR model. The tests in this paper

exercised the full set of AL workflow components to observe

their individual and collective performance characteristics. The

cross-validation metric condition was modified to run past

satisfaction to produce a consistent number of tasks (and thus

always ran to the provided maximum number of iterations).

Our performance objective was to determine how the work-

flow overheads might affect the total time to complete the

AL workflow. For each number of total processes, we ran the

workflow at p_count = 4. This is the most challenging case

for Swift, as higher p_count values reduce the number of

tasks running at a time (as each task has more processes).

For each increasing number of total processes, we increased

the workload size (weak scaling). The total number of tasks

in each workflow was hand-specified by selecting a maximum

iterations number multiplied by the number of total processes;

thus, the AL convergence criterion was disabled. The total

number of tasks for each run was set to the number of total

processes, and the maximal concurrence per round (Prand +

Pclus) was equal to the number of total processes divided by 4,

and thus, there were four iterations. We recorded the total

runtime reported by Swift and plotted it in Fig. 8.

As shown, the total workflow time is only minimally

affected by scale. In our largest run, on 10 240 cores of

Beagle, there is no utilization loss due to workflow overheads,

demonstrating the robust scalability of EMEWS.

Fig. 8. Total makespan times for the one ZIP code SEIR model.

VII. CONCLUSION

In this paper, we have presented EMEWS, a framework

for running large ensembles of simulations, in which the

sophisticated ME algorithms can iteratively and adaptively

refine simulation parameters through the analysis of recently

generated results and launch new scientific applications based

on the refined parameters. The mechanism itself has been

implemented by using the Swift/T dataflow language and

exhibits a novel form of IoC using location-aware many-

task scheduling, resident tasks, and nontrivial IPC over HPC

resources.

Using EMEWS, we developed an AL workflow through

the selective reuse of third-party R packages, highlighting

the multiple parallel programming language and runtime

innovations, including novel features for parallel tasks (see

Sections III-A and III-F), task locality (Section III-B), and

stateful tasks (Section III-C), that make such a workflow

possible. We demonstrated how the AL workflow was able

to efficiently characterize the parameter space of a stochastic,

large-scale, distributed SEIR model into viable and nonviable

regions while sampling only a small fraction of possible

parameters.

Performance results illustrate the basic scalability of

EMEWS on a typical supercomputer. We demonstrated that

a flexible range of concurrence strategies are within the

performance envelope of our tools, enabling anything from

a massive battery of single-process simulations to a mix-

ture of varying multiprocess runs. Furthermore, while the

focus here was the use of EMEWS for ABMs, EMEWS is

being effectively applied to a variety of modeling methods

(e.g., microsimulation [51], machine learning hyperparameter

optimization [52], and biophysical modeling [53]) that require

calibration, parameterization, or optimization achieved through

the iterative execution of large numbers of computations.

We believe that as application teams consider good uses of

near-exascale resources, they will observe that the defensible

scientific investigations will have to be backed by large and

novel many-task ensemble studies.

EMEWS has been released as an open source framework

for the community [7], and we intend to continue to refine

and improve it while continuing to develop additional use

case examples that exploit widely available ME libraries.

Ultimately, the goal of EMEWS is to democratize the use

of HPC resources by allowing the nonexpert researchers to

tap into advanced third-party ensemble ME methods, such

as optimization or AL algorithms, to take advantage of



894 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

the extreme-scale systems that will become available in the

upcoming years.

ACKNOWLEDGMENT

The authors would like to thank the Beagle System and

the Research Computing Center, The University of Chicago,

Chicago, IL, USA, for the resources provided by them.

REFERENCES

[1] T. C. Germann, K. Kadau, I. M. Longini, Jr., and C. A. Macken,
“Mitigation strategies for pandemic influenza in the United States,” Proc.

Nat. Acad. Sci. USA, vol. 103, no. 15, pp. 5935–5940, Apr. 2006.
[2] C. M. Macal et al., “Modeling the transmission of community-associated

methicillin-resistant Staphylococcus aureus: A dynamic agent-based
simulation,” J. Transl. Med., vol. 12, no. 1, p. 124, May 2014.

[3] M. Riddle, C. M. Macal, G. Conzelmann, T. E. Combs, D. Bauer, and
F. Fields, “Global critical materials markets: An agent-based modeling
approach,” Resour. Policy, vol. 45, pp. 307–321, Sep. 2015.

[4] J. Ozik et al., “Simulating water, individuals, and management using
a coupled and distributed approach,” in Proc. Winter Simulation

Conf. (WSC). Piscataway, NJ, USA: IEEE Press, 2014, pp. 1120–1131.
[5] F. Bert, M. North, S. Rovere, E. Tatara, C. Macal, and G. Podestá,

“Simulating agricultural land rental markets by combining agent-based
models with traditional economics concepts: The case of the Argentine
Pampas,” Environ. Model. Softw., vol. 71, pp. 97–110, Sep. 2015.

