

Extreme-scale scripting: Opportunities for large task-

parallel applications on petascale computers

Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben Clifford,

Mihael Hategan, Kamil Iskra, Pete Beckman, Ian Foster

Computation Institute,

University of Chicago and Argonne National Laboratory

Abstract. Parallel scripting is a loosely-coupled programming model in which

applications are composed of highly parallel scripts of program invocations that

process and exchange data via files. We characterize here the applications that can

benefit from parallel scripting on petascale-class machines, describe the mechanisms

that make this feasible on such systems, and present results achieved with parallel

scripts on currently available petascale computers.

1. The parallel scripting paradigm

John Ousterhout describes scripting as higher-level programming for the 21st Century
[3]

.

Scripting has revolutionized application development on the desktop and server, accelerating

and simplifying programming by focusing on the composition of programs to form more

powerful applications. Understanding how to scale scripting to 21st century computers should

be among the priorities for researchers of next generation parallel programming models. Might

scripting not provide the same benefits for extreme-scale computers?

We believe that the answer to this question is yes. We introduce the concept and

implementation of parallel scripting, and describe what becomes possible when simple scripts

turn “ordinary” scientific programs into petascale applications running on 100,000 cores and

beyond. Scripting languages allow users to assemble sophisticated application logic quickly by

composing existing codes. In parallel scripting, users apply parallel composition constructs to

existing sequential or parallel programs. Using this approach, they can quickly develop highly

parallel applications that can be run efficiently on a 16-core workstation, a 16,000-core cluster,

or a 160K-core petascale system.

Parallel scripting is not a substitute for existing tightly coupled programming models such

as MPI. Rather, it is an alternative (and higher-level) path to massive parallelism, a path

particularly suitable for increasingly feasible and important problem-solving methods such as

the use of parameters sweeps and ensemble studies for exploring sensitivity to parametric,

structural, and initial condition uncertainty. The availability of extreme-scale computers makes

such methods feasible and attractive, even in the case of complex computations. Parallel

scripting allows users to apply these methods while leveraging the vast value embodied in

modern application codes—both serial and parallel—that empower the scientific, engineering,

and commercial computing of today and the foreseeable future.

We have been exploring such “many task” computing models
[6]

 for several years, from the

perspective of both technologies and applications. On the technology front, we have explored,

in particular, a dataflow-driven parallel programming model that treats application programs as

functions, and their datasets as structured objects mapped to a simple abstract data model. We

have incorporated this model in a parallel scripting language, Swift, and implemented that

language on large parallel computers, including a 160K-core Blue Gene/P and a 62K-core Sun

Constellation. Swift programs may define hundreds of thousands (and soon millions) of tasks

that read and write an even greater number of files. We have developed task and data

management methods that can scale to extremely high dispatch rates and data volumes, and

used them to scale applications to up to 160K cores, with high efficiency and fault tolerance.

2. Software architecture for petascale parallel scripting

Our approach to high-performance parallel

scripting requires three layers, which from the

bottom up are: (1) a POSIX environment in

which to execute the individual application

tasks of a script; (2) a means to allocate

compute node resources, hold them for long

and varying periods of time (typically hours

rather than seconds) while rapidly scheduling

small independent tasks on the compute nodes

– even tasks of very short duration (down to

fractions of a second, but typically many

seconds or minutes); and (3) a language in

which to abstractly express graphs of highly

parallel application invocations, their data accesses, and the data interchange between them.

Modern concepts of scripting depend on POSIX system services such as fork() and exec() in

order to execute application programs from the script, and this require an operating system that

supports these or similar capabilities – notably, the ability to launch a new application program

and wait for it to complete. On the BG/P, the native IBM compute node kernel lacks these

features, and we provide them instead through the ZeptoOS compute node kernel
[4]

, which

implements these features in a POSIX-compliant manner. On the Ranger Constellation system,

we use the native compute node operating system, which provides complete POSIX support.

3. The Falkon resource provisioner and lightweight scheduler

The compute node resources of petascale computing systems are typically managed by

traditional batch schedulers, which are designed and configured with policies for running large

parallel jobs that execute the same

application program on all compute

nodes allocated to the job, and

which run for extended periods of

time. Parallel scripting, however,

requires that many application

programs, each with an

independent set of arguments and

different sets of input and output

files, and having likely short and

often widely varying execution

times, be executable on any

compute node. This far more

dynamic scheduling model

demands a multi-level scheduling

approach, which we have

Figure 1: Architecture for petascale scripting

Figure 2: Falkon Provisioning and Scheduling System

implemented in a component called Falkon, a Fast and Light-weight tasK executiON

framework
[4]

.

