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We study networks constructed from gene expression data obtained from many types of cancers. The
networks are constructed by connecting vertices that belong to each others’ list of K nearest neighbors,
with K being an a priori selected non-negative integer. We introduce an order parameter for character-
izing the homogeneity of the networks. On minimizing the order parameter with respect to K, degree
distribution of the networks shows power-law behavior in the tails with an exponent of unity. Analysis
of the eigenvalue spectrum of the networks confirms the presence of the power-law and small-world
behavior. We discuss the significance of these findings in the context of evolutionary biological
processes.

DOI: 10.1103/PhysRevLett.89.268702 PACS numbers: 89.75.–k, 05.65.+b, 87.23.Kg, 87.18.Sn
struction algorithm requires specification of the maxi-
mum number of neighbors K, 0 � K <N, that a vertex

As a result, we calculated the cumulative probability
distribution,
Recent technical advancements have led to widespread
use of gene chips for quantizing and monitoring the
expression level of thousands of genes in parallel [1].
Presently, gene expression profiling has become an im-
portant tool for diagnosis and classification of diseases. It
is being used extensively for identifying genes respon-
sible for specific conditions, e.g., various cancers [2–6].
This is done using specialized clustering techniques de-
veloped in recent years [7–9]. Gene expression data can
also be used for constructing networks of coexpressed and
coregulated genes. Since proteins are the end product of
gene expression, various types of protein networks [10]
and gene networks are directly related. Consequently,
networks of coregulated genes are expected to play a
key role in biological processes. In this Letter, we outline
results that show the relevance of these networks in evolu-
tionary biological processes.

The volume of gene expression data obtained from
typical experiments is enormous and contains informa-
tion on expression of all the genes (presently almost
10 000 or more) marked on the chip. In any given con-
dition, most of the genes are not important and do not
express. As a result, before the expression data can be used
for constructing networks, it requires extensive process-
ing and filtering to eliminate uninformative genes. We
skip these details here as they can be found with the
source of the data [2–6] and elsewhere [7,8]. Hence-
forth, we assume that expression data for the selected
set of informative genes is available in the form of a
matrix having N rows and D columns. The rows represent
the genes and the columns represent the samples/tissues.
Furthermore, the expression values of each of the genes in
this matrix are normalized to have a mean of zero and
variance of unity across the samples.

The normalized expression levels are treated as coor-
dinates of N genes, that form the vertices of the networks,
in D dimensional space of samples. The network con-
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can have. For a given K, the gene network is constructed
using the following two step procedure. (i) For each
vertex i, i � 1; . . . ; N, make a list Li of its first K near-
est neighbors. (ii) Connect all vertices i and j through
an edge if i 2 Lj and j 2 Li, otherwise the vertices
are not connected. This algorithm is derived from the
K-nearest-neighbor parameter estimation method [11].
With some heuristic modifications, it had been used ear-
lier in clustering analysis of various types of data [9]. We
used the Euclidean norm as the distance measure for
making the list of K nearest neighbors. Other distance
measures can also be used. The results presented herein
remain unaltered as long as the distance measure pre-
serves the ordering of points obtained from the Euclidean
measure.

For a given data set, the topological structure of net-
works generated by this algorithm depends strongly on
the parameter K. For K � 0, the network consists of N
isolated vertices, and for K � N � 1 each vertex is con-
nected to all the other vertices. For most of the values
of K, these networks have more than one connected com-
ponent. As K increases, the connectivity of each vertex
grows depending on its local environment. Vertices that
lie close to each other tend to get mutually connected in
preference to those lying farther away. Thus, all con-
nected components in these networks have a small-world
structure. Furthermore, for K * 3 the networks have a
giant connected component.

We analyzed networks constructed using several pub-
lished gene expression data sets. To ensure that our results
are not affected by possible bias of technology used for
manufacturing the gene chips, we used expression data
sets obtained using both oligonucleotide arrays [2– 4] as
well as cDNA microarrays [5,6]. For each network, we
calculated P�z� the probability of finding a vertex of
degree z. P�z� is normalized by N so that

P
z P�z� � 1.