[6] J. Ozik, N. T. Collier, J. M. Wozniak, and C. Spagnuolo, “From desktop
to large-scale model exploration with Swift/T,” in Proc. Winter Simula-
tion Conf. (WSC). Piscataway, NJ, USA: IEEE Press, 2016, pp. 206–220.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3042094.3042132

[7] EMEWS: Extreme-Scale Model Exploration With Swift. Accessed:
Aug. 17, 2018. [Online]. Available: http://emews.org

[8] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk,
and I. T. Foster, “Swift/T: Large-scale application composition via
distributed-memory dataflow processing,” in Proc. CCGrid, 2013,
pp. 95–102.

[9] J. Ozik, N. T. Collier, and J. M. Wozniak, “Many resident task computing
in support of dynamic ensemble computations,” in Proc. 8th Work-
shop Many-Task Comput. Clouds, Grids, Supercomput. (MTAGS), 2015.
[Online]. Available: http://datasys.cs.iit.edu/events/MTAGS15/p03.pdf

[10] M. J. North and C. M. Macal, Managing Business Complexity: Discov-

ering Strategic Solutions With Agent-Based Modeling and Simulation,
1st ed. London, U.K.: Oxford Univ. Press, Mar. 2007.

[11] J. T. Murphy, “Computational social science and high performance
computing: A case study of a simple model at large scales,” in Proc.

Annu. Conf. Comput. Social Sci. Soc. Amer., Santa Fe, NM, USA,
Oct. 2011, pp. 1–12.

[12] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for
Experimenters: Design, Innovation, and Discovery, 2nd ed. Hoboken,
NJ, USA: Wiley, 2005.

[13] M. D. Mckay, R. J. Beckman, and W. J. Conover, “Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–245,
1979.

[14] M. D. Morris, “Factorial sampling plans for preliminary computational
experiments,” Technometrics, vol. 33, no. 2, pp. 161–174, 1991.

[15] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative stud-
ies,” J. Statist. Phys., vol. 34, nos. 5–6, pp. 975–986, 1984.

[16] R. Verfürth, “A posteriori error estimation and adaptive mesh-refinement
techniques,” J. Comput. Appl. Math., vol. 50, nos. 1–3, pp. 67–83, 1994.

[17] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis With Applications to Biology, Control and Artificial

Intelligence. Cambridge, MA, USA: Bradford Book, 1992.
[18] M. A. Beaumont, “Approximate Bayesian computation in evolution

and ecology,” Annu. Rev. Ecol., Evol., Systematics, vol. 41, no. 1,
pp. 379–406, 2010.

[19] F. Hartig, J. M. Calabrese, B. Reineking, T. Wiegand, and A. Huth,
“Statistical inference for stochastic simulation models—Theory and
application,” Ecol. Lett., vol. 14, no. 8, pp. 816–827, Aug. 2011.

[20] G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 2nd ed.
Berlin, Germany: Springer-Verlag, 2009.

[21] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc. F-Radar
Signal Process., vol. 140, no. 2, pp. 107–113, 1993.

[22] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[23] B. Settles, Active Learning (Synthesis Lectures on Artificial Intelligence
and Machine Learning), vol. 6. San Rafael, CA, USA: Morgan &
Claypool, Jun. 2012, pp. 1–114.

[24] J. C. Thiele, W. Kurth, and V. Grimm, “Facilitating parameter estimation
and sensitivity analysis of agent-based models: A cookbook using
NetLogo and R,” J. Artif. Societies Social Simul., vol. 17, no. 3, p. 11,
2014.

[25] J. Shaman and A. Karspeck, “Forecasting seasonal outbreaks
of influenza,” Proc. Nat. Acad. Sci. USA, vol. 109, no. 50,
pp. 20425–20430, Dec. 2012.

[26] J. Shaman, A. Karspeck, W. Yang, J. Tamerius, and M. Lipsitch,
“Real-time influenza forecasts during the 2012–2013 season,” Nature

Commun., vol. 4, Dec. 2013, Art. no. 2837.
[27] W. Yang, A. Karspeck, and J. Shaman, “Comparison of filtering methods

for the modeling and retrospective forecasting of influenza epidemics,”
PLoS Comput. Biol., vol. 10, no. 4, p. e1003583, Apr. 2014.

