
 

 
 

 

 

 

Extreme-scale scripting: Opportunities for large task-

parallel applications on petascale computers 

Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben Clifford, 

Mihael Hategan, Kamil Iskra, Pete Beckman, Ian Foster 

Computation Institute, 

University of Chicago and Argonne National Laboratory 

Abstract. Parallel scripting is a loosely-coupled programming model in which 

applications are composed of highly parallel scripts of program invocations that 

process and exchange data via files. We characterize here the applications that can 

benefit from parallel scripting on petascale-class machines, describe the mechanisms 

that make this feasible on such systems, and present results achieved with parallel 

scripts on currently available petascale computers. 

1.  The parallel scripting paradigm 

John Ousterhout describes scripting as higher-level programming for the 21st Century
[3]

. 

Scripting has revolutionized application development on the desktop and server, accelerating 

and simplifying programming by focusing on the composition of programs to form more 

powerful applications. Understanding how to scale scripting to 21st century computers should 

be among the priorities for researchers of next generation parallel programming models. Might 

scripting not provide the same benefits for extreme-scale computers? 

We believe that the answer to this question is yes. We introduce the concept and 

implementation of parallel scripting, and describe what becomes possible when simple scripts 

turn “ordinary” scientific programs into petascale applications running on 100,000 cores and 

beyond. Scripting languages allow users to assemble sophisticated application logic quickly by 

composing existing codes. In parallel scripting, users apply parallel composition constructs to 

existing sequential or parallel programs. Using this approach, they can quickly develop highly 

parallel applications that can be run efficiently on a 16-core workstation, a 16,000-core cluster, 

or a 160K-core petascale system. 

Parallel scripting is not a substitute for existing tightly coupled programming models such 

as MPI. Rather, it is an alternative (and higher-level) path to massive parallelism, a path 

particularly suitable for increasingly feasible and important problem-solving methods such as 

the use of parameters sweeps and ensemble studies for exploring sensitivity to parametric, 

structural, and initial condition uncertainty. The availability of extreme-scale computers makes 

such methods feasible and attractive, even in the case of complex computations. Parallel 

scripting allows users to apply these methods while leveraging the vast value embodied in 

modern application codes—both serial and parallel—that empower the scientific, engineering, 

and commercial computing of today and the foreseeable future. 

We have been exploring such “many task” computing models
[6]

 for several years, from the 

perspective of both technologies and applications. On the technology front, we have explored, 



 

 
 

 

 

 

in particular, a dataflow-driven parallel programming model that treats application programs as 

functions, and their datasets as structured objects mapped to a simple abstract data model. We 

have incorporated this model in a parallel scripting language, Swift, and implemented that 

language on large parallel computers, including a 160K-core Blue Gene/P and a 62K-core Sun 

Constellation. Swift programs may define hundreds of thousands (and soon millions) of tasks 

that read and write an even greater number of files. We have developed task and data 

management methods that can scale to extremely high dispatch rates and data volumes, and 

used them to scale applications to up to 160K cores, with high efficiency and fault tolerance. 

2.  Software architecture for petascale parallel scripting 

Our approach to high-performance parallel 

scripting requires three layers, which from the 

bottom up are: (1) a POSIX environment in 

which to execute the individual application 

tasks of a script; (2) a means to allocate 

compute node resources, hold them for  long 

and varying periods of time (typically hours 

rather than seconds) while rapidly scheduling 

small independent tasks on the compute nodes 

– even tasks of very short duration (down to 

fractions of a second, but typically many 

seconds or minutes); and (3) a language in 

which to abstractly express graphs of highly 

parallel application invocations, their data accesses,  and the data interchange between them. 

Modern concepts of scripting depend on POSIX system services such as fork() and exec() in 

order to execute application programs from the script, and this require an operating system that 

supports these or similar capabilities – notably, the ability to launch a new application program 

and wait for it to complete. On the BG/P, the native IBM compute node kernel lacks these 

features, and we provide them instead through the ZeptoOS compute node kernel
[4]

, which 

implements these features in a POSIX-compliant manner. On the Ranger Constellation system, 

we use the native compute node operating system, which provides complete POSIX support. 

3.  The Falkon resource provisioner and lightweight scheduler 

The compute node resources of petascale computing systems are typically managed by 

traditional batch schedulers, which are designed and configured with policies for running large 

parallel jobs that execute the same 

application program on all compute 

nodes allocated to the job, and 

which run for extended periods of 

time. Parallel scripting, however, 

requires that many application 

programs, each with an 

independent set of arguments and 

different sets of input and output 

files, and having likely short and 

often widely varying execution 

times, be executable on any 

compute node. This far more 

dynamic scheduling model 

demands a multi-level scheduling 

approach, which we have 

 
Figure 1: Architecture for petascale scripting 

 
Figure 2: Falkon Provisioning and Scheduling System 



 

 
 

 

 

 

implemented in a component called Falkon, a Fast and Light-weight tasK executiON 

framework
[4]

. 