Since these networks are small, P�z� is very noisy.
 2002 The American Physical Society 268702-1



50

60

70

80

90

100

1 10 100 1000

10
0 

Λ
(K

)

K

Alon99

43

44

45

10 15 20 25 30 35 40

60

70

80

90

100

1 10 100 1000

10
0 

Λ
(K

)

K

Pero99−26

56

57

10 15 20 25 30 35

FIG. 1. Variation of 	�K� with K for networks constructed
from colon cancer data of Alon et al. [2] and breast cancer data
of Perou et al. [5]. The insets show a blowup of a small zone
around the minima. The keys are as in [24].
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F�z� �
Xzmax

i�z

P�i�; (1)

where zmax is the maximum degree in the network.
We also define a quantity c � z� 1. This quan-

tity gives the size of the smallest cluster around a ver-
tex with connectivity z that includes the vertex and its
neighbors. It can also be considered as the size of a
‘‘droplet’’ that is formed by the vertex and its neighbors.
Since the smallest and the largest values of z are 0 and
zmax, the corresponding values for c become 1 and cmax �
1� zmax, where cmax is the largest droplet size. The
probability density ~PP�c� and cumulative distribution
~FF�c� corresponding to c are defined similarly to those
for z. The linear relationship of c and z implies that
~PP�c� � P�z� and ~FF�c� � F�z�. Outside the range of z
and c, corresponding probability density functions are
defined to be zero. Thus, ~FF�c�jc�1 � F�z�jz�0 � 1 and
~FF�c�jc>cmax

� F�z�jz>zmax
� 0.

The homogeneity of the networks can be characterized
by a single order parameter. A suitable candidate for this
is the area 	 enclosed by the ~FF�c� versus c? � c=cmax

curve between c? � 0 and 1. It takes values in the range 0
to 1 depending on the homogeneity of the network. Since
cmax is finite and the values of c are evenly spaced, 	�K� is
easily calculated using Trapezoidal rule and equals

cmax	�K� �
1

2
	1� P�zmax�
 �

Xzmax

i�0

�i� 1�P�i�: (2)

The terms with factor of 1=2 represent the area of strips at
the boundary. Their contribution vanishes as the number
of strips increases. It is zero if P�z� is a delta function.

From Eq. (2), the value of cmax	�K� is easily identified
as the mean size �cc � 1� �zz of the droplets, where �zz is the
average degree of vertices in the network. Thus, 	�K� is
the average droplet size normalized with the size of the
largest droplet in the network. It measures separation
between the mean and maximum droplet sizes in the
network and functions as an indicator of the overall
behavior of F�z� and P�z�. Very small values of 	�K�
imply that F�z� descends sharply from unity to almost
zero at a small z � zmax and becomes nearly flat with
plateau stretching until zmax. The corresponding P�z� has
long tails with weight centered at small z. 	�K� close to
unity implies that F�z� stays nearly flat at unity for most
of z � zmax and descends sharply to zero at some z �
zmax. In this case P�z� is sharply peaked similar to a delta
function near zmax. Intermediate values of 	�K� imply a
decaying F�z� corresponding to various forms of P�z�
including those that rise slowly to a peak and then decay
slowly via sharply truncated power-law tails.

Figure 1 (Alon99) shows the behavior of 	�K� for net-
works constructed using colon cancer data of Alon et al.
[2]. The figure shows that, as K is increased from 1 to
N � 1, 	�K� initially decreases and attains a minimum at
some value of K � K1 (here K1 � 16). The minimum is
nearly flat and persists until K � K2 (here K2 � 24). As K
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is increased beyond K2, 	�K� continues to increase,
reaching its maximum value of 1 at K � N � 1. Figure 1
(Pero99-26) shows similar behavior of 	�K� in networks
constructed using breast cancer data of Perou et al. [5]
with a second minimum at K � 3N=4. The second mini-
mum is usually a finite size effect. It can also occur if
there is high inhomogeneity on length scales large com-
pared to the nearest neighbors scale. It is very shallow
compared to that between K1 and K2 because the proba-
bility density function corresponding to the size of
‘‘droplets’’ on larger length scales are sharper compared
to P�z� and also have smaller tails. The higher order
minima, however, are not relevant. Behavior similar to
that seen in Fig. 1 was observed in networks from several
other gene expression data sets also [3,4,6].

The behavior of 	�K� divides the networks into three
classes. (i) The networks corresponding to 1 � K <K1

have few connections between vertices but have high
homogeneity. (ii) The networks for K1 � K � K2 are
somewhat better connected and highly inhomogeneous.
(iii) In the networks for K2 <K � N � 1, the vertices
have many connections and high homogeneity that in-
creases with K.

Figure 2 shows the variation of the observed cumula-
tive probability distribution F�z� with the normalized de-
gree �z� 1�=�zmax � 1� in a wide range of values of K for
networks constructed from many gene expression data
sets [2–6]. It is clear from the figure that all the curves
in the range K1 � K � K2 (solid circles) show a very
good collapse, and thus good scaling, for all the data
sets. This range of K houses the minimum of the order
parameter and the corresponding networks are highly
inhomogeneous with loosely connected vertices. The
solid straight line passing through the tails of these
268702-2
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FIG. 2. Variation of cumulative probability distribution function F�z� with normalized degree �z� 1�=�zmax � 1� in networks
constructed from several data sets. The keys are as in [24]. In the graphs, data for different types of networks are plotted using
different line styles. Solid circles are used in the range of K corresponding to minima of 	�K�. The straight solid line is least-square
fit of the form given in Eq. (3) in the tails of F�z�. The curves drawn with dashed lines approach the solid circles as K increases
(here, in steps of 2). The curves drawn with dotted lines go away from the solid circles as K increases (here, in steps of 50).
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curves is a least-square fit of the form

F�z� � a� b ln
�

z� 1

zmax � 1

�
; (3)

where a and b are the fit parameters. For the graphs
shown in the figure, these parameters vary in the range
0:03�a�0:08 and 0:47�b�0:71 over all the data sets.