[28] J. Shaman, W. Yang, and S. Kandula, “Inference and forecast of
the current west african ebola outbreak in guinea, sierra leone
and liberia,” PLoS Currents, Oct. 2014. [Online]. Available:
http://currents.plos.org/outbreaks/article/inference-and-forecast-of-the-
current-west-african-ebola-outbreak-in-guinea-sierra-leone-and-liberia,
doi: 10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6.

[29] J. M. Epstein, “Modelling to contain pandemics,” Nature, vol. 460,
no. 7256, p. 687, Aug. 2009.

[30] F. Brauer, P. van den Driessche, and J. Wu, Eds., “Compartmental mod-
els in epidemiology,” in Mathematical Epidemiology. Berlin, Germany:
Springer, 2008, ch. 2, pp. 19–79.

[31] Centers for Disease Control. (2016). How Flu Spreads.
Accessed: Mar. 25, 2016. [Online]. Available: http://www.cdc.gov/
flu/about/disease/spread.htm

[32] Centers for Disease Control. (2016). Flu Symptoms.
Accessed: Mar. 25, 2016. [Online]. Available: http://www.cdc.gov/flu/
consumer/symptoms.htm

[33] N. Collier and M. North, “Parallel agent-based simulation with
repast for high performance computing,” Simulation, vol. 89, no. 10,
pp. 1215–1235, Nov. 2012.

[34] N. Collier, J. Ozik, and C. M. Macal, “Large-scale agent-based modeling
with repast HPC: A case study in parallelizing an agent-based model,”
in Proc. Eur. Conf. Parallel Process., Vienna, Austria, Aug. 2015,
pp. 454–465, doi: 10.1007/978-3-319-27308-2_37.

[35] W. D. Wheaton et al., “Synthesized population databases:
A US geospatial database for agent-based models,” Methods

Rep., vol. 2009, no. 10, p. 905, 2009. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875687, doi: 10.3768/
rtipress.2009.mr.0010.0905.

[36] S. Gallagher, L. Richardson, S. L. Ventura, and W. F. Eddy. (Jan. 2017).
“SPEW: Synthetic populations and ecosystems of the world.” [Online].
Available: https://arxiv.org/abs/1701.02383

[37] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster, Pro-

gramming Models for Parallel Computing, P. Balaji, Ed. Cambridge,
MA, USA: MIT Press, 2015.

[38] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster, “Compiler
techniques for massively scalable implicit task parallelism,” in Proc. SC,
2014, pp. 299–310.

[39] S. J. Krieder et al., “Design and evaluation of the GeMTC frame-
work for GPU-enabled many-task computing,” in Proc. HPDC, 2014,
pp. 153–164.

[40] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, D. S. Katz, M. Wilde,
and I. T. Foster, “Interlanguage parallel scripting for distributed-memory
scientific computing,” in Proc. WORKS SC, 2015, Art. no. 6.

[41] F. R. Duro, J. G. Blas, F. Isaila, J. Carretero, J. M. Wozniak, and R. Ross,
“Experimental evaluation of a flexible I/O architecture for accelerating
workflow engines in ultrascale environments,” Parallel Comput., vol. 61,
pp. 52–67, Jan. 2017.

[42] J. M. Wozniak et al., “Dataflow coordination of data-parallel tasks via
MPI 3.0,” in Proc. EuroMPI, 2013, pp. 1–6.

[43] D. Abramson, A. Lewis, T. Peachey, and C. Fletcher, “An automatic
design optimization tool and its application to computational fluid
dynamics,” in Proc. SuperComputing, 2001, p. 47.

[44] B. M. Adams et al., “DAKOTA, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 5.0 user’s manual,”
Sandia, Albuquerque, NM, USA, Tech. Rep. SAND2014-4633,
Nov. 2015.

http://dx.doi.org/10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6
http://dx.doi.org/10.1007/978-3-319-27308-2_37
http://dx.doi.org/10.3768/rtipress.2009.mr.0010.0905
http://dx.doi.org/10.3768/rtipress.2009.mr.0010.0905


OZIK et al.: EXTREME-SCALE DYNAMIC EXPLORATION OF A DISTRIBUTED ABM WITH THE EMEWS FRAMEWORK 895

[45] J. Shaman. (2016). Columbia Prediction of Infectious Diseases. [Online].
Available: http://cpid.iri.columbia.edu

[46] M. Cevik, M. A. Ergun, N. K. Stout, A. Trentham-Dietz, M. Craven,
and O. Alagoz, “Using active learning for speeding up calibra-
tion in simulation models,” Med. Decision Making, vol. 36, no. 5,
pp. 581–593, Oct. 2015, doi: 10.1177/0272989X15611359.

[47] R. Jin, W. Chen, and A. Sudjianto, “On sequential sampling for global
metamodeling in engineering design,” in Proc. 28th Design Automat.