Falkon allocates nodes of a compute resource in large quantities, using the native batch

scheduler of the system, and runs a persistent task execution agent on each compute core that

rapidly executes arbitrary and independent POSIX processes on the allocated nodes. Falkon

consists of several components, shown in Figure 2: (1) a compute node agent that executes one

task at a time on a compute node core; (2) a service that maintains a queue of jobs for a set of

compute node resources, and which rapidly selects the next job to run on a FIFO basis; and (3)

a load-balancing client that evenly distributes work to the services

Using Falkon, we have been able to meet performance requirements necessary for petascale

scripting. Measurements of Falkon performance
[4]

 indicate it can:

• execute over 3,000 tasks per second on the BG/P;

• launch, execute, and terminate 160K tasks on the BG/P at 160K-core scale in under

one minute;

• execute workloads of 913K science tasks on 116K BG/P cores in 2 hours, totalling

21.4 CPU years at 99.7% efficiency and 99.6% utilization (Figure 3); and

• execute one billion trivial tasks in 18 hours in multicore stress tests.

Users utilize Falkon by creating simple

scripts that contain a list of tasks to execute,

with arguments. Tasks are executed with

FIFO scheduling and with maximum

parallelism. Since tasks are sent to available

agents in the order that they appear in the

Falkon input script, users can sort tasks

“longest first” when task duration can be

estimated, thus achieving optimal utilization

of a block of compute nodes. Falkon

functionality has been packaged as a Swift

“execution provider” to enable higher level

programming (described in the next section).

It has also been implemented as a newer Swift

execution provider, which has the additional capability of allocating multiple “time-space”

blocks of varying number of cores and wall-time duration, to best fit the current task demand.

4. The Swift parallel scripting language

Swift is a scripting language that makes it easy for a user to specify and run application

programs in parallel, and to specify the data passing and dependencies between different

application invocations, as well as the structure of the data (typically in terms of files and

directories). It provides run time support that automates data management and enables the same

Swift script to run on multi-core workstations, local clusters, remote grids, cloud resources, and

petascale supercomputers. It is common to write Swift applications in three layers: a top layer

which specifies the workflow, a middle layer of interface code to adapt specific applications,

and the lowest layer, which defines the interfaces of the applications themselves. Studies on

early versions of Swift have shown that the amount of code needed to express applications in

this form is substantially lower than by ad hoc scripting in “shell scripts”
[9]

Swift also provides a provenance recording mechanism that enables users to log how each data

item was produced, query that knowledge base to locate data and methods, and retrieve the

history of an object for validation, sharing, or reproduction of computational results.

To show the power of the Swift language, here is a fragment of Swift code to perform protein-

folding simulations using an application called “ItFix”
[1]

. This simple code fragment, given ten

Figure 3: Falkon performance (DOCK application)

protein sequences, nsim=1000, two starting

temperatures and five update intervals, will, in

each of three (maxrounds) rounds of

prediction, execute 10 x 1000 x 2 x 5 =

100,000 simulations. ItFix scripts been

executed on up to 32,000 cores on the

Argonne BG/P. Similar code can sweep across any combination of ItFix parameters. This

abstract script runs without change on multiple TeraGrid clusters including the 62K-core

supercomputer “Ranger”.

The Swift data model provides the ability to describe nested on-disk directories as simple

structures and arrays. These datasets are transparently sent to remote and parallel Swift

procedures on various platforms. An operation called “mapping” translates between the simple

abstract data model of Swift and the potentially messy, complex model of real-world directory

structures and file naming and structuring conventions.

Swift has a C-like syntax, but many of the semantic aspects of a “functional” programming

language. Procedures are expressed as functions, which are permitted to return multiple values;

statements are executed in data-dependency order; variables (including array elements and

structure members) are single-assignment, which makes it significantly simpler for Swift to

automatically execute independent operations in parallel. Application programs are abstracted

as functions, whose arguments and results are files and file-structured datasets. Layering on the

ability to represent application programs as procedures, the user can define compound

procedures to create libraries of higher-level processes that capture the essential protocols of an

application domain’s data preparation and analysis procedures.