The extremely good fit of Eq. (3) in the tails of F�z�
seen in Fig. 2 implies that the corresponding probability
density functions have a scale-free behavior of the form
P�z� 
 b�z� 1��1 in the tails. The power law is seen in
the range 0:35 & �z� 1�=�zmax � 1� � 1, i.e., in nearly
60% to 65% of the range of variation of vertex degree. As
this range is small for observing heavy tailed distribu-
tions, we analyze the eigenvalue spectrum of the adja-
cency matrix of networks [12] to have another evidence of
the scale-free character of the networks.

The spectral density ���� of the eigenvalue spectrum
of the adjacency matrix of networks

���� �
1

N

XN
j�1

���� �j�; (4)

where �j is the jth eigenvalue of the adjacency matrix, is a
good indicator of the overall behavior of their degree
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distribution P�z� and topological structure. For random
graphs having a giant connected component ���� is
known to converge to a semicircle following the Wig-
ner’s law [12]. Deviations from Wigner’s law are seen for
other cases. For the small-world networks ���� shows a
complex highly skewed structure with several blurred
peaks [12]. For scale-free networks, the spectral density
has a triangular shape with the central part lying above
the semicircle [12].

Figure 3 shows the spectral density of networks con-
structed from colon cancer data of Alon et al. [2] for
different values of K corresponding to the three zones
of behavior of 	�K� seen previously. The figure shows that
for small K the spectral density has an irregular shape
with several blurred peaks and its bulk is confined below
the semicircle. This is a characteristic of small-world
networks [12]. As K is increased, the bulk portion starts
assuming a triangular shape which is a little skewed for
small K. The top portion of the triangle starts protruding
above the semicircle as K crosses K1. This is clear from
the intermediate and high values of K in the figure. The
triangular shape persists until K becomes almost equal to
N � 1. At K � N � 1, the spectral density develops a
delta function peak corresponding to N � 1 repeated
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er data of Alon et al. [2] for different values of K corresponding
ig. 1). p is the fraction of edges, out of the maximum possible
pectral density of random networks is drawn for comparison.
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eigenvalues at � � �1 and the largest eigenvalue is �1 �
N � 1. This behavior of the spectral density was seen in
all the other data sets also [3–6]. It confirms that these
gene networks have small-world character and become
scale free for K � K1.

Presence of scale-free behavior indicates a high degree
of self-organization in the system and is known to be a
characteristic of natural systems [13]. It has been ob-
served in several natural and artificial networks, e.g.,
power grid [14], the Internet [15], the World Wide Web
[16], actor network [17], web of human sexual contacts
[18], citation and collaboration networks [19], conceptual
network of language [20], metabolic network [21], food
web [22], and protein networks [10]. The exponents of the
power laws observed earlier, however, were always more
than unity. The gene networks studied here are first ex-
amples of biological networks showing scale-free behav-
ior with exponent of unity.

The scale-free character of coexpressed gene networks
means that these networks are extremely inhomogeneous
and contain few genes that are very highly connected and
a large number of genes with low connectivity. This
implies that these networks contain large groups of coex-
pressed genes. As a result, the present study conclusively
shows, using direct experimental data, that various types
of cancers are a consequence of a malfunction of only a
few genes that either regulate the expression of a large
number of other genes or form the hubs of various
crowded gene regulatory pathways functioning in the
organism. It is known that disturbing such genes could
be fatal for the organism [23], which also turns out to be
the mechanism of origin of cancers. Identification of such
genes and understanding their functionality under vari-
ous conditions through which an organism can pass in its
lifetime is directly relevant in the design of highly tar-
geted drugs, among other possibilities.

The simultaneous presence of small-world and scale-
free characters in these networks seems to be a perfect
fit in the evolutionary scheme of biological systems.
The high robustness displayed by biological systems is
a consequence of the scale-free character of the associ-
ated networks. On the other hand, the fast reaction and
rapid adaptability shown by biological systems can come
only if the associated networks have a small-world
character. This fits the structure of biological signaling
system well because the chemical signaling employed at
most places in biological systems, by its very nature, is
very slow compared to, e.g., electrical signaling in neu-
rons. Thus, for achieving fast message transmission, the
associated networks must evolve to have small-world
character.
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