Conf., Jan. 2002, pp. 539–548.
[48] Z. Xu, R. Akella, and Y. Zhang, “Incorporating diversity and density

in active learning for relevance feedback,” in Advances in Information

Retrieval. ECIR (Lecture Notes in Computer Science), vol. 4425,
G. Amati, C. Carpineto, and G. Romano, Eds. Berlin, Germany:
Springer, 2007, pp. 246–257, doi: 10.1007/978-3-540-71496-5_24.

[49] J. M. Wozniak, T. G. Armstrong, K. C. Maheshwari, D. S. Katz,
M. Wilde, and I. T. Foster, “Toward interlanguage parallel scripting
for distributed-memory scientific computing,” in Proc. CLUSTER, 2015,
pp. 482–485.

[50] D. Eddelbuettel and R. Francois. RInside CRAN Package.
Accessed: Aug. 17, 2018. [Online]. Available: https://cran.r-
project.org/web/packages/RInside

[51] C. Rutter, J. Ozik, M. DeYoreo, and N. Collier. (Apr. 2018).
“Microsimulation model calibration using incremental mixture approx-
imate Bayesian computation.” [Online]. Available: https://arxiv.org/
abs/1804.02090

[52] J. M. Wozniak et al., “CANDLE/supervisor: A workflow framework
for machine learning applied to cancer research,” BMC Bioinf.,
to be published. [Online]. Available: https://bmcbioinformatics.
biomedcentral.com

[53] J. Ozik et al., “High-throughput cancer hypothesis testing with an
integrated PhysiCell-EMEWS workflow,” BMC Bioinf., to be published.
[Online]. Available: https://bmcbioinformatics.biomedcentral.com

Jonathan Ozik received the Ph.D. degree from the
University of Maryland, College Park, MD, USA, in
2005.

He is currently a Computational Scientist with
the Decision and Infrastructure Sciences Division,
Argonne National Laboratory, Argonne, IL, USA,
and a Senior Scientist with the Consortium for
Advanced Science and Engineering, The University
of Chicago, Chicago, IL, USA. He leads the Repast
agent-based modeling toolkit and the EMEWS
framework for large-scale model exploration.

Nicholson T. Collier received the Ph.D. degree from
The University of Chicago, Chicago, IL, USA, in
1998.

He is currently a Software Engineer with the
Decision and Infrastructure Sciences Division,
Argonne National Laboratory, Argonne, IL, USA,
and a Research Staff with the Consortium for
Advanced Science and Engineering, The University
of Chicago. He is also the Lead Developer of the
Repast, agent-based modeling toolkit, and a Core
Developer of the EMEWS Framework.

Justin M. Wozniak received the Ph.D. degree from
the University of Notre Dame, Notre Dame, IN,
USA, in 2008.

He is currently a Computer Scientist with the
Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, USA,
and a Scientist with the Consortium for Advanced
Science and Engineering, The University of
Chicago, Chicago, IL, USA. He is the Lead Devel-
oper of the Swift/T, a parallel scripting language,
and a Core Developer of the EMEWS Framework.

Charles M. Macal received the Ph.D. degree from
Northwestern University, in 1989.

He has been a Registered Professional Engineer at
the State of Illinois, since 1980. He is currently a
Senior Systems Engineer, an Argonne Distinguished
Fellow, the Group Leader of the Decision and
Infrastructure Sciences Division, Social, Behavioral
and Decision Science Group, Argonne National Lab-
oratory, Argonne, IL, USA, and a Senior Scientist
with the Consortium for Advanced Science and
Engineering, The University of Chicago, Chicago,

IL, USA. He is recognized globally as a Leader in the field of agent-based
modeling and simulation and has led interdisciplinary research teams in
developing innovative computer simulation models in application areas,
including global and regional energy markets, critical materials, electric
power, healthcare and infectious diseases, environment and sustainability, and
technology adoption.

Gary An received the M.D. degree from the
University of Miami, Coral Gables, FL, USA, in
1988.

He is currently an Associate Professor of surgery
with the Department of Surgery, The Univer-
sity of Chicago, Chicago, IL, USA. His cur-
rent research interests include the development
of mechanism-based computer simulations in con-
junction with biomedical research labs, high-
performance/parallel computing architectures for
agent-based models, artificial intelligence systems

for modular model construction, and community-wide metascience envi-
ronments, all with the goal of facilitating transformative scientific
research. Toward these areas, he has developed agent-based models of sepsis,
multiple organ failure, wound healing, surgical site infections, necrotizing
enterocolitis, tumor metastasis, breast cancer, C. difficile colitis, and the link
between oncogenesis and inflammation.

http://dx.doi.org/10.1177/0272989X15611359
http://dx.doi.org/10.1007/978-3-540-71496-5_24