Users interact with Swift at many levels. Scientific programmers create Swift libraries that

encapsulate the execution of scientific applications, data preparation, and analysis methods.

These libraries provide a stable base of functionality specific to a user community. Higher-level

users write simple scripts using these libraries to perform large-scale computing tasks. The

highest-level Swift users will not need to program at all: they will invoke their scripts and view

their results through web interfaces.

5. Example applications

Applications to which we

have applied large-scale

parallel scripting
[1][2][7][8]

are

listed in Table 1. Each is

capable of consuming a large

fraction, or even all, of a

petascale computer. All

involve doing many tasks at

once, with often quite

substantial amounts of

communication both within

each task and among tasks.

6. Conclusion

Our experience in applying Swift indicates that it enables the productive programming

paradigm of knitting together existing application programs using a functional model to rapidly

and productively compose new, higher level applications that can efficiently use the parallel

resources of a petascale system. We are currently developing enhancements that apply

foreach prot in protein {
 foreach sT in startT {
 foreach tUp in tUpdate {
 ItFix(prot, nsim, maxrounds, sT, tUp);
 }
 }
}

Table 1: Parallel Scripting Applications

Legend: E: evaluated, D: in development, O: in some degree of operational use

“collective” data management techniques
[11]

 to efficiently move data in and out of applications

in a way that leverages the interconnect and filesystem hardware of petascale systems. We

believe that, when complete, the parallel scripting model will play an indispensible role in the

extreme-scale programming tool chest.

Acknowledgements.

This research is supported in part by NSF grants OCI-721939 and PHY-636265, NIH grants

DC08638 and DA024304-02, the Argonne/DOE LDRD program, NASA Ames Research

Center GSRP grant NNA06CB89H, and the UChicago/Argonne Computation Institute.

References

[1] Hocky, G., Wilde, M., Debartolo, J., Hategan, M., Foster, I., Sosnick, T.R., and Freed,

K.F.). Towards petascale ab initio protein folding through parallel scripting. Argonne

Technical Report ANL/MCS-P1612-0409.

[2] Kenny, S, M. Andric, M. Wilde, Michael C. M. Neale, S. Boker, SL. Small, Parallel

Workflows for Data-Driven Structural Equation Modeling in Functional

Neuroimaging, Argonne Technical Report ANL/MCS-P1613-0409.

[3] Ousterhout, J. Scripting: Higher Level Programming for the 21
st
 Century IEEE

Computer March 1998

[4] Raicu, R,. Zhao Zhang, Mike Wilde, Ian Foster, Pete Beckman, Kamil Iskra, Ben

Clifford. “Toward Loosely Coupled Programming on Petascale Systems”,

IEEE/ACM Supercomputing 2008.

[5] Raicu. I. "Many-Task Computing: Bridging the Gap between High Throughput

Computing and High Performance Computing", Doctorate Dissertation, Computer

Science Department, University of Chicago, March 2009

[6] Raicu, I, Ian Foster, Yong Zhao. “Many-Task Computing for Grids and

Supercomputers”, Invited Paper, IEEE Workshop on Many-Task Computing on Grids

and Supercomputers (MTAGS08), 2008, co-located with IEEE/ACM

Supercomputing 2008.

[7] Small, S. L., Wilde, M., Kenny, S., Andric, M., & Hasson, U. (2009). Database-managed

Grid-enabled analysis of neuroimaging data: The CNARI framework. International

Journal of Psychophysiology, in press, published online 2/20/2009

[8] Stef-Praun, I. Foster, U. Hasson, M. Hategan, S.L. Small and M. Wilde, Accelerating

medical research using the Swift Workflow System, Paper Presented at the

HealthGrid 2007, Geneva (2007).

[9] Zhao, Y., Dobson, J., Foster, I., Moreau, L., Wilde, M., A Notation and System for

Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data,

SIGMOD Record, September 2005.

[10] Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu,

I., Stef-Praun, T., Wilde, M. "Swift: Fast, Reliable, Loosely Coupled Parallel

Computation," IEEE Workshop on Scientific Workflows 2007.

[11] Zhang, Z., Allan Espinosa, Kamil Iskra, Ioan Raicu, Ian Foster, Michael Wilde, “Design

and Evaluation of a Collective I/O Model for Loosely-coupled Petascale

Programming”, IEEE Workshop on Many-Task Computing on Grids and

Supercomputers (MTAGS08), co-located with IEEE/ACM Supercomputing, 2008.