Falkon allocates nodes of a compute resource in large quantities, using the native batch 

scheduler of the system, and runs a persistent task execution agent on each compute core that 

rapidly executes arbitrary and independent POSIX processes on the allocated nodes. Falkon 

consists of several components, shown in Figure 2: (1) a compute node agent that executes one 

task at a time on a compute node core; (2) a service that maintains a queue of jobs for a set of 

compute node resources, and which rapidly selects the next job to run on a FIFO basis; and (3) 

a load-balancing client that evenly distributes work to the services 

Using Falkon, we have been able to meet performance requirements necessary for petascale 

scripting. Measurements of Falkon performance
[4]

 indicate it can: 

• execute over 3,000 tasks per second on the BG/P; 

• launch, execute, and terminate 160K tasks on the BG/P at 160K-core scale in under 

one minute; 

• execute workloads of 913K science tasks on 116K BG/P cores in 2 hours, totalling 

21.4 CPU years at 99.7% efficiency and 99.6% utilization (Figure 3); and  

• execute one billion trivial tasks in 18 hours in multicore stress tests. 

Users utilize Falkon by creating simple 

scripts that contain a list of tasks to execute, 

with arguments. Tasks are executed with 

FIFO scheduling and with maximum 

parallelism. Since tasks are sent to available 

agents in the order that they appear in the 

Falkon input script, users can sort tasks 

“longest first” when task duration can be 

estimated, thus achieving optimal utilization 

of a block of compute nodes. Falkon 

functionality has been packaged as a Swift 

“execution provider” to enable higher level 

programming (described in the next section). 

It has also been implemented as a newer Swift 

execution provider, which has the additional capability of allocating multiple “time-space” 

blocks of varying number of cores and wall-time duration, to best fit the current task demand. 

4.  The Swift parallel scripting language 

Swift is a scripting language that makes it easy for a user to specify and run application 

programs in parallel, and to specify the data passing and dependencies between different 

application invocations, as well as the structure of the data (typically in terms of files and 

directories). It provides run time support that automates data management and enables the same 

Swift script to run on multi-core workstations, local clusters, remote grids, cloud resources, and 

petascale supercomputers. It is common to write Swift applications in three layers: a top layer 

which specifies the workflow, a middle layer of interface code to adapt specific applications, 

and the lowest layer, which defines the interfaces of the applications themselves. Studies on 

early versions of Swift have shown that the amount of code needed to express applications in 

this form is substantially lower than by ad hoc scripting in “shell scripts” 
[9]

  

Swift also provides a provenance recording mechanism that enables users to log how each data 

item was produced, query that knowledge base to locate data and methods, and retrieve the 

history of an object for validation, sharing, or reproduction of computational results. 

To show the power of the Swift language, here is a fragment of Swift code to perform protein-

folding simulations using an application called “ItFix”
[1]

. This simple code fragment, given ten 

 
Figure 3: Falkon performance (DOCK application)



 

 
 

 

 

 

protein sequences, nsim=1000, two starting 

temperatures and five update intervals, will, in 

each of three (maxrounds) rounds of 

prediction, execute 10 x 1000 x 2 x 5 = 

100,000 simulations. ItFix scripts been 

executed on up to 32,000 cores on the 

Argonne BG/P. Similar code can sweep across any combination of ItFix parameters. This 

abstract script runs without change on multiple TeraGrid clusters including the 62K-core 

supercomputer “Ranger”. 

The Swift data model provides the ability to describe nested on-disk directories as simple 

structures and arrays. These datasets are transparently sent to remote and parallel Swift 

procedures on various platforms. An operation called “mapping” translates between the simple 

abstract data model of Swift and the potentially messy, complex model of real-world directory 

structures and file naming and structuring conventions. 

Swift has a C-like syntax, but many of the semantic aspects of a “functional” programming 

language. Procedures are expressed as functions, which are permitted to return multiple values; 

statements are executed in data-dependency order; variables (including array elements and 

structure members) are single-assignment, which makes it significantly simpler for Swift to 

automatically execute independent operations in parallel. Application programs are abstracted 

as functions, whose arguments and results are files and file-structured datasets. Layering on the 

ability to represent application programs as procedures, the user can define compound 

procedures to create libraries of higher-level processes that capture the essential protocols of an 

application domain’s data preparation and analysis procedures. 

Users interact with Swift at many levels. Scientific programmers create Swift libraries that 

encapsulate the execution of scientific applications, data preparation, and analysis methods. 

These libraries provide a stable base of functionality specific to a user community. Higher-level 

users write simple scripts using these libraries to perform large-scale computing tasks. The 

highest-level Swift users will not need to program at all: they will invoke their scripts and view 

their results through web interfaces. 

5.  Example applications 

 

Applications to which we 

have applied  large-scale 

parallel scripting 
[1][2][7][8] 

are 

listed in Table 1. Each is 

capable of consuming a large 

fraction, or even all, of a 

petascale computer. All 

involve doing many tasks at 

once, with often quite 

substantial amounts of 

communication both within 

each task and among tasks. 

6.  Conclusion 

Our experience in applying Swift indicates that it enables the productive programming 

paradigm of knitting together existing application programs using a functional model to rapidly 

and productively compose new, higher level applications that can efficiently use the parallel 

resources of a petascale system.  We are currently developing enhancements that apply 

foreach prot in protein { 
  foreach sT in startT { 
    foreach tUp in tUpdate { 
      ItFix(prot, nsim, maxrounds, sT, tUp); 
    } 
  } 
} 

Table 1: Parallel Scripting Applications 

 
Legend:  E: evaluated, D: in development, O: in some degree of operational use 



 

 
 

 

 

 

“collective” data management techniques
[11]

 to efficiently move data in and out of applications 

in a way that leverages the interconnect and filesystem hardware of petascale systems. We 

believe that, when complete, the parallel scripting model will play an indispensible role in the 

extreme-scale programming tool chest. 
